
. .

On the Security of LWE-based KEMs under Various
Distributions: A Case Study of Kyber

Mingyao Shao1,3,4, Yuejun Liu2*, Yongbin Zhou1,2,3,4* & Yan Shao2

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China;

shaomingyao@iie.ac.cn;
2School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing, China;

3School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China;
4Key Laboratory of Cyberspace Security Defense, Beijing, China

Abstract

Evaluating the security of LWE-based KEMs involves two crucial metrics: the hardness of the underlying LWE problem and

resistance to decryption failure attacks, both significantly influenced by the secret key and error distributions. To mitigate

the complexity and timing vulnerabilities of Gaussian sampling, modern LWE-based schemes often adopt either the uniform or

centered binomial distribution (CBD).

This work focuses on Kyber to evaluate its security under both distributions. Compared with the CBD, the uniform distribution

over the same range enhances the LWE hardness but also increases the decryption failure probability, amplifying the risk of

decryption failure attacks. We introduce a majority-voting-based key recovery method, and carry out a practical decryption

failure attack on Kyber512 in this scenario with a complexity of 237.

Building on this analysis, we propose uKyber, a variant of Kyber that employs the uniform distribution and parameter ad-

justments under the asymmetric module-LWE assumption. Compared with Kyber, uKyber maintains comparable hardness and

decryption failure probability while reducing ciphertext sizes. Furthermore, we propose a multi-value sampling technique to

enhance the efficiency of rejection sampling under the uniform distribution. These properties make uKyber a practical and

efficient alternative to Kyber for a wide range of cryptographic applications.

Keywords LWE-based KEMs, Kyber, hardness, decryption failure, centered binomial distribution, uniform distribution

Citation Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al. Title for citation. , for review

1 Introduction

Recent advancements in quantum computing have heightened the urgency to develop post-quantum cryp-
tography (PQC) capable of resisting both classical and quantum attacks [1]. In 2016, the National Insti-
tute of Standards and Technology (NIST) launched a process to develop and standardize PQC. Among
the candidate algorithms, lattice-based cryptographies (e.g., Kyber [2], Dilithium [3]) are considered
highly competive, offering both strong provable security and remarkable efficiency.

The Learning with Errors (LWE) problem, introduced by Regev [4], has been widely used to construct
lattice-based cryptographic schemes. The LWE assumption states that it is computationally difficult
to distinguish (A,b = As+ e) from uniformly random samples over Zm×n

q × Zm
q , where A ← Zm×n

q ,
s← Zn

q , and e← χm
α . It has been extended to the Ring-LWE (RLWE) problem [5] and the Module-LWE

(MLWE) problem [6], which aim to enhance computational efficiency and reduce the public key size.
Notably, MLWE-based Kyber has emerged as a standard for Key Encapsulation Mechanisms (KEMs),
culminating in the publication of the standard for Module-Lattice-Based KEM, designated as the Federal
Information Processing Standards (FIPS) 203 [7].

In early LWE-based schemes, the error term e was typically sampled from a (discrete) Gaussian
distribution [4,8], motivated by the existence of worst-case to average-case reduction. However, Gaussian
sampling has been shown to be either computationally inefficient [9] or susceptible to timing attacks [10–
12]. To address these challenges, Döttling et al. [13] and Micciancio et al. [14] introduced the worst-to-
average case reduction for LWE with uniformly distributed errors, which can be sampled very efficiently.
Cabarcas et al. [15] proposed the first provably secure LWE-based public key encryption (PKE) scheme,

*Corresponding author (email: , )



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 2

Table 1 NIST PQC submissions based on LWE with the CBD or uniform distribution. δ represent the decryption failure

probability corresponding to the parameter set with the claimed NIST security category 5.

Scheme Functionality Hard problem secret key/error distributions δ

Kyber [2] KEM/PKE MLWE CBD 2−174

NewHope [16] KEM/PKE RLWE CBD 2−216

LAC [17] KEM/PKE RLWE CBD 2−122

uSaber [18] KEM/PKE RLWR uniform distribution 2−152

KINDI [19] KEM/PKE MLWE uniform distribution 2−216

Dilithium [20] Signature MLWE uniform distribution -

in which the secret key and error are uniformly sampled from a relatively small set. Similarly, Alkim
et al. [16] introduced NewHope, a key exchange scheme based on LWE, utilizing the centered binomial
distribution (CBD) for error sampling. Building on these advancements, many submissions to the NIST
PQC standardization process now adopt the CBD or uniform distribution for efficient sampling of secret
keys and errors, as summarized in Table 1.

The security of LWE-based KEMs involves two crucial metrics: the hardness of the underlying LWE
problem and resistance to decryption failure attacks. Due to the limited number of available samples,
lattice reduction-based attacks, such as primal and dual attacks [21,22], remain the most effective methods
for solving the LWE problem [2]. These strategies typically reduce the LWE problem to a Shortest
Vector Problem (SVP), which is then addressed using lattice reduction algorithms like BKZ-b and its
variants. Besides, lattice-based KEMs often lack perfect correctness [23]. Specifically, certain ciphertexts,
though correctly generated using the public key, may fail to decrypt correctly with the secret key. These
ciphertexts, known as decryption failures or just failures, not only lead to incorrect results but also expose
information about the secret key [23–28]. Adversaries can exploit these failures to recover the secret key,
enabling decryption failure attacks.

The distributions of the secret key s and error e play a crucial role in determining the hardness of the
underlying LWE problem and resistance to decryption failure attacks. In this work, we focus on Kyber
to investigate the specific impacts of different distributions on these two aspects of security. While the
default choice for the secret key and error distributions in Kyber is the CBD, we aim to qualitatively and
quantitatively analyze its security under the uniform distribution and propose a Kyber variant under the
uniform distribution as an appropriate alternative. Our main contributions are as follows:

For the hardness of the underlying LWE problem, the performance of lattice reduction-based attacks
is influenced not by the exact distribution of the secret key and error, but by their standard deviation.
The goal of lattice reduction is to find a short vector in the lattice. As the norms of the secret key and
error increase, the corresponding short vector in the lattice becomes longer, making it more difficult to
find the target vector. Compared with CBD, the uniform distribution over the same range has a larger
standard deviation, resulting in larger norms for s and e. This gives the uniform distribution certain
advantages in enhancing the hardness of LWE-based KEMs. Specifically, for Kyber at different security
levels, this increased variance raises the hardness of both primal and dual attacks by approximately 20
bits under the core-SVP method.

On the other hand, in the decryption process of LWE-based KEMs, terms like ⟨s, e⟩ (the inner product
of the secret key and the error vector) play a critical role. Minimizing ⟨s, e⟩ is essential to reducing
the likelihood of decryption failures. However, replacing the CBD with a uniform distribution over the
same range leads to a larger ⟨s, e⟩, significantly increasing the probability of decryption failure. This
drawback is particularly evident in Kyber512, where the failure probability reaches 2−25.4. To exploit
this vulnerability, we propose a majority-voting-based key recovery method that enables full recovery
of the secret key within 3,000 decryption failures, with an overall complexity of 237. Furthermore, this
method is applicable to other decryption failure attack scenarios, such as those described in [26], reducing
the required number of failures by approximately 50%.

The above analysis indicates that the choice of secret key and error distributions in LWE-based KEMs
represents a trade-off between LWE hardness and decryption failure attack vulnerabilities. Based on this
analysis, we propose uKyber, a variant of Kyber under the uniform distribution. Compared with Kyber,
uKyber achieves comparable levels of LWE hardness and decryption failure probability while reducing
ciphertext size. Additionally, we propose a multi-value sampling method to enhance the efficiency of
rejection sampling under the uniform distribution. This approach makes uKyber faster in implementation
than Kyber. These properties make uKyber a practical and efficient alternative to Kyber for a wide range



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 3

of cryptographic applications.

1.1 Organization

In Section 2, we introduce some basic preliminaries. Sections 3 and 4 analyze the impact of replacing
the CBD with a uniform distribution over the same range on Kyber’s hardness and decryption failure
probability. In Section 5, we propose uKyber, an appropriate variant of Kyber designed for the uniform
distribution. Section 6 discusses the applications of our proposed majority-voting key recovery strategy
and multi-value uniform sampling method in other scenarios. Finally, Section 7 concludes the paper.

2 Preliminaries

2.1 Notation

We denote the ring of integers modulo q ∈ Z+ by Zq , the ring Z[x]/(xn+1) asR and the ring Zq[x]/(x
n+1)

by Rq. Regular font letters denote elements in R or Rq and bold lower-case letters represent vectors with
coefficients in R or Rq. By default, all vectors will be column vectors. A matrix of polynomials in Rk×ℓ

q

is denoted using bold upper-case letters. The transpose of a matrix A is denoted by AT . For A ∈ Rk×1
q ,

the vector A ∈ Zkn×1
q is formed by concatenating the coefficients of each polynomial in A.

For a set S, we write s← S to indicate that s, or each of its coefficients is chosen uniformly at random
from S. If S is a probability distribution, then this denotes that s is chosen according to the distribution
S. The extendable output function Sam takes an input x and then produces y of any desired length that
is distributed according to distribution S. We write y ∼ S := Sam(x).

2.2 Definition

Definition 1 (Sizes of elements). For w ∈ R, the ℓ∞ and ℓ2 norms of a ring element w = w0 + w1x+
...+ wn−1x

n−1 are defined as: ∥w∥∞ = maxi |wi|, ∥w∥ =
√
|w0|2 + . . .+ |wn−1|2.

Definition 2 (Modular reductions). For an even (resp. odd) integer α, we define r′ = r mod± α to be
the unique element r′ in the range −α

2 < r′ ⩽ α
2 (resp. −α−1

2 ⩽ r′ ⩽ α−1
2 ) such that r′ ≡ r (mod α).

For any positive integer α, we define r′ = r mod+ α to be the unique element r′ in the range 0 ⩽ r′ < α
such that r′ ≡ r (mod α).

Definition 3 (Polynomial multiplication). For two polynomials f(x) ∈ Rq and g(x) ∈ Rq, represented
as f(x) = a0 + a1x + a2x

2 + . . . + an−1x
n−1, g(x) = b0 + b1x + b2x

2 + . . . + bn−1x
n−1, their product

h(x) = f(x) · g(x) =
∑n−1

k=0 ckx
k, where ck =

∑
i+j=kmodn aibj .

Definition 4 (Centered binomial distribution). The centered binomial distribution βη with a positive
integer η is defined as: βη =

∑η
i=1(ai − bi),where (a1, . . . , aη, b1, . . . , bη) ← {0, 1}2η. The standard

deviation of βη is σ =
√

η/2.

Definition 5 (Centered uniform distribution). The centered uniform distribution Uu with a positive
integer u is defined as the discrete uniform distribution over [−u, u]. The standard deviation of Uu is

σ =
√

(2u+1)2−1
12 .

2.3 CCA-Secure Version of Kyber

Kyber [2] is based on the MLWE problem. The CCA-secure version of Kyber KEM is constructed
from a simple CPA-secure PKE, denoted as Kyber.CPAPKE, along with the Fujisaki-Okamoto (FO)
transformation [29, 30]. In Kyber, the coefficients of the secret key and error vectors are sampled from
the CBD. The specific parameter sets are listed in Table 2. For clarity, we provide a simplified version of
Kyber.CPAPKE as Algorithm 1, 2, 3.

Table 2 Kyber parameter sets in round 3 of NIST PQC standardization [2]

n k q η1 η2 (du, dv) δ Security

Kyber512 256 2 3329 3 2 (10, 4) 2−139 1 (AES-128)

Kyber768 256 3 3329 2 2 (10, 4) 2−164 3 (AES-192)

Kyber1024 256 4 3329 2 2 (11, 5) 2−174 5 (AES-256)



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 4

Algorithm 1 Kyber.CPAPKE.KeyGen()

1: ρ, σ ← {0, 1}256

2: A ∼ Rk×k
q := Sam(ρ)

3: (s, e) ∼ βk
η1
× βk

η1
:= Sam(σ)

4: t := As + e

5: return (pk := (t, ρ), sk := s)

Algorithm 2 Kyber.CPAPKE.Enc(pk,m)

1: r ← {0, 1}256

2: A ∼ Rk×k
q := Sam(ρ)

3: (r, e1, e2) ∼ βk
η1
× βk

η2
× βη2

:= Sam(r)

4: u := AT r + e1

5: v := tT r + e2 + ⌈ q2 ⌉ ·m
6: c1 := Compressq(u, du)

7: c2 := Compressq(v, dv)

8: return c := (c1, c2)

Algorithm 3 Kyber.CPAPKE.Dec(sk, c)

1: u′ := Decompressq(c1, du)

2: v′ := Decompressq(c2, dv)

3: return m′ := Compressq(v
′ − sTu′, 1)

Definition 6 (Compress and Decompress functions). To reduce the size of ciphertexts, Kyber defines
Compressq and Decompressq functions as follows:

Compressq(x, d) = ⌈(2d/q) · x⌋ mod+ 2d,

Decompressq(x, d) = ⌈(q/2d) · x⌋.
(1)

This pair of functions ensures that x′ = Decompressq(Compressq(x, d), d) is an approximation of x,
satisfying the following condition: |x′ − x mod± q| ⩽ ⌈ q

2d+1 ⌋.

2.4 Decryption Failure

For Kyber, the occurrence of decryption failures depends on the secret key and error vectors s, r, e, e1, e2
in combination with the rounding errors ϵu, ϵv of the (de)compress functions, which are defined as:

ϵu = u′ − u = Decompressq(Compressq(u, du), du)− u,

ϵv = v′ − v = Decompressq(Compressq(v, dv), dv)− v.
(2)

Based on the decryption process in Algorithm 3, the recovered message m′ is given by:

m′ = Compressq(v
′ − sTu′, 1) = ⌈2

q
(v′ − sTu′)⌋ mod 2

= m+ ⌈2
q
(eT r− sT (e1 + ϵu) + e2 + ϵv)⌋ mod 2.

(3)

Let S be a vector formed by concatenating −s and e, C be a vector formed by concatenating e1 + ϵu
and r, and G be e2 + ϵv. Then:

S =

[
−s
e

]
, C =

[
e1 + ϵu

r

]
, G = e2 + ϵv. (4)

The messagem can be recovered correctly if and only if: ∥STC+G∥∞ = ∥eT r−sT (e1+ϵu)+e2+ϵv∥∞ ⩽ q
4 .

Definition 7 (Rotations). For r ∈ Z, the rotation of C ∈ Rk×1
q is defined as:

Cr := xr ·C(x−1) mod (xn + 1).

Correspondingly, Cr ∈ Zkn×1
q denotes its coefficient vector.

It can be easily shown that Cr is constructed to ensure that, for r ∈ [0, n − 1], the rth coordinate of

STC is given by the scalar product S
T
Cr. In other words, STC can be decomposed as a sum of scalar

products:

STC :=
∑

r∈[0,n−1]

S
T
Cr · xr.

A brief example illustrating this decomposition is provided in Appendix A.



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 5

3 The Hardness of Kyber under the Uniform Distribution

We analyze the impact of replacing the CBD with a uniform distribution over the same range on Kyber’s
hardness. Since the best-known attacks on the underlying MLWE problem in Kyber do not exploit the
lattice structure, we analyze Kyber’s hardness by treating it as an LWE problem.

3.1 The Core-SVP Hardness

Many algorithms have been proposed to solve the LWE problem [31], but many of these are not applicable
to the parameter set of Kyber. In particular, for Kyber, since the attacker only has m = (k + 1)n LWE
samples available, the main remaining approaches are two lattice reduction attacks, commonly referred
to as primal and dual attacks [21, 22]. Both attacks primarily rely on lattice reduction algorithms, with
the BKZ-b algorithm and its variants being the most prominent.

The BKZ-b algorithm operates by leveraging a SVP oracle in a reduced dimension b, where the number
of oracle calls is polynomially bounded [32]. Cryptanalysis typically disregards this polynomial factor
and focuses on the core-SVP hardness, which refers to the computational cost of solving a single SVP
instance in dimension b. Advances in lattice sieving algorithms have significantly reduced the heuristic
complexity. Using Locality-Sensitive Hashing (LSH) techniques [33,34], the complexity has been reduced
to approximately 20.292b+o(b). Furthermore, when combined with Grover’s quantum search algorithm,
the complexity is further reduced to 20.265b+o(b) [35, 36].

3.2 Primal Attack

The primal attack typically transforms the LWE problem into a unique SVP (uSVP) through embedding
techniques and subsequently resolves it using lattice reduction algorithms.

Specifically, given an LWE instance (A,b = As+ emod q), it can be reformulated as an inhomogeneous
Short Integer Solution (ISIS) problem: b = (A|Im) ( s

e ) mod q. By employing embedding techniques, we
can frame this problem as a uSVP within the lattice: Λ = {x ∈ Zm+kn+1 : (A|Im|-b)x = 0 mod q}. It
is easy to verify that the column vectors of the matrix

B =


In 0 0

−A qIm b

0 0 1

 ∈ Z(m+kn+1)×(m+kn+1)

constitute a basis for the lattice Λ. This lattice has dimensionality d = m + kn + 1, volume qm, and
contains a solution v = (s, e, 1) with a norm approximated as ∥v∥ ≈ σ

√
m+ kn+ 1, where σ is the

standard deviation of the secret key and error coefficients.

Hardness: For an attacker, the optimal scenario occurs when the reduced basis obtained from the
BKZ-b algorithm satisfies the Geometric Series Assumption (GSA) [37]. Let B = (b1, . . . ,bd) denote the
reduced basis and B∗ = (b∗1, . . . ,b

∗
d) its orthogonalized matrix. Under the GSA, the following holds:

∥b1∥ = δd det(Λ)1/d, ∥b∗i ∥ = δ−2d(i−1)/(d−1)∥b1∥,

where δ = ((πb)1/b · b/2πe)1/(2(b−1)) [31, 38]. In this context, the BKZ-b algorithm successfully recovers
the unique short vector v if the norm of v’s projection onto the subspace spanned by the last b orthogonal
vectors (b∗d−b+1, . . . ,b

∗
d) is smaller than ∥b∗d−b+1∥. The projected norm can be approximated as ℓ

√
b/d,

where ℓ = ∥v∥ ≈ σ
√
d. Therefore, the hardness of the LWE problem under the primal attack is determined

by the smallest b satisfying:

ℓ
√

b/d = σ
√
b ⩽ δ(−d

2+2db−d)/(d−1) · det(A)1/d.

It is evident that as the norm ∥v∥ ≈ σ
√
d increases, the block size b required to solve the problem

also rises. Consequently, an increase in the standard deviation σ of the secret key and error distributions
results in a larger norm for the target vector v, thereby amplifying the difficulty of solving the LWE using
the primal attack.



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 6

3.3 Dual Attack

The dual attack fundamentally transforms the LWE problem into a SIS problem, and leverages the
solution of this SIS problem to address the decision-LWE problem.

In the dual lattice Λ = {x ∈ Zm : ATx = 0 mod q}, define AT = (A1∥A2) ∈ Zn×m
q , where

A1 ∈ Zn×n
q is a square matrix formed by the first n columns of AT . Without loss of generality, assume

A1 is invertible. By defining A′ = (In|A−11 A2), the column vectors of Λ = {x ∈ Zm|ATx = 0 mod q} =
{x ∈ Zm|A′x = 0 mod q} are identified, and the matrix

B =

(
qIn −A−11 A2

0 Im−n

)
∈ Zm×m

establishes a lattice basis for Λ, with det(Λ) = qn.
Upon discovering a vector v in lattice Λ, we calculate u = ⟨v,b⟩ = vT (As+ e) = ⟨v, e⟩ to distinguish

between the Gaussian distribution and the uniform distribution. Specifically, if the norm ℓ = ∥v∥ is
small, then the value of ⟨v, e⟩ is also small and u can be treated as a random variable drawn from the
Gaussian distribution with standard variance ℓσ. Conversely, if b is uniformly selected from Zq, then
u = ⟨v,b⟩ follows a uniform distribution within Zq.

Hardness: The computational cost of the dual attack is primarily dominated by solving the SIS problem
and transforming distinguishing attacks into secret recovery attacks. The probability of distinguishing
the subGaussian distribution with standard variance ℓσ from the uniform distribution is denoted as
ϵ = 4 exp(−2π2τ2), where τ = ℓσ/q [22]. To achieve a success probability greater than 1/2, at least 1/ϵ2

short vectors are needed. Given that the sieving algorithm provides 20.2075b vectors, the process must be
repeated R = max(1, 1/(20.2075bϵ2)) times. Thus, the complexity of the dual attack is estimated as:

R · costb = max(1, 1/(20.2075b · 16 exp(−4π2τ2))) · costb,

where costb is the estimated complexity of classical and quantum algorithms for solving the SVP problem
on b-dimensional lattices, as in the primal attack.

Clearly, for the LWE problem, as the value of σ increases, the value of ϵ decreases, making it more
difficult to distinguish u from elements uniformly distributed in Zq. Therefore, an increase in the standard
deviation σ of the secret key and error distributions amplifies the difficulty of solving the LWE using the
dual attack.

We have completed the experimental validation, and the hardness of the primal and dual attacks for
Kyber under both the CBD and the uniform distribution are presented in Table 3.

Table 3 Classical and quantum hardness of the primal and dual attacks for Kyber, under the CBD and uniform distribution. σ

represents the standard deviation of the secret key and error distributions.

Kyber512 Kyber768 Kyber1024

secret key/error distributions CBD Uniform CBD Uniform CBD Uniform

σ of secret key/error 1.225 2.0 1.0 1.414 1.0 1.414

Core-SVP methodology, Primal attack

BKZ-blocksize β 406 472 626 688 878 961

core-SVP classical hardness 118 138 183 201 256 281

core-SVP quantum hardness 107 125 166 182 232 254

Core-SVP methodology, Dual attack

BKZ-blocksize β 403 469 620 688 868 953

core-SVP classical hardness 117 137 181 199 253 278

core-SVP quantum hardness 106 124 164 181 230 252

From the perspective of the hardness of Kyber’s underlying MLWE problem, the uniform distribution
over the same range exhibits a larger variance than CBD, resulting in larger hardness. Specifically, this
increased variance raises the hardness of both primal and dual attacks by approximately 20 bits under
the core-SVP method. However, this increased variance also raises the probability of decryption failure,
thereby increasing the risk of decryption failure attacks. In the next section, we will specifically discuss
the threat of decryption failure attacks for Kyber under the uniform distribution.



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 7

4 Decryption Failure Attacks on Kyber under the Uniform Distribution

Lattice-based KEMs often lack perfect correctness, which not only leads to incorrect decryption results
but also exposes information about the secret key. Adversaries can exploit these failures to recover
the secret key, enabling decryption failure attacks. This attack typically involves collecting decryption
failures, identifying their signs and positions, and leveraging this information to recover the secret key.

4.1 Collecting Decryption Failures

Firstly, we calculate the decryption failure probability of Kyber when the distribution of the secret key
and error is replaced with a uniform distribution over the same range. Specifically, we use convolution
technique to determine the distribution of the coefficients in STC+G = eT r−sT (e1+ϵu)+e2+ϵv according
to the distributions of s, r, e, e1, e2, ϵu, ϵv. We then calculate the probability of |(STC+G)[i]| > q

4 ≈ 3329,
denoted as δ1. Assuming that the decryption failures for each coefficient are independent, the probability
that at least one coefficient fails to decrypt is given by δ = 1− (1−δ1)

n ≈ nδ1. These failure probabilities
were computed via a Python implementation1), with the results shown in Table 4.

Table 4 Decryption failure probability of Kyber under the CBD and uniform distribution. σ represents the standard deviation

of the secret key and error distributions.

Kyber512 Kyber768 Kyber1024

secret key/error distributions CBD Uniform CBD Uniform CBD Uniform

σ of secret key/error 1.225 2.0 1.0 1.414 1.0 1.414

decryption failure probability δ 2−139.1 2−25.4 2−165.2 2−50.3 2−175.2 2−47.5

The results show that replacing the CBD in Kyber with a uniform distribution over the same range
significantly increases the probability of decryption failure. In particular, the decryption failure proba-
bility for Kyber512 increases to 2−25.4. This indicates that a substantial number of decryption failures
will occur within a practically feasible time.

For our experiment, we collected decryption failures by randomly generating ciphertexts and requesting
decryption. A total of 30,000 decryption failures were collected within one week for Kyber512 under the
uniform distribution. The experiment was conducted on a Linux server with a 2.7 GHz Intel Xeon CPU,
1TB of memory, and 56 cores.

4.2 Identifying the Sign and Position of Decryption Failure

Next, we identify both the sign and specific position of the decryption failure. The probability of a single
coefficient failing to decrypt is given by δ′ = nδ1(1 − δ1)

n−1. When δ1 ≪ 1
n , it follows that δ′ ≈ δ.

That implies that, in the event of a decryption failure, there is likely exactly one coefficient responsible

for the failure. We denote the coefficient index by r, meaning |(STC + G)[r]| = |ST
Cr + G[r]| > q

4 . If

(STC+G)[r] > q
4 , we classify it as a positive failure; otherwise, it is classified as a negative failure.

Identifying the sign of decryption failure: For Kyber512, dv = 4 implies that the rounding error
ϵv[i] is distributed over U104. Thus, the value of G[i] = e2[i] + ϵv[i] has an important impact on the
failure. A positive G[i] indicates a higher probability of a positive failure, while a negative G[i] suggests
a higher probability of a negative failure. Statistical analysis of the collected decryption failures shows a
99.8% match rate between the sign of G[i] and the failure sign. Therefore, we can use the sign of G[i] to
identify the failure sign with an extremely high probability.

Identifying the position of decryption failure: D’Anvers et al. [25,26] observed that failure vectors
exhibit correlation, which can be exploited to distinguish failure vectors from success vectors. However,
as the decryption failure probability increases, this correlation weakens. In our study, we find that for
Kyber512 under the uniform distribution, the decryption failure probability of δ ≈ 2−25.4 is insufficient to
reliably distinguish between failure and success vectors. Experimental verification indicates that, using
their method alone, the success rate of identifying the failure position r is only 0.04. However, we observe
that there is still a strong correlation between the failure vectors and the secret key, as shown in Figure 1.
Based on this, we propose an iterative-enhancement method to accurately identify the decryption failure
positions. The procedure is detailed in Algorithm 4.

1) https://github.com/pq-crystals/security-estimates.

https://github.com/pq-crystals/security-estimates


Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 8

Figure 1 Correlation between the secret key and the fail-

ure or success vectors for Kyber512 under the uniform dis-

tribution.

� ���� ���� ���� ���� ����� ����� ����� �����
���������������

�

���

���

���

���

����

��
��

��
��

��
��

��
���

��
��

�

��������

�������

������������	���������


���	�����

Figure 2 Number of failures required for secret key recov-

ery of Kyber512 under the uniform distribution. The blue

vertical line represents the required failures for a 100% suc-

cess rate.

Algorithm 4 Identifying the failure positions through iterative enhancement

Input: m decryption failures

Output: the decryption failure coefficient for each failure

1: C = {C1,C2, · · · ,Cm} // all decryption failures

2: F = {C1, · · · ,Ck}, P = {r1, · · · , rk} ▷ Initialization phase

3: E = C
r1
1 + · · ·+ C

rk
k

4: for j ∈ [1,m− k] do ▷ Enhancement phase

5: C, r := argmax
Ci∈C/F,ri∈[0,n)

|E ·Cri
i |

6: F = F ∪ {C}, P = P ∪ {r}
7: E = E + Cr

8: end for

9: for d ∈ [1, ite] do ▷ Iteration phase

10: for i ∈ [1,m] do

11: r := argmax
r∈[0,n)

|E ·Cr
i |

12: if r ̸= ri then

13: E = E−C
ri
i

14: E = E + Cr
i

15: end if

16: end for

17: end for

18: return ri,i∈[1,m]

In the initialization phase, we assume that k decryption failures F = {C1, . . . ,Ck} and their corre-
sponding positions P = {r1, . . . , rk} have already been identified. Based on the geometric perspective
described in [26], we can estimate the direction of the secret key by computing the sum of the failure
vectors: E =

∑
i∈[1,k] C

ri
i /∥Cri

i ∥2. In the enhancement phase, we evaluate all possible rotations of the

remaining decryption failures. For each rotation C
rj
j , we compute the inner product between the rotated

failure vector and the estimated secret key E. The failure Cj and its corresponding position rj , which
yield the largest inner product, are selected and added to the set of identified failures F and positions
P. The estimated secret key E is then updated accordingly. As the number of selected failures increases,
the accuracy of the secret key direction estimate improves. This process is then repeated iteratively,
performing error correction and updating the selected failure positions, until no further updates occur or
the iteration limit (typically set to 3) is reached.

Complexity: In the initialization phase, for each failure Ci, we evaluate its 256 possible rotations Cr
i

in descending order of G[r] values. Experimental results show that, on average, 48 attempts are required
to identify the correct failure position. Therefore, for k decryption failures, 48k attempts are needed to
identify all failure positions. Given that k positions are known, the probability of successfully identifying
all failure positions is given by β = P [ri = δi, i ∈ [1,m]], where δi denotes the correct failure position for
Ci. The average number of attempts required to recover all decryption failure positions is 48k × 1

β .



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 9

Table 5 Success rate β and average number of attempts to identify failure positions for 3,000 collected failures with k known

positions for Kyber512 under the uniform distribution.

k known failure positions 1 2 3 4

success rate β = P [ri = δi, i ∈ [1,m]] 10% 64% 94% 100%

num of attempts: 48k × 1
β 28.9 211.8 216.8 222.8

Experimental verification: For Kyber512 under the uniform distribution, we collected 3,000 decryp-
tion failures and used the iterative-enhancement method to identify their positions. As shown in Table
5, the success rate β of recovering all failure positions increases as the number of known failure positions
k increases. However, the number of attempts 48k required during the initialization phase increases ex-
ponentially with k. To reduce the overall computational complexity 48k × 1

β , we set k = 1, assuming one
known failure position, and applied the above method to identify the remaining failure positions, with a
success probability of 10%. The total number of attempts required is 28.9.

4.3 Recovering the Secret Key Using Decryption Failures

Once the signs and positions of the decryption failures are identified, we leverage this information to
recover the secret S. By applying Bayes’ theorem, we can compute the conditional probabilities for
different secret key values based on these failures, facilitating effective recovery of the secret key [25].

One decryption failure: Consider the case where only one failure (C, G) is known, i.e. S
T
C0+ g > qt.

Using Bayes’ theorem, the probability can be expressed as:

P (Si|S
T
C0 > qt − g) =

P (S
T
C0 > qt − g|Si)P (Si)

P (S
T
C0 > qt − g)

=
P
(∑

j ̸=i SjC0
j > qt − g − SiC0

i

)
P (Si)

P (S
T
C0 > qt − g)

.

(5)

Multiple decryption failures: Consider the case where m failures C1, · · · ,Cm are known. Without
loss of generality, assume that ri = 0 and all signs are positive, with corresponding values g1, · · · , gm.
Assuming the failure vectors Ci are independent given S, we can express the probability as:

P (Si|S
T
C0

k > qt − gk,k∈[1,m]) =
P (S

T
C0

k > qt − gk,k∈[1,m]|Si)P (Si)

P (S
T
C0

k > qt − gk,k∈[1,m])

=
P (Si)

∏m
k=1 P (S

T
C0

k > qt − gk|Si)∏m
k=1 P (S

T
C0

k > qt − gk)
.

(6)

The term P
(∑

j ̸=i SjC0
j > qt − g − SiC0

i

)
, denoted as Pfail[i], involves the convolution of n − 1

random variables Sj , which is computationally expensive. To enhance efficiency, we apply the central
limit theorem (CLT) to approximate the probability distribution. Given the large number of summed
variables, the probability mass function (PMF) of the sum can be approximated by a normal distribution.

Pfail[i] = P

∑j ̸=i SjC0
j −

∑
j ̸=i C

0
j E[Sj ]√∑

j ̸=i C
0
j
2
Var[Sj ]

>
qt − g − SiC0

i −
∑

j ̸=i C
0
j E[Sj ]√∑

j ̸=i C
0
j
2
Var[Sj ]


≈ Fnorm

SiC0
i +
∑

j ̸=i C
0
j E[Sj ]− qt + g√∑

j ̸=i C
0
j
2
Var[Sj ]

 .

(7)

For each coefficient Si, we compute its probability distribution based on m failures, and select the value
with the highest probability as its estimate. For Kyber512, secret S is a vector formed by concatenating−s
and e, containing a total of 512+512 coefficients. The experimental results, summarized as “Probability
Method” in Table 6 and Figure 2, show that for Kyber512 under the uniform distribution, applying the
conditional probability method described above allows the full 1024 secret S coefficients to be recovered
with a 100% success rate using 13,000 failures.



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 10

Table 6 Number of recovered secret key coefficients given some failures for Kyber512 under the uniform distribution. “Probability

Method” corresponds to the conditional probability method in [25] described in Section 4.3, and “Our Method” corresponds to our

majority-voting method described in Section 4.4. “ratio” represents the success ratio of recovering the full secret key.

Num of failures 0 300 600 1000 2000 2500 3000 3500 6000 10000 13000

Probability Method [25]
num 141.4 604.9 739.2 842 962 981.4 998 1011.2 1021.8 1023.8 1024

ratio 0 0 0 0 0 0 0 0 0.11 0.91 1

Our Method
num 71 331.3 411.1 471.4 508.2 511 512 512 512 512 512

ratio 0 0 0 0 0.1 0.4 1 1 1 1 1

Algorithm 5 Accelerating the secret key recovery by majority-voting

Input: m decryption failures

Output: the estimated secret key using these failures

1: C = {C1, C2, · · · , Cm} // all decryption failures

// Divide into h blocks, recovering the secret key for each block

2: B1 = {C1,1, C1,2, · · · , C1,m/2}, · · · ,Bh = {Ch,1, Ch,2, · · · , Ch,m/2}
3: for i ∈ [1, h] do

4: for j ∈ [0, kn− 1] do

5: for l ∈ [1,m/2] do

6: Pfail[l, j]← Ci,l using Eq. (7)

7: end for

8: Pfail[j] = P (Sj) ·
∏m/2

l=1 Pfail[l, j]

9: end for

10: Sj,i = argmax(Pfail[j]) for j ∈ [0, kn− 1]

11: end for

12: for j ∈ [0, kn− 1] do

13: E(Sj) = mode(Sj,i) for i ∈ [1, h]

14: end for

// Substitute the selected 512 coefficients into b = As + e

15: sorted counts = argsort(E(Sj).count)

16: index = sorted counts[:512]

17: Ehalf = E(S){index}
18: Substitute Ehalf into b = As + e

4.4 Accelerating Secret Key Recovery by Majority-Voting

As shown in “Probability Method” in Table 6 and Figure 2, with 2,000 decryption failures, we are able to
recover most of the secret S coefficients (939 out of 1024) for Kyber512 under the uniform distribution.
However, the indices of the recovered coefficients remain unknown. To fully recover all coefficients, the
number of failures required increases significantly, reaching 13,000.

To address this challenge, we propose a majority-voting-based key recovery method. This method
partitions all collected m failures into h blocks, with each block containing m′ failures. These blocks
may overlap, and in our experiment, we set h = 23 and m′ = m/2. Each block is processed individually
to recover the secret key coefficients, and the final value for each coefficient is determined by the mode
of the estimates from all blocks. Furthermore, we can optimize the key recovery process by utilizing
the relationship b = As + e from the LWE problem. By correctly recovering any 512 coefficients from
S = (−sT , eT ) and knowing their indices, the remaining 512 coefficients can be directly computed by
solving the equation b = As+ e. The detailed process is described in Algorithm 5.

For Kyber512 under the uniform distribution, our experiments show that by selecting the top 512
coefficients with the highest frequency in the mode and substituting them into b = As+e, the full secret
key can be recovered with 100% accuracy using 3,000 decryption failures. The results are presented as
”Our Method” in Table 6 and Figure 2. Compared with “Probability Method” in [25], our approach
reduces the required number of failures by 77%, with an average recovery time of 302.45 seconds.

Complexity: In summary, recovering the full secret key for Kyber512 under the uniform distribution
requires the collection of 3,000 decryption failures, resulting in a complexity of approximately cost1
= 3000 × 225.4 ≈ 237. The iterative enhancement method is then applied to identify the failure signs
and positions, requiring an average of 28.9 attempts. Finally, the majority-voting method is employed to
recover the secret key, with the complexity of each recovery denoted as cost2. The total complexity can
thus be approximated as cost1 + 28.9× cost2. Since cost2 is negligible compared with cost1, the overall
complexity of the decryption failure attack on Kyber512 under the uniform distribution is dominated by
cost1, approximately 237.



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 11

5 uKyber: A Variant of Kyber under the Uniform Distribution

Based on the previous analysis, directly replacing the CBD in Kyber with a uniform distribution over
the same range is clearly not feasible. While this substitution enhances the hardness of the underlying
LWE problem, it also results in excessively high decryption failure probabilities, thereby exposing Kyber
to practical decryption failure attacks.

In this section, we explore using a uniform distribution over other intervals to reduce decryption failure
probabilities while maintaining the LWE hardness. Specifically, we propose a variant of Kyber, referred
to as uKyber, which samples the secret key and error from the uniform distribution Uu = [−u, u].

5.1 Construction

In this section, we provide a formal description of uKyber. First, We introduce an intermediate CPA-
secure PKE, which is transformed into a CCA-secure KEM using the FO transformation.

uKyber.CPAPKE: Let n, q, k, us, ue, ur, ue1 , ue2 , du, dv be positive integers, and let Sam be an extend-
able output function modeled as a random oracle. The uKyber.CPAPKE consists of the following three
algorithms:
• uKyber.CPAPKE.KeyGen(): Randomly choose ρ, σ ← {0, 1}n, and sample (s, e) ∼ Uk

us
× Uk

ue
:=

Sam(σ). Then compute A := Sam(ρ) ∈ Rk×k
q , and t := As+ e. Then, return the public key pk = (t, ρ)

and the secret key sk = s.
• uKyber.CPAPKE.Enc(pk,m): Given the public key pk and plaintext m, randomly choose r ←

{0, 1}n, and sample (r, e1, e2) ∼ Uk
ur
× Uk

ue1
× Uue2

:= Sam(r). Then, compute u := AT r + e1, v :=

tT r+ e2 + ⌈ q2⌉ ·m, and return the ciphertext

c = (Compressq(u, du),Compressq(v, dv)).

• uKyber.CPAPKE.Dec(sk, c): Given the secret key sk = s and a ciphertext c = (c1, c2), decompress
u′ := Decompressq(c1, du), v

′ := Decompressq(c2, dv), and compute

m′ := Compressq(v
′ − sTu′, 1).

uKyber.CCAKEM: Let H: B∗ → B32 and G: B∗ → B32 × B32 be two hash functions modeled as
random oracles. By applying a slightly modified FO transformation, the CPA-secure uKyber.CPAPKE
is transformed into a CCA-secure uKyber.CCAKEM as follows:

• uKyber.CCAKEM.KeyGen(): Randomly choose z ← B32, and compute (pk, sk′) = uKyber.CPAPK.KeyGen().
Then, return the public key pk and the secret key sk = (sk′∥pk∥H(pk)∥z).
• uKyber.CCAKEM.Encap(pk): Given the public key pk, randomly choose m ← {0, 1}256, compute

(K, r) := G(m∥H(pk)), c := uKyber.CPAPKE.Enc(pk,m, r). Finally, compute the encapsulated key
K := KDF(K∥H(c)), and return the ciphertext c and encapsulated key K.
• uKyber.CCAKEM.Decap(c, sk): Given the secret key sk = (sk′∥pk∥H(pk)∥z) and ciphertext c, com-

putem′ := uKyber.CPAPKE.Dec(sk′, c) and (K
′
, r′) := G (m′∥h), c′ := uKyber.CPAPKE.Enc (pk,m′, r′).

If c′ = c, return K := KDF(K
′∥H(c)), otherwise, return K := KDF(z∥H(c)).

5.2 Choices of Parameters

When using the normal form of LWE, where the secret key and error are sampled from the same dis-
tribution [39], it becomes challenging to select suitable parameters without either compromising LWE
hardness or significantly increasing the probability of decryption failure, as illustrated in Figure 3.

To allow for more flexible parameter sets that balance the LWE hardness and decryption failure prob-
ability, we adopt the asymmetric LWE (ALWE) problem proposed by Zhang et al. [40], where the secret
key and error do not need to be sampled from distributions with the same parameters. The ALWE prob-
lem, denoted as ALWEn,m,q,α1,α2 , involves finding s ∈ Zn

q from samples (A,b = As+ e) ∈ Zm×n
q × Zm

q ,

where A
$←− Zm×n

q , s
$←− χn

α1
, e

$←− χm
α2
.

We propose setting u = 2 (or u = 1) to sample the secret key and error coefficients uniformly from the
range [−2, 2] (or [−1, 1]), applicable to three security levels, referred to as uKyber512, uKyber768 and
uKyber1024. To more precisely match the LWE hardness and decryption failure probability of Kyber,



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 12

� � 	 
 �
$����!����"#!��$#����"�'��$�"�$�����!�
&��!��	�%�!���#"

�

��

���

���
��
�"
"��

��
��
�!
��
��

��
��
!�
��
""

�&��!��	���!���""

����

����

���

�

��
�!
& 
#��

��
��
��$

!�
� 
!�
��
���

��
	�
�

�&��!��	�����$!�� !���

��!���""
����$!�� !���

� � 	 
 �
'!��"$ ���%&$��'&�"!�%�*��'�%�'����"$��)��$�
��(�$��!&%

�

��

���

���

	��

	��

��
�%
%��
��
��
"$
��
��
��
��
$�
!�
%%

�)��$�
����$�!�%%

�	��

�	��

����

����

���

�

��
�$
)#
&�"
!�
��
��'
$�
�#
$"
��
��"
��
	�
�

�)��$�
������'$��#$"��

��$�!�%%
����'$��#$"��

� � 	 
 �
$����!����"#!��$#����"�'��$�"�$�����!�
&��!��	��%�!���#"

�

��

���

���

	��

	��


��

��
�"
"��

��
��
�!
��
��

��
��
!�
��
""

�&��!��	����!���""

�
��

�	��

�	��

����

����

���

�

��
�!
& 
#��

��
��
��$

!�
� 
!�
��
���

��
	�
�

�&��!��	������$!�� !���

��!���""
����$!�� !���

Figure 3 LWE hardness and failure probability of Kyber variants under the uniform distribution, where s and e are sampled from

same distribution Uu. The horizontal axis denotes the size of the uniform distribution Uu. Blue + indicates the LWE hardness

under the classical core-SVP oracle, while red × represents the decryption failure probability. Different values in each column

represent the LWE hardness or decryption failure probability under different (de)compression parameters (du, dv).

Table 7 Parameter sets for uKyber in different security levels.

n k q us ue ur ue1
ue2

(du, dv)

uKyber512 256 2 3329 1 2 1 1 1 (9, 3)

uKyber768 256 3 3329 1 2 1 1 1 (10, 3)

uKyber1024 256 4 3329 1 2 1 1 1 (10, 5)

Table 8 Core-SVP hardness and decryption failure probability for Kyber and uKyber. σ represents the standard deviation of the

secret key and error distributions.

NIST Security

Level

σ of secret

key/error

Failure

Probability

Classical

Core-SVP

Quantum

Core-SVP

Kyber512 1 1.225 2−139 118 107

uKyber512 1 1.075 2−134 114 103

Kyber768 3 1 2−164 183 166

uKyber768 3 1.075 2−156 186 169

Kyber1024 5 1 2−174 256 232

uKyber1024 5 1.075 2−181 261 237

we adjusted the parameter du and dv of the (de)compression functions, while keeping other parameters
n, k, q unchanged. The specific parameter sets are presented in Table 7.

Zhang et al. [40] established an approximate relation between the hardness of ALWE and LWE as
follows: ALWEn,q,m,α1,α2

≈ LWEn,q,m,
√
α1α2

. Leveraging this approximation and the Core-SVP method-
ology described in Section 3, we evaluate the LWE hardness of uKyber and compute the decryption
failure probability under the proposed parameter sets. The results are summarized in Table 8.

As shown in Table 8, compared with Kyber, uKyber achieves comparable LWE hardness and decryption
failure probability, making it a suitable variant of Kyber under the uniform distribution from a security
perspective.

5.3 Provable Security

Definition 8 (AMLWE Problem). Let k, ℓ, u1, u2 be positive integers. The decisional AMLWE problem,
denoted as AMLWEn,q,k,ℓ,u1,u2 asks to distinguish (A,b = As+ e) from uniform samples over Rk×ℓ

q ×Rk
q ,

where A← Rk×ℓ
q , s← Uℓ

u1
, and e← Uk

u2
.

Definition 9 (AMLWE Assumption). For an appropriate choice of parameters n, q, k, ℓ, u1, u2, there
exists no quantum polynomial-time adversary that can solve the AMLWEn,q,k,ℓ,u1,u2

problem.

Under this assumption, we demonstrate in Appendix C that uKyber.CPAPKE is provably CPA-secure,
and uKyber.CCAKEM is provably CCA-secure. Formally, we have the following theorems:

Theorem 1. Suppose Sam is a random oracle. If AMLWEn,q,k,ℓ,u1,u2 is hard, then the scheme uKy-
ber.CPAPKE is CPA-secure.

Theorem 2. Suppose Sam, H and G are random oracles. If AMLWEn,q,k,ℓ,u1,u2 is hard, then the
scheme uKyber.CCAKEM is CCA-secure.

5.4 Performance Analysis

Compared with Kyber, uKyber offers several performance advantages, including smaller ciphertext sizes,
fewer PRBs, and faster implementation speeds. Below, we provide a detailed analysis of these aspects.



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 13

Table 9 Comparison between uKyber and Kyber in terms

of the size of sk, pk and ct

Schemes
Size (in bytes)

sk pk ct

Kyber512 1632 800 768

uKyber512 1632 800 672

Kyber768 2400 1184 1088

uKyber768 2400 1184 1056

Kyber1024 3168 1568 1568

uKyber1024 3168 1568 1440

Algorithm 6 Multi-Value Uniform Sampling via Rejection

Sample m elements uniformly from the range [−u, u].
Input: PRBs b = (b0, b1, · · · ) ∈ {0, 1}⌈log2(2u+1)m⌉

Output: m elements uniformly in [−u, u] or ⊥
1: d = binary to decimal(b)

2: if d < (2u + 1)m then

3: for j ← 0 to m− 1 do

4: c← d mod (2u + 1)

5: d← ⌊d/(2u + 1)⌋
6: ui ← c

7: end for

8: return ui − u

9: else

10: return ⊥
11: end if

Smaller ciphertext sizes: The parameters (du, dv) for the (de)compress functions in uKyber are
reduced compared with those in Kyber, resulting in shorter ciphertext lengths. The ciphertext length
is computed using the formula: length(c) = (k · du + dv) · n/8. Specifically, for uKyber512, uKyber768,
and uKyber1024, the ciphertext sizes are 672 bytes, 1056 bytes, and 1440 bytes, respectively, as listed
in Table 9. These sizes are smaller than the corresponding ciphertext sizes of Kyber512 (768 bytes),
Kyber768 (1088 bytes), and Kyber1024 (1568 bytes).

Fewer pseudorandom bits: PRBs are critical for generating the secret key and error. When sampling
from the CBD βu, 2u PRBs are required. For sampling from the uniform distribution Uu, at least
⌈log2(2u + 1)⌉ PRBs are necessary. In cases where 2u + 1 is not a power of 2, rejection sampling is
employed, similar to the approach used in Dilithium.

Consider the case where u = 2. Sampling uniformly from [−2, 2], which includes 5 elements, is
equivalent to uniformly sampling d from [0, 4] and subtracting 2. This requires at least ⌈log2(5)⌉ = 3
PRBs. However, with 3 PRBs, 23 = 8 states can be represented, leaving 3 extra states that must be
rejected if d > 4. This results in a rejection probability of 3

8 . Consequently, on average, 3× 8
5 = 4.8 PRBs

are required to successfully sample one value from U2. To reduce PRB usage, we propose a multi-value
uniform sampling via rejection method, detailed in Algorithm 6.

This method transforms the process of sampling m values from [0, k − 1] into sampling a single value
c from [0, km − 1]. The value c is then converted into its base-k representation, (u1u2 . . . um)(k), which
is evenly mapped to m-digit base-k numbers. The resulting u1, u2, . . . , um represent m random numbers
uniformly distributed across [0, k − 1]. General rejection sampling is employed to sample c, requiring
⌈log2(km)⌉ PRBs. The rejection probability for this process is 1− (km/2⌈log2(k

m)⌉).
For u = 2, where k = 2u+ 1 = 5, we set m = 3, which corresponds to uniformly sampling 3 numbers

from [0, 4]. To achieve this, we select ⌈log2(53)⌉ = 7 PRBs and convert them into a decimal number
c. If c < 53, we convert c into a base-5 number (b1b2b3)(5); otherwise, c is rejected. The probability of

successful sampling is 53/27 = 125
128 , and the average number of PRBs required to sample one value is

(7 × 128
125 )/3 ≈ 2.4. Thus, on average, 2.4 PRBs are required to uniformly sample a value from [−2, 2].

Similarly, for u = 1, where k = 2u + 1 = 3, we set m = 5. We select ⌈log2(35)⌉ = 8 PRBs and convert
them into a decimal number c. If c < 35, we convert c into a base-3 number (b1b2b3b4b5)(3); otherwise,

c is rejected. The probability of successful sampling is 35/28 = 243
256 , and the average number of PRBs

required to sample one value is (8× 256
243 )/5 ≈ 1.7. Thus, on average, 1.7 PRBs are required to uniformly

sample a value from [−1, 1].
We calculate the PRBs required for secret key and error generation in KeyGen and Encryption oper-

ations. Experimental results, shown in Table 10, confirm that uKyber requires approximately half the
PRBs needed by Kyber for these operations. This significantly reduces the computational time required
for hash operations to generate these PRBs.

Faster implementation speed: The reduction in the number of PRBs required for secret key and
error sampling results in a corresponding decrease in the hash operations necessary for generating these
PRBs. This improvement enhances the overall efficiency of uKyber’s implementation.

Experiments were conducted using the C reference implementation on a 64-bit Ubuntu 22.04 virtual
machine equipped with an Intel Core i7-12700 processor (2.10 GHz) and 11 GB of memory. Each al-
gorithm was executed 1,000,000 times, and the average CPU cycles were recorded. As shown in Table



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 14

Table 10 Comparison between uKyber and Kyber in terms of the number of PRBs required for secret key/error generation in

KeyGen and Encryption, and the running time of KeyGen, Encap and Decap.

PRBs in KeyGen PRBs in Enc Running time (in cycles)

theoretical practical theoretical practical KeyGen Encap Decap

Kyber512 6144 6144 6144 6144 44064 53540 62446

uKyber512 2099 2126 2176 2203 40980 51402 60416

Kyber768 6144 6144 7168 7168 75295 83423 94132

uKyber768 3149 3189 3046 3048 73329 80498 91207

Kyber1024 8192 8192 9216 9216 114871 120801 137113

uKyber1024 4198 4252 3917 3944 113100 118668 132391

10, the experimental results demonstrate that uKyber offers some advantages in terms of running time
compared with Kyber.

Shared uniform distribution sampler with Dilithium: In the transition to PQC, applications like
the TLS protocol require both PKE/KEM for secure key exchange and digital signature schemes for
authentication. Most cryptoprocessors in real-world scenarios operate on resource-constrained platforms
with limited area and memory. Thus, developing compact and unified design methods for implementing
post-quantum PKE/KEM and signature schemes is crucial for practical PQC deployment.

Kyber and Dilithium, both part of the CRYSTALS suite and standardized by NIST as PKE/KEM
and signature schemes, are often implemented together on the same processor [41, 42]. Shared modules
such as polynomial multiplier, adder and subtractors can significantly reduce the area of the combined
implementation [43]. For the combined implementation of uKyber and Dilithium, further sharing of the
rejection sampling module for uniform distributions can further enhance the compactness of the combined
implementation.

6 Discussion

Our proposedmajority-voting key recovery method andmulti-value uniform sampling via rejection method
can be applied to other scenarios and cryptographic schemes. Below, we discuss their applications in more
detail.

6.1 Application of the Majority-Voting Key Recovery Method

The majority-voting method can be extended to other decryption failure attack strategies, such as the
geometric approach from D’Anvers et al. [26]. This approach leverages the property that, in high-
dimensional spaces, two vectors with large inner product values tend to have close directions [44]. The
mean of the failure vectors is used as the estimated direction of the secret key.

To demonstrate the effectiveness of the majority-voting method, we use Kyber as an example. Suppose
there arem linearly independent failure ciphertextsC1, . . . ,Cm and their corresponding decryption failure
positions r1, . . . , rm. The direction of the secret key is estimated as E = Crav/∥Crav∥2 where

Crav =
∑

i∈[1,m]

Cri
i /∥Cri

i ∥2. (8)

The norm of the secret key is then estimated using the approximation: E′
T
·
(∑

i∈[1,m] C
ri
i

)
/m ≈ qt ,

resulting in the estimated value of the secret key:

E′ := E ·m · qt · ∥
∑

i∈[1,m]

Cri
i ∥
−1
2 . (9)

We replicated this key recovery method in our experiments and improved it using our majority-voting
approach. As shown in Figure 4, our method successfully recovers the full secret key with less than
half the number of failures required by the original geometric method. For example, for Kyber768, the
geometric method requires 210 failures to fully recover the secret key with 100% success rate, whereas
our method achieves the same result with only 100 failures.



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 15

� ��� ��� ��� ��� ���
���������������

�

���

���

���

���

����
��
��
��
��
��
��
��
���

��
��
�

��	�����

��	����

��������


���������������

���������

� ��� ��� ��� ��� ���
���������������

�

���

���

���

	��

����

����

����

����

��
��
��
��
��
��
��
���

��
��
�

 �
�����

 �
���	

� �����	

����������
�����
����
�����

� ��� ��� ��� ��� ���
���������������

�

���

���

���

����

����

����

����

����

��
��
��
��
��
��
��
���

��
��
�

��	�����

��	�����

���������


���������������

���������

Figure 4 Comparison of the number of failures required for secret key recovery of Kyber using our majority-voting method and

geometric method in [26]. The blue vertical line represents the required failures for a 100% success rate.

Table 11 Comparison of the running time (in cycles) for poly uniform function, secret key sampling, and KeyGen between

Dilithium and Dilithium-M.

scheme poly uniform sk sampling KeyGen

Dilithium2 1548 11232 106034

Dilithium-M2 929 7413 99870

Dilithium3 1604 17893 200767

Dilithium-M3 920 9970 170684

Dilithium5 1559 20033 297608

Dilithium-M5 961 13912 285973

6.2 Application of the Multi-Value Uniform Sampling via Rejection Method

Dilithium employs rejection sampling to generate the secret vectors s1, s2, which follows a uniform dis-
tribution over [−η, η]. To enhance sampling efficiency, we adopt the above proposed multi-value uniform
sampling via rejection method and refer to the modified algorithm as Dilithium-M.

For both Dilithium 2 and Dilithium 5, where η = 2, we follow the description in Section 5.4, selecting
7 PRBs at a time to generate 3 values uniformly distributed over [−2, 2]. For Dilithium 3, where η = 4,
we set m = 5, corresponding to sampling 5 values uniformly distributed over [−4, 4]. By selecting
⌈log2(95)⌉ = 16 PRBs to generate 5 values, the probability of successful sampling is calculated as 95/216 ≈
0.9, and the average number of PRBs required per value is (16/0.9)/5 ≈ 3.56.

We evaluated the efficiency of the proposed method by measuring the number of PRBs required for
generating sk, as well as the runtime (measured in CPU cycles) of the poly uniform function, secret key
sampling, and KeyGen algorithms in Dilithium and Dilithium-M. The results, summarized in Table 11,
indicate that Dilithium-M reduces the runtime for secret key sampling by approximately 40% compared
with the original Dilithium.

7 Conclusion

In this work, we conduct a comprehensive security analysis of Kyber under both the CBD and the
uniform distribution, examining the trade-offs from both LWE hardness and decryption failure probability.
Compared with the CBD, the uniform distribution over the same range increases the variance, enhancing
the LWE hardness. However, this improvement comes at the cost of a higher decryption failure probability,
making Kyber more susceptible to decryption failure attacks. To design an appropriate variant of Kyber
under the uniform distribution, we propose uKyber leveraging the ALWE assumption proposed by Zhang
Jiang. Compared with Kyber, uKyber maintains comparable LWE hardness and decryption failure
probability, while providing some performance advantages such as smaller ciphertext size, and faster
implementation speed. These properties make uKyber a practical and efficient alternative to Kyber for
various cryptographic applications.

References

1 IBM. IBM debuts next-generation quantum processor & IBM quantum system two, extends roadmap to advance era of
quantum utility. 2023

2 Roberto Avanzi, Joppe Bos, L´eo Ducas, et al. CRYSTALS-Kyber algorithm specifications and supporting documentation
(version 3.02). NIST PQC Round 3, 2022

3 Gorjan Alagic, Daniel Apon, David Cooper, et al. Status report on the third round of the nist post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2022



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 16

4 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM), 2009,
56(6): 1–40

5 Vadim Lyubashevsky, Chris Peikert, Oded Regev. On ideal lattices and learning with errors over rings. In: Proceedings of
the Advances in Cryptology–EUROCRYPT 2010, French Riviera, 2010. 1–23

6 Adeline Langlois, Damien Stehl´e. Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr., 2015,
75(3):565–599

7 NIST. FIPS 203, Module-Lattice-based key encapsulation mechanism standard. Department of Commerce, Washington, D.C.,
Federal Information Processing Standards Publication, 2023

8 Zvika Brakerski, Adeline Langlois, Chris Peikert, et al. Classical hardness of learning with errors. In: Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, 2013. 575–584

9 Joppe W Bos, Craig Costello, Michael Naehrig, et al. Post-quantum key exchange for the TLS protocol from the ring learning
with errors problem. In: Proceedings of 2015 IEEE Symposium on Security and Privacy, 2015. 553–570

10 Leon Groot Bruinderink, Andreas H¨ulsing, Tanja Lange, et al. Flush, gauss, and reload–a cache attack on the BLISS lattice-
based signature scheme. In: Proceedings of the International Conference on Cryptographic Hardware and Embedded Systems,
2016. 323–345

11 Peter Pessl, Leon Groot Bruinderink, Yuval Yarom. To BLISS-B or not to be: Attacking strongswan’s implementation of
post-quantum signatures. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
2017

12 Thomas Espitau, Pierre-Alain Fouque, Benoˆıt G´erard, et al. Side-channel attacks on BLISS lattice-based signatures: Ex-
ploiting branch tracing against strongswan and electromagnetic emanations in microcontrollers. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, 2017. 1857–1874

13 Nico D¨ottling, J¨orn M¨uller-Quade. Lossy codes and a new variant of the learning-with-errors problem. In: Proceedings of
the Advances in Cryptology–EUROCRYPT 2013, Athens, Greece, 2013. 18–34

14 Daniele Micciancio, Chris Peikert. Hardness of sis and lwe with small parameters. In: Proceedings of the Annual cryptology
conference, 2013. 21–39

15 Daniel Cabarcas, Florian G¨opfert, and Patrick Weiden. Provably secure LWE encryption with smallish uniform noise and
secret. In: Proceedings of the 2nd ACM Wookshop on ASIA Public-Key Cryptography, Kyoto, Japan, 2014. 33–42

16 Erdem Alkim, L´eo Ducas, Thomas P¨oppelmann, et al. Post-quantum key exchange—a New Hope. In: Proceedings of 25th
USENIX Security Symposium (USENIX Security 16), 2016. 327–343

17 Xianhui Lu, Yamin Liu, Dingding Jia, et al. LAC: Lattice-based Cryptosystems. NIST PQC Round 2, 2018
18 Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, et al. Saber: Mod-lwr based kem (round 3 submission). NIST

PQC Round 3, 2022
19 Rachid El Bansarkhani. KINDI: 20171130 submission. NIST PQC Round 1, 2017.
20 Shi Bai, L´eo Ducas, Eike Kiltz, et al. CRYSTALS-Dilithium: Algorithm specifications and supporting documentation. NIST

PQC Round 3. 2020
21 Claus-Peter Schnorr, Martin Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems.

Mathematical programming, 1994, 66:181–199
22 Yuanmi Chen, Phong Q Nguyen. BKZ 2.0: Better lattice security estimates. In: Proceedings of the International Conference

on the Theory and Application of Cryptology and Information Security, 2011. 1–20
23 Nick Howgrave-Graham, Phong Q Nguyen, David Pointcheval, et al. The impact of decryption failures on the security of

NTRU encryption. In: Proceedings of the Annual International Cryptology Conference, 2003. 226–246
24 Qian Guo, Thomas Johansson, Jing Yang. A novel CCA attack using decryption errors against LAC. In: Proceedings of the

International Conference on the Theory and Application of Cryptology and Information Security, 2019. 82–111
25 Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, et al. Decryption failure attacks on IND-CCA secure lattice-based

schemes. In: Proceedings of the Public-Key Cryptography–PKC 2019, Beijing, China, 2019. Part II 22, 565–598
26 Jan-Pieter D’Anvers, M´elissa Rossi, Fernando Virdia. (One) failure is not an option: bootstrapping the search for failures

in lattice-based encryption schemes. In: Proceedings of the Annual International Conference on the Theory and Applications
of Cryptographic Techniques, 2020. 3–33

27 Nina Bindel, John M Schanck. Decryption failure is more likely after success. In: Proceedings of the International Conference
on Post-Quantum Cryptography, 2020. 206–225

28 Jan-Pieter D’Anvers, Senne Batsleer. Multitarget decryption failure attacks and their application to Saber and Kyber. In:
Proceedings of the IACR International Conference on Public-Key Cryptography, 2022. 3–33

29 Eiichiro Fujisaki, Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In: Proceedings
of the Annual international cryptology conference, 1999. 537–554

30 Dennis Hofheinz, Kathrin H¨ovelmanns, Eike Kiltz. A modular analysis of the Fujisaki-Okamoto transformation. In: Pro-
ceedings of the Theory of Cryptography Conference, 2017. 341–371

31 Martin R Albrecht, Rachel Player, Sam Scott. On the concrete hardness of learning with errors. Journal of Mathematical
Cryptology, 2015, 9(3):169–203

32 Guillaume Hanrot, Xavier Pujol, Damien Stehl´e. Terminating BKZ. Cryptology ePrint Archive, 2011
33 Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In: Proceedings of the

Advances in Cryptology–CRYPTO 2015, Santa Barbara, CA, USA, 2015. Part I 35, 3–22
34 Anja Becker, L´eo Ducas, Nicolas Gama, et al. New directions in nearest neighbor searching with applications to lattice

sieving. In: Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, 2016, 10–24
35 Thijs Laarhoven, Michele Mosca, Joop Van De Pol. Finding shortest lattice vectors faster using quantum search. Designs,

Codes and Cryptography, 2015, 77:375–400
36 Thijs Laarhoven. Search problems in cryptography: from fingerprinting to lattice sieving. 2016
37 Claus Peter Schnorr. Lattice reduction by random sampling and birthday methods. In: Proceedings of the 20th Annual

Symposium on Theoretical Aspects of Computer Science, Berlin, Germany, 2003. 145–156
38 Yuanmi Chen. Lattice reduction and concrete security of fully homomorphic encryption. Dept. Informatique, ENS, Paris,

France, PhD thesis, 2013
39 Benny Applebaum, David Cash, Chris Peikert, et al. Fast cryptographic primitives and circular-secure encryption based on

hard learning problems. In: Proceedings of the 29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
2009. 595–618

40 Jiang Zhang, Yu Yu, Shuqin Fan, et al. Tweaking the asymmetry of asymmetric-key cryptography on lattices: KEMs and
signatures of smaller sizes. In: Proceedings of the 23rd IACR International Conference on Practice and Theory of Public-Key
Cryptography, Edinburgh, UK, 2020. Part II 23, 37–65

41 Luke Beckwith, Abubakr Abdulgadir, Reza Azarderakhsh. A flexible shared hardware accelerator for nist-recommended
algorithms crystals-kyber and crystals-dilithium with SCA protection. In: Proceedings of the Cryptology - CT-RSA 2023,
San Francisco, CA, USA, 2023. 469–490

42 Konstantina Miteloudi, Joppe W. Bos, Olivier Bronchain, Bj¨orn Fay, and Joost Renes. PQ.V.ALU.E: post-quantum RISC-
V custom ALU extensions on dilithium and kyber. In: Proceedings of the 22nd International Conference, CARDIS 2023,



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 17

Amsterdam, The Netherlands, 2023. 190–209
43 Suraj Mandal, Debapriya Basu Roy. Kid: A hardware design framework targeting unified NTT multiplication for crystalskyber

and crystals-dilithium on FPGA. In: Proceedings of the 37th International Conference on VLSI Design and 23rd International
Conference on Embedded Systems, Kolkata, India, 2024. 455–460

44 T Tony Cai, Jianqing Fan, Tiefeng Jiang. Distributions of angles in random packing on spheres. Journal of Machine Learning
Research, 2013, 14:1837

45 Patrick Billingsley. Probability and measure. John Wiley & Sons, 2017
46 Haodong Jiang, Zhenfeng Zhang, Long Chen, et al. IND-CCA-secure key encapsulation mechanism in the quantum random

oracle model, revisited. In: Proceedings of the 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
2018. Part III 38, 96–125

Appendix A Rotations of polynomial vectors

Definition 10 (Rotations). For r ∈ Z, the rotation of C ∈ Rk×1
q is defined as:

Cr := xr ·C(x−1) mod xn + 1.

Correspondingly, Cr ∈ Zkn×1
q denotes its coefficient vector.

It is easy to show that Cr is constructed to ensure that for r ∈ [0, . . . , n− 1], the rth coordinate of STC is given by the

scalar product S
T
Cr. In other words, one is now able to decompose STC as a sum of scalar products:

STC :=
∑

r∈[0,n−1]

S
T
Cr · xr.

We introduce a brief example to illustrate it in Example 1.

Example 1. For polynomial vectors S and C in Z2×1
q [x]/(x3 + 1):

S =

[
s0,0 + s0,1x+ s0,2x2

s1,0 + s1,1x+ s1,2x2

]
, C =

[
c0,0 + c0,1x+ c0,2x2

c1,0 + c1,1x+ c1,2x2

]
,

we get the following coefficient vectors:

S =



s0,0

s0,1

s0,2

s1,0

s1,1

s1,2


, C0 =



c0,0

−c0,2
−c0,1
c1,0

−c1,2
−c1,1


, C1 =



c0,1

c0,0

−c0,2
c1,1

c1,0

−c1,2


, C2 =



c0,2

c0,1

c0,0

c1,2

c1,1

c1,0


.

Therefore, the product of the two polynomial vectors STC :=
∑

r∈[0,2] S
T
Cr · xr.

Appendix B Probability Theory

Theorem B3 (Bayes’ theorem). Bayes’ theorem is stated mathematically as the following equation:

P (A|B) =
P (B|A)P (A)

P (B)
.

A version of Bayes’ theorem for 3 events results from the addition of a third event C on which all probabilities are

conditioned. The formula shown is:

P (A|B ∩ C) =
P (B|A ∩ C)P (A|C)

P (B|C)
.

Theorem B4 (Central limit theorem (CLT)). Suppose {X1, . . . , Xn} is a sequence of i.i.d. random variables with

E[Xi] = µ and Var[Xi] = σ2, Xn = (X1 + · · ·+Xn)/n. Then, as n approaches infinity, the random variables
√
n
(
Xn − µ

)
converge in distribution to a normal N (0, σ2):

√
n(Xn − µ)→ N (0, σ2). (B1)

More generally, Xi has to be independent, but not necessarily identically distributed. Suppose {X1, . . . , Xn} is a

sequence of independent random variables, each with finite expected value µi and variance σ2
i . Define s2n =

∑n
i=1 σ

2
i . If the

Lyapunov’s condition [45] is satisfied, then a sum of (Xi − µi)/sn converges in distribution to a standard normal random

variable, as n goes to infinity:

1

sn

n∑
i=1

(Xi − µi)→ N (0, 1).



Mingyao Shao, Yuejun Liu, Yongbin Zhou, et al 18

Appendix C Provable Security of uKyber

In this section, we show that under the MLWE assumption, uKyber.CPAPKE is provably CPA-secure, and uKyber.CCAKEM

is provably CPA-secure.

Appendix C.1 IND-CPA Security of uKyber.CPAPKE

Theorem C5. Suppose Sam is random oracle. If MLWEn,q,k,ℓ,u1,u2
is hard, then the scheme uKyber.CPAPKE is

CPA-secure.

Proof. This proof proceeds via a sequence of games G0,G1,G2. In the final game, we show that the advantage of any

probabilistic polynomial time (PPT) adversary A is negligible.

Game G0: This game is the real game for the IND-CPA security. In this game, the adversary A has access to a random

oracle Sam, and is given a public key pk = (t, ρ). Adversary A chooses two plaintexts m0,m1, and then obtains a challenge

ciphertext c = (c1, c2) on message mb, where b is a random bit. Finally, A outputs a bit b′ ∈ {0, 1} as the guess of b ∈ {0, 1}.

Game G1: This game is the same as G0, except that picking pk at random. If there exists a PPT adversary A that can

distinguish G1) from G0, then we can construct a PPT algorithm B solving the MLWEn,q,k,ℓ,u1,u2
problem. Specifically,

given an instance (A, t) of the MLWE problem, B aims to decide whether (A, t) is sampled from a uniform distribution

of Rk×k
q × Rk

q . Formally, B behaves exactly as in game G0, except that it chooses a random ρ ← {0, 1}n , programs the

random oracle Sam such that Sam(ρ) = A , and returns pk = (t, ρ) to A. Since Sam is a random oracle, the probability

that Sam(ρ) has already been defined is negligible. If (A, t) is uniformly random in Rk×k
q ×Rk

q , then B behaves as in game

G1. Otherwise, B behaves as in game G0. In other words, if A can distinguish G0 and G1 with non-negligible probability,

then B can solve the MLWE problem with non-negligible probability.

Game G2: This is the same as G1, except that using uniformly random values to replace u = AT r+ e1 and v = tT r+ e2
used in the generation of the challenge ciphertext. If there exists a PPT adversary A who can distinguish G2 from

G1, then we can construct a PPT algorithm B that solves the MLWEn,q,k+1,ℓ,u1,u2
problem. Specifically, given an

instance (A, t,u, v) of the MLWE problem, B aims to decide whether (A, t,u, v) is sampled from a uniform distribution

in Rk×k
q × Rk

q × Rk
q × Rq . Formally, B chooses a random ρ ← {0, 1}n , programs the random oracle Sam such that

Sam(ρ) = A, and returns pk = (t, ρ) to A. After receiving two plaintexts m0,m1 from A, B picks b ← {0, 1} at random,

computes c1 = Compressq(u, du), c2 = Compressq(v + ⌈ q
2
⌉ ·mb, dv)), and then gives the ciphertext c = (c1, c2) to A. If

(A, t,u, v) is uniformly random in Rk×k
q × Rk

q × Rk
q × Rq , then B simulates as in game G1. Otherwise, B simulates as in

game G0. Thus, if A can distinguish G2 and G1 with non-negligible probability, then B can solve the MLWE problem.

In the final game G2, mb in the challenge ciphertext is perfectly hidden by uniformly random v. Therefore, the advantage

of A is 0 in G2, which completes the proof of Theorem 5.

Appendix C.2 IND-CCA Security of uKyber.CCAKEM

Since uKyber.CCAKEM is obtained by applying a slightly tweaked FO transformation [29, 30], to the PKE scheme uKy-

ber.CPAPKE, given the results in [29, 30] and Theorem 5, we have the following theorem.

Theorem C6. Suppose Sam, H and G are random oracles. If MLWEn,q,k,ℓ,u1,u2
is hard, then the scheme uKy-

ber.CCAKEM is CCA-secure.

Notice that the algorithm Decap will always return a random decapsulation key even if the checks fail (i.e., implicit

rejection). Furthermore, the paper [46] showed that if the underlying PKE is CPA-secure, then the resulting KEM with

implicit rejection obtained by using the FO transformation is also CCA-secure in the quantum random oracle model

(QROM). Given the results in [46] and Theorem 5, we have the following theorem.

Theorem C7. Suppose Sam, H and G are random oracles. If MLWEn,q,k,ℓ,u1,u2
is hard, then the scheme uKy-

ber.CCAKEM is CCA-secure in the quantum random oracle model.


	Introduction
	Organization

	Preliminaries
	Notation
	Definition
	CCA-Secure Version of Kyber
	Decryption Failure

	The Hardness of Kyber under the Uniform Distribution
	The Core-SVP Hardness
	Primal Attack
	Dual Attack

	Decryption Failure Attacks on Kyber under the Uniform Distribution
	Collecting Decryption Failures
	Identifying the Sign and Position of Decryption Failure
	Recovering the Secret Key Using Decryption Failures
	Accelerating Secret Key Recovery by Majority-Voting

	uKyber: A Variant of Kyber under the Uniform Distribution
	Construction
	Choices of Parameters
	Provable Security
	Performance Analysis

	Discussion
	Application of the Majority-Voting Key Recovery Method
	Application of the Multi-Value Uniform Sampling via Rejection Method

	Conclusion
	Rotations of polynomial vectors
	Probability Theory
	Provable Security of uKyber
	IND-CPA Security of uKyber.CPAPKE
	IND-CCA Security of uKyber.CCAKEM


