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Abstract. Gadget-based samplers have proven to be a key component
of several cryptographic primitives, in particular in the area of privacy-
preserving mechanisms. Most constructions today follow the approach
introduced by Micciancio and Peikert (MP) yielding preimages whose di-
mension linearly grows with that of the gadget. To improve performance,
some papers have proposed to truncate the gadget but at the cost of an
important feature of the MP sampler, namely the ability to invert arbi-
trary syndromes. Technically speaking, they replace the worst-case MP
sampler by an average-case sampler that can only be used in specific con-
texts. Far from being a mere theoretical restriction, it prevents the main
applications of gadget-based samplers from using truncated variants and
thus from benefiting from the associated performance gains.
In this paper, we solve this problem by describing a worst-case sam-
pler that still works with truncated gadgets. Its main strength is that it
retains the main characteristics of the MP sampler while providing flexi-
bility in the choice of the truncation parameter. As a consequence, it can
be used as a plug-in replacement for all applications relying on the MP
sampler so far, leading to performance improvements up to 30 % as il-
lustrated by several examples in this paper. Our sampler is supported by
a thorough security analysis that addresses the hurdles met by previous
works and its practicality is demonstrated by a concrete implementation.

Keywords: Lattice-Based Cryptography · Trapdoors · Preimage Sam-
pling · Advanced Signatures

1 Introduction

A trapdoor function f is a function that is easy to evaluate and hard to invert,
except for the entity knowing a specific information, the trapdoor, that enables
efficient inversion. It has proven to be particularly useful in the context of dig-
ital signatures where one can roughly define the signature as σ = f−1(u) for
some appropriate u that depends on the message m to be signed. Such a signa-
ture (which requires trapdoor knowledge to be computed) can then be publicly
verified by testing whether f(σ) = u. Obviously, some adaptation is necessary
to meet the security requirements of digital signatures but this basic idea has
underlain many practical constructions since the RSA algorithm [RSA78].
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In the lattice setting, a prominent example of trapdoor functions is the one
by Ajtai [Ajt96], in particular since its secure adaptation to digital signature
by [GPV08]. In the latter, they introduce the notion of trapdoor preimage sam-
pleable function (TPSF) which should allow for randomizing the inversion of the
function. The TPSF in question is defined by a public matrix C ∈ Zd×m

q and
consists in computing f(x) = Cx for short vectors x. For proper C, inversion
is hard under the ISIS problem, except for the entity owning the corresponding
trapdoor. When used in the context of digital signatures, inversion should ideally
(1) be possible for any syndrome u ∈ Zd

q , (2) should not leak any information on
the trapdoor and (3) should result in preimages x that are as small as possible.
Unfortunately, achieving all these three features simultaneously is very difficult
in practice. In particular, as we shall see, improving one of these features often
impacts negatively the other ones.

For example, let us set C = [A|TG − AR], as is done in the seminal
work by Micciancio and Peikert [MP12], where A is random, T is invertible,
R is short and G = [1|b| . . . |bk−1] ⊗ Id ∈ Zd×dk is the base-b gadget matrix
where k = ⌈logb q⌉. With the knowledge of R, one can easily compute a low-
norm preimage for any syndrome u ∈ Zn

q by generating z as the base-b de-
composition of the vector T−1u and by returning x = [(Rz)T |zT ]T . Indeed,
Cx = ARz+TGz−ARz = TGz = u by construction of G. The matrix R is
then the trapdoor corresponding to C and the resulting trapdoor function fully
satisfies condition (1) and, more or less, condition (3) (we will discuss this point
further). However, inversion clearly fails to satisfy condition (2) as the result-
ing preimage x leaks information on R. In other words, using this approach to
generate signatures would result in a totally insecure scheme where the signer’s
secret key would progressively leak with issued signatures. This is what led the
authors of [MP12] to devise a much more elaborate preimage sampling algorithm
which completely erases the dependency on R of the preimage x by imposing
a Gaussian distribution on z and by introducing a well-crafted perturbation p.
The resulting construction thus perfectly satisfies conditions (1) and (2) but,
when it comes to (3) we note that x has a rather large dimension, essentially
because of its z component. Of course, one could try to decrease this dimension
by resorting to a larger decomposition base b but it would then increase the
norm of z. The latter option is thus more a tradeoff than a real solution. In the
end, it means that using the TPSF of [MP12] in a signature scheme will result
in rather large signatures which are not competitive size-wise with standardized
alternatives (e.g. Falcon [PFH+20], Dilithium [DKL+18]).

Fortunately, the other features of the Micciancio-Peikert (MP) sampler have
proven to be extremely useful for other applications, in particular in privacy-
preserving authentication mechanisms. Indeed, the latter extensively rely on
zero-knowledge proofs that are notoriously hard to combine with constructions
in the random oracle model such as [PFH+20,DKL+18]. Conversely, the MP
sampler can yield standard model signature, in part because it satisfies condi-
tion (1). As a consequence, it has served as a core building block of countless
constructions such as group signatures [dPLS18,LNPS21,LNP22], anonymous
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credentials [JRS23,LLLW23,AGJ+24], blind signatures [JS24], etc. Obviously,
the efficiency problem remains but it is somehow compensated by the smooth
interaction with zero-knowledge proof that the MP sampler enables.

To improve the performance of the MP sampler, Chen et al. [CGM19] in-
troduced the notion of approximate trapdoors. The latter still allow to invert
functions x 7→ Cx, but up to some error. Concretely, given some u ∈ Zd

q , they
allow to generate short vectors x such that Cx = u+ e where e is also a short
vector. Interestingly, this approach does not significantly weaken the underlying
computational assumption as the authors show that security can still be reduced
to the ISIS assumption.

As demonstrated in [CGM19], the MP sampler lends itself well to approxi-
mate trapdoors. More precisely, if we replace G by a truncated version GH =
[bℓ| . . . |bk−1]⊗ Id where all the lower entries have been dropped, one is still able
to invert the upper part of any u ∈ Zd

q . Concretely, one can now compute, for all
u ∈ Zd

q , a short z such that GHz = u+ e for some small e ∈ Zd
q . One can thus

proceed as previously and compute x = [(Rz)T |zT ]T . Assuming that T does not
increase the norm too much (which can easily be enforced in practice), this is
a valid approximate preimage with error Te. From the performance standpoint,
the gains are very significant as truncated gadgets lead to a smaller preimage
with fewer dimensions. From the security standpoint the situation is however
more complex. Indeed, here again, one cannot directly use this naive preimage
sampling as it trivially leaks information on R. The authors then resort to the
same perturbation approach as in [MP12] but face a very specific issue related
to the error Te. The latter indeed depends on the perturbation which makes
Te very difficult to simulate without the trapdoor (a necessary step to prove
condition (2)), at least for general syndromes u. Actually, the authors were
only able to prove simulatability of their preimage and error for uniform and
reprogrammable syndromes u, which does not fully satisfy condition (1). The
corresponding TPSF is then categorized as “average-case”. While this is not a
problem for GPV-like signatures proven in the random oracle model, these con-
ditions are not met in the case of privacy-preserving authentication mechanisms
where the syndrome is likely to be adversarily controlled to some extent. This is
particularly frustrating because it means that the substantial improvements in-
duced by approximate trapdoors are inaccessible to the main applications of MP
trapdoors that must still use the full gadget G and thus inherit the associated
performance limitations.

1.1 Our Contributions

In this paper, we solve this problem by describing a sampler that uses a trun-
cated gadget1, as in [CGM19], but that can still compute a preimage for any
syndrome u ∈ Zd

q without leaking any information on the trapdoor. In other
words, our sampler fully satisfies conditions (1) and (2) and drastically improves
1 We talk about truncated gadgets and not approximate trapdoors because our sam-

pler actually produces exact preimages as we shall see.
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the performance (condition (3)). This provides an answer to the open question
formulated in [CGM19] to use truncated gadgets like in their approximate trap-
door framework while satisfying condition (1). Indeed, all known TPSFs with
truncated gadgets [CGM19,YJW23,JRS24] were average-case as their security
only held when the inverted syndrome were uniform and reprogrammable. Our
sampler thus provides the first “worst-case” TPSF with truncated gadget. Better
still, as our sampler retains the general structure of the MP sampler, it acts as
a plug-in replacement that readily leads to more efficient schemes for all ap-
plications. Concretely, when plugged in the standard model signature derived
from [MP12], one gets a signature which is 30% smaller without impacting se-
curity. Given the central role of the sampler from [MP12] in privacy-preserving
authentication mechanisms, satisfying condition (1) while truncating the gadget
impacts positively such mechanisms. This is because, beyond the signature com-
ponent of such systems, they employ zero-knowledge frameworks (such as the
one from [LNP22]) which are particularly sensitive to the witness dimension.

To achieve such results, we start by introducing a generic sampler, which
encompasses previous variants of the exact MP sampler, and we prove that it
satisfies conditions (1) and (2) under carefully identified constraints. We then
propose a specific instantiation of this generic sampler that meets such con-
straints and that also allows to truncate the gadget to improve performance. We
then apply our truncated sampler to several designs of advanced signatures to
showcase its concrete impact. We finally implement our sampler to show that its
computational efficiency in the standard model signature use-case is similar to
the original MP sampler. It incurs only a mild overhead during signing but the
smaller signature dimension results in faster verification and will also positively
impact zero-knowledge proofs generation and verification, a major step of the
applications mentioned above. We give more details on the concrete performance
in Section 5.2. Let us now present a more technical overview of our contributions.

Our Approach. We start with the MP sampler which adapts the naive base-b
decomposition sketched above by first sampling a perturbation vector p following
some Gaussian distribution D and then invert the syndrome u−Cp instead of
just u. As a consequence, the resulting x = [(Rz)T |zT ]T , where Gz = T−1(u−
Cp), is a preimage of u − Cp which means that v = x + p is a preimage of
u. By carefully selecting the parameters of D and the one used to generate z,
one can ensure that v is distributed independently of the trapdoor R, thanks
to a convolution result by Peikert [Pei10]. As discussed above, [CGM19] follows
the same approach but drops some entries of the gadget matrix which leads
to an error TGLzL where GL = [1|b| . . . |bℓ−1] ⊗ Id and zL is constituted of
the components of z matching the columns of GL. As this error depends on p,
we cannot directly rely on the same argument as [MP12]. Worse, the thorough
analysis in [CGM19] suggests that proving simulatability in the general case is
hard, hence the restrictions introduced by the authors on the distribution of u.

To circumvent this problem, we actually transform the approximate sampler
by [CGM19] into an exact one so as to rely on a security argument closer to
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the one in [MP12]. Note that, from a purely functional standpoint, this is not
very difficult. Indeed, if C is in Hermite Normal form (HNF) [I|C′] for some
C′ ∈ Zd×m−d

q , then any approximate preimage x of u yields an exact one x′ = x−
[eT |0]T . Indeed, [I|C′]x = u+e implies that [I|C′]x−e = u and hence [I|C′](x−
[eT |0]T ) = u. By defining appropriate bounds on the error e, one ensures that
x′ remains small and so that it is a valid preimage. Actually, this argument is
essentially the one provided in [CGM19] to argue that the approximate ISIS
problem is not that different from the regular version of ISIS. Of course, this
does not solve the simulatability issue of [CGM19] as the problem regarding the
error e = TGLzL is directly transferred to x′.

This rearrangement is thus not sufficient but it has brought us closer to
the spirit of the original MP sampler. For sake of clarity, let us rewrite the
associated matrix [A|TGH −AR] as [[I|A′]|TGH − (R1 +A′R2)] where [I|A′]
is the HNF form of A and R = [RT

1 |RT
2 ]

T . By definition of G, we can split it
into G = [GL|GH ], and thus z = [zTL|zTH ]T . If we assume that the perturbation
p = 0 for the moment, our preimage x′ is then exactlyR1zH +TGLzL

R2zH
zH

 =

TGL R1

0 R2

0 Id(k−ℓ)

[zL
zH

]
,

and we define M as the matrix before [zTL|zTH ]T . From a theoretical standpoint,
we are not that far from the MP sampler where the resulting preimage was
[RT |I]T z. Actually, by noticing that in the case of the MP sampler GL = ∅, one
can note that our sampler involving M is a generalization of the MP one. To
remove the leakage introduced by M, we thus aim at resorting to the same solu-
tion, namely using a well-crafted perturbation p. However, this is quite complex
in our context for the following two reasons. First, GL is rather large, at least
compared to R1 and R2, which would require very large perturbation param-
eters if we directly apply the MP approach. Second, deriving good parameters
for this perturbation requires at some point to precisely bound the covariance
of x′ and derive appropriate smoothing conditions, which is quite difficult in
our case as we shall see. To address these problems, we revisit the original MP
approach by providing a much more generic result that we can directly use to
prove security in our case but that could also serve to analyze other variants of
the MP sampler. The strength of our result is that it does not sacrifice efficiency
for genericity. Indeed, when used in the original MP setting, it allows to derive
even better (albeit very slightly) parameters.

The first step of our result is to write the matrix M as K · L where K only
contains public elements (e.g. the matrix GL) and L contains all the information
we want to hide (namely R1, R2 and T2). We then identify a set of precise
requirements related to our perturbation and demonstrate that satisfying them is
sufficient to prove security of our sampler. This demonstration is quite technical
and constitutes our first main contribution. The point is that these requirements
depend on L and not K. This approach thus allows to completely remove the
2 The tag must be hidden to prove security of MP-like signatures as we will explain.
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contribution of K when defining the perturbation parameters while ensuring that
everything will work when we will recompose M. We thus sample a preimage with
L, which we then project with the public matrix K. In our case, this concretely
allows to define perturbation parameters that only depends on R1, R1 and T,
and not GL, which thus solves our first problem mentioned above.

However, the second problem remains. Our covariance depends on L which
has a rather complex form in our general case. We nevertheless manage to iden-
tify very concrete parameters that make our perturbation tightly satisfies the
requirements above. Our corresponding proof is, here again, very technical and
constitutes another contribution of this paper. Putting everything together, we
are thus able to securely sample preimages of any syndrome with truncated
gadgets, leading to improved performance.

As mentioned above, this readily leads to a 30% gain on the signature size
when plugged in a standard model signature scheme. We also show other im-
mediate impacts of our result in the area of privacy-preserving mechanisms. We
indeed consider the prominent cases of group signatures [CvH91], anonymous
credentials [Cha85] and blind signatures [Cha82], and apply our result to the
most efficient constructions to date that are based on some versions of the MP
sampler, yielding significant improvements in all cases. Note that our generic and
truncated sampler naturally extend to the ring setting (detailed in Section 4.3),
which is used in all the latter constructions. The resulting sizes and improvement
ratios are summarized in Table 1.1, and detailed later in Section 5.

Original Ours Improv.

Standard model signature [AGJ+24] 6.72 KB 4.82 KB 28.1 %

Group signature [LNPS21,LNP22] 98.02 KB 82.65 KB 15.7 %

Anonymous credentials [AGJ+24] 79.58 KB 71.46 KB 10.2 %

Blind signature [JS24] 41.12 KB 36.28 KB 11.8 %

Table 1.1. Comparison of state-of-the-art standard model signatures, group signa-
tures, anonymous credentials, blind signatures using the MP sampler and ours. For
anonymous credentials, the size is to that of the credential presentation proof (a zero-
knowledge proof of a standard model signature), being the most relevant metric.

The discrepancy between the 30% figure obtained for standard model signa-
ture and the ones indicated for privacy-preserving mechanisms is due to the fact
that preimage sampling is just one of the building blocks of the latter, which
decreases the relative weight of our contributions. In absolute terms, our shorter
preimages lead to an improvement up to 15 KB, which is noticeable for practical
applications. Given that our truncated sampler has been designed as a plug-in
replacement of the MP sampler, one can readily use it to obtain smaller preim-
ages for free, without changing the structure of the construction using it, and
without affecting security. The gains obtained by the sampler itself are then am-
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plified by the numerous applications relying on such methods. The genericity of
our security result could also lead to other variants of our sampler that would
be tailored to different contexts, leading to further gains.

2 Preliminaries

We use N,Z,R to respectively denote the set of natural integers, the ring of inte-
gers, and the field of reals. For two integers a ≤ b, we define [a, b] = {a, . . . , b} and
[b] = [1, b]. For a positive integer q, we define Zq = Z/qZ. For a finite set S, we
call U(S) the uniform distribution over S. For δ > 1 and two distributions P1,P2

of same support S, we write P1 ≈δ P2 if for all x ∈ S, P1(x) ∈ [1/δ, δ]P2(x).

2.1 Linear Algebra

Vectors and matrices are written in bold lowercase and uppercase letters respec-
tively. The transpose of a matrix A is denoted by AT . We define the regular ℓp
norms of Rd by ∥a∥p = (

∑
i∈[d]|ai|

p
)1/p. For a set S ⊆ Rd, we write SpanR(S) to

be the subspace of Rd generated by S. For a matrix A = [a1| . . . |am] ∈ Rd×m,
we define SpanR(A) = SpanR({ai; i ∈ [m]}) ⊆ Rd. We also define ker(A) = {x ∈
Rm : Ax = 0}. The set of real unitary matrices of Rd×d is denoted by Od(R).
Singular Value Decomposition. For A ∈ Rd×m, the singular value decom-
position (SVD) gives the existence of U ∈ Od(R), V ∈ Om(R) and D ∈ Rd×m

rectangular diagonal with non-negative diagonal entries in non-increasing or-
der, such that A = UDVT . When m > d, D = [D′|0d×(m−d)] with D′ =
diag(s1(A), . . . , sd(A)), where s1(A) ≥ . . . ≥ sd(A) ≥ 0 are called the singular

values of A. When m ≤ d, D =

[
D′

0(d−m)×m

]
with D′ = diag(s1(A), . . . , sm(A)).

Moore-Penrose Pseudoinverse. For a matrix A ∈ Rd×m, there exists a
unique matrix A+ ∈ Rm×d verifying the four Moore-Penrose conditions: (1)
AA+A = A, (2) A+AA+ = A+, (3) (AA+)T = AA+, (4) (A+A)T = A+A.
The matrix A+ is called the Moore-Penrose pseudoinverse, or just pseudoinverse
for short, of A. The pseudoinverse operator is an involution, i.e., (A+)+ = A,
and it commutes with the transpose operator, i.e., (AT )+ = (A+)T = A+T .
It holds that AA+ is the orthogonal projector onto SpanR(A), while A+A is
the orthogonal projector onto SpanR(A

T ). We also have that SpanR(A
+) =

SpanR(A
T ) and ker(A+) = ker(AT ). When A is invertible, then A+ = A−1.

If A has linearly independent columns, then A+ = (ATA)−1AT and thus
A+A = Im. If A has linearly independent rows, A+ = AT (AAT )−1, and thus
AA+ = Id. More generally, if A = UDVT is an SVD of A, then A+ = VD+UT .
As opposed to the inverse, in general (AB)+ ̸= B+A+. In certain specific cases,
the equality holds: for example, if B = AT , or if A has orthonormal columns,
or if B has orthonormal rows. From that we can deduce that for any pairs of
unitary matrices, we have (UAVT )+ = VA+UT . Finally, for all α ̸= 0, it holds
that (αA)+ = α−1A+.
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Square Roots. A symmetric matrix S ∈ Rd×d is said positive semi-definite
if for all x ∈ Rd, xTSx ≥ 0. In that case, we write S ≥ 0. It is said positive
definite if for all x ∈ Rd \ {0}, xTSx > 0, in which case we write S > 0. We
write S+d (R) (resp. S++

d (R)) the set of symmetric positive semi-definite (resp.
definite) matrices of Rd×d. The Loewner order gives a partial ordering on S+d (R),
and S++

d (R). Concretely, we write S ≥ R (resp. S > R) if S−R is positive semi-
definite (resp. positive definite). We note that the Loewner order is compatible
with the inverse on S++

d (R), that is for S,R ∈ S++
d (R), S ≥ R ⇒ R−1 ≥ S−1.

The same holds for strict inequalities. On the other hand, this property is not
true in general over S+d (R) using pseudoinverses. The implication is true if and
only if S and R have the same kernel. Finally, for any S ∈ S+d (R), we write

√
S

any full-rank matrix such that S =
√
S
√
S
T
. Note that

√
S need not be square.

2.2 Lattices

A real d-dimensional lattice L is a finitely generated free Z-module, accompanied
with a Euclidean norm on SpanR(L). There exists a finite family (b1, . . . ,br) ∈
Lr of linearly independent vectors of Rd such that L = ⊕i∈[r]Zbi. We write
B = [b1| . . . |br] and B is called a basis of L. To specify a basis, we usually write
L = L(B). The integer r is called the rank of the lattice L and is independent
on the choice of basis. For a lattice L, we define λ1(L) = minx∈L\{0}∥x∥2.

The dual lattice of L is defined by L∗ = {x ∈ SpanR(L) : ∀y ∈ L,xTy ∈ Z}.
If B is a basis of L, it holds that B+T = (BT )+ is a basis of L∗. Because B has
linearly independent columns, it holds that B+T = B(BTB)−1. More generally,
we have the following lemma.

Lemma 2.1. Let d,m ∈ N× and A ∈ Rd×m be a matrix with linearly indepen-
dent rows. Then, let L ⊂ SpanR(A

T ) be an m-dimensional lattice. It holds that
(AL)∗ = A+TL∗.

Proof. Because A has linearly independent rows, we have A+ = AT (AAT )−1.
Let x ∈ (AL)∗. We define y = ATx. Let y′ ∈ L. We have yTy′ = xT (Ay′) ∈ Z
by definition of (AL)∗. So y ∈ L∗. Yet, we have x = A+TATx = A+Ty which
shows that x ∈ A+TL∗.

Reciprocally, let y = A+Tx with x ∈ L∗. Let y′ = Ax′ be in AL with
x′ ∈ L. We have yTy′ = xTA+Ax′. Yet A+A is the orthogonal projector onto
SpanR(A

T ). Because x′ ∈ L ⊂ SpanR(A
T ), it holds that A+Ax′ = x′ and thus

that yTy′ = xTx′ ∈ Z by definition of L∗. So x ∈ (AL)∗.

For a matrix A ∈ Zd×m
q and u ∈ Zd

q , we define the q-ary lattice L⊥q (A) =
{x ∈ Zm : Ax = 0 mod qZ}, and the lattice coset Lu

q (A) = {x ∈ Zm : Ax =
u mod qZ}.
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2.3 Gaussian Measures

For S ∈ S+d (R), and c ∈ Rd, we define the Gaussian function ρ√S,c by

∀x ∈ Rd, ρ√S,c(x) =

{
exp(−π(x− c)TS+(x− c)) if x− c ∈ SpanR(S)
0 otherwise

Note that the expression only depends on S and not a specific choice of square
root, which is why we index the function by

√
S. For any d-dimensional lattice L

such that (L− c) ∩ SpanR(S) ̸= ∅, we define the discrete Gaussian distribution
by its probability mass function DL,√S,c : x ∈ L 7→ ρ√S,c(x)/ρ

√
S,c(L). When

c = 0, we omit the subscript, and when S = s2Id for s > 0, we replace the
subscript

√
S by s.

As coined by Micciancio and Regev [MR07], we define the smoothing pa-
rameter of a lattice L, parameterized by some ε > 0, by ηε(L) = min{s > 0 :
ρ1/s(L∗) = 1 + ε}. A recent work by Espitau, Wallet and Yu [EWY23] gives an
exact expression of ηε(L) with tight approximations for remarkable lattices.

Lemma 2.2 ([EWY23, Lem. 5]). Let L be a lattice and ε > 0. It holds that

ηε(L) =
1

λ1(L∗)

√
1

π
ln

(
κ(L∗)
ε

(1 + oε(1))

)
,

where κ(L∗) = |{x ∈ L∗ : ∥x∥2 = λ1(L∗)}| is the kissing number of L∗. In par-
ticular, it holds that for any d ∈ N×, ηε(Zd) ≈

√
ln(2d/ε)/π.

For non-spherical Gaussian distributions, if S ∈ S+d (R) and L ⊂ SpanR(S) is
a lattice within the span of S, we say that

√
S ≥ ηε(L) if 1 ≥ ηε(

√
S
+L). We

have another characterization of
√
S exceeding the smoothing parameter, which

we give here.

Lemma 2.3. Let d ∈ N×, ε > 0, S ∈ S+d (R) and L ⊂ SpanR(S) a lattice. It
holds that

√
S ≥ ηε(L) if and only if ρ√S+(L∗) ≤ 1 + ε.

Proof. To show the equivalence, it suffices to have ρ1((
√
S
+L)∗) = ρ√S+(L∗).

Let R ∈ Rd×r be a full rank square root of S. We have rank(R+) = rank(RT ) =
rank(R) = r. So R+ has linearly independent rows. Additionally, SpanR(R+T ) =
SpanR(R) = SpanR(S). So L ⊂ SpanR(R

+T ). By Lemma 2.1 for A = R+, it
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holds that (R+L)∗ = RTL∗. Hence, we have

ρ1((R
+L)∗) =

∑
x∈L∗

ρ1(R
Tx)

=
∑
x∈L∗

exp(−πxTRRTx) (because RTx ∈ SpanR(Ir) = Rr)

=
∑
x∈L∗

exp(−πxT (S+)+x)

=
∑
x∈L∗

ρ√S+(x) (because L∗ ⊂ SpanR(S) = SpanR(S
+))

= ρ√S+(L∗).

It thus shows the equivalence, which argues that the definition
√
S ≥ ηε(L) does

not depend on the specific choice of full rank square root.

Additionally, if S ∈ S++
d (R) and L is full rank,

√
S ≥ ηε(L) is equivalent to

S ≥ ηε(L)2Id for the Loewner order. This does not hold true if S is singular.

Lemma 2.4 ([MR07]). Let d ∈ N×, L a lattice, ε > 0, S ∈ S+d (R) such
that

√
S ≥ ηε(L). Then for any c ∈ SpanR(L), it holds that ρ√S(L + c) ∈

[(1− ε)/(1 + ε), 1]ρ√S(L).

We will also need the following fact on the smoothing parameter of strict
sublattices.

Lemma 2.5. Let L1 be a lattice and L2 ⊂ L1 be a strict sublattice of L1 such
that rank(L1) = rank(L2). Then for any ε > 0, it holds that ηε(L1) < ηε(L2).

Proof. Because L2 is a strict sublattice of same rank, it holds that L∗1 is a strict
sublattice of L∗2. Indeed, we have SpanR(L1) = SpanR(L2) because L2 ⊂ L1 and
both have the same rank. Let x ∈ L∗1. Then, x ∈ SpanR(L1) = SpanR(L2). Now
let y ∈ L2. It then holds that y ∈ L1 and therefore xTy ∈ Z, thus proving that
x ∈ L∗2. If the inclusion is not strict, i.e., L∗1 = L∗2, then L1 = L2 which yields
a contradiction. Because we now have the strict inclusion L∗1 ⊂ L∗2, it naturally
holds that for all s > 0, ρ1/s(L∗1) < ρ1/s(L∗2). If we choose s = ηε(L1), we then
get 1 + ε = ρ1/s(L∗1) < ρ1/s(L∗2). By definition of the smoothing parameter,
noticing that this is a minimum by continuity and not just an infimum, we then
get that s < ηε(L2) as desired.

2.4 Algebraic Number Theory

We now give the necessary notions in algebraic number theory. A number field
K = Q(ζ) is a field extension of Q of finite degree n adjoining an algebraic
number ζ. The set of algebraic integers in K is a ring R called the ring of integers
of K. We also define KR = K ⊗Q R. For any q ≥ 2, we define Rq = R/qR. A
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popular choice of number field is the class of power-of-two cyclotomic fields, for
which the degree n is a power-of-two and which are isomorphic to Q[x]/⟨xn+1⟩.
The ring of integers in this case is identified with Z[x]/⟨xn + 1⟩.

The following is stated forKR but holds also forK and R. Elements ofKR can
naturally be embedded into the Euclidean space Rn by their coefficient vector
when seen as a polynomial in ζ or x. We use τ to denote this coefficient embed-
ding, i.e., for r =

∑n−1
i=0 riζ

i, τ(r) = [r0| . . . |rn−1]T . We also define the conjugate
r∗ of the element r by being r∗ = r(ζ−1). In the power-of-two cyclotomic field of
degree n, it holds that τ(r∗) = [r0| − rn−1| . . . | − r1]T . We denote by K+

R the set
of elements r ∈ KR such that r∗ = r, and by K++

R the set of elements r ∈ K+
R

that can be written as r = ss∗. We then define the multiplication matrix map
Mτ defined by the relation τ(rs) = Mτ (r)τ(s) for all pairs of elements r, s. In
power-of-two cyclotomic fields, Mτ (r) corresponds to the nega-circulant matrix
with first column τ(r). We define the usual ℓp norms over KR with respect to
the embedding τ , i.e., ∥r∥p := ∥τ(r)∥p. We define T1 = τ−1({0, 1}n).

These notations extend to vectors and/or matrices in the natural way by
concatenation, except that the conjugate of a matrix actually corresponds to
the conjugate transpose. For a matrix A ∈ Kd×m

R , we define its spectral norm
through its embedding to Rnd×nm via Mτ as ∥A∥2 = ∥Mτ (A)∥2.

We extend the notations L⊥q (A) and Lu
q (A) for matrices over Rq as Lu

q (A) =

{x ∈ Rm : Ax = u mod qR} and L⊥q (A) = L0
q (A). Module Gaussian distribu-

tions are defined via their coefficient embedding, i.e., DM,
√
S = τ−1(Dτ(M),

√
S)

where τ(M) is a module lattice corresponding to an R-module M. We also de-
fine the centered binomial distribution B1 over R obtained by sampling each
coefficient according to ψ1, with ψ1(−1) = ψ1(1) = 1/4 and ψ1(0) = 1/2.

2.5 Hardness Assumptions

The security of our standard model construction relies on the Module Short
Integer Solution (M-SIS) and Module Learning With Errors (M-LWE) problems
formalized in [LS15].

Definition 2.1 (M-SIS). Let R = Z[x]/⟨xn + 1⟩ with n a power-of-two. Let
d,m, q be positive integers and β > 0 with m > d. The Module Short Inte-
ger Solution problem M-SISn,d,m,q,β asks to find x ∈ L⊥q ([Id|A′]) \ {0} such
that ∥x∥2 ≤ β, given A′ ←↩ U(Rd×m−d

q ). The advantage of an adversary A is
AdvM-SIS[A] = Px←A(A′)

[
x ∈ L⊥q ([Id|A′]) ∧ 0 < ∥x∥2 ≤ β

]
.

Definition 2.2 (M-LWE). Let R = Z[x]/⟨xn + 1⟩ with n a power-of-two. Let
d,m, k, q be positive integers and Dr a distribution on R. The Module Learn-
ing With Errors problem M-LWEk

n,d,m,q,Dr
asks to distinguish between the fol-

lowing distributions: (1) (A′, [Im|A′]R mod qR), where A′ ∼ U(Rm×d
q ) and

R ∼ Dd+m×k
r , and (2) (A′,B), where A′ ∼ U(Rm×d

q ) and B ∼ U(Rm×k
q ).

We define AdvM-LWE[A] = |P [A(A′, [Im|A′]R) = 1]− P [A(A′,B) = 1]| as the
advantage of an adversary A.

11



When the parameters are clear from the context, we define the hardness
bound of the problem P ∈ {M-LWE,M-SIS} as εP = supA PPT AdvP [A]. We
recall that a standard hybrid argument shows that M-LWEk

n,d,m,q,Dr
is at least

as hard as M-LWE1
n,d,m,q,Dr

at the expense of a loss factor k in the reduction.

3 Generic Sampler: Towards Worst-Case TPSF with
Truncated Gadgets

We now describe our sampler which generalizes the one in [MP12] as we will see
in Section 4.1. A concrete instantiation achieving the performance improvement
mentioned in Section 1 is presented in Section 4.2.

We recall that our ultimate goal is to generate short vectors x such that
ATx = u for any syndrome u ∈ Zd

q , where AT = [Id|A|TGH − (R1 +AR2)],
GH is a truncated gadget matrix and T, R1 and R2 are parameters. To this end,
we introduce the GenericSampler that generates short v′ such that ATKv′ = u,
where K is defined below. In other words, Kv′ is exactly the vector x we seek,
assuming some mild conditions on K.

Algorithm 3.1: GenericSampler(R1,R2,A,u,T,K,L,S,SG,GH)

Input: trapdoor R1,R2 ∈ Zd×d(k−ℓ), matrix A ∈ Zd×d
q , syndrome u ∈ Zd

q ,
covariance matrices S,SG, tag T ∈ GLd(Zq), matrices K ∈ Zd(2+k−ℓ)×r and

L ∈ Zr×dk such that KL =

[
TGL R1

0 R2

0 Id(k−ℓ)

]
mod qZ, matrix GH ∈ Zd×d(k−ℓ) such

that G = [GL|GH ] is primitive.

1. p←↩ DZr,
√

Sp
with Sp = S− LSGLT .

2. w← T−1(u− [Id|A|TGH − (R1 +AR2)]Kp) mod qZ.
3. z←↩ DLw

q (G),
√

SG
.

4. v′ ← p+ Lz.

Output: v′.

One can note that GenericSampler provides some flexibility in the choice of
K and L as we only enforce a condition on their product KL. Looking ahead,
this choice should however take into account the following two facts:

– Kv′ will be made public in concrete applications so K should not depend
on secret information;

– A matrix L with large norm will require a large perturbation p, leading
GenericSampler to produce larger v′.

Roughly speaking, one should then try to move as much elements as possible in
K and only use L to hide secret information. The latter will not be leaked by the
distribution P produced by the sampler, as formally stated by the theorem below
under certain conditions on K,L,S,SG which we clearly identify. In particular,
we show that P is close to DLu

q (ATK),
√
S, hence such that K·Supp(P) = Lu

q (AT).
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Theorem 3.1. Let d, q, k, ℓ, r be positive integers with ℓ < k, and ε ∈ (0, 1). Let
R1,R2 be in Zd×d(k−ℓ), A ∈ Zd×d

q , u ∈ Zd
q and T ∈ GLd(Zq). Let S ∈ S+r (R)

and SG ∈ S++
dk (R). We let K ∈ Zd(2+k−ℓ)×r and L ∈ Zr×dk. We denote by P

the output distribution of GenericSampler(R1,R2,A,u,T,K,L,S,SG,GH). We
assume the following 5 conditions.

1 KL =

[
TGL R1

0 R2

0 Id(k−ℓ)

]
mod qZ 2 rank(L) = dk

3 SG ≥ ηε(L⊥q (G))2Idk 4 S > LSGLT

5 S ≥ L

(
SG +

(
1

ηε(Zdk)2
Idk − S−1G

)−1)
LT

Under these conditions, it holds that Supp(P) = Lu
q (ATK), and

∀x ∈ Lu
q (ATK),P(x) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
DLu

q (ATK),
√
S(x),

where AT = [Id|A|TGH − (R1 +AR2)] mod qZ. It then holds that KP is close
to KDLu

q (ATK),
√
S which is supported on Lu

q (AT).

One of the main pitfalls of our proof is to handle pseudoinverses which can
sometimes defeat the intuition we may have with inverses. In particular, we
insist that (AB)+ is not equal to B+A+ in general, and that A ≥ B does not
necessarily imply B+ ≥ A+ either. This prevents us from using some of the key
arguments of the proof of [MP12, Thm. 5.5] where bounds on Σ+

p and Σ+
y are

derived from those on Σp and Σy.
All along the proof, parts with a left bar contain the technical demonstration

of the statement that precedes. Readers can thus skip them if they only want to
follow the main steps of our proof.

Proof. We start by checking that the support of P is indeed Lu
q (ATK).

Let x = p + Lz be in Supp(P) outputted by the sampler. By construction,
z ∈ Lw

q (G) with w = T−1(u−ATKp) mod qZ. As result, we have ATKx =

ATKp+ATKLz mod qZ. By condition 1 , it holds that

ATKL = [TGL|R1 +AR2 + (TGH − (R1 +AR2))] = TG mod qZ

Hence, we have ATKx = ATKp + TGz mod qZ = u mod qZ. So x ∈
Lu
q (ATK). Reciprocally, let x ∈ Lu

q (ATK). Let z ∈ Zdk and define p =
x−Lz. Then p ∈ Zr because L has integer coefficients and Lu

q (ATK) ⊆ Zr,
and we can check that TGz = u−ATKp mod qZ. Indeed

TGz = ATKLz = ATK(x− p) = ATKx−ATKp = u−ATKp mod qZ

as desired. So because p is in the support of DZr,
√

Sp
and z in that of

DLw
q (G),

√
G, we indeed have that p+Lz = x is in Supp(P). Hence Supp(P) =

13



Lu
q (ATK). We also note that it is direct to see that Kx ∈ Lu

q (AT) if and
only if x ∈ Lu

q (ATK).

We now look at the distribution. First, let us define Sy = LSGLT , and
Sp = S− Sy. Also, let P = LL+, and define S3 = (P(S+

p + S+
y )P)+. We finally

define V = SpanR(L) ⊂ Rr. By properties of the pseudo-inverse, P = LL+ is the
orthogonal projector onto V . Condition 2 yields that L has linearly independent
columns, and we can therefore express L+ = (LTL)−1LT , and most importantly
get L+L = Idk. We then define L = Zr ∩ V . It holds that L(L) ⊆ L and
dk = rank(L(L)) = rank(L).

Note that condition 2 yields that L can indeed be used to define a lattice
L(L) because it has linearly independent columns. As such L(L) = LZdk ⊂
LRdk = V . Additionally, L ∈ Zr×dk is integral and therefore LZdk ⊆ Zr.
Hence L(L) ⊆ L.

Because L has integer coefficients, it holds that its columns are in L
and thus that V = SpanR(L) ⊆ SpanR(L). As a result, we directly get
dk ≤ rank(L). Also, due to how L is defined, rank(L) ≤ dk. Indeed, assume
towards contradiction that rank(L) > dk. Then, there exists dk + 1 vectors
v1, . . . ,vdk+1 of L that are linearly independent. Yet L ⊂ V so (v1, . . . ,vdk+1)
is a linearly independent family in a vector space of dimension dk which is a
contradiction. We conclude that dk = rank(L(L)) = rank(L).

As a result, we get that SpanR(L) = V . It also holds that SpanR(Sy) = V
where we recall that Sy = LSGLT . Additionally, we have3 S3 = L(LTS−1p L +

S−1G )−1LT , and therefore SpanR(S3) = V .

First, Sy = L(SGLT ) so it directly follows that SpanR(Sy) ⊆ V . Reciprocally,
let x = Ly ∈ V for some y ∈ Rdk. Because of condition 3 , it holds that SG

is positive definite and therefore invertible. So x = Ly = LSG(S−1G y). Then,
using the fact that L+L = Idk, we have S−1G y = LTL+TS−1G y. Defining
z = L+TS−1G y, it holds that x = LSGLT z which belongs to SpanR(Sy),
proving that V ⊆ SpanR(Sy).

To prove the expression of S3, we start by showing that PS+
y P = S+

y . For
that we first prove that X = L+TS−1G L+ is the Moore-Penrose pseudoinverse
of Sy. We now verify the four Moore-Penrose conditions.

1. SyXSy = LSGLT · L+TS−1G L+ · LSGLT = LSGLT , using the fact that
L+L = Idk.

2. XSyX = L+TS−1G L+ · LSGLT · L+TS−1G L+ = L+TS−1G L+, again due to
L+L = Idk.

3&4. SyX = LSGLT · L+TS−1G L+ = LL+ = P and XSy = L+TS−1G L+ ·
LSGLT = (LL+)T = PT = P. So SyX and XSy are indeed symmetric.

3 We insist that in general (AB)+ ̸= B+A+ which requires care in computing S3.
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It shows that X = S+
y . Hence PS+

y P = PTS+
y P = L+TLTL+TS−1G L+LL+ =

L+TS−1G L+ by property of the pseudoinverse. So PS+
y P = S+

y . Let us now
look at the expression of S3. We note that in most cases, we do not have
S3 = P+(S−1p + S+

y )
+P+. Instead, we rely on the fact that P = LL+ and

P = PT = L+TLT to “factor out” L and LT instead of P. It holds that

S3 = (P(S−1p + S+
y )P)+

= (L+TLTS−1p LL+ + L+TS−1G L+)+

= (L+T · (LTS−1p L+ S−1G ) · L+)+

We define S′ = LTS−1p L + S−1G . It clearly holds that S′ is symmetric, and
positive definite. Indeed, for x ̸= 0, xTS′x ≥ xTS−1G x > 0. It is therefore
invertible. Using the same method we used to derive S+

y , we can show that
(L+TS′L+)+ = LS′−1LT using the fact that L+L = Idk and S′ invertible. So
S3 = L(LTS−1p L+ S−1G )−1LT . Finally, using the same calculation we did for
proving that SpanR(Sy) = V , we obtain that SpanR(S3) = V (by virtually
substituting SG with S′−1 in the above calculation).

Now let x ∈ Lu
q (ATK) = Supp(P) be a possible output of the sampler, i.e.,

there exists p ∈ Zr and z ∈ Lw
q (G) ⊆ Zdk such that x = p + Lz. Then, we

have p = x−Lz ∈ x+L(L) ⊆ x+L. Also, once p and x are fixed, there exists
a unique z′ such that x = p + Lz′, i.e., z′ = z. This is because L has linearly
independent columns. This link between, x,p, z also entails that

ρ√SG
(z) = ρ√

Sy
(x− p). (1)

By the expression derived for S+
y , we have LTS+

y L = LTL+TS−1G L+L = S−1G .
It yields

ρ√
Sy
(x− p) =

{
exp(−π(x− p)TS+

y (x− p)) if x− p ∈ SpanR(Sy)
0 otherwise

=

{
exp(−πzTLTS+

y Lz) if Lz ∈ SpanR(Sy)
0 otherwise

=

{
exp(−πzTS−1G z) if Lz ∈ SpanR(Sy)
0 otherwise

Because SpanR(Sy) = V , Lz always belongs to SpanR(Sy), meaning that the
0 case never occurs. The last quantity then corresponds exactly to ρ√SG

(z),
and thence ρ√

Sy
(x− p) = ρ√SG

(z).
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We now have

P(x) =
∑

p∈x+L
DZn,
√

Sp
(p)DLw

q (G),
√
SG

(z)

=
∑

p∈x+L

ρ√
Sp
(p)ρ√SG

(z)

ρ√
Sp
(Zn)ρ√SG

(Lw
q (G))

=
∑

p∈x+L

ρ√
Sp
(p)ρ√

Sy
(p− x)

ρ√
Sp
(Zn)ρ√SG

(Lw
q (G))

(Eq. (1))

We observe that condition 4 implies that Sp = S − LSGLT > 0. As a result,
Sp is invertible and therefore SpanR(Sp) = Rn. Then by defining c = v +
S3P(−S−1p v + S+

y x) where v = x−Px the unique element of (x+ V ) ∩ V ⊥, it
clearly holds that c ∈ v + V , and we have

ρ√
Sp
(p)ρ√

Sy
(p− x) = ρ√S(x)ρ

√
S3
(p− c).

As the proof of this identity is rather long, we defer it to Appendix A. Going
back to our computation of P(x), we have

P(x) =
∑

p∈x+L

ρ√S(x)ρ
√
S3
(p− c)

ρ√
Sp
(Zn)ρ√SG

(Lw
q (G))

= DLu
q (ATK),

√
S(x)

ρ√S(Lu
q (ATK))

ρ√
Sp
(Zn)

∑
p∈x+L

ρ√S3
(p− c)

ρ√SG
(Lw

q (G))

∈
[
1,

1 + ε

1− ε

]
DLu

q (ATK),
√
S(x)

ρ√S(Lu
q (ATK))ρ√S3

(L+ x− c)

ρ√
Sp
(Zn)ρ√SG

(L⊥q (G))

∈
[
1− ε
1 + ε

,
1 + ε

1− ε

]
DLu

q (ATK),
√
S(x)

ρ√S(Lu
q (ATK))ρ√S3

(L)
ρ√

Sp
(Zn)ρ√SG

(L⊥q (G))

where the second to last equation uses condition 3 to argue that
√
SG ≥

ηε(L⊥q (G)) combined with Lemma 2.4. The last equation is argued by condi-
tion 5 , the expression of S3, and Lemma 2.4 as well. We detail how below.

First, because G is primitive, i.e., GZdk = Zd, it holds that L⊥q (G) is a
strict sublattice of Zdk, of same rank dk. Inclusion is strict because G being
primitive implies Vol(L⊥q (G)) = qd ̸= 1 = Vol(Zdk). By Lemma 2.5 and
condition 3 , it holds that SG ≥ ηε(L⊥q (G))2Idk > ηε(Zdk)2Idk. As such, we
have M := 1

ηε(Zdk)2
Idk − S−1G > 0. So M−1 appearing in condition 5 indeed

exists.
Condition 5 can then be written as Sp ≥ LM−1LT . We now let δ > 0

be a positive real and P⊥ = Ir − P be the orthogonal projector onto V ⊥ =
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ker(LT ). Because P⊥ is the matrix of an orthogonal projector, it holds that
P⊥ ∈ S+r (R). We then have

Sp,δ := Sp + δP⊥ ≥ LM−1LT + δP⊥. (2)

Because δP⊥ ∈ S+r (R), we have Sp,δ ≥ Sp > 0, where the last inequality
comes from condition 4 . We now show that LM−1LT + δP⊥ is invertible.
Let x ∈ ker(LM−1LT + δP⊥) and decompose it uniquely onto V ⊕ V ⊥ as
x = xV + xV ⊥ with xV ∈ V and xV ⊥ ∈ V ⊥. We then have

0 = (LM−1LT + δP⊥)x

= LM−1LT (xV + xV ⊥) + δP⊥(xV + xV ⊥)

= LM−1LT (xV + xV ⊥) + δxV ⊥

= LM−1LTxV + δxV ⊥ ,

where the second to last equality holds by definition of P⊥ being the or-
thogonal projector onto V ⊥, and the last equality follows from the fact that
V ⊥ = ker(LT ) and so LTxV ⊥ = 0. Then, by definition of V , we have that
LM−1LTxV ∈ V , and also δxV ⊥ ∈ V ⊥. Because V and V ⊥ are comple-
mentary subspaces, the above equality implies that LM−1LTxV = 0 and
δxV ⊥ = 0. It directly yields xV ⊥ = 0. Using the fact that L+L = Idk,
we have LTxV = ML+0 = 0. So xV ∈ ker(LT ) = V ⊥, which proves that
xV ∈ V ∩ V ⊥ = {0}. Hence, xV = 0 and therefore x = 0. We have then
proven that the kernel of LM−1LT + δP⊥ is trivial, which proves that it is
invertible.

Both matrices involved in Equation (2) being invertible, we get

S−1p,δ ≤ (LM−1LT + δP⊥)
−1.

It then implies
LTS−1p,δL ≤ LT (LM−1LT + δP⊥)

−1L. (3)

We now prove that the right-hand side is exactly M. For that we show that
for all x ∈ V , (LM−1LT + δP⊥)

−1x = L+TML+x, or equivalently that for
all x ∈ V , x = (LM−1LT + δP⊥)L

+TML+x. Let x ∈ V . We first have

LM−1LTL+TML+x = LM−1(L+L)TML+x = LL+x = Px = x,

where we use the fact that L+L = Idk and that LL+ = P is the orthogonal
projector onto V . For the second term, we notice that L+TML+x belongs
to SpanR(L

+T ) = SpanR(L) = V . Hence P⊥L
+TML+x = 0. As a result, we

indeed obtain

∀x ∈ V, (LM−1LT + δP⊥)
−1x = L+TML+x.

A direct consequence is that

∀x ∈ Rdk, (LM−1LT + δP⊥)
−1Lx = L+TML+Lx = L+TMx,
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again using L+L = Idk. Left multiplying by LT yields LT (LM−1LT +
δP⊥)

−1L = M. Equation (3) then becomes LTS−1p,δL ≤ M, or equivalently
LTS−1p,δL+ S−1G ≤ 1

ηε(Zdk)2
Idk. Using the definition of the Loewner order, the

fact that limδ→0 Sp,δ = Sp and the continuity of A 7→ A−1 over GLr(R), we
get

LTS−1p L+ S−1G ≤ 1

ηε(Zdk)2
Idk. (4)

We indeed have that for all x ∈ Rdk, xT (LTS−1p,δL + S−1G )x ≤ 1
ηε(Zdk)2

∥x∥22.
We naturally have limδ→0 Sp,δ = Sp by construction, and by continuity
limδ→0 S

−1
p,δ = S−1p because the limit Sp is also invertible due to condition 4 .

Then, by compatibility of inequalities and limits, we get xT (LTS−1p L +

S−1G )x ≤ 1
ηε(Zdk)2

∥x∥22 as desired.
Earlier, we have shown that S3 = LS′−1LT for S′ = LTS−1p L+ S−1G . We

now show that Equation (4) is equivalent to yTS3y ≥ ηε(Zdk)2yTLLTy for
all y. First, because S′ and ηε(Zdk)−2Idk are both positive definite and thus
invertible, it holds that Equation (4) is equivalent to S′−1 ≥ ηε(Zdk)2Idk.
Because of condition 2 , it holds that SpanR(LT ) = Rdk. Hence, we have the
following equivalences.

1

ηε(Zdk)2
Idk ≥ S′ ⇔ S′−1 ≥ ηε(Zdk)2Idk

⇔ ∀x ∈ Rdk,xT (S′−1 − ηε(Zdk)2Idk)x ≥ 0

⇔ ∀y ∈ Rr, (LTy)T (S′−1 − ηε(Zdk)2Idk)(L
Ty) ≥ 0

⇔ ∀y ∈ Rr,yT (LS′−1LT − ηε(Zdk)2LLT )y ≥ 0

⇔ ∀y ∈ Rr,yTS3y ≥ ηε(Zdk)2yTLLTy

As a result, we have the following

1 + ε =
∑

y∈Zdk

exp(−πηε(Zdk)2yTy)

=
∑

y∈Zdk

exp(−πηε(Zdk)2yTL+LLTL+Ty) (as L+L = Idk)

=
∑

y∈Zdk

exp(−πηε(Zdk)2(L+Ty)TLLT (L+Ty))

=
∑

y∈L(L)∗

exp(−πηε(Zdk)2yTLLTy)

≥
∑
y∈L∗

exp(−πηε(Zdk)2yTLLTy) (as L∗ ⊆ L(L)∗)

≥
∑
y∈L∗

exp(−πyTS3y)
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The second to last inequality is due to the fact that L∗ ⊆ L(L)∗ as a
consequence of L(L) being a sublattice of L of same rank. Then, because
L∗ ⊂ V = SpanR(S3) = SpanR(S

+
3 ), the last quantity is equal to ρ√

S+
3

(L∗).
Using Lemma 2.3, we thus have

√
S3 ≥ ηε(L). Then, we observe that c ∈ x+V

and therefore that x − c ∈ V = SpanR(L). Lemma 2.4 thus concludes the
final equation.

We therefore have P(x) ∈ [a, b] · c · DLu
q (ATK),

√
S(x). Summing over all x ∈

Lu
q (ATK) = Supp(P), it holds that ac ≤ 1 ≤ bc and therefore that c ∈ [1/b, 1/a].

Hence, P(x) ∈ [a/b, b/a]DL⊥
q (ATK),

√
S(x). Plugging a = (1 − ε)/(1 + ε) and

b = (1 + ε)/(1− ε) gives the result.

We note that because the inequality in condition 4 must be strict, it is
not necessarily implied by condition 5 due to the fact that LM−1LT is not
invertible. We later use SG = s2GIdk. In that case condition 4 comes down to
S > s2GLLT and condition 5 becomes S ≥ s4G

s2G−ηε(Zdk)2
LLT .

4 Instantiating the Generic Sampler

We now go over several instantiations of our generic sampler to showcase its
full potential. As a warm-up, we start by showing that the Micciancio-Peikert
sampler [MP12] is actually a specific case of our sampler. We even obtain a
tighter analysis of [MP12] allowing for a small gain in parameters, which shows
that our sampler did not trade performance for genericity.

In a second step, we show how to leverage the specific features of our sampler,
and in particular the K-projection, to truncate the gadget matrix G and thereby
improve performance. This provides in the process the first worst-case analysis
of gadget-based samplers with truncated gadgets.

4.1 Tighter Analysis of the Micciancio-Peikert Sampler

To motivate the genericity of our sampler, we briefly show how to instantiate it
to recover the sampler from [MP12]. We can indeed set ℓ = 0 so that G = GH

and GL = ∅. We then let r = d(2 + k) and L = [RT
1 |RT

2 |Idk]T with K =
Id(2+k). By setting S = s2Id(2+k) and SG = s2GIdk, we recover the exact sampler
from [MP12]. We now give the following corollary which yields tighter parameter
conditions than [MP12] so as to meet the five conditions of Theorem 3.1.

Corollary 4.1. Let d, q, b be positive integers such that b ≤ √q, and let k =
⌈logb q⌉. Let R1,R2 be in Zd×dk, A ∈ Zd×d

q , u ∈ Zd
q and T ∈ GLd(Zq). Let

s, sG be positive reals. We define R = [RT
1 |RT

2 ]
T and L = [RT |Idk]T , and

G = [Id|bId| . . . |bk−1Id]. Let ε ∈ (0, 1) and define P the output distribution
of GenericSampler(R1,R2,A,u,T, I,L, s

2I, s2GI,G). Assuming

sG ≥ ηε(Zdk)
√
b2 + 1, and s ≥ s2G√

s2G − ηε(Zdk)2

√
1 + ∥R∥22
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it holds that

∀x ∈ Lu
q (AT),P(x) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
DLu

q (AT),
√
S(x),

where AT = [Id|A|TG− (R1 +AR2)] mod qZ.

Proof. First, due to how we set L and K, conditions 1 and 2 trivially hold.
Then, by [MP12], L⊥q (G) has a basis B whose Gram-Schmidt norms are at
most

√
b2 + 1. Using the smoothing bound of [GPV08, Thm. 3.1], it holds that

ηε(L⊥q (G)) ≤ ηε(Zdk)
√
b2 + 1 ≤ sG. Hence, by setting SG = s2GIdk, it holds

that condition 3 of Theorem 3.1 holds.
We let n = d(2 + k). There exists U ∈ On(R),V ∈ Odk(R) and D′ ∈ Rdk×dk

diagonal such that

L = U

[
D′

0

]
VT

Hence, LLT = UDUT with D diagonal. By re-ordering without loss of gen-
erality, it holds that D = diag(1 + s1(R)2, . . . , 1 + s2d(R)2, 1, . . . , 1, 0, . . . , 0)
where the 1 is repeated d(k − 2) times and the 0 is repeated 2d times, and that
D′ = diag(

√
1 + s1(R)2, . . . ,

√
1 + s2d(R)2, 1, . . . , 1).

We can indeed compute the characteristic polynomial of LLT by using Schur’s
formula, see e.g. [Ber11, Fact. 2.14.13], where the computation is performed
over the field R(X) of rational fractions to deal with inverses of matrices of
polynomials.

χLLT = det

([
XI2d −RRT −R
−RT XIdk − Idk

])
= det((X − 1)Idk) det((XI2d −RRT )− (−R)(X − 1)−1Idk(−RT ))

= (X − 1)dk det(XI2d −X(X − 1)−1RRT )

= X2d(X − 1)d(k−2) det((X − 1)I2d −RRT )

= X2d(X − 1)d(k−2)χI2d+RRT

= X2d(X − 1)d(k−2)
∏

i∈[2d]

(X − (1 + si(R)2))

Because S = USUT , it holds that condition 4 holds if and only if s2 >

s2G∥D∥2 = s2G

√
1 + ∥R∥22, while condition 5 holds if and only if s2 ≥ s4G/(s2G−

ηε(Zdk)2)
√

1 + ∥R∥22. In this case, because s4G/(s
2
G− ηε(Zdk)2) > s2G, both con-

ditions are verified by our choice of s.
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Setting sG and s at their identified lower bounds gives s = ηε(Zdk)(b +

1/b)
√

1 + ∥R∥22. The condition given in [MP12] is s ≥ r
√
b2 + 3

√
1 + ∥R∥22 with

r ≥ ηε(Zdk) for their last smoothing argument to hold. As a result, our condition
is slightly tighter.

We can also study the specific case where S = diag(s21I, s
2
2I) which was used

for example in [AGJ+24]. We determine the exact conditions on s1, s2 which are
slightly different that those announced in [AGJ+24]. Nevertheless, our updated
parameter conditions are very close and thus do not change the performance or
security claims.

Corollary 4.2. Let d, q, b be positive integers such that b ≤ √q, ε ∈ (0, 1), and
let k = ⌈logb q⌉. Let R be in Z2d×dk, A ∈ Zd×2d

q , u ∈ Zd
q and T ∈ GLd(Zq). We

define R = [RT
1 |RT

2 ]
T , L = [RT |Idk]T , and G = [Id|bId| . . . |bk−1Id]. We then

set sG = ηε(Zdk)
√
b2 + 1 and

s1 =

√
1 +

1

c2 − 1
· s2G√

s2G − ηε(Zdk)2
∥R∥2, and s2 = c

s2G√
s2G − ηε(Zdk)2

,

for some c > 1. We finally let S = diag(s21I2d, s
2
2Idk), and define P the output

distribution of GenericSampler(R1,R2,A,u,T, I,L,S, s
2
GI,G). It then holds that

∀x ∈ Lu
q (AT),P(x) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
DLu

q (AT),
√
S(x),

where AT = [Id|A|TG− (R1 +AR2)] mod qZ.

Setting c =
√
2, we get s2 =

√
2ηε(Zdk)(b + 1/b) and s1 =

√
2ηε(Zdk)(b +

1/b)∥R∥2 = s2∥R∥2.

Proof. As for Corollary 4.1, conditions 1 , 2 and 3 are verified because the
form of S does not affect those. Let us now study conditions 4 and 5 . There
exists U ∈ O2d(R),V ∈ Odk(R) and D′ = [D|0] where D = diag(r1, . . . , r2d)
be a singular value decomposition of R, where ri = si(R) for clarity. We then
straightforwardly have L = diag(U,V)L′VT with L′ = [D′T |Idk]T . We call
W = diag(U,V). Because W and VT are unitary, and because S = WSWT ,
it directly holds that we can work directly on L′ instead of L. More formally,
condition 4 is equivalent to S > s2GL′L′T and condition 5 is equivalent to
S ≥ s4G/(s2G − ηε(Zdk)2)L′L′T . We thus prove both conditions at once by using
a free parameter a. We define S′p = S − aL′L′T . We can write it blockwise as
follows.

s21I2d − aD2 −aD′

−aD′T (s22 − a)Idk




A B

BT C

S′p =

21



We note here that if s22 ≤ a, then S′p is not positive semi-definite. Hence, for
both conditions we need to assume s22 > a in which case C > 0. We can then
use the Schur complement characterization, that is S′p > 0 (resp. ≥ 0) if and
only if C > 0 and S′p/C = A − BC−1BT > 0 (resp ≥ 0). We thus compute
S′p/C = s21I2d − aD2 − a2/(s22 − a)D′D′T = s21I2d − s22a/(s22 − a)D2. It then
holds that S′p/C > 0 (resp. ≥ 0) if and only if s21 > ∥R∥

2
2s

2
2a/(s

2
2 − a) (resp

s21 ≥ ∥R∥
2
2s

2
2a/(s

2
2 − a)). Overall, condition 4 is equivalent to

s1 >
1√

1− s2G
s22

sG∥R∥2, and s2 > sG

while condition 5 is equivalent to

s1 ≥
1√

1− s4G
s22(s

2
G−η2)

s2G√
s2G − η2

∥R∥2, and s2 >
s2G√
s2G − η2

(5)

with η = ηε(Zdk). The latter set of conditions imply the former because s2G/(s
2
G−

η2) > 1. It then holds that conditions 4 and 5 are mutually verified if and only
if Equation (5) holds. Then, setting s2 = cs2G/

√
s2G − η2, the lower bound on s1

in Equation (5) is exactly
√
1 + 1/(c2 − 1) ·∥R∥2s2G/

√
s2G − η2. The parameters

in the corollary statement thus imply conditions 4 and 5 of Theorem 3.1. The
particular case of c =

√
2 comes up when setting c so that c =

√
1 + 1/(c2 − 1).

We conclude on P by applying Theorem 3.1.

4.2 Leveraging the Projection for Truncated Gadget

One of the novelties of our generic sampler is the matrix K which projects the
output samples onto Lu

q (AT). In the case of the regular [MP12] sampler, we
have seen that it comes down to choosing K = I which therefore discards this
feature. We now give an instantiation of our generic sampler which leverages the
freedom given by the matrix K in order to truncate the gadget matrix.

The idea is to use the relation between K and L to define a full column rank
matrix L that would allow for finer sampling. From a security perspective, if K
does not depend on the secret trapdoor (R1,R2), then analyzing the distribution
P of our sampler is sufficient and we do not have to study the distribution of
KP per se. In our case, we use K to factor out the low-order gadget GL so
that the security analysis and resulting Gaussian parameters do not depend
on bℓ. As our goal is also to provide an analysis for advanced signatures with
truncated gadgets, which are generally reliant on the use of hidden tags, we
must consider T ̸= Id as opposed to previous samplers with truncated gadgets,
e.g., [CGM19,YJW23,JRS24]. As the tag is multiplied to GL, the form of T as
well as its size naturally impacts the proof. We show however that only ∥T∥2
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impacts the parameters, and we can still extract a meaningful result where this
tag contribution is only additive. In typical use cases where T = diag(t1, . . . , td),
this will only feature ∥T∥2 = maxi∈[d]|ti|. If the tag matrix does not have to
be hidden or if T = Id, our analysis and parameter constraints become slightly
simpler by putting the tag within the matrix K. We thus consider K and L of
this form.

K =

[
GL

Id
Id(k−ℓ)

]
, and L =

T 0 R1

0 Iℓ−1 ⊗T 0
0 0 R2

0 0 Id(k−ℓ)

 ∈ Zd+dk×dk, (6)

with T ∈ GLd(Zq) and GL = [Id|bId| . . . |bℓ−1Id]. Using the fact that GL(Iℓ ⊗
T) = ([1|b| . . . |bℓ−1] ⊗ Id)(Iℓ ⊗ T) = [T|bT| . . . |bℓ−1T] = TGL, a block ma-
trix calculation shows that condition 1 of Theorem 3.1 is verified. Then, 2
also holds whenever T ∈ GLd(Zq). Finally, choosing SG = s2GIdk with sG =

ηε(Zdk)
√
b2 + 1 yield 3 . In that case, we show that choosing the covariance

S = diag(s21Id, s
2
2Id(ℓ−1), s

2
3Id, s

2
4Id(k−ℓ)) with

[s1, s2, s3, s4] =
s2G√

s2G − ηε(Zdk)2

[√
∥T∥22 + c2∥R1∥22, ∥T∥2, c∥R2∥2, c

]
with c =

√
3 is sufficient to obtain the last two conditions of Theorem 3.1. We

start by giving the parameter constraints on the si which are both sufficient and
necessary for conditions 4 and 5 , before showing the above formulas meet
these constraints. Of course, ∥T∥2 and ∥Ri∥2 should be replaced by worst-case
bounds so that the Gaussian parameters are fixed for any chosen T,R1,R2. We
generalize our analysis to tags and trapdoors over the reals as we only look at
the spectral properties. We also mention that it would hold for complex matrices
simply by replacing the transpose operator with the Hermitian operator, i.e.,
conjugate transpose.

Lemma 4.1. Let d, k, ℓ be positive integers with ℓ < k, and a > 0. Then, let
T ∈ GLd(R), and R1,R2 be in Rd×d(k−ℓ). We define L as follows.

L =

T 0 R1

0 Iℓ−1 ⊗T 0
0 0 R2

0 0 Id(k−ℓ)

 ∈ Rd+dk×dk,

and S = diag(s21Id, s
2
2Id(ℓ−1), s

2
3Id, s

2
4Id(k−ℓ)). If R2 = U2D

′
2V

T
2 is a singular

value decomposition of R2 with U2 and V2 unitary, it holds that S > aLLT if
and only if

s21 > a
∥∥TTT +R1V2DVT

2 R
T
1

∥∥
2

s22 > a∥T∥22

s3 >
s24a

s24 − a
∥R2∥22 s24 > a,
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where D = diag
(
diag

(
s23s

2
4

s24(s
2
3−asi(R2)2)−s23a

)
,

s24
s24−a

Id(k−ℓ−1)

)
. The first condition

on s1 is implied by

s21 > a

(
∥T∥22 + ∥R1∥22 ·

s23s
2
4

s24(s
2
3 − a∥R2∥22)− s23a

)

We also have the same conditions for S ≥ aLLT where the inequalities on s1
and s2 do not need to be strict.

Proof. We start by computing S′ = S − aLLT and then use the characteriza-
tion of S++(R) (resp. S+(R)) using Schur complements. For clarity, for r =
[r1, . . . , rn], and s ∈ R, we abbreviate diag(diag(r), sI) by diag(ri, s) where the
dimensions of r and I are implicit. We also define Q = TTT and Qℓ−1 =
Iℓ−1 ⊗Q. By computing LLT , we get that S′ equals

s21Id − aQ− aR1R
T
1 0 −aR1R

T
2 −aR1

0 s22Id(ℓ−1) − aQℓ−1 0 0

−aR2R
T
1 0 s23Id − aR2R

T
2 −aR2

−aRT
1 0 −aRT

2 (s24 − a)Id(k−ℓ)

A B

BT C

We first note that if C is not positive definite, then the specific form of S′

yields that it is not positive semi-definite. As we are interested in equivalent
conditions to S′ being positive definite (resp. positive semi-definite), then the
Schur complement characterization gives us that S′ > 0 (resp. ≥ 0) if and only
if C > 0 and S′/C = A − BC−1BT > 0 (resp. ≥ 0). Let us first look at the
condition C > 0. As we need to invert C, it is not sufficient to again use the Schur
complement characterization as in the proof of Corollary 4.2. Let U2 ∈ Od(R),
V2 ∈ Od(k−ℓ)(R) and D′2 = [D2|0] with D2 = diag(s1(R2), . . . , sd(R2)) be a
singular value decomposition of R2, i.e., such that R2 = U2D

′
2V

T
2 and si(R2)

the singular values of R2 in non-increasing order. A simple factorization gives

C = W2CDWT
2 = W2

[
s23Id − aD2

2 −aD′2
−aD′2T (s24 − a)Id(k−ℓ)

]
WT

2 ,
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with W2 = diag(U2,V2). We can then compute the characteristic polynomial
of CD. We have

χCD

= det(XId+d(k−ℓ) −CD)

= det((X − (s24 − a))Id(k−ℓ)) · det((X − s23)Id + aD2
2 −

a2

X − (s24 − a)
D′2

TD′2)

= (X − (s24 − a))d(k−ℓ) · det((X − s23)Id + a(1− a

X − (s24 − a)
)D2

2)

= (X − (s24 − a))d(k−ℓ−1)
d∏

i=1

Pi,

where Pi = (X − s23)(X − (s24 − a)) + a(X − s24)si(R2)
2 = X2 − (s23 + s24 − a−

asi(R2)
2)X + s23(s

2
4 − a) − as24si(R2)

2. Each Pi has non negative discriminant,
and as such its roots are positive if and only if s23(s24 − a)− as24si(R2)

2 > 0. We
then conclude that C is positive definite if and only if

s24 > a, and ∀i ∈ [d], s23(s
2
4 − a)− as24si(R2)

2 > 0.

This is then equivalent to

s24 > a, and s23 >
s24a

s24 − a
∥R2∥22.

We now need to compute S′/C which involves the inverse of C. As we have
C−1 = W2C

−1
D WT

2 , we reduce it to computing C−1D . The matrix CD is a 2 ×
2 block matrix and we can therefore use the inverse formula of [LS02]. More

precisely, we have CD =

[
E F
FT H

]
, and its inverse is therefore given by

C−1D =

[
E−1 +E−1F(H− FTE−1F)−1FTE−1 −E−1F(H− FTE−1F)−1

−(H− FTE−1F)−1FTE−1 (H− FTE−1F)−1

]
,

assuming the involved inverses exist. We will see when computing these matrices
that the prior conditions yield the invertibility of the intermediate ones, thus
allowing this computation. For simplicity, we call X := (H − FTE−1F)−1, and

DC1,DC2,DC3 such that C−1D =

[
DC1 DC2

DT
C2 DC3

]
. First, we have that E = diag(s23−

asi(R2)
2). By the condition identified on s3 and the fact that s4/

√
s24 − a > 1,

E is invertible. So E−1 = diag(1/(s23 − asi(R2)
2)). Then, we have

H− FTE−1F = (s24 − a)Id(k−ℓ) − a2D′2TE−1D′2

= diag

(
s24 − a−

a2si(R2)
2

s23 − asi(R2)2
, s24 − a

)
= diag

(
s24(s

2
3 − asi(R2)

2)− s23a
s23 − asi(R2)2

, s24 − a
)
.
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The conditions on s3 and s4 are equivalent to this matrix being invertible. We
can then proceed in the computation with

DC3 = X = diag

(
s23 − asi(R2)

2

s24(s
2
3 − asi(R2)2)− s23a

,
1

s24 − a

)
.

It then gives

DC2 = −E−1FX =

[
diag

(
asi(R2)

s24(s
2
3 − asi(R2)2)− s23a

)∣∣∣∣0]
DT

C2 = −XFTE−1 =

[
diag

(
asi(R2)

s24(s
2
3−asi(R2)2)−s23a

)
0

]
.

Finally, we have E−1FXFTE−1 = diag
(

a2si(R2)
2

(s24(s
2
3−asi(R2)2)−s23a)(s23−asi(R2)2)

)
, and

thus the top left term simplifies to

DC1 = E−1 +E−1FXFTE−1 = diag

(
s24 − a

s24(s
2
3 − asi(R2)2)− s23a

)
We can then compute the block product and get BC−1BT = diag(Y,0) where

Y = a2R1V2(D
′
2
TDC1D

′
2 +DT

C2D
′
2 +D′2

TDC2 +DC3)V
T
2 R

T
1

As a result, S′/C = diag(s21Id − aQ − aR1R
T
1 − Y, s22Id(ℓ−1) − aQℓ−1). By

simplifying the expression of Y, the first block of S′/C becomes

s21Id − a
(
TTT +R1V2diag

(
s23s

2
4

s24(s
2
3 − asi(R2)2)− s23a

,
s24

s24 − a

)
VT

2 R
T
1

)
Then because S′/C is block diagonal, it is positive definite (resp. semi-definite)
if and only if each block is positive definite (resp. semi-definite). We thus get
that the necessary and sufficient conditions are

s21 > a

∥∥∥∥TTT +R1V2diag

(
s23s

2
4

s24(s
2
3 − asi(R2)2)− s23a

,
s24

s24 − a

)
VT

2 R
T
1

∥∥∥∥
2

s22 > a
∥∥Iℓ−1 ⊗TTT

∥∥
2
= a∥T∥22,

as claimed, and where the inequalities do not need to be strict for the pos-
itive semi-definite case. For the sufficient condition on s1, we simply use the
triangle inequality and submultiplicativity of the spectral norm, the fact that∥∥V2DVT

2

∥∥
2
= ∥D∥2, and the fact that the maximal entry of D is achieved at

its first diagonal entry, i.e., for i = 1 where s1(R2) = ∥R2∥2.

Notice that the relaxed condition on s1 is tight and perfectly matches the
exact condition when T = tId and RT

1 R1 and RT
2 R2 have the same eigenvectors

(i.e., V1 = V2) for example. We can then apply Lemma 4.1 to a = s2G for
condition 4 and a = s4G/(s

2
G − ηε(Zdk)2) for condition 5 . This gives the

following corollary.
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Corollary 4.3. Let d, k, ℓ be positive integers with ℓ < k, sG > 0, and ε ∈ (0, 1).
Then, let T ∈ GLd(R), and R1,R2 be in Rd×d(k−ℓ). Let

s1 =
s2G√

s2G − ηε(Zdk)2

√
∥T∥22 + 3∥R1∥22 s2 =

s2G√
s2G − ηε(Zdk)2

∥T∥2

s3 =
√
3

s2G√
s2G − ηε(Zdk)2

∥R2∥2 s4 =
√
3

s2G√
s2G − ηε(Zdk)2

,

Then S > s2GLLT and S ≥ s4G
s2G−ηε(Zdk)2

LLT , where L is defined in Equation (6),
and S = diag(s21Id, s

2
2Id(ℓ−1), s

2
3Id, s

2
4Id(k−ℓ)).

Proof. We first apply Lemma 4.1 with a1 = s2G and strict inequalities for s1, s2
with the relaxed condition on s1, and then with a2 = s4G/(s

2
G − ηε(Zdk)2) with

large inequalities (and also the relaxed condition on s1). It gives us two sets
of conditions. Because a2 > a1, we can easily check that the more restrictive
conditions are the latter ones. We thus let c3, c4 > 1 be free variables and select

s21 = a2

(
∥T∥22 +

s23s
2
4

s24(s
2
3 − a2∥R2∥22)− s23a2

∥R1∥22

)
s22 = a2∥T∥2

s23 = c23
s24a2
s24 − a2

∥R2∥22 s24 = c24a2,

As such they verify the conditions of Lemma 4.1, thus showing that S > a1LL
T

and S ≥ a2LL
T . By setting c3 =

√
c24 − 1, assuming c4 >

√
2, then c3 > 1 and

c3s4/
√
s24 − a2 = c3c4/

√
c24 − 1 = c4. Then, we can compute the factor of ∥R1∥22

in the expression of s1. We have

s23s
2
4

s24(s
2
3 − a2∥R2∥22)− s23a2

=
1

1− a2∥R2∥22/s23 − a2/s24
=

1

1− 2/c24

If we now set c4 so that c24 = 1/(1−2/c24), we get c4 =
√
3 which is indeed larger

that
√
2. Hence c3 =

√
2 > 1. So the parameter given in the corollary statement

indeed yield condition 4 and 5 of Theorem 3.1.

The conclusion of Corollary 4.3 is that setting the si as above is sufficient so
that the matrices K and L from Equation (6), as well as S and SG = s2GIdk,
satisfy all five conditions of Theorem 3.1. By replacing ∥Ri∥2 by a worst-case
bound enforced during the key generation, and ∥T∥2 by a worst-case bound as
well, it holds that we can leverage the K-projection to truncate the gadget to
GH , while hiding the effective tag T. We summarize it in Algorithm 4.1 and
Theorem 4.1. It then provides the first worst-case analysis of trapdoor sampling
with truncated gadget, i.e., for an arbitrary (possibly adversarial) syndrome u.
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Algorithm 4.1: TruncatedSampler(R1,R2,A,u,T, sG, s1, s2, s3, s4)

Input: Trapdoor R1,R2 ∈ Zd×d(k−ℓ), Matrix A ∈ Zd×d
q , Syndrome u ∈ Zd

q , tag
matrix T ∈ GLd(Zq), Gaussian parameters sG, s1, s2, s3, s4.

1. p←↩ DZd(k+1),
√

Sp
. ▷ Sp = S− s2GLLT

2. Parse p = [pT
L |pT

1,2|pT
2 ]

T with pL ∈ Zdℓ,p1,2 ∈ Zd and p2 ∈ Zd(k−ℓ).
3. w← T−1(u−GLpL −Ap1,2 − (TGH − (R1 +AR2))p2) mod qZ.
4. z←↩ DLw

q (G),sG .
5. v′ ← p+ Lz.
6. Parse v′ = [vT

L |vT
1,2|vT

2 ]
T with vL ∈ Zdℓ,v1,2 ∈ Zd and v2 ∈ Zd(k−ℓ).

7. v1,1 ← GLvL.

Output: v = [vT
1,1|vT

1,2|vT
2 ]

T ∈ Zd(2+k−ℓ).

Theorem 4.1. Let d, q, b, ℓ be positive integers and ε ∈ (0, 1), such that b ≤ √q,
and ℓ < k = ⌈logb q⌉. Let R1,R2 be in Zd×d(k−ℓ), A ∈ Zd×d

q , u ∈ Zd
q and T ∈

GLd(Zq). Define GL = [1|b| . . . |bℓ−1]⊗ Id and GH = [bℓ| . . . |bk−1]⊗ Id. Finally,
let w ≥ ∥T∥2, sG = ηε(Zdk)

√
b2 + 1 and S = diag(s21Id, s

2
2Id(ℓ−1), s

2
3Id, s

2
4Id(k−ℓ))

where

s1 = ηε(Zdk)

(
b+

1

b

)√
w2 + 3∥R1∥22 s2 = ηε(Zdk)

(
b+

1

b

)
w

s3 =
√
3ηε(Zdk)

(
b+

1

b

)
∥R2∥2 s4 =

√
3ηε(Zdk)

(
b+

1

b

)
,

The distribution P of TruncatedSampler(R1,R2,A,u,T, sG, s1, s2, s3, s4) is such
that Supp(P) = Lu

q (AT) and

∀x ∈ Lu
q (AT),P(x) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
·KDLu

q (ATK),
√
S(x),

where AT = [Id|A|TGH−(R1+AR2)] mod qZ, and K = diag(GL, Id, Id(k−ℓ)).

Our method of sampling with truncated gadget actually perturbs the tem-
porary preimage before computing the “preimage error” with GL. Nevertheless,
our fine-grained analysis allows us to aim for a Gaussian distribution with four
parameters so that most of the terms in the preimage error (those corresponding
to parameter s2) are very small and do not depend on the size of the trapdoor.
This limits the size of the preimage error after the K-projection. In particular,
a subsequent step would be to argue that KDLu

q (ATK),
√
S ≈ DLu

q (AT),
√
S′ , using

e.g., [GMPW20, Thm 4.6], with S′ = diag(s21,1Id, s
2
3Id, s

2
4Id(k−ℓ)) and where

s1,1 =

√√√√s21 +

ℓ−1∑
i=1

b2is22 =

√
s21 + s22b

2
b2(ℓ−1) − 1

b2 − 1

= ηε(Zdk)

(
b+

1

b

)√
b2ℓ − 1

b2 − 1
∥T∥22 + 3∥R1∥22

28



The case ℓ = 1 thus comes for free, which we could already observe as the
s22Id(ℓ−1) block is empty. For ℓ > 1, the increase stays mild as long as ∥T∥2 ·
bℓ−1 stays below

√
3∥R1∥2. For example, when T = diag(t1, . . . , td) with ti ∈

{−1, 1}, the tag space is of size 2d and ∥T∥2 = 1. Most importantly, the term
corresponding to the preimage error in ≈ bℓ−1 is additive with respect to ∥R1∥2
instead of multiplicative in [CGM19] (as they essentially set s2 = s1).

4.3 The Ring Setting

The above sampler with truncated gadget of Algorithm 4.1 naturally transfers to
the ring setting to enable faster computations and reduced storage. The analysis
naturally extends as the only relevant quantities are the norms of T,R1,R2

which are defined from their embedding Mτ (T),Mτ (R1),Mτ (R2) in the ring
case. Because the covariance matrices are also defined with respect toMτ , we can
essentially replace these matrices by their embedding in the results of Sections 3,
4.1 and 4.2 and directly obtain the same guarantees where the dimension d is
replaced by nd. The actual structure of Mτ (·) is then only relevant in estimating
∥Mτ (·)∥2. We explicit the result over rings for completeness.

Algorithm 4.2: RingTruncatedSampler(R1,R2,A,u,T, sG, s1, s2, s3, s4)

Input: Trapdoor R1,R2 ∈ Rd×d(k−ℓ), Matrix A ∈ Rd×d
q , Syndrome u ∈ Rd

q , tag
matrix T ∈ GLd(Rq), Gaussian parameters sG, s1, s2, s3, s4.

1. p←↩ D
Rd(k+1),

√
Mτ (Sp)

with Sp = S− s2GLL∗.

2. Parse p = [pT
L |pT

1,2|pT
2 ]

T with pL ∈ Rdℓ,p1,2 ∈ Rd and p2 ∈ Rd(k−ℓ).
3. w← T−1(u−GLpL −Ap1,2 − (TGH − (R1 +AR2))p2) mod qR.
4. z←↩ DLw

q (G),sG .
5. v′ ← p+ Lz.
6. Parse v′ = [vT

L |vT
1,2|vT

2 ]
T with vL ∈ Zdℓ,v1,2 ∈ Rd and v2 ∈ Rd(k−ℓ).

7. v1,1 ← GLvL.

Output: v = [vT
1,1|vT

1,2|vT
2 ]

T ∈ Rd(2+k−ℓ).

Theorem 4.2. Let R be the ring of integer of a number field of degree n. Let
d, q, b, ℓ be positive integers and ε ∈ (0, 1), such that b ≤ √q, and ℓ < k =

⌈logb q⌉. Let R1,R2 be in Rd×d(k−ℓ), A ∈ Rd×d
q , u ∈ Rd

q and T ∈ GLd(Rq).
Define GL = [1|b| . . . |bℓ−1] ⊗ Id and GH = [bℓ| . . . |bk−1] ⊗ Id. Finally, let w ≥
∥T∥2, sG = ηε(Zndk)

√
b2 + 1 and S = diag(s21Id, s

2
2Id(ℓ−1), s

2
3Id, s

2
4Id(k−ℓ)) where

s1 = ηε(Zndk)

(
b+

1

b

)√
w2 + 3∥R1∥22 s2 = ηε(Zndk)

(
b+

1

b

)
w

s3 =
√
3ηε(Zndk)

(
b+

1

b

)
∥R2∥2 s4 =

√
3ηε(Zndk)

(
b+

1

b

)
,
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The distribution P of RingTruncatedSampler(R1,R2,A,u,T, sG, s1, s2, s3, s4) is
such that Supp(P) = Lu

q (AT) and

∀x ∈ Lu
q (AT),P(x) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
·KDLu

q (ATK),
√

Mτ (S)
(x),

with AT = [Id|A|TGH − (R1 +AR2)] mod qR, and K = diag(GL, Id, Id(k−ℓ)).

In particular, for the case of T = diag(t1, . . . , td) in a power-of-two cyclotomic
ring, we have ∥Mτ (T)∥2 = maxi∈[d]∥Mτ (ti)∥2 ≤ maxi∈[d]∥ti∥1.

4.3.1 Sampling the Perturbation. The perturbation sampling step can be
made fairly efficient in power-of-two cyclotomic rings by using the ring sampler
of [GM18], which exploits the tower structure, and the recursive Schur comple-
ment convolution sampling [GM18, Lem. 4.3]. We also observe that based on the
specific shape of our matrix Sp, a lot of elements can be sampled independently
or precomputed offline. As will be the case in all the constructions covered in
Section 5, we are interested in simple tag matrices T = tId with t a short ring
element such that t ∈ R×q . The perturbation covariance matrix Sp (over the ring)
is then

Sp =

s
2
1Id − a(tt∗Id +R1R

∗
1) 0 −aR1R

∗
2 −aR1

0 (s22 − att∗)Id(ℓ−1) 0 0
−aR2R

∗
1 0 s23Id − aR2R

∗
2 −aR2

−aR∗1 0 −aR∗2 (s24 − a)Id(k−ℓ)


where a = s2G. If we parse the vector p into [pT

L,1|pT
L,2|pT

1,2|pT
2 ]

T with pL,1,p1,2 ∈
Rd, pL,2 ∈ Rd(ℓ−1) and p2 ∈ Rd(k−ℓ), we can see that pL,2 is independent of the
others. As a result, we can sample pL,2 ←↩ DRd(ℓ−1),

√
Mτ (s22−att∗)

independently,
and then (pL,1,p1,2,p2) from D

R2d+d(k−ℓ),
√

Mτ (S′
p)

with

S′p =

s21Id − a(tt∗Id +R1R
∗
1) −aR1R

∗
2 −aR1

−aR2R
∗
1 s23Id − aR2R

∗
2 −aR2

−aR∗1 −aR∗2 (s24 − a)Id(k−ℓ)


The sampling of pL,2 consists in sampling d(ℓ − 1) independent elements from
D

R,
√

Mτ (s22−att∗)
using the efficient ring sampler of [GM18] as SampleFz(s22 −

att∗, 0). Notice that s22 − att∗ is clearly auto-adjoint, and because of the condi-
tion on s2 of Theorem 4.2, we have s22− att∗ ∈ K++

R as needed for the sampling.
Now let us look at the sampling with covariance S′p. Here, we use the recur-
sive Schur complement convolution sampling based on [GM18, Lem. 4.3] and
used in previous implemented works [BEP+21,AGJ+24]. The idea is to com-
pute elements fi ∈ K++

R from the successive Schur complements in order to
sample the whole vector. We can first sample p2 ←↩ DRd(k−ℓ),

√
s24−a

(that is

sampling over Znd(k−ℓ) directly) and then update the sampling of (pL,1,p1,2) to
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account for the dependency. For that we must sample (pL,1,p1,2) with covariance
S′′p = S′p/(s

2
4 − a)Id(k−ℓ) and center c where

S′′p =

(s21 − att∗)Id − as24
s24−a

R1R
∗
1 − as24

s24−a
R1R

∗
2

− as24
s24−a

R2R
∗
1 s23Id −

as24
s24−a

R2R
∗
2

 and c = − a

s24 − a

[
R1

R2

]
p2

To do so, we use the approach of [GM18] by computing successive Schur com-
plements and updated centers, in its iterative formulation as in [AGJ+24, Alg.
3.1] for example.

1. (S2d, c2d)← (S′′p , c)
2. for i = 2d, . . . , 1 do

3. Write Si, ci as Si =

[
S′i si
s∗i fi

]
and ci =

[
c′i
di

]
.

4. pi ←↩ DR,
√

Mτ (fi),di
. ▷ with SampleFz(fi, di)

5. ci−1 ← c′i + f−1i (pi − di)si.
6. Si−1 ← S′i − f

−1
i sis

∗
i .

and define [pT
L,1|pT

1,2]
T = [p1, . . . , p2d]

T . We now note that in the first d iterations
of the loop (from i = 2d to i = d+1 included), the fi and f−1i si only depend on
R1,R2 and can thus be precomputed at key generation. In particular, the key
generation would precompute all the fd+1, . . . , f2d and the f−12d s2d, . . . , f

−1
d+1sd+1,

as well as the part of Sd which does not depend on t. Indeed, the update rule of
Si and the form of S′′p clearly yields Sd = F (R1,R2)− att∗Id, where F (R1,R2)
is a function of s1, s4, a,R1,R2 which can be precomputed at key generation.
For the remaining d iterations, the Schur complements depend on tt∗ which may
differ at each signing. The corresponding fi would then be computed online. All
things considered, we end up with the following perturbation sampler, which
limits as much as possible the online covariance computations.

Algorithm 4.3: SamplePerturb(R1,R2, t, sG, s1, s2, s3, s4)

Input: Trapdoor R1,R2 ∈ Rd×d(k−ℓ), tag t ∈ R×
q , Gaussian parameters

sG, s1, s2, s3, s4.
Precomputed: (fi)i∈[d+1,2d] ∈ K++

R , (f−1
i si)i∈[d+1,2d], and F (R1,R2) ∈ Kd×d

R .

1. for i = 1, . . . , d(ℓ− 1) do
2. [pL,2]i ← SampleFz(s22 − s2Gtt∗, 0). ▷ D

R,
√

Mτ (s22−s2
G

tt∗)

3. p2 ←↩ DRd(k−ℓ),
√

s24−s2
G

.

4. c2d ← − s2G
s24−s2

G

[
R1

R2

]
p2.

5. for i = 2d, . . . , d+ 1 do
6. Parse ci = [c′i

T |di]T .
7. [p1,2]i−d ← SampleFz(fi, di).
8. ci−1 ← c′i + ([p1,2]i−d − di)f

−1
i si.

9. Sd ← F (R1,R2)− s2Gtt∗Id.
10. for i = d, . . . , 1 do
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11. Parse Si =

[
S′
i si

s∗i fi

]
and ci =

[
c′i
di

]
.

12. [pL,1]i ← SampleFz(fi, di).
13. ci−1 ← c′i + ([pL,1]i − di)f

−1
i si.

14. Si−1 ← S′
i − f−1

i sis
∗
i .

Output: p = [pT
L,1|pT

L,2|pT
1,2|pT

2 ]
T ∈ Rd(k+1).

The precomputed elements can be stored within a single matrix F ∈ K2d×2d
R as

F =



F (R1,R2)

fd+1

. . .

f2d

s∗d+1

fd+1

s∗2d

f2d


, with fi = f−1i si

The vectors s∗i in gray are necessary to compute F (R1,R2) and are therefore
stored by default, but they are no longer needed in the sampling procedure,
and can thus be discarded after key generation. From the description of Al-
gorithm 4.3, we can see it does not differ much compared to the elliptic per-
turbation sampler described in [AGJ+24, Alg. 3.1] except for the additional
sampling of pL,2 and the fact that the covariance for the pL,1 depends on
t. We can therefore easily adapt the security and precision analysis. Based
on the analysis of [GM18] and the parameter chosen in Theorem 4.2, each
sample from SampleFz is within [1/ϵn−1, ϵn−1] of the ideal distribution where
ϵ = (1 + ε)/(1− ε), if we assume a perfect integer sampler for DZ,s,c. Then, the
sampler involves 2d Schur complement convolutions [GM18, Lem. 4.3], noticing
that the sampling of pL,2 is perfectly independent from the rest. Combined with
the d(ℓ− 1)+ 2d = d(ℓ+1) calls to SampleFz, it holds that the distribution of p
is within [1/ϵd(ℓ+1)(n−1)+2d, ϵd(ℓ+1)(n−1)+2d] of D

Rd(k+1),
√

Mτ (Sp)
. If one performs

the gadget sampling in step 4 of Algorithm 4.2 using the Klein sampler [Kle00]
as is done in [AGJ+24], the distribution outputted by Algorithm 4.2 is within
[δ−1, δ] of the ideal distribution with

δ =

(
1 + ε/ndk

1− ε/ndk

)ndk (
1 + ε

1− ε

)d(ℓ+1)(n−1)+2d+2

The floating-point precision analysis carried in [AGJ+24] can be adapted simply
to our sampler, and it shows that the standard 53 bits precision is sufficient to
incur no noticeable security loss. A concrete performance assessment of our new
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perturbation sampler, along with a comparison with the one for full gadget, is
provided in Section 5.2.

5 Applications

The MP sampler is the cornerstone of many privacy-preserving authentication
mechanisms because it yields a standard model signature that smoothly interacts
with zero-knowledge proofs. This signature was described in the original paper
[MP12] and was progressively improved, leading to several variants culminating,
to our knowledge, to the construction implicitly used in [AGJ+24]. As we discuss
in Section 1, all these variants use a full gadget because they cannot fulfil the
requirements of the approximate sampler by Chen et al. [CGM19]. Our sampler
solves this problem and thus allows to leverage truncated gadgets to build a more
efficient standard model signature scheme and in turn more efficient privacy-
preserving authentication mechanisms.

In the first part of this section we indeed show that our approach yields a
30% improvement of the size of the standard model signature based on the MP
sampler, leading to signatures of around 4.82 KB instead of 6.72 KB [AGJ+24].
We then show that this 2 KB decrease is considerably amplified when we plug
the resulting signature in privacy-preserving authentication mechanisms, which
is straightforward given their modular structure. We illustrate it in the cases
of anonymous credentials [AGJ+24], blind signatures [JS24] and group signa-
tures [LNPS21,LNP22], where the decrease can reach up to 15 KB, but any
other primitive requiring to prove knowledge of a signature should greatly bene-
fit from the reduced dimension enabled by our truncated gadget. Obviously, the
improvement ratios are smaller than 30% in these applications as signature is
just one of the components of such advanced primitives that blend encryption,
commitment and zero-knowledge proofs but they are still significant, ranging
from 10% to 17%.

5.1 Standard Model Signature

As a first step to benchmark the improvement procured by our sampler, we con-
sider lattice-based signatures in the standard model based on the MP sampler.
To our knowledge, the most efficient one based on well-studied lattice assump-
tions such as M-SIS and M-LWE is described in [AGJ+24]. In a nutshell, it
defines a public key as B = R1 +AR2 mod q, where R1 and R2 constitute the
secret trapdoor for the sampler. To generate a signature on a binary polynomial
m defining the message, the signer selects a tag t, samples some vector v3 and
then uses a tag-friendly gadget-based sampler (such as the MP one [MP12]) to
get (v1,v2) such that

[Id|A]v1 + (tG− (R1 +AR2))v2 = u+md−A3v3 mod q.

The third block A3 and the vector u are necessary for the security reduction.
However, they, as well as A and d, can be part of the public parameters common

33



to several signers. Thanks to the trapdoor switching technique of [AGJ+24], the
third block A3 has only k columns. Finally, the message appears in committed
form in md. Whether it is generated as the output of some hash function H or
not depends on the use-case. The point is that, in all cases, security only requires
collision-resistance from H and not any form of reprogrammability, which avoids
the random oracle model.

Plugging our truncated sampler is almost straightforward here and only re-
quires very minor adjustments. The resulting scheme is described below for com-
pleteness.

Algorithm 5.1: Setup
Input: Security parameter λ.

1. Choose d ∈ N×.
2. Choose κ ≤ n to be a power of two.
3. Choose q ∈ N× prime s.t. q = 2κ+ 1 mod 4κ and q ≥

√
κ
κ.

4. Choose w ∈ N× st
(
n
w

)
≥ Q.

5. Choose b ∈ N× ∩ [2,
√
q].

6. Tw ← {t ∈ T1 : ∥t∥1 = w}.
7. k ← ⌈logb q⌉.
8. Choose ℓ < k.
9. BR ← 3

4
(
√
nd+

√
nd(k − ℓ) + 6)

10. GL = [1 · · · bℓ−1]⊗ Id ∈ Rd×dℓ
q .

11. GH = [bℓ · · · bk−1]⊗ Id ∈ R
d×d(k−ℓ)
q .

12. G = [GL|GH ]
13. η ←

√
ln(2ndk/ε)/π. ▷ η ≈ ηε(R

dk) by Lemma 2.2
14. sG ← η

√
b2 + 1.

15. s1 ← η(b+ 1/b)
√

4w2 + 3B2
R.

16. s2 ← η(b+ 1/b) · 2w.
17. s1,1 ← η(b+ 1/b)

√
4w2(b2ℓ − 1)/(b2 − 1) + 3B2

R.
18. s3 ←

√
3η(b+ 1/b)BR.

19. s4 ←
√
3η(b+ 1/b).

20. (α1,1, α1,2)← (s1,1/(n
√

d/2), s3/(n
√

d/2)).
21. M1,i ← exp(π/α2

1,i).
22. d←↩ U(Rd

q).
23. A←↩ U(Rd×d

q ).
24. A3 ←↩ U(R

d×(k−ℓ)
q ).

25. u←↩ U(Rd
q).

Output: pp = (λ, n, d, q, w, b, k, ℓ, η, sG, s1, s2, s3, s4,d,A,A3,u).

Algorithm 5.2: KeyGen
Input: Public parameters pp as in Algorithm 5.1.

1. R1,R2 ←↩ Bd×d(k−ℓ)
1 conditioned on ∥Ri∥2 ≤ BR.

2. B← R1 +AR2 mod qR ∈ R
d×d(k−ℓ)
q .

Output: pk = B, and sk = (R1,R2).
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Algorithm 5.3: Sign
Input: Signing key sk, Message m ∈ {0, 1}∗, Public key pk, Public Parameters pp,
State st

1. m← H(m) ∈ T1.
2. c← md mod qR.
3. t← F (st) ∈ Tw.
4. v3 ←↩ DRk−ℓ,s4

.
5. (v1,1,v1,2,v2) ← RingTruncatedSampler(R1,R2,A,u + md −

A3v3, tId, sG, s1, s2, s3, s4)
6. if ∥v1,1∥2 > B1,1 ∨ ∥v1,2∥2 > B1,2 ∨ ∥v2∥2 > B2 ∨ ∥v3∥2 > B3 goto 4).
7. st← st+ 1.

Output: sig = (t,v1,2,v2,v3).

Algorithm 5.4: Verify
Input: Public key pk, Message m ∈ {0, 1}∗, Signature sig, Public Parameters pp.

1. v1,1 ← u+H(m)d−Av1,2 − (tGH −B)v2 −A3v3 mod qR ∈ Rd.
2. b1 ← ∥v1,1∥2 ≤ B1,1. ▷ B1,1 = cnds1,1

√
nd

3. b2 ← ∥v1,2∥2 ≤ B1,2. ▷ B1,2 = cnds3
√
nd

4. b3 ← ∥v2∥2 ≤ B2. ▷ B2 = cnd(k−ℓ)s4
√

nd(k − ℓ)

5. b4 ← ∥v3∥2 ≤ B3. ▷ B3 = cn(k−ℓ)s4
√

n(k − ℓ)

6. b5 ← t ∈ Tw.

Output: b1 ∧ b2 ∧ b3 ∧ b4 ∧ b5. ▷ 1 if valid, 0 otherwise

The tailcuts cN in the verification bounds are set so that the Gaussian tailcut
is verified with probability at least 1 − p, for say p = 2−20 to avoid too many
repetitions, using [Ban93, Lem. 1.5]. We also take a bound BR on ∥Ri∥2 that
is slightly larger than the one from [AGJ+24, Lem. 2.2] to limit the number of
rejections and thus spectral norm estimations during key generation.

Theorem 5.1. The signature scheme of Algorithms 5.1, 5.2, 5.3 and 5.4 is
unforgeable in the standard model based on the hardness of M-LWE, M-SIS, and
the collision resistance of H. More precisely, the advantage of PPT adversary in
breaking the unforgeability of the signature is upper-bounded by

Adv[A] ≲ εcr(H) + 2max
(
h◦d

(
C(|Tw| −Q)ε➊

M-SIS
)
,

C2εM-LWE +
1 + ε

1− ε
· 4M1,1M1,2 · h◦d

(
C

(1− p)4
Qε➋

M-SIS

))

where εcr(H) is the probability of A finding a collision for H, εM-LWE the hard-
ness bound of M-LWEn,d,d,q,B1 , and ε➊

M-SIS and ε➋
M-SIS are the respective hardness

bounds of M-SISn,d,2d+k−ℓ+2,q,β➊
and M-SISn,d,2d+k−ℓ,q,β➋

. The constant C ≈ 2
is the one from [AGJ+24, Lem. 2.3], and the probability p corresponds to the
tailcut probability used to set the Gaussian verification bounds. The function h◦d
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corresponds to the d-th composition power of the function h defined by

h(x) = (k − ℓ)εM-LWE + δ
(
2(k − ℓ)εM-LWE + δ ((k − ℓ)εM-LWE + x)

2λ−1
2λ

) 2λ−1
2λ

,

with

δ = 1 +Q(λ− 1/2) ·

((
1 + ε

1− ε

)2d(ℓ+1)(n−1)+4d+4(
1 + ε/ndk

1− ε/ndk

)2ndk

− 1

)2

and with

β➊ =

√(√
B2

1,1 +B2
1,2 +

√
ndB2

)2
+B2

3 + n+ 1

β➋ =

√(
2
√
B2

1,1 +B2
1,2 +

√
nd
√
4B2

2 + n

)2

+ 4B2
3

Proof. We follow the blueprint of the standard model signature of [AGJ+24],
with only a few modification due to our change of sampler. We call G0 the reg-
ular unforgeability game where the challenger generates the public parameters
and keys legitimately using Algorithms 5.1 and 5.2, and where it answers sign-
ing queries using Algorithm 5.3. We then progressively change G0 so that the
challenger can use the forgery of A to solve an M-SIS instance. For the subse-
quent games Gi, we denote by AdvGi

[A] the advantage of the adversary A in
producing a valid forgery in the modified game Gi.
Game G1. We first change the tag generation. We instead generate all the tags
{t(i); i ∈ [Q]} at the outset of the game instead of at each signature issuance.
The view of A remains unchanged, yielding that G1 is identically distributed as
G0.
Game G2. In this game, the challenger proceeds as in G1 and thus eventually
receives (m⋆, sig⋆) where m⋆ differs from all the queried messages. It then com-
putes the corresponding digest m⋆ = H(m⋆) and aborts if a collision occurs
with the hashes of the queried message. In the latter case, A can readily be used
against the collision resistance of H and we thus get

AdvG1
[A] ≤ AdvG2

[A] + εcr(H).

Game G3. We now introduce a branching of our security reduction, similarly to
what is done in [JS24]. At the outset, the challenger samples ρ ←↩ U({1, 2}). If
ρ = 1, the challenger expects what we call a type ➊ forgery which corresponds
to a forgery where the tag t⋆ is not in {t(i); i ∈ [Q]}. On the other hand, if ρ = 2,
the challenger expects a type ➋ forgery which corresponds to a forgery where
the tag is among the emitted ones, i.e., there exists i ∈ [Q] such that t⋆ = t(i).
The challenger aborts if the type guess turns out to be wrong. We then get

AdvG2
[A] = 2AdvG3

[A].
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Depending on the value of ρ, the reduction will now behave differently. We define
Adv➊

G[A] (resp. Adv➋
G[A]) to be the advantage of A in producing a type ➊ (resp.

➋) forgery in game G. With the prior modification, if the reduction does not
abort, the type guess is correct and thus AdvG3 [A] ≤ max(Adv➊

G3
[A],Adv➋

G3
[A]).

In the next games, we specify which branch is impacted by the change. The first
change we introduce is that after sampling ρ and the set of tags, the reduction
samples t+ ←↩ U(Tw \ {t(i); i ∈ [Q]}) if ρ = 1, and otherwise it samples i+ ←↩
U([Q]) and sets t+ = t(i

+) if ρ = 2. Because t+ is not used anywhere yet, it does
not change the view of A. We thus have

AdvG2 [A] ≤ 2max
(
Adv➊

G3
[A],Adv➋

G3
[A]
)

Game G4 (ρ = 2). If ρ = 2, the challenger hides an M-LWE secret in d. More
precisely, it samples s1, s2 from Bd1 conditioned on ∥si∥2,Z ≤

√
nd and defines

d = s1 + As2 mod qR. The ∥·∥2,Z corresponds to the spectral norm where the
maximum is taken over integer vectors instead of real vectors. It is implicitly
used in [AGJ+24, Lem. 2.3] and referred to as a Johnson-Lindenstrauss-like
bound, and more explicitly in [JS24, Lem. 2.1]. As each bound is verified with
probability 1/C with C ≈ 2, distinguishing between the view in G3 and G4 is
exactly solving M-LWEn,d,d,q,B1

with a C2 loss factor. As it only impacts the
branch ρ = 2, we have

Adv➊
G3

[A] = Adv➊
G4

[A], and Adv➋
G3

[A] ≤ Adv➋
G4

[A] + C2εM-LWE,

where εM-LWE is the hardness bound of M-LWEn,d,d,q,B1
.

Game G5 (ρ = 2). We now hide a short relation in u when ρ = 2. The challenger
samples v1,1 ←↩ DRd,s1,1 , v1,2 ←↩ DRd,s3 and [vT

2 |vT
3 ]

T ←↩ DR(k−ℓ)(d+1),s4 , and
computes u = v1,1 +Av1,2 + (t+GH − B)v2 +A3v3 mod qR. By the regular-
ity lemma of [GPV08, Cor. 5.2], and with our parameter choices satisfying the
smoothing condition, we then get that

Adv➊
G4

[A] = Adv➊
G5

[A], and Adv➋
G4

[A] ∈
[

1

1 + ε
,
1 + ε

1− ε

]
Adv➋

G5
[A],

Game G6 (ρ = 2). We keep preparing the rejection sampling step for the i+-th
query in the branch ρ = 2. More precisely, in the i+-th query after receiving m(i+)

and computing m+ = H(m(i+)), the reduction samples (v
(+)
1,1 ,v

(+)
1,2 ,v

(+)
2 ,v

(+)
3 )

legitimately using the preimage sampler, and then rejects based on the value of
(v1,1,v1,2,v2,v3) which are so far independent of (v(+)

1,1 ,v
(+)
1,2 ,v

(+)
2 ,v

(+)
3 ). More

precisely, it samples u1, u2 ←↩ U([0, 1)). The reduction continues only if u1 ≤
1/M1,1, u2 ≤ 1/M1,2, and ⟨v1,1 , s1m

+⟩ ≥ 0 and ⟨v1,2 , s2m
+⟩ ≥ 0, otherwise

it aborts. We insist that if the challenger does not abort, it answers the query
with (v

(+)
1,1 ,v

(+)
1,2 ,v

(+)
2 ,v

(+)
3 ) and not the hidden relation of u. As the v1,j are

symmetric and independent of sjm+, the sign conditions are verified each with
probability 1/2. It then holds that

Adv➊
G5

[A] = Adv➊
G6

[A], and Adv➋
G5

[A] ≤ 4M1,1M1,2Adv➋
G6

[A],
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Game G7 (ρ = 2). We now finally use the relation hidden in u to answer the
i+-th query in branch ρ = 2. We need however to perform rejection sampling
so that the output satisfies the correct equation involving m+ = H(m(i+)),
while producing the correct signature distribution. The reduction thus samples
u1, u2 ←↩ U([0, 1)), computes δ1 = ⟨v1,1 + s1m

+ , s1m
+⟩ and δ2 = ⟨v1,2 +

s2m
+ , s2m

+⟩. It then aborts the reduction if

δ1 < 0, or u1 >
1

M1,1
exp

(
π

s21,1

(∥∥s1m+
∥∥2
2
− 2δ1

))
,

or δ2 < 0, or u2 >
1

M1,2
exp

(
π

s23

(∥∥s2m+
∥∥2
2
− 2δ2

))
.

If the challenger did not abort, it constructs

v
(i+)
1,1 = v1,1 + s1m

+,v
(i+)
1,2 = v1,2 + s2m

+ and v
(i+)
2 = v2,v

(i+)
3 = v3,

If it did not abort, it outputs (t+,v
(i+)
1,2 ,v

(i+)
2 ,v

(i+)
3 ) as the valid signature. Be-

cause ∥sim+∥2 ≤
√
nd∥m+∥2 based on G4, and the way the parameters M1,i

are set, the rejection sampling argument of [LNS21, Lem. 3.2] shows that the
distribution is the same. We then get that G7 and G6 are identical.
Hybrid Games Gj,i. For both branches, we now use the hybrid argument used
in [AGJ+24] to hide the tag t+ in the public key B. The authors rely on a
specific partial trapdoor switching method and define hybrid games Gj,i for
j ∈ [d] and i ∈ [0, 9]. More precisely, Gj,0 is essentially G7 but where B =
R1+AR2+t+[bℓ, . . . , bk−1]⊗diag(t+, . . . , t+, 0, . . . , 0) where t+ appears j times.
In particular, we note that G1,0 = G7. We define GH,j = [bℓ, . . . , bk−1] ⊗ ej
where ej is the j-th canonical basis vector. We then observe that GH is an
interleaving of the columns of the different GH,j . For a matrix with d(k − ℓ)
columns (like R1,R2, etc.), we use the index j to denote this submatrix with
k−ℓ columns. Concretely, if C = [c1| . . . |cd(k−ℓ)], Cj = [cj |cd+j | . . . |cd(k−ℓ−1)+j ]
for any j ∈ [d].

Then, Gj,1 hides a partial gadget in A3 as A3 = GH,j −A′3 for A′3 drawn
uniformly. In Gj,2, the challenger hides a relation in A3 as A3 = GH,j − (R′1,j +

AR′2,j) under M-LWEk−ℓ
n,d,d,q,B1

. In Gj,3, the challenger uses the partial trapdoor
R′1,j ,R

′
2,j instead of R1,j ,R2,j to produce signatures (except for the i+-th query,

if ρ = 2, which remains unchanged), which is argued by the trapdoor switching
lemma of [AGJ+24, Lem. 4.1] updated to our new sampler. Then, Gj,4 simu-
lates the partial public key Bj = R1,j + AR2,j mod qR and instead samples
Bj uniformly in Rd×k−ℓ

q , which is unbeknownst to A under M-LWEk−ℓ
n,d,d,q,B1

.
Gj,5 adds the tag guess as Bj = B′j + t+GH,j with B′j uniform. In Gj,6, it
re-introduces a partial secret key to get Bj = R1,j + AR2,j + t+GH,j under
M-LWEk−ℓ

n,d,d,q,B1
. The trapdoor switching is used again in Gj,7 to use the partial

trapdoor R1,j ,R2,j instead of R′1,j ,R′2,j . In Gj,8, we replace R′1,j + AR′2,j by
a uniform A′3 again under M-LWEk−ℓ

n,d,d,q,B1
. Finally, A3 is again changed to be

perfectly uniform in Gj,9 so that Gj,9 = Gj+1,0.
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Notice that in the hybrid games, the effective tag we need to use in the
sampling procedure is T = diag(t − t+, . . . , t − t+, t, . . . , t). As our sampler
supports such tag matrices, we only need to make sure that T is invertible
in Rq, and that the parameters s1, s2 are set so as to consider a bound on ∥T∥2
during each step of the hybrid. Regarding invertibility, we note that the sam-
pling is only done for t ̸= t+ as the i+-th query is handled differently. We thus
get that T is diagonal with non-zero ternary polynomials on the diagonal. Us-
ing [LS18, Cor. 1.2], our choice of q, and in particular the splitting behavior of
qR in R, entails that ∥t− t+∥∞ = 1 < q1/κ/

√
κ, thus proving t − t+ ∈ R×q .

The same holds for t which proves that T ∈ GLd(Rq). Then, we have that
∥T∥2 ≤ max(∥t− t+∥1, ∥t∥1) ≤ 2w by definition of the tag space. This explains
why s2 is set with 2w and not just w, and that s21 features a term in 4w2. All
things considered, the analysis of the hybrid argument is exactly the same as
in [AGJ+24], and it thus holds that by looping over j ∈ [d], we have

Adv➊
G7

[A] ≲ h◦d
(
Adv➊

Gd,9
[A]
)
, and Adv➋

G7
[A] ≲ h◦d

(
Adv➋

Gd,9
[A]
)
,

where h◦d corresponds to the d-th composition power of the function h, which
is itself defined by

h(x) = (k − ℓ)εM-LWE + δ
(
2(k − ℓ)εM-LWE + δ ((k − ℓ)εM-LWE + x)

2λ−1
2λ

) 2λ−1
2λ

,

with

δ = 1 +Q(λ− 1/2) ·

((
1 + ε

1− ε

)2d(ℓ+1)(n−1)+4d+4(
1 + ε/ndk

1− ε/ndk

)2ndk

− 1

)2

,

by the detailed loss of Algorithm 4.2 and the relative error lemma of [Pre17].
Game G8. In this game, the challenger aborts if the tag guess is incorrect. More
precisely, in branch ρ = 1, the adversary must return a type ➊ forgery which
means that t+ /∈ {t(i); i ∈ [Q]}. Because t+ is hidden to the view of the adversary,
the guess is correct with probability 1/(|Tw| − Q). For the branch ρ = 2, the
adversary must return a type ➋ forgery meaning there exists i⋆ ∈ [Q] such that
t⋆ = t(i

⋆). The challenger thus aborts if i+ ̸= i⋆, meaning the guess is correct
with probability 1/Q. We thus get

Adv➊
Gd,9

[A] = (|Tw| −Q)Adv➊
G8

[A], and Adv➋
Gd,9

[A] = QAdv➋
G8

[A],

Exploiting the forgery. We now explain for each branch how to exploit the forgery
outputted by A to find a solution of a specific M-SIS instance. More precisely, we
bound Adv➊

G8
[A] and Adv➋

G8
[A] separately. The challenger indeed receives two

instances A = [Id|A|A3|d|u] and A
′
= [Id|A|A3] of M-SISn,d,2d+k−ℓ+2,q,β➊

and
M-SISn,d,2d+k−ℓ,q,β➋

respectively. The first will be used to define the material
when ρ = 1, while the other will serve for the branch where ρ = 2. Depending
on the value ρ sampled at the outset, it discards one of these two instances. It
then proceeds as in G8 following the determined branch.
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Branch ρ = 1. We start by bounding Adv➊
G8

[A], i.e., in branch ρ = 1. It holds that
t⋆ = t+, which means that t⋆GH −B = t⋆GH −R1 −AR2 − t+GH = −R1 −
AR2 mod qR. The challenger then aborts if

∥∥−[RT
1 |RT

2 ]
Tv⋆

2

∥∥
2
>
√
nd∥v⋆

2∥2.
Again, by the Johnson-Lindenstrauss-like bound of [AGJ+24, Lem. 2.4] (as
−[RT

1 |RT
2 ]

T is indeed drawn from B1), the challenger continues with probability
at least 1/C for C ≈ 2. We then re-write the equation recovering v⋆

1,1 as

(v⋆
1,1 −R1v

⋆
2) +A(v⋆

1,2 −R2v
⋆
2) +A3v

⋆
3 −m⋆d− u = 0 mod qR,

i.e., [Id|A′|A3|d|u]x⋆ = 0 mod qR with

x⋆ =


[
v⋆
1,1

v⋆
1,2

]
−
[
R1

R2

]
v⋆
2

v⋆
3

−m⋆

−1

 ,
The last coefficient is non zero which ensures x⋆ ̸= 0. We can then directly
bound

∥x⋆∥2 ≤
√(√

B2
1,1 +B2

1,2 +
√
ndB2

)2
+B2

3 + n+ 1 = β➊,

thus proving that x⋆ is a solution of M-SISn,d,2d+k−ℓ+2,q,β➊
. We get AdvM-SIS[A] ≥

Adv➊
G8

[A]/C which leads to

Adv➊
G8

[A] ≤ Cε➊
M-SIS.

Branch ρ = 2. We now bound Adv➋
G8

[A]. Recall we are also in the case where
t⋆ = t+ so that t⋆GH − B = −R1 − AR2 mod qR. We then define ∆v1 =

[v⋆
1,1 − v

(i+)
1,1 ,v⋆

1,2 − v
(i+)
1,2 ] where v

(i+)
1,i was part of the signature in the i+-th

query. We also define ∆v2m = [v⋆
2−v

(i+)
2 ,m⋆−m+]. The challenger then aborts

if
∥∥[−[RT

1 |RT
2 ]

T |s]∆v2m

∥∥
2
>
√
nd∥∆v2m∥2 which happens with probability at

most 1− 1/C for C ≈ 2 using [AGJ+24, Lem. 2.3] again. Then, because of how
u is set, we have

[Id|A|A3]

[
∆v1 − [[RT

1 |RT
2 ]

T |s]∆v2m

v⋆
3 − v

(i+)
3

]
= 0 mod qR.

Because of the change in G2, it holds that m⋆ ̸= m+. Using the same argument
as in previous works, e.g., [LLM+16,LNPS21,LNP22,JRS23,AGJ+24], the un-
predictability of s ensures that x⋆ is non-zero except with negligible probability.
We now bound x⋆. Additionally, because v

(i+)
1,1 ,v

(i+)
1,2 follow the exact centered

Gaussian distribution due to rejection sampling, and that v
(i+)
2 ,v

(i+)
3 are also

Gaussian, the tail bound gives that all four bounds are verified with probability
(1− p)4. we have

∥x⋆∥2 ≤

√(
2
√
B2

1,1 +B2
1,2 +

√
nd
√
4B2

2 + n

)2

+ 4B2
3 = β➋,
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thus proving that x⋆ is a solution of M-SISn,d,2d+k−ℓ,q,β➋
. We then obtain that

AdvM-SIS[A] ≥ Adv➋
G8

[A](1− p)4/C − negl(λ) which leads to

Adv➋
G8

[A] ≤ C

(1− p)4
ε➋
M-SIS + negl(λ).

Advantage Bound. We can now combine all of the advantage bounds from each
game hop with the derived bounds on the advantages in G9. We obtain the
following equations.

Adv➊
G3

[A] ≲ h◦d
(
C(|Tw| −Q)ε➊

M-SIS
)
,

Adv➋
G3

[A] ≲ C2εM-LWE +
1 + ε

1− ε
· 4M1,1M1,2h

◦d ((1− p)−4CQε➋
M-SIS

)
.

Combining these inequalities gives the claimed security.

5.2 Performance

We now compare the performance of our standard model signature scheme to the
one from [AGJ+24, Sec. 3]. As the parameters of the latter were selected towards
being plugged in an anonymous credentials system, we review the parameter
selection to be tailored to a standalone signature and in particular only sign a
single ring element m = H(m) as in our signature presented above. This allows
us to slightly reduce the parameters. For clarity of comparison, we still refer to
this parameter-optimized version as [AGJ+24]. The latter relies on the elliptic
sampler with full gadget recalled in Section 4.1.

5.2.1 Size. The resulting construction of [AGJ+24] yields a standard model
signature of 6.72 KB and a public key of 47.5 KB for 125 bits of security in
the Core-SVP model. Thanks to our truncated sampler, the scheme described
in Section 5.1 yields signatures of 4.82 KB and public keys of 28.5 KB for 121
bits of security (NIST-II level) in the Core-SVP model, which represents an
improvement of respectively 28 % and 40 %. In Table 5.1, we report the sizes and
security for different values of ℓ, ℓ = 0 corresponding to [AGJ+24]. These sizes are
obtained by setting the parameters according to the security reductions to M-SIS
and M-LWE and by taking into account the reduction loss. More aggressive
parameters (and hence better sizes) could be obtained by only considering the
state-of-the-art cryptanalysis. An example parameter set is given in Table B.1.

5.2.2 Computational Complexity. We now compare the computational
complexity of both approaches for standard model digital signatures. Note that
this actually boils down to compare the underlying samplers as they actually
represent 95 % of the signature generation process. To be more specific, we
compare the performance of our sampler RingTruncatedSampler when used to
generate signatures in the standard model (as described in Section 5.1) with the
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|pk| |t| |v1,2| |v2| |v3| Tot. Sec.

ℓ = 0 47.50 KB 0.03 1.63 4.05 1.01 6.72 KB 126

ℓ = 1 38.00 KB 0.03 1.63 3.39 0.85 5.90 KB 123

ℓ = 2 28.50 KB 0.03 1.61 2.54 0.64 4.82 KB 121

Table 5.1. Comparison of the signature sizes for different values of ℓ (k = 5). All sizes
are in KB. The case ℓ = 0 corresponds to [AGJ+24].

most efficient alternative relying on full gadget, namely [AGJ+24] implementing
the improved elliptic sampler from Section 4.1.

We provide a full implementation in C4 of said signatures and benchmark
our new samplers. Our implementation is built upon that of [AGJ+24] for a fair
comparison. Our benchmarks were performed on a laptop with an Intel Core
i7 12800H CPU running at 4.6 GHz. We use the same compilation options for
both constructions, that is -O3 -march=native using gcc 11.4.0 with pthread
disabled when building FLINT. The resulting timings are reported in Table 5.2.
The main components of both RingTruncatedSampler and the elliptic sampler
are the SamplePerturb algorithm and the Klein sampler whose performance are
also indicated in the table. While these timings are already practical, we note
that both implementations could be optimized much further. They are however
sufficient for comparing both options.

Logically, the simpler structure of the perturbation sampler in the case of
full gadget leads to better performance (about 30 % faster) when generating
a signature than in the case of truncated gadgets. Conversely, the signature
verification is 30% faster in the latter case thanks to the reduced dimension.
However, one must keep in mind that for current applications of standard model
signatures (group signatures, anonymous credentials, etc), the main bottleneck
is the generation and the verification of the zero-knowledge proof of knowledge
of the signature, not the issuance of the latter. For example, in the case of
anonymous credentials, the analysis in [AGJ+24] shows that the former step
is around 10 times slower than the signature issuance in their case. As lattice
zero-knowledge proofs are very sensitive to the witness dimension, we expect
timing improvements thanks to our truncated sampler, which should compensate
the issuance overhead. Also, we recall that in such contexts, signature issuance
occurs once per user whereas credential showing can be performed many times
by the same user, increasing further the performance gains. Evaluating precisely
the improvement resulting from our shorter signatures would require to fully
implement the corresponding zero-knowledge proof systems, which we leave for
future works.

4 https://github.com/truncatedsampler/truncated-sampler
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Procedure
Time (ms)

mean med min max

SamplePerturb (full) 51.983 51.838 50.883 53.636
SamplePerturb (truncated) 80.234 80.280 77.287 82.914

Gadget sampler (Klein) 1.821 1.818 1.763 1.906
Gadget sampler (Klein) 1.822 1.820 1.761 1.897

Elliptic sampler 56.526 56.534 55.349 57.931
RingTruncatedSampler 83.931 83.891 79.302 85.769

Sign 56.949 56.953 55.651 58.583
Sign 84.255 84.168 79.898 86.821

Verify 1.127 1.126 1.104 1.191
Verify 0.771 0.771 0.746 0.802

Table 5.2. Benchmark results in milliseconds (ms). Statistics over 100 executions.
The highlighted rows correspond to our implementation based on the truncated sam-
pler, while the clear rows correspond to our parameter-optimized version of [AGJ+24].
Where applicable, the key and message were randomized.

5.3 Application to Advanced Signatures

Our sampler is designed to retain the main features of the sampler from [MP12]
while supporting truncated gadgets. It can therefore be readily adapted to all
the constructions that were relying on the MP sampler so far, leading to di-
rect improvements that we describe for some prominent primitives of this area,
for different choices of ℓ (the truncation parameter). Echoing the result in Sec-
tion 4.1, we can actually consider that existing constructions use our sampler
with ℓ = 0, which allows to unify notations. In other words, our sampler adds a
parameter to these systems where ℓ = 0 corresponds to the state-of-the-art and
where any value ℓ > 0 corresponds to our new sampler. The scripts used to de-
rive the size and security estimations of these advanced primitives are provided
alongside our implementation5 of the signature of Section 5.1.

5.3.1 Static Group Signature. We start by plugging our sampler in the
group signature of [LNPS21][LNP22, Sec. 6.4]. We only give a high level descrip-
tion of the scheme and how our sampler fits into it, and refer to the latter works
for a more detailed description. Each user possess an identity defined by a tag t
(in a similar space to the one defined in the standard model signature), and gets
a secret key (v1,1,v1,2,v2,v3) from the group manager (signer). This user secret
key is sampled by the manager as in our standard model signature with the
exception that d = 0 (no signed message). Then, the group signature consists of
a zero-knowledge proof of (t,v1,1,v1,2,v2,v3) using the framework of [LNP22],
as well as an encryption of t under the tracing authority’s encryption key. The
construction, much like our standard model signature, is therefore agnostic to
5 https://github.com/truncatedsampler/truncated-sampler
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the method used to sample these user secret keys. Plugging a different sampler
will just result in different parameters and performance (adjusted to keep the
same security). In particular, our truncated sampler produces user secret keys of
smaller dimension which leads to shorter zero-knowledge proofs and thus shorter
group signatures. In Table 5.3, we report the sizes of the group manager’s public
key pk, user secret keys usk, and group signatures (including the ciphertext) with
(gsigv) and without (gsig) verifiable encryption proof. Also, we report sizes with
and without the recent partial trapdoor switching technique of [AGJ+24] which
also applies to this group signature, in order to reduce further the dimension of
A3.

Key Material Group Signature

|pk| |usk| |gsig| |gsigv|
ℓ = 0 47.5 KB 26.98 KB 91.55 KB 98.02 KB

ℓ = 1 38.0 KB 16.11 KB 80.95 KB 87.36 KB

ℓ = 2 28.5 KB 13.82 KB 76.03 KB 82.65 KB

with partial trapdoor switching [AGJ+24]
ℓ = 0 47.5 KB 21.59 KB 80.30 KB 86.77 KB

ℓ = 1 38.0 KB 13.44 KB 72.20 KB 78.61 KB

ℓ = 2 28.5 KB 11.82 KB 69.09 KB 75.71 KB

Table 5.3. Comparison of the group manager’s public key, user secret keys, and group
signatures with and without verifiable encryption proof for different values of ℓ (k = 5).
All sizes are in KB. The case ℓ = 0 corresponds to the construction of [LNPS21,LNP22].

We observe that using our sampler procures a gain between 14 and 17%
on the group signature size, 40% on the manager’s public key, and roughly 40-
45% on the user secret key size. These figures were obtained by adapting the
parameter selection script from [LNP22]. The gain is slightly smaller when using
the partial trapdoor switching technique because the latter diminishes the impact
of the gadget dimension on the overall group signature.

5.3.2 Anonymous Credentials. Let us now study the impact of our sam-
pler on the anonymous credentials construction of [AGJ+24]. As their scheme is
an adaptation of their standard model signature (to add a hiding part [Id|A]r
to the commitment) which is then plugged into zero-knowledge proofs, we can
readily replace it by the one presented in Section 5.1 with the same minor adjust-
ments. In Table 5.4, we report the sizes of the issuance transcript components
(commitment c, commitment opening proof π1, signature sig), as well as that
of the show proof π2. For a fair comparison, we keep almost all the parameters
equal (n, d, q, k, b, etc.), except for ℓ and the Gaussian widths which depend on
the sampler. We also give the achieved security for anonymity and unforgeability
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using the proofs and formulae present in [Jeu24]. The parameters are obtained
by adapting the parameter selection script of [AGJ+24].

Issuance Transcript Show Sec.

|c| |π1| |sig| Tot. |π2| λanon, λuf

ℓ = 0 2.37 35.99 6.81 45.17 KB 79.58 KB 125, 123

ℓ = 1 2.37 35.99 5.97 44.33 KB 75.73 KB 123, 122

ℓ = 2 2.37 35.99 4.87 43.23 KB 71.46 KB 123, 122
with zero-knowledge optimizations [LNP22, Sec. 4.4, App. A][LN22]

ℓ = 0 2.37 24.91 6.81 34.09 KB 60.76 KB 137, 125

ℓ = 1 2.37 24.91 5.97 33.25 KB 57.53 KB 135, 125

ℓ = 2 2.37 24.91 4.87 32.15 KB 53.98 KB 135, 125

Table 5.4. Comparison of the issuance transcript sizes between the user and signer,
the credential proof sizes, and the security for different values of ℓ (k = 5). All sizes
are in KB. The case ℓ = 0 corresponds to the construction of [AGJ+24] with the
elliptic sampler akin that of Section 4.1.The λanon and λuf are the bit-security for the
anonymity and unforgeability of the anonymous credentials system.

Most of the issuance transcript does not change as it is independent of the
sampler used for the signature afterwards. However, the showing proof π2 is
improved for ℓ > 0 because the witness dimension is smaller. As for the group
signature, the intricacies and overhead involved by the zero-knowledge proof
framework of [LNP22], even with further optimizations like that of [LN22] which
were not considered in [AGJ+24], dilute the improvement to around 10% for
ℓ = 2 (compared to the 28% for the standalone signature), but it comes for free
as it does not require significant changes in the overall construction.

5.3.3 Blind Signature. We can apply the same change to the recent blind
signature of [JS24]. In their case, the commitment uses the whole matrix At so
as to inject excess randomness in the commitment to be recycled later to mask
part of the blind signature. We can however adapt their construction and security
proof so as to rely on our new truncated sampler as well. As before, in Table 5.5,
we report the issuance transcript sizes and blind signature size for our new
preimage sampler while keeping all other parameters the same. The parameters
are obtained by adapting the parameter selection script of [JS24]. Our change of
sampler incurs no security loss, with 126 bits of one-more unforgeability and 125
bits of anonymity. We again obtain a 10% gain on the size of the blind signature,
but also on the issuance transcript as the commitment proof also depends on
k − ℓ.
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Issuance Transcript Blind Signature

|t| |c| |ct| |π1| |v| Tot. |wL| |π2| |bsig|
ℓ = 0 0.03 3.59 1.62 45.68 8.70 59.63 KB 5.38 35.74 41.12 KB

ℓ = 1 0.03 3.59 1.62 41.32 6.67 53.21 KB 4.62 31.66 36.28 KB

Table 5.5. Comparison of the issuance transcript sizes between the user and signer
and the blind signature (bsig) sizes for different values of ℓ (k = 3). All sizes are in KB.
The case ℓ = 0 corresponds to the construction of [JS24] with the elliptic sampler akin
that of Section 4.1.
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A Proof of Product of Gaussian Functions

We explain here how to prove the identity

ρ√
Sp
(p)ρ√

Sy
(p− x) = ρ√S(x)ρ

√
S3
(p− c), (7)

used in the proof of Theorem 3.1, where c = v + S3P(−S−1p v + S+
y x). We note

that we cannot use [MP12, Fact 5.6] because their statement is incorrect. An
easy counter-example to [MP12, Fact 5.6] provided by the anonymous reviewers
of Crypto’25 is Σ1 = diag(1, 1, 0), Σ2 = diag(0, 1, 1), with c1 = [1, 0, 1] and
c2 = [2, 0, 2]. In that case, (c1 + V1) ∩ (c2 + V2) ∩ V ⊥3 = {[2, 0, 1]}, but there
exists no c3 such that Σ+

3 (c3 − v) = Σ+
1 (c1 − v) +Σ+

2 (c2 − v).
We thus provide a full proof of Equation (7) below for the specific context

we need in the proof of Theorem 3.1. Recall that P has no effect on Sy and S3

(and their pseudoinverse), i.e., PM = MP = M for M ∈ {Sy,S3,S
+
y ,S

+
3 }. We

use it extensively, sometimes implicitly.

Proof. Step 1. Because p ∈ x+L ⊂ x+V , we have ρ√
Sy
(p−x) = exp(−π(p−

x)TS+
y (p− x)). So the left-hand side equals exp(−πA) where

A := pTS−1p p+ (p− x)TS+
y (p− x).

Observe that p = (p − Pp) + Pp. Because p ∈ x + V , we have (p − Pp) ∈
(x+ V ) ∩ V ⊥ = {v}. So we can write p = v +Pp. Then, we can write A as

A = (v +Pp)TS−1p (v +Pp) + (p− x)TS+
y (p− x).

By developing these quadratic forms, we obtain

A = vTS−1p v + pTPS−1p Pp+ 2pTPS−1p v + pTPS+
y Pp+ xTPS+

y Px− 2pTPS+
y Px

= pT (PS−1p P+PS+
y P)p− 2pT (−PS−1p v +PS+

y Px) + vTS−1p v + xTPS+
y Px

= pTS+
3 p− 2pT (−PS−1p v +PS+

y Px) + vTS−1p v + xTPS+
y Px

Define a = −PS−1p v + PS+
y Px = P(−S−1p v + S+

y x). It then clearly holds that
a ∈ V = SpanR(S

+
3 ). There must exists c such that S+

3 c = a. Indeed, we define

c := v + S3a = v + S3P(−S−1p v + S+
y x)

It clearly holds that c ∈ v + V = x + V . Also, we have S+
3 c = S+

3 v + S+
3 S3a.

Because v ∈ V ⊥, we have S+
3 v = 0. Also, it holds that S+

3 S3 is the orthogonal
projector on SpanR(S

T
3 ) = SpanR(S

+
3 ) = V . So S+

3 S3 = P, which means that
S+
3 S3a = Pa = a. So S+

3 c = a as desired.
We then have

A = pTS+
3 p− 2pTS+

3 c+ vTS−1p v + xTPS+
y Px

= (p− c)TS+
3 (p− c) + vTS−1p v + xTPS+

y Px− cTS+
3 c.
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Step 2. We now define B := vTS−1p v+ xTPS+
y Px− cTS+

3 c and want to prove
it equals xTS−1x. For that, let us write each term of B as xTMix. We have
vTS−1p v = xT (I − P)S−1p (I − P)x as v = (I − P)x. So we define M1 = (I −
P)S−1p (I − P). We then have xTPS+

y Px = xTS+
y x so M2 = S+

y . Finally, we
have

cTS+
3 c = cTP(−S−1p v + S+

y x)

= (v + S3P(−S−1p (I−P)x+ S+
y x))

TP(−S−1p (I−P)x+ S+
y x)

= xT (−(I−P)S−1p + S+
y )PS3P(−S−1p (I−P) + S+

y )x,

where we used S+
3 c = a for the first equality, the fact that v = (I−P)x for the

second, and the fact that Pv = 0 for the third. We can then define M3 = (S+
y −

(I−P)S−1p )PS3P(S+
y −S−1p (I−P)). We then have B = xT (M1 +M2−M3)x.

Step 3. We now need to show that M := M1+M2−M3 is equal to S−1. First,
by developing M1, we obtain M1 = S−1p + PS−1p P − PS−1p − S−1p P. We then
have M1 + M2 = S+

3 + S−1p − PS−1p − S−1p P. Let us now focus on the more
complex expression of M3.

We develop the whole expression and re-order the terms to put them in pairs
that will simplify. We have

M3 = S+
y PS3PS+

y + S+
y PS3PS−1p P (8)

+PS−1p PS3PS+
y +PS−1p PS3PS−1p P (9)

− S+
y PS3PS−1p −PS−1p PS3PS−1p (10)

− S−1p PS3PS+
y − S−1p PS3PS−1p P (11)

+ S−1p PS3PS−1p

We look at the pairs of summands (8) to (11) individually.

(8) = S+
y S3(S

+
y +PS−1p P) = S+

y S3S
+
3 = S+

y P = S+
y

(9) = PS−1p PS3(S
+
y +PS−1p P) = PS−1p PS3S

+
3 = PS−1p P

(10) = −(S+
y +PS−1p P)S3PS−1p = −S+

3 S3PS−1p = −P ·PS−1p = −PS−1p

(11) = −S−1p PS3(S
+
y +PS−1p P) = −S−1p PS3S

+
3 = −S−1p P

Combining the expressions of the Mi gives M = S−1p −S−1p PS3PS−1p . Using the
fact that S = Sp + Sy, we then have

M = S−1(SS−1p − SS−1p PS3PS−1p )

= S−1(I+ SyS
−1
p −PS3PS−1p − SyS

−1
p PS3PS−1p )

We define M′ = Sy−PS3P−SyS
−1
p PS3P, i.e., M = S−1(I+M′S−1p ). We have

M′ = Sy − S3 − SyPS−1p PS3 using the fact that multiplying by P on the right
or left leaves Sy and S3 unchanged. Yet PS−1p P = S+

3 − S+
y so

M′ = Sy − S3 − SyS
+
3 S3 + SyS

+
y S3 = Sy − S3 − SyP+PS3 = 0
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where we used the fact that SyS
+
y and S+

3 S3 both are the orthogonal projector
onto V , that is P. It then concludes that M′ = 0 and thus M = S−1.

Step 4. We then have exp(−πA) = exp(−π(p− c)S+
3 (p− c)) exp(−πxTS−1x).

Because p, c ∈ x + V , we have that p − c ∈ V = SpanR(S3). Therefore, by
definition of the Gaussian function, we have exp(−πA) = ρ√S3

(p− c)ρ√S(x) as
desired to pursue the proof.
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B Parameters for the Standard Model Signature

Symbol Description Value
Signature Parameters

λ Security parameter 128

n Signature ring degree 256

d Module rank 4

q Modulus 370673 ≈ 218.5

k Gadget length 5

ℓ Number of truncated gadget entries 2

b Gadget base 13

ε Smoothing loss for samplers 2−40

s1 Gaussian width 1 of sampler 5462.023

s2 Gaussian width 2 of sampler 448.535

s3 Gaussian width 3 of sampler (v1,2) 5443.575

s4 Gaussian width 4 of sampler (v2,v3) 77.689

s1,1 Final Gaussian width of v1,1 7989.601

w Hamming weight of tags 5

κ Number of splitting factors of q 8

Q Maximal number of signature queries 232

α1, α2 Rejection sampling slack (sec. proof) 22.07, 15.03

M1,1,M1,2 Rejection sampling repetition rate (sec. proof) 1.006, 1.014

B1,1 Verification bound of v1,1 114085.50

B1,2 Verification bound of v1,2 77730.16

B2 Verification bound of v2 1834.48

B3 Verification bound of v3 976.78

Security Estimates

BKZ➊ Required BKZ blocksize for M-SIS➊ 645

BKZ➋ Required BKZ blocksize for M-SIS➋ 554

BKZ Required BKZ blocksize for M-LWE 473

ε➊
M-SIS Hardness bound for M-SIS➊ 2−188.65

ε➋
M-SIS Hardness bound for M-SIS➋ 2−162.03

εM-LWE Hardness bound for M-LWE 2−138.34

λuf Reached unforgeability bit security (Thm. 5.1) 121

Efficiency Estimates
|pk| Size of public key B 28.5 KB
|sk| Size of secret key R 6.0 KB
|sig| Size of signature (t,v1,2,v2,v3) 4939 B

Table B.1. Suggested parameter set for the standard model signature. The hardness
bounds are estimated in the Core-SVP model, i.e., obtained from the BKZ blocksize
B with sieving SVP oracle as 2−B log2(

√
3/2) ≈ 2−0.292B [BDGL16].
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