
Sonikku: Gotta Speed, Keed!
A Family of Fast and Secure MACs

Amit Singh Bhati1,2, Elena Andreeva3, Simon Müller3, and Damian Vizár4

1 COSIC, KU Leuven, Belgium
2 3MI Labs, Belgium
3 TU Wien, Austria
4 CSEM, Switzerland

amitsingh.bhati@3milabs.tech, {elena.andreeva,
simon.mueller}@tuwien.ac.at, damian.vizar@csem.ch

Abstract. Message authentication codes (MACs) are fundamental sym-
metric key cryptographic functions used to generate a short, secret-key-
dependent tag for a given message. This tag ensures both message au-
thenticity and integrity, as computing a valid tag without the secret key
is computationally infeasible, thereby revealing any unauthorized modi-
fication.

Existing MACs often rely on block ciphers (BCs) and tweakable block
ciphers (TBCs). The design of these MACs involves various trade-offs
regarding properties such as data processing rate, the number of secret
keys, achievable security definitions and concrete margins, the necessity
for pre- or post-processing, parallelization capabilities, internal state size,
and performance optimization for diverse message lengths.

This work introduces Sonikku, a new family of MACs based on expand-
ing primitives, comprising three distinct instances: BabySonic, DarkSonic,
and SuperSonic. The Sonikku MACs offer a compelling combination of
advantages: 1) superior speed compared to state-of-the-art TBC-based
MACs; 2) security beyond the birthday bound related to the input block
size; 3) a smaller internal state than comparable contemporary MACs;
and 4) design flexibility considering diverse trade-offs, including pre/post-
processing-free operation, parallel processing, a small resource footprint,
and suitability for both short and long messages. These characteris-
tics make them highly attractive for widespread applications, including
resource-constrained environments like IoT and embedded devices.

Performance evaluations on a Cortex-M4 32-bit microcontroller demon-
strate that BabySonic instantiated with ForkSkinny achieves a significant
speed-up of at least 2.11x (and up to 4.36x) compared to the state-of-
the-art ZMAC instantiated with SKINNY for 128-bit block sizes and mes-
sages up to 95 bytes. Similarly, DarkSonic and SuperSonic instantiated
with ForkSkinny exhibit speed improvements of at least 1.93x for short
messages (up to 95 bytes) and 1.48x for larger messages (up to 64KB), re-
spectively, when benchmarked against ZMAC instantiated with SKINNY
for both 64- and 128-bit block sizes.

Building upon the approach of ZMAC and PMAC2x, we further illus-
trate the potential of the Sonikku family by employing SuperSonic to



2 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

construct SonicAE, a highly efficient, beyond-birthday secure, stateless,
and deterministic authenticated encryption scheme.

Keywords: Authentication, MAC, forkcipher, lightweight cryptogra-
phy, provable security, related-tweakey, parallel, sequential, length in-
dependent security, short queries.

1 Introduction

Message Authentication Codes (MACs) are fundamental cryptographic tools
ensuring authenticity and integrity in two-party secret key communication. The
sender computes a tag over the message using a MAC algorithm and a shared
secret key K. Upon receiving the message-tag pair, the receiver verifies the mes-
sage’s authenticity and integrity using the same MAC algorithm and key K.

In recent years, numerous MACs based on block ciphers (BCs) and tweakable
block ciphers (TBCs) have been proposed. Notable examples include PMAC [15],
the NIST standard CMAC [23], the ISO/IEC standard LightMAC [31], and their
optimized successors such as PMAC1 [37], PMAC Plus [43], 1k-PMAC Plus [19],
PMAC TBC1k [32], and the state-of-the-art (SotA) MACs PMAC2x [29] and
ZMAC [24].

Many of these MACs offer birthday-bound (BB) security guarantees relative
to the block size n. Specifically, they achieve n/2-bit security. While (T)BCs
with small block sizes (n = 64) have a smaller footprint and are better suited
for constrained environments compared to those with larger blocks (n = 128),
using BB-secure MACs with n = 64 is often deemed impractical due to feasible
attacks [10]. This makes MACs offering security beyond the birthday bound
(BBB) particularly desirable for lightweight platforms.

(T)BC-based MACs can be broadly categorized into sequential and paral-
lel processing types. Sequential MACs typically have a smaller footprint and
can avoid post-processing/finalization call overheads, making them suitable for
memory-constrained applications processing primarily short messages. Parallel
MACs enable full parallelization, offering significant speedups with hardware
acceleration on multi-core platforms. They can also benefit from incremental
processing [7], where modifying a few message bits/blocks does not necessitate
recomputing the entire tag for long messages, reducing update costs. This prop-
erty is valuable when the tag is frequently generated and updated.

Furthermore, (T)BC-based MACs can be nonce-based [16], serving as crucial
components not only for authentication but also within authenticated encryption
(AE) schemes.

Designing MACs suitable for low-cost, low-power IoT or embedded devices of-
ten requires balancing conflicting constraints, especially without dedicated cryp-
tographic hardware. Factors such as block size (large for security, small for area),
state size, number of primitive calls, and the need for pre/post-processing must
be carefully considered to optimize performance for varying message lengths
while maintaining adequate security.



Sonikku Family of Fast and Secure MACs 3

For example, in industrial heavy machinery remote control, authentication
data is typically a few bytes (e.g., button states, joystick position) transmitted
via optimized protocols. The communication round trip demands stringent low
latency (often < 100 ms [39,40,44]). Minimizing tag computation time is critical
in such scenarios.

Another similar example is Automotive V2X (Vehicle-to-Everything) Com-
munication that requires authentication for safety-critical messages such as col-
lision warnings or traffic updates. These messages are often short, require low-
latency processing, and must be highly secure against forgery.

Conversely, longer messages requiring authentication might include large bi-
nary files like multimedia content for embedded devices (KB for pictures, MB
for videos). On low-end microcontrollers, content processing can consume signif-
icant resources, leaving limited time for MAC computation, particularly without
hardware acceleration.

While using an expanding primitive for authentication might initially seem
counterintuitive, this work demonstrates that MACs based on tweakable expand-
ing primitives like forkciphers [4], such as ForkSkinny [35], can overcome tradi-
tional limitations in lightweight MAC design. A forward forkcipher evaluation
is computationally less expensive than two parallel (T)BC calls with indepen-
dent keys, yet yields two outputs. ForkSkinny, for instance, achieves favorable
performance-security trade-offs by forking its internal SKINNY state partway
through execution.

Expanding primitives have previously been shown to be useful in constructing
cryptographic schemes with optimized performance and/or security for various
applications, including authenticated encryption with associated data (AEAD)
for short messages [4] and with leakage resilience [9,17]; robust online AEAD [2,3,
11]; transciphering-friendly AEAD schemes [13]; efficient and beyond BB-secure
confidentiality-only encryption [1]; length-preserving encryption [14]; pseudo ran-
dom number generators [5]; and key derivation functions [12].

Our Contribution. In this work, we introduce the Sonikku MAC family, based
on expanding primitives. This family comprises two sequential MACs, BabySonic
and DarkSonic, and one fully parallelizable MAC, SuperSonic. Sonikku MACs
achieve strong variable-input-length (VIL) pseudorandom function (PRF) secu-
rity, ranging from beyond birthday bound (BBB) up to full n-bit levels. DarkSonic
and SuperSonic achieve PRF security when the forkcipher with a random and
secret key is modeled as a pair of two tweakable random permutations, cor-
responding to the standard pseudorandom tweakable forked permutation (prtfp)
definition [4]. Furthermore, all Sonikku members achieve PRF security under our
extended prtfp definition for an XOR-related-tweakey setting, termed xrtk-prtfp.
All Sonikku instances provide security strictly beyond the birthday bound in n,
the forkcipher input block size, assuming its tweak size t ≥ n. More precisely,
DarkSonic and SuperSonic achieve close to full n-bit security, while BabySonic
achieves 3n/4-bit security.



4 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

In addition, our MACs significantly improve upon State-of-the-Art (SotA)
TBC-based MACs in terms of performance and flexibility. Compared to ZMAC,
the Sonikku members offer the following advantages:

1. Require significantly lower number of primitive calls (at least 33% fewer
calls).

2. More concretely, on a 32-bit Cortex-M4 processor with n = 64 (or 128), they
save at least 40% (or 34%) in clock cycles for any message size. For short
messages (≤ 48B), BabySonic with n = 128 can save up to 77% in clock
cycles.

3. Include pre- and/or post-processing free options, optimizing them for both
short and long queries.

4. SuperSonic requires comparable state size whereas the other two Sonics re-
quire strictly smaller state sizes for any given security level.

For a detailed comparison of Sonikku MACs with relevant existing (T)BC-
based MACs, we refer the reader to Table 1. Performance comparisons of Sonikku
MACs instantiated with ForkSkinny against SotA ZMAC and PMAC2x instan-
tiated with SKINNY are shown in Fig. 5 and Table 2. For simplicity, in the
remainder of this work, Π[E] denotes the MAC function Π instantiated with the
primitive E.

BabySonic[ForkSkinny] achieves a speed-up of at least 2.11x (and up to
4.36x) over ZMAC[SKINNY] for n = t = k = 128 (where k is the key size) for
messages up to 95B. DarkSonic[ForkSkinny] and SuperSonic[ForkSkinny] achieve
speed-ups of at least 1.93x and 1.48x over ZMAC[SKINNY] for k = 128 and
t = n ∈ {64, 128} for short messages up to 95B and large messages up to 64KB,
respectively.

Finally, we propose an AEAD scheme called SonicAE based on the SIV-type
composition of SuperSonic and the GCTR2-3 [1] encryption scheme (Sec. 5). Our
SonicAE mode provides the strong MRAE security guarantee [38]. Performance
comparisons of SonicAE with other SotA AEAD schemes are provided in Fig. 7
and Table 3. SonicAE[ForkSkinny] achieves a speed-up of at least 1.41x and
1.32x over existing MRAE schemes ZAE[SKINNY] and Deoxys-II[SKINNY] under
k = 128, t = n ∈ {64, 128} for short messages up to 95B and large messages up
to 64KB, respectively.

Related Work. Datta et al. in [18] proposed LightFORK, a forkcipher variant
of LightMAC that achieves beyond birthday security. However, in contrast to
our parallel MAC SuperSonic, which can process at least n+ k bits in the stan-
dard single-key setting (and up to n + t + k − e bits in the XRTK setting) per
“one-legged” forkcipher call, LightFORK processes only n bits per “two-legged”
forkcipher call. This makes LightFORK significantly costlier than SuperSonic,
specifically at least 3x costlier for k ≥ n.

Paper Organization. Sec. 2 introduces necessary notations and security no-
tions. Sec. 3 formally describes the Sonikku family and its security results, with
proofs deferred to App. A. Sec. 4 discusses our Sonikku results and software per-



Sonikku Family of Fast and Secure MACs 5

MAC Primitive PRF Security (IT) |K| Minimal State Cost 5(to process an m-bit message) |Tag| L.I.Sec. Par.

CMAC [23] BC as prp [28] n/2 k 3n+ k (⌈m/n⌉+ 1)BC + 2BM ≤ n ✗ ✗

PMAC [15] BC as prp n/2 k 3n+ k (⌈m/n⌉+ 1)BC + ⌈m/n⌉BM ≤ n ✗ ✓

PMAC1 [37] TBC as tprp [28] n/2 k 2n+ t+ k ⌈m/n⌉TBC ≤ n ✗ ✓

lightMAC [31] BC as prp n/2 2k 3n+ 2k ⌈m/(n− s)⌉BC ≤ n ✓ ✓

SUM-ECBC [42] BC as prp 2n/3 4k 2n+ 4k 2(⌈m/n⌉+ 1)BC ≤ n ✗ ✗

PMAC Plus [43] BC as prp 2n/3 3k 5n+ 3k (⌈m/n⌉+ 4)BC + (3⌈m/n⌉-1)BM ≤ n ✗ ✓

1k-PMAC Plus [19] BC as prp 2n/3 k 5n+ k (⌈m/n⌉+ 4)BC + 3⌈m/n⌉BM ≤ n ✗ ✓

ZMAC [24] TBC as tprp min{n, (n+ t)/2} k 4n+ 2t+ k
(⌈

m
n+t−4

⌉
+ 6
)
TBC +

(
2
⌈

m
n+t−4

⌉
− 1
)
BM ≤ 2n ✗ ✓

PMAC TBC1k [32] TBC as tprp n (if t ≥ n/2) k 3n+ t+ k (⌈m/n⌉+ 2)TBC + (⌈m/n⌉ − 1)BM ≤ n ✓ ✓

PMACx/PMAC2x [29] TBC as tprp n k 3n+ t+ k (⌈m/n⌉+ 2)TBC + ⌈m/n⌉BM ≤ 2n ✓ ✓

BabySonic [Our Work] FC as xrtk-prtfp 3n/4 k 2n+ t+ k
⌈

m
n+t+k−2

⌉
FC ≤ 1.5n ✗ ✗

DarkSonic [Our Work] FC as xrtk-prtfp min{n, t} − log2 µ k 2n+ t+ 2k
(⌈

m−2(t+k−2)
n+t+k−2

⌉)
TBC + 2FC ≤ 2n ✗ ✗

SuperSonic [Our Work] FC as xrtk-prtfp min{n, (n+ t)/2} k 2n+ 2t+ 3k
(⌈

m
n+t+k−e

⌉)
(TBC + BM) + 1FC ≤ 2n ✓ ✓

Table 1: Comparison of Sonikku modes with state-of-the-art MACs with compara-
ble instances. Each entry referring to a binary string size or security parameter of
a MAC is in bits. n, t, and k are the block, tweak, and key sizes of the underlying

primitive, respectively, whereas e = log2

(⌈
maxi mi
n+t+k−e

⌉)
and s = log2

(⌊
maxi mi

n−s

⌋)
are

reserved tweak bits for the counter in the corresponding MAC. BC, TBC, FC, BM,
Par., L.I.Sec., and IT are short for block cipher, tweakable block cipher, forkcipher,
binary field multiplications, parallelization support, message length independent secu-
rity, and information-theoretic security, respectively. |K| and |Tag| represent the key
length and the maximum possible tag length of the MAC, respectively. For DarkSonic
and SuperSonic, the table rows remain correct even if the parts in blue are removed,
i.e. the security still holds, potentially with some reduced performance. The cells in red
highlight the key points of comparison against Sonikku modes.

formance. Sec. 5 presents SonicAE as an application of SuperSonic for misuse-
resistant authenticated encryption. Sec. 6 concludes the paper.

2 Preliminaries

2.1 Notation

Strings and Operations. All strings are considered binary strings. The set of
all strings of all possible lengths is denoted by {0, 1}∗, and the set of all strings
of length n (a positive integer) is denoted by {0, 1}n. For a string X of ℓ bits,
X[i] denotes the i-th bit of X for i = 1, . . . , ℓ (counting from left to right), and
X[i . . . j] = X[i]∥X[i + 1]∥ . . . ∥X[j] for 1 ≤ i < j ≤ ℓ. For two strings X,Y ∈
{0, 1}∗ with |X| ≤ |Y | without loss of generality, X ⊕ Y denotes the bitwise
XOR of X∥0|Y |−|X| and Y . For the same strings, X ⊕a Y = (X ⊕ Y )[1 . . . a].

For an arbitrary integer n, which we fix as the block size for this work, we
define the partitioning of a string X into n-bit blocks as X = X1∥ . . . ∥Xx∥X∗,
5 Actual performance cost of an FC, BC, and TBC depends on their instantiations.
To exemplify, when instantiated using SKINNY’s round function with the same key,
block, and/or tweak size, 1 FC costs approximately 1.6(T)BC. For concrete perfor-
mance comparison, see Sec. 4.



6 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

where |Xi| = n for i = 1, . . . , x and 0 < |X∗| ≤ n. Here, x = ⌈|X|/n⌉ − 1
represents the number of full n-bit blocks before the last block. For two distinct
strings X,Y ∈ {0, 1}∗, we define llcpn(X,Y ) as the number of common full n-bit
blocks at the beginning of X and Y . Formally, llcpn(X,Y ) = i if Xj = Yj for all
1 ≤ j ≤ i and either Xi+1 ̸= Yi+1 or X or Y ends after block i. If X1 ̸= Y1, then
llcpn(X,Y ) = 0.

Adversary Interaction. An adversary, denoted by A, is a probabilistic al-
gorithm. Its function involves interacting with oracles, which are indicated by
superscripts. The adversary’s ultimate output is either 0 or 1. The notation
AO ⇒ 1 specifically describes the scenario where the adversary A makes queries
to oracle O during its process and subsequently produces an output of 1.

Miscellaneous. X ←$ X denotes the sampling of an element X from a finite
set X according to the uniform distribution. (p)q denotes the falling factorial
p(p − 1) . . . (p − q + 1), with (p)0 = 1. A predicate P(x) is defined as P(x) =
1 if it is true and P(x) = 0 if it is false. Integer tuples (i′, j′) are compared
lexicographically, i.e., (i′, j′) < (i, j) if and only if i′ < i or (i′ = i and j′ < j).

2.2 MAC Syntax and Security Definition

Let X and Y be non-empty finite sets. Let Func(X ,Y) be the set of all functions
from X to Y. A uniform random function (URF) with domain X and range Y,
denoted R : X → Y, is a random function sampled uniformly from Func(X ,Y).

A MAC is defined by a tuple: (K,MAC,Verify), where K is the non-empty key
space, MAC : K×X → Y is the tag generation function, and Verify : K×X×Y →
{1,⊥} is the tag verification function. For any key K ∈ K and message X ∈ X ,
VerifyK(X,Y ) returns 1 if and only if MACK(X) = Y , and ⊥ otherwise. The
verification function is typically defined as recomputing the tag and checking for
equality; thus, for brevity, we refer to a MAC scheme by the tuple (K,MAC) in
the remainder of this paper. A secure pseudorandom function (PRF) is known
to imply a secure MAC; however, the converse is not necessarily true. We recall
the standard definition of PRF security for a MAC.

Definition 1 (PRF Advantage). For MAC : K × X → Y, let A be an ad-
versary whose goal is to distinguish MAC(K, ·) from a URF R(·) : X → Y via
oracle access. The PRF advantage of A against MAC is defined as:

AdvPRF
MAC(A) =

∣∣Pr[K ←$ K : AMAC(K,·) ⇒ 1]− Pr[R←$ Func(X ,Y) : AR(·) ⇒ 1]
∣∣.

2.3 Tweakable Expanding Primitives

A tweakable expanding primitive F : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}αn for
α ≥ 2 maps a k-bit key K, a t-bit tweak T , and an n-bit input M to α output
blocks Y1, . . . , Yα, each of n bits. When all α outputs are permutations of the
input for any fixed key and tweak, Fα is called a multiforkcipher (MFC) [1]. In
this work, we focus on α = 2, referring to such primitive as forkcipher (FC) [4].
We denote a forkcipher as F. The parameters k, n, and t are its key size, block



Sonikku Family of Fast and Secure MACs 7

size, and tweak size, respectively. We use the notations F(K,T,M), FK(T,M),
or FT

K(M) interchangeably. The output Y1∥Y2 ∈ {0, 1}2n.
We use an additional parameter s ∈ {0, 1, b} to specify which output(s) are

returned from an F call: FT,s
K (M) := FT

K(M)[1 . . . n] when s = 0 (left output),
FT
K(M)[n + 1 . . . 2n] when s = 1 (right output), and FT

K(M) when s = b (both
outputs). For the rest of the paper, we use K := {0, 1}k and T := {0, 1}t.

2.4 XOR-Related-Tweakey (XRTK) Security

Security of cryptographic constructions is typically analyzed in the Standard
Model, where primitives are treated as fixed algorithms with secret random keys.
More idealized models, like the Ideal Cipher Model (ICM), simplify analysis by
treating primitives as truly random permutations for any adversarially chosen
key.

We introduce the XOR-Related-Tweakey (XRTK) model, positioned between
the Standard Model and the ICM. In this model, the adversary does not know the
secret random base key Kbase ←$ {0, 1}k and tweak Tbase ←$ {0, 1}t. However,
the adversary can query the primitive F with inputs (Tbase⊕∆T,Kbase⊕∆K,M),
where ∆T ∈ {0, 1}t and ∆K ∈ {0, 1}k are chosen by the adversary. This model
captures scenarios where keys or tweaks might be updated via XOR operations
with secret state, which is specially relevant for feedback-based MAC designs. It
grants the adversary more power than the Standard Model (where only queries
under a single secret key are allowed) but is weaker than the ICM, which assumes
ideal behavior for arbitrary, potentially unrelated, adversarially chosen keys.

Formally, the XRTK pseudorandom tweakable forked permutation (xrtk-prtfp)
security of a forkcipher F is defined as the indistinguishability between the real
(xrtk-prtfpreal

F ) and ideal (xrtk-prtfpideal
F ) worlds by an adversary making

chosen-plaintext queries.
In the real world (xrtk-prtfpreal

F ), depicted in Fig. 1 (left), the oracle uses
secret random bases K1 ←$ {0, 1}t and K2 ←$ {0, 1}k. For an adversary query
(T1,T2,M, s), the oracle computes T = K1 ⊕ T1 and K ′ = K2 ⊕ T2, evaluates
FK′(T,M), and returns the specified output(s) according to s ∈ {0, 1, b}. Note
that the adversary’s input (T1,T2) directly corresponds to the XOR differences
(∆T,∆K) applied to the secret bases.

In the ideal world (xrtk-prtfpideal
F ), depicted in Fig. 1 (right), the oracle is a

collection of independent random permutations πV,0, πV,1 ←$ Perm(n) for each
V ∈ {0, 1}t+k. For an adversary query (T1,T2,M, s), the oracle sets V = T1∥T2,
evaluates (πV,0(M), πV,1(M)), and returns the specified output(s) according to
s. The xrtk-prtfp advantage of an adversary A is defined as

Advxrtk-prtfp
F (A) := |Pr[Axrtk-prtfpreal

F ⇒ 1]− Pr[Axrtk-prtfpideal
F ⇒ 1]|.

This notion provides a strong security guarantee for primitives used in construc-
tions where the effective key/tweak can be modeled as a secret base XORed with
public or state-dependent values. xrtk-prtfp reduces to its single-key counterpart;
the standard prtfp [4] when ∆K = 0.



8 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

Game xrtk-prtfp-realF

f1 ←$ Func(k, t), f2 ←$ Func(k, k)

K ←$ K,K1 ← f1(K),K2 ← f2(K)

b← AE

return b

Oracle E(T1,T2, X)

return FK2⊕T2(K1 ⊕ T1, X)

Game xrtk-prtfp-idealF

for T1∥T2 ∈ {0, 1}t+k do

πT1∥T2,0, πT1∥T2,1 ←$ Perm(n)

b← AE

return b

Oracle E(T1, T2, X)

return πT1∥T2,0(X), πT1∥T2,1(X)

Fig. 1: xrtk-prtfp security games for a forkcipher F. The adversary queries
(T1,T2,M, s), representing chosen XOR differences ∆T = T1 and ∆K = T2.
The real oracle uses secret random bases K1 ←$ {0, 1}t,K2 ←$ {0, 1}k as base
tweak Tbase = K1 and base key Kbase = K2. The ideal oracle uses random per-
mutations indexed by T1∥T2.

Justification for the XRTK Model. The xrtk-prtfp notion is a powerful yet
realistic assumption for modern primitives like ForkSkinny. While weaker than
the ideal cipher assumption (which implies ideal behavior for any key/tweak
choice), it significantly strengthens the Standard Model assumption by allowing
adversarial control over XOR differences relative to secret bases. Unlike the
ICM, xrtk-prtfp security can potentially be argued based on the specific design
of the primitive and its key/tweak schedule. The feasibility of this assumption
for ForkSkinny is supported by the extensive cryptanalysis of SKINNY and the
general tweakey framework under related-key and related-tweakey models [6,
20, 30, 36, 45]. These analyses provide evidence that ForkSkinny’s design resists
attacks that exploit XOR relations in keys and tweaks, making the xrtk-prtfp
assumption a well-justified basis for the security of our MAC constructions in
this work.

Further, the generic attack results of [8][Lemma 5.3, 5.4, Theorem 6.3 and
8.8] against an ideal primitive suggest security for a forkcipher in XOR-related

setting up to birthday bound in the effective key length i.e., up to O(2 t+k
2 )

queries. For ForkSkinny, where t + k ≥ 2n, this translates to n bits of security
against generic attacks, aligning with our beyond-birthday security claims for
FC-based MACs.

3 Sonikku Family of Fast and Secure MACs

The Sonikku family comprises three fast and secure MACs based on tweakable ex-
panding primitives: BabySonic, SuperSonic, and DarkSonic. All Sonikku instances
provably achieve Beyond Birthday Bound (BBB) PRF-security and demonstrate
significant speed improvements compared to state-of-the-art (SotA) MACs in



Sonikku Family of Fast and Secure MACs 9

various application settings (see Sec. 4). To achieve this speed-up, Sonikku MACs
effectively utilize the input space, tweak space, and importantly, the key space
of the underlying primitive to securely combine message blocks with available
key material.

Design Choices. The Sonikku MACs offer distinct trade-offs in their design.
SuperSonic is designed for hardware parallelization and fast performance on long
messages. It employs parallel primitive calls for message processing and main-
tains an extra internal state to accumulate chained values for a final primitive
evaluation (the finalization call), as detailed in Fig. 3.

In contrast, DarkSonic and BabySonic are sequential MACs. They sacrifice
hardware parallelization support to reduce the minimal state size (the amount
of required RAM), making them more suitable for platforms without parallel
processing capabilities or with stringent resource constraints.

BabySonicminimizes state by using the key only during an initial setup phase,
eliminating the need to store the full key in the main processing loop’s state. This
results in an optimal minimal state size, equivalent to the state size of the un-
derlying expanding primitive. BabySonic utilizes both outputs of the expanding
primitive (F) to generate an internal pseudorandom state, which helps eliminate
dedicated pre- or post-processing calls (such as the initial call in DarkSonic or
the final call in SuperSonic). This design optimizes BabySonic for short message
queries, particularly those up to 95 bytes.

DarkSonic, on the other hand, is a nonce-based construction. It achieves im-
proved performance with increasing message length (approaching SuperSonic’s
speed for various message sizes when there is no parallel processing) by utiliz-
ing only one output branch in most F calls. However, this comes at the cost of
requiring a nonce input for security (see Table 1).

Our Recommendation. Based on their performance characteristics across
message lengths (illustrated in Fig. 5(b)), we recommend BabySonic for short
messages (up to approximately 136 bytes) and SuperSonic for longer messages
(above approximately 96 bytes). DarkSonic serves as a valuable option with inter-
mediate trade-offs, particularly where a nonce is available and efficient processing
of longer sequential messages is needed.

The following subsections formally define each Sonikku instance and state
their PRF security results. Detailed proofs are provided in App. A.

3.1 BabySonic and its PRF Security

BabySonicn/a is a sequential MAC utilizing a tweakable expanding primitive F

with tweak space T = {0, 1}t for t > 0. BabySonicn/a[F] := (K,MAC) has key

space K = {0, 1}k and message spaceM = {0, 1}∗. It offers an “optimal” internal
state size, meaning the memory required for the internal state during processing
is equal to the minimal state size of the underlying expanding primitive itself,
incurring no state overhead from the MAC construction. The MAC algorithm for
BabySonicn/a is depicted in Fig. 2 and its pseudocode is given in Fig. 8. Its PRF
security is formally stated in Theorem 1, with its proof deferred to App. A.1.



10 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

Theorem 1. Let F be a forkcipher with T = {0, 1}t and k ≤ n + a for some
integer 1 ≤ a ≤ n. Then for any adversary A who makes at most q queries
to BabySonicn/a, with maximum query length ℓ (in blocks), such that the total

number of F calls induced is at most σ and 10 ≤ a ≤ min{n − 10, 11n/12}, we
have

AdvPRF
BabySonicn/a[F]

(A) ≤ ℓ ·Advxrtk-prtfp
F (A′) +

(σ − q)2

2n+a+1
+

6σ

2n−a/2

for some adversary A′ making at most q F queries (under fixed but secret and
random bases as per the xrtk-prtfp model), running in time bounded by the run-
ning time of A plus γ · σ, where γ is the runtime of an F call.

From this bound, BabySonicn/a achieves a maximum information-theoretic PRF
security of approximately 3n/4 bits (with respect to primitive queries) when
a = n/2. Thus, BabySonic2 emerges as the optimal variant of BabySonicn/a. For
simplicity, this variant is referred to as BabySonic throughout the paper.

Fig. 2: The BabySonicn/a MAC mode. Processing of a message M is illustrated.
Padding of 10∗ is applied to make the message size a multiple of (n + t + k − 2)
for the smallest possible positive integer x′ blocks (see Fig. 8). The padding indicator
I′pad is 01 if the original message size was a multiple of the block size (n + t + k − 2),
and 11 otherwise. The STH2 function (Summation-Truncation Hybrid-2 [22], shown
below) processes the 2n-bit F output to produce the (n+a)-bit internal chaining value
(or tag), where n+a ≥ k. The k-bit key K is used to derive sub-keys K1 ∈ {0, 1}k and
K2 ∈ {0, 1}t−2 using a key derivation function.

3.2 SuperSonic and its PRF Security

SuperSonic is a parallel MAC based on a tweakable expanding primitive F with
tweak space T = {0, 1}t. SuperSonic[F] := (K,MAC) has key space K = {0, 1}k
and message spaceM = {0, 1}∗. The SuperSonic algorithm is illustrated in Fig. 3
and its pseudocode is in Fig. 8. The formal claim regarding the PRF security of
SuperSonic is presented in Theorem 2, with its proof in App. A.2.



Sonikku Family of Fast and Secure MACs 11

Theorem 2. Let F be a forkcipher with T = {0, 1}t. Then for any adversary A
who makes at most q queries to SuperSonic such that the total number of induced
F calls is at most σ, we have

AdvPRF
SuperSonic[F](A) ≤Advxrtk-prtfp

F (A′) +
4q2

2n+min{n,t−2}

for some adversary A′ making at most σ F queries (under fixed but secret
and random bases as per the xrtk-prtfp model), running in time bounded by the
running time of A plus γ · σ, where γ is the runtime of an F call.

Fig. 3: The SuperSonic MAC mode. Processing of a message M is illustrated. Padding
of 10∗ is applied to make the message size the smallest possible multiple of (n+t+k−e)
blocks (see Fig. 8). The padding indicator I′pad is 01 if the original message size was a
multiple of the block size (n+ t+ k− e), and 11 otherwise. The k-bit key K is used to
derive sub-keys K1 ∈ {0, 1}k and K2 ∈ {0, 1}t−2 using a key derivation function. Note
that e is a constant depending on the maximum message length (defined in Table 1).

3.3 DarkSonic and its PRF Security

DarkSonic is a nonce-based sequential MAC employing a tweakable expanding
primitive F with tweak space T = {0, 1}t. DarkSonic[F] := (K,N ,MAC) has key
space K = {0, 1}k, nonce space N = {0, 1}n, and message space M = {0, 1}∗.
The DarkSonic algorithm is depicted in Fig. 4 and its pseudocode is in Fig. 8.
Its PRF security (under nonce misuse setting) is formally stated in Theorem 3
with its proof deferred to App. A.3.

Theorem 3. Let F be a forkcipher with K = {0, 1}k and T = {0, 1}t. Then for
any nonce-misusing adversary A who makes at most q queries to the DarkSonic
nonce-based MAC, such that the total number of F calls induced is at most σ and
the maximum number of times a nonce is repeated is µ, we have

AdvPRF
DarkSonic[F](A) ≤Advxrtk-prtfp

F (A′) +
6(σ − q)2

2n+min{n,t−2} +
2q(µ− 1)

2min{n,t−2}

for some adversary A′ making at most σ F queries (under fixed but secret
and random bases as per the xrtk-prtfp model), running in time bounded by the
running time of A plus γ · σ, where γ is the runtime of an F call.



12 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

Fig. 4: The DarkSonic MAC mode. Processing of a full message M (including the n-bit
nonce N) is illustrated. Padding of 10∗ is applied to make the message size the smallest
possible multiple of (n + t + k − 2) − n for some positive integer x′ blocks, resulting
in total length (x′(n+ t+ k − 2)− n) + n after appending the nonce (see Fig. 8). The
padding indicator I′pad is 01 if the original message size was a multiple of the message
block size (n+ t+k−2)−n, and 11 otherwise. trnct−2(X) returns the first t−2 bits of
X∥0t−2. The k-bit key K is used to derive sub-keys K1 ∈ {0, 1}k and K2 ∈ {0, 1}t−2

using a key derivation function.

Novelty. The Sonikku MACs introduce several novel aspects:

– BabySonic: This design is unique in utilizing key feedback to avoid storing
the full key during the main processing loop, achieving an optimal minimal
state size equal to that of the underlying primitive. It processes message
blocks at a rate of 1 primitive call per block and achieves beyond birthday
security. Unlike Nested-MAC (NMAC) [21]; a popular key feedback mode,
which achieves a rate of (n+t)/(n+t+k) but requires a FIL-PRF and offers
security below the birthday bound in the key size k, BabySonic provides BBB
security in the block size n. The key feedback structure necessitates a ded-
icated security proof technique involving iterative replacement of primitive
calls with ideal components.

– DarkSonic: This is the first efficient nonce-based MAC (with nonce-misuse se-
curity) designed specifically around forkciphers or tweakable block ciphers. It
uniquely achieves full n-bit security with only an n-bit chaining state (com-
pared to the standard 2n bits in similar schemes) by securely re-using ran-
domness from the previous state. The security analysis using the H-coefficient
technique captures the complexities introduced by this novel state manage-
ment.

– SuperSonic: While following the general structure of parallel BBB-secure
MACs like PMAC Plus, PMACx/2x, and ZMAC, SuperSonic introduces sev-
eral innovations:

1. It efficiently incorporates message blocks into the key argument of the
internal primitive calls by maintaining a checksum of these blocks pro-
cessed in a refined finalization step. Existing designs and their proofs do
not directly support passing message blocks into the key argument in
this manner.



Sonikku Family of Fast and Secure MACs 13

2. It features a novel, efficient finalization call compared to SotA ZMAC.
Specifically, it replaces four final TBC calls with a single FC call, which
is particularly beneficial for short message processing.

3. It employs strategies such as “counter-in-tweak” and tweak domain sep-
aration to yield a simpler, less error-prone design with smaller long-term
secret material, potentially reducing the cost of threshold implementa-
tions. The resulting security proof for SuperSonic is notably compact and
simple, providing a length-independent bound.

TBC Variants. DarkSonic and SuperSonic can be instantiated with TBCs in-
stead of FCs (replacing each branch of an FC with a tweak-domain separated
TBC). These variants achieve security based on the related-key properties of the
underlying TBC (by incorporating message blocks into the TBC’s key input)
and the security results transfer from the xrtk-prtfp model for FCs to related-key
TBC models.

Switching to Single-Key Setting. DarkSonic’s and SuperSonic’s security re-
sults can also be transferred from related-key to single-key setting without any
changes to the MAC designs, except by fixing all the message blocks in the key
arguments to 0s.

Even when instantiated with TBCs and analyzed in a single-key set-
ting (which typically reduces performance compared to utilizing related keys),
DarkSonic and SuperSonic still demonstrate significant speed advantages over
ZMAC. As shown in Table 2, for n = 128, these TBC variants in a single-key
setting still achieve speed-ups of up to 1.6x and 1.77x for messages ≤ 95B, re-
spectively. The speed-up converges towards 1x for very long messages (≥ 64KB).

4 Performance and Discussion

We evaluated the performance of SonikkuMACs on a 32-bit Cortex-M4 processor
(with no parallelization). Our fully parallelizable MAC, SuperSonic, offers length-
independent security up to full n bits. When instantiated with ForkSkinny (and
comparing against ZMAC instantiated with SKINNY) with k = 128 bits and
t = n ∈ {64, 128}, SuperSonic significantly reduces the computation cost for tag
generation. Specifically, it provides speed-ups of 2.76x (for n = 64) and 2.66x
(for n = 128) for messages up to 16B (relevant for IoT/embedded devices), 1.93x
(for n = 64) and 2.15x (for n = 128) for messages up to 95B (relevant for Noise
framework [34] based protocols), and 1.58x (for n = 64) and 1.48x (for n = 128)
for messages up to 64KB. Beyond performance, SuperSonic requires a minimal
state up to 2n bits smaller than ZMAC in single-key setting (see Table 1).

Compared to PMAC TBC1k and PMACx/PMAC2x, SuperSonic processes
approximately n+ t+ k bits of input per F call, whereas the mentioned schemes
are limited to processing n bits per TBC call, regardless of tweak/key size.
Table 1 provides a detailed comparison of Sonikku modes with existing state-of-
the-art MACs.



14 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

The sequential MACs, DarkSonic and BabySonic, are well-suited for appli-
cations lacking parallel processing support or facing severe resource constraints
like small, fixed state size. BabySonic excels by using the key only during initial-
ization, thus eliminating the need for dedicated key storage state and achieving
optimal minimal state equal to the primitive’s state size. DarkSonic, a nonce-
based MAC, utilizes only one output leg of the F calls, achieving significantly
better performance than BabySonic for longer messages while offering compara-
ble security (albeit nonce-based).

ZMAC was originally recognized as achieving optimal efficiency/rate among
TBC-based MACs by processing n+ t bits of data per TBC call [24], assuming
a TBC could handle n-bit input and t-bit tweak per call. Our work pushes this
boundary by exploiting the k-bit key argument space of a tweakable primitive
(particularly FCs) in each of the Sonikku MACs to incorporate an additional k-
bit of public input per call, thereby resetting the margin for achievable optimality
towards n+ t+ k bits per call.

It is worth noting that introducing public inputs into the key argument of a
traditional (tweakable) cipher is generally discouraged due to potential security
vulnerabilities (e.g., related-key attacks) and efficiency concerns (e.g., key sched-
ule recomputation). However, this approach is viable for Sonikku because: 1) Our
security analysis relies on the well-defined xrtk-prtfp model (Sec. 2), which specif-
ically accounts for XOR-related keys and tweaks; and 2) Modern lightweight
primitives like SKINNY and ForkSkinny feature lightweight key schedules where
recomputation cost is minimal, or benefit from hardware parallelism where key
schedule updates are for free.

The feasibility of using primitives in an XOR-related-tweakey manner is sup-
ported by concrete security analyses and results on the tweakey framework [25]
and the related-tweakey security of SKINNY [6] and ForkSkinny [4] as discussed
in Sec. 2.

Fig. 5 provides an efficiency comparison of Sonikku MACs (instantiated with
ForkSkinny) against SotA TBC-based MACs (instantiated with SKINNY) for
n = k = 128. The plots show that Sonikku MACs require significantly fewer
clock cycles than ZMAC and PMAC2x. Among the Sonikku family, DarkSonic
and SuperSonic perform similarly for longer messages and outperform BabySonic
due to their use of one-legged F calls in the main loop. For short messages,
BabySonic is faster as it avoids pre/post-processing calls. Table 2 provides a
detailed speed-up comparison against ZMAC for both n = 64 and n = 128
settings, confirming these observations.

Our data also indicates that increasing the tweak size t can improve a Sonic
MAC’s performance, but this benefit is most pronounced for messages exceeding
a certain length threshold (approximately 2KB for Cortex-M4).

5 SonicAE: SuperSonic based Deterministic AE

Following the design paradigms of SIVx [29] (based on PMAC2x) and ZAE [24]
(based on ZMAC), we construct SonicAE, a stateless or deterministic authen-



Sonikku Family of Fast and Secure MACs 15

0

100000

200000

300000

400000

500000

600000

700000

800000

16 116 216 316 416 516 616 716 816 916 1016

# 
of

cl
oc

kc
yc

le
s 

re
qu

ire
d 

to
 p

or
ce

ss

Message length (in bytes)

PMAC2x (t=n) ZMAC (t=n) BabySonic (t=n) BabySonic (t=2n)
DarkSonic (t=n) DarkSonic (t=2n) SuperSonic (t=n) SuperSonic (t=2n)

20000

30000

40000

50000

60000

70000

80000

90000

100000

16 32 48 64 80 96 112 128

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

16 116 216 316 416 516 616 716 816 916 1016

# 
of

cl
oc

kc
yc

le
s 

re
qu

ire
d 

to
 p

or
ce

ss

Message length (in bytes)

PMAC1 PMAC2x (t=n) ZMAC (t=n) DarkSonic (t=n) SuperSonic (t=n)

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

16 32 48 64 80 96 112 128

(a) MACs targeting 64 bits of security

0

100000

200000

300000

400000

500000

600000

700000

800000

16 116 216 316 416 516 616 716 816 916 1016

# 
of

cl
oc

kc
yc

le
s 

re
qu

ire
d 

to
 p

or
ce

ss

Message length (in bytes)

PMAC2x (t=n) ZMAC (t=n) BabySonic (t=n) BabySonic (t=2n)
DarkSonic (t=n) DarkSonic (t=2n) SuperSonic (t=n) SuperSonic (t=2n)

20000

30000

40000

50000

60000

70000

80000

90000

100000

16 32 48 64 80 96 112 128

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

16 116 216 316 416 516 616 716 816 916 1016

# 
of

cl
oc

kc
yc

le
s 

re
qu

ire
d 

to
 p

or
ce

ss

Message length (in bytes)PMAC1 PMAC2x (t=n) ZMAC (t=n) DarkSonic (t=n) SuperSonic (t=n)

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

16 32 48 64 80 96 112 128

(b) MACs targeting 96 to 128 bits of security

Fig. 5: Efficiency comparison of Sonikku with other (tweakable) primitive based SotA
MACs, using k = 128 and n = 64 or 128 bits depending on the targeted security. All
TBCs and FCs are instantiated with SKINNY and ForkSkinny, respectively. The plots
show the number of clock cycles required to process messages of corresponding lengths.

ticated encryption (DAE) scheme. A DAE scheme provides security that does
not rely on inputs such as random IVs or unique nonces for its core security
guarantees [38]. The security notion for DAE is known as dae. Importantly, a
scheme proven dae-secure can accept a nonce as part of the associated data (AD)
and inherently provides security against nonce misuse. Such schemes and their
achieved security are referred to as misuse-resistant AEs (MRAEs) and the mrae
notion, respectively. SonicAE is dae-secure and thus provides mrae security.

SonicAE is an SIV [38]-like composition utilizing the SuperSonic MAC (from
Sec. 3.2) and a modified GCTR2-3 [1] encryption mode, denoted GCTR′2-3.
The composition is illustrated in Fig. 6. GCTR′2-3 is based on GCTR2-3 but
incorporates two key modifications:

1. Tweak domain separation is achieved by fixing the last two tweak bits to 10.



16 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

MAC → BabySonic DarkSonic SuperSonic

Block size n (bits) → 128 64 128 64 128

IT PRF Security (bits) → 96 64 128 64 128

Max. message length ↓ Speed-up (factor) against ZMAC

16B 4.36x 2.49x 2.19x 2.76x 2.66x

95B 2.11x 2.26x 2.39x 1.93x 2.15x

4KB 1.02x 1.66x 1.56x 1.60x 1.51x

64KB 0.98x 1.64x 1.52x 1.58x 1.48x

Table 2: Efficiency comparison of Sonikku (instantiated with ForkSkinny) against
ZMAC (instantiated with SKINNY) with k = 128 bits and t = n ∈ {64, 128} bits.
Entries show the ratio of clock cycles for ZMAC relative to the corresponding Sonikku
MAC for a given maximum message length. Green cells indicate where Sonikku is faster
than ZMAC, while red indicates it is slower.

2. The nonce input used in GCTR2-3 is replaced by the second n-bit half of
the 2n-bit tag generated by SuperSonic.

SonicAE is a dae-secure scheme, achieving beyond birthday security of
min{n, (n + t)/2} bits (as stated in Theorem 4). It processes, on average,
2n(n + t + k)/(3n + t + k) bits per primitive call of the underlying expanding
primitive F. For minimal settings of t = 0 and k = n, this processing rate is n
bits per F call, comparable to existing FC-based AE schemes like PAEF, SAEF,
and RPAEF [4]. However, unlike these schemes, SonicAE offers the stronger dae
security guarantee. For larger values of t and/or k, SonicAE’s processing rate
approaches 2n bits per F call, which is significantly higher and better than the
rates of SotA AE schemes such as ZAE and Deoxys-II [26].

We provide a concrete performance comparison of SonicAE with other SotA
AE schemes (ZAE, Deoxys-I [26], Deoxys-II, OCB3 [27], SIV [38], and CCM [41])
in Fig. 7 and Table 3. For this comparison, all FCs are instantiated with
ForkSkinny and all TBCs/BCs with SKINNY. We set the associated data length
to 0 to provide a conservative estimate of speedup, as increasing AD length
would further improve SonicAE’s relative performance.

Fig. 6: The SonicAE AEAD mode. This figure illustrates the SIV-like composition
processing injectively padded associated data AD and message M using the SuperSonic
MAC mode and the GCTR′

2-3 encryption mode with key K. The second half of the
2n-bit tag from SuperSonic is used as the effective nonce for GCTR′

2-3.



Sonikku Family of Fast and Secure MACs 17

64

1064

2064

3064

4064

5064

6064

16 116 216 316 416 516 616 716 816 916 1016

# 
of

ro
un

ds
 re

qu
ire

d 
to

 p
or

ce
ss

Message length (in bytes)

CCM, SIV OCB3, Deoxys-I Deoxys-II ZAE SonicAE

Fig. 7: Efficiency comparison of SonicAE (SIV composition of SuperSonic and GCTR′
2-

3 instantiated with ForkSkinny) with other SotA AE modes (instantiated with SKINNY)
for n = k = 128 bits. The plot shows the total number of primitive calls required to
process a message of corresponding length (assuming 0 AD length).

As evidenced by Fig. 7 and Table 3, SonicAE offers significantly better per-
formance than SotA AE schemes providing comparable nonce-misuse (mrae)
security. Notably, SonicAE[ForkSkinny] achieves speed-ups of at least 1.41x (for
95B messages) and 1.32x (for 64KB messages) compared to ZAE[SKINNY] and
Deoxys-II[SKINNY] under the setting k = 128, t = n ∈ {64, 128}.
Security of SonicAE. We formally state the claim regarding the dae security
of SonicAE in Theorem 4. The detailed proof is deferred to App. C.

Theorem 4. Let F be a forkcipher with T = {0, 1}t. Then for any adversary A
who makes at most q queries to SonicAE such that the total number of induced
F calls is at most σ, we have

Advdae
SonicAE[F](A) ≤Advxrtk-prtfp

F (A′) + 3q(σ + q)

2n+min{n,t−2} +
q

22n

for some adversary A′ making at most σ F queries (under fixed but secret
and random bases as per the xrtk-prtfp model), running in time bounded by the
running time of A plus γ · σ, where γ is the runtime of an F call.

6 Conclusion

In this work, we introduced Sonikku, a novel family of fast and secure MACs
based on tweakable expanding primitives, comprising the sequential BabySonic
and DarkSonic, and the parallel SuperSonic. The Sonikku family provides signif-
icant advantages over state-of-the-art (T)BC-based MACs: substantially higher
performance, beyond birthday to full n-bit security, smaller state, and design
flexibility for diverse applications including resource-constrained IoTs.

BabySonic is particularly effective for short queries, offering strong security
(3n/4 bits) and efficiency due to its lack of pre/post-processing and optimal



18 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

AE → ZAE Deoxys-II OCB3, Deoxys-I CCM, SIV

Block size n (bits) → 64 128 64 128 64 128 64 128

IT nAE Security (bits) → 64 128 64 128 32, 64 64, 128 32 64

IT MRAE Security (bits) → 64 128 <64 <128 NIL NIL NIL, 32 NIL, 64

Max. message length SonicAE speed-up/slow-down (multiplicative factor) against the mode

16B 2.41x 1.94x 1.20x 0.73x 0.72x 0.48x 1.30x 0.81x

95B 1.56x 1.73x 1.56x 1.41x 0.81x 0.76x 1.46x 1.26x

4KB 1.33x 1.35x 1.74x 1.77x 0.87x 0.88x 1.57x 1.47x

64KB 1.32x 1.34x 1.75x 1.78x 0.87x 0.89x 1.57x 1.48x

Table 3: Efficiency comparison of SonicAE (instantiated with ForkSkinny) against SotA
AE modes (instantiated with SKINNY) with k = 128 bits, n ∈ {64, 128} bits and
t ∈ {0, n} depending on the need of the compared AE mode. Entries show the ratio
of the number of primitive calls required by the corresponding SotA AE mode relative
to SonicAE for a given maximum message length (assuming 0 AD length). Green cells
indicate where SonicAE is faster/better than the compared mode, while red indicates
it is slower.

state size, achieving at least 2.11x (and up to 4.36x) speed-up over ZMAC
(n = t = k = 128) for messages ≤ 95B.

DarkSonic improves upon BabySonic for longer messages, enhancing security
(near n bits) and performance by using primarily one primitive output branch,
providing nonce-misuse resistance with logarithmically degrading security upon
nonce repetition.

SuperSonic offers message-length-independent security (near n bits) without a
nonce, is fully parallelizable, and provides performance comparable to DarkSonic
in sequential execution. DarkSonic and SuperSonic achieve speed-ups of at least
1.93x and 1.48x, respectively, against ZMAC (k = 128, t = n ∈ {64, 128}) for
messages up to 95B and 64KB.

We also demonstrated the family’s versatility by constructing SonicAE, an
efficient, beyond-birthday secure, stateless, and deterministic authenticated en-
cryption scheme based on SuperSonic.

Overall, Sonikku represents a significant advancement in designing fast, se-
cure, and efficient MACs and AEADs leveraging expanding primitives, offering
strong guarantees across various applications and environments.

Acknowledgments

This work was supported by CyberSecurity Research Flanders with reference
number VR20192203. This work was supported in part by the Research Council
KU Leuven C1 on Security and Privacy for Cyber-Physical Systems and the
Internet of Things with contract number C16/15/058 and by the Flemish Gov-
ernment through FWO Project G.0835.16 A security Architecture for IoT. Elena
Andreeva was supported by the Austrian Science Fund (FWF) SpyCoDe grant
with number 10.55776/F8507-N.



Sonikku Family of Fast and Secure MACs 19

References

1. Andreeva, E., Bhati, A.S., Preneel, B., Vizár, D.: 1, 2, 3, Fork: Counter Mode
Variants based on a Generalized Forkcipher. IACR Trans. Symmetric Cryptol.
2021(3), 1–35 (2021)

2. Andreeva, E., Bhati, A.S., Vizár, D.: Nonce-misuse security of the SAEF authen-
ticated encryption mode. In: Selected Areas in Cryptography: 27th International
Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised
Selected Papers 27. pp. 512–534. Springer (2021)

3. Andreeva, E., Deprez, A., Pittevils, J., Roy, A., Bhati, A.S., Vizár, D.: New results
and insighs on forkae. In: NIST LWC workshop (2020)

4. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
Forkcipher: a New Primitive for Authenticated Encryption of Very Short Messages.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 153–182. Springer (2019)

5. Andreeva, E., Weninger, A.: A forkcipher-based pseudo-random number generator.
In: International Conference on Applied Cryptography and Network Security. pp.
3–31. Springer (2023)

6. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO 2016. pp. 123–153 (2016)

7. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental Cryptography: The Case of
Hashing and Signing. In: Desmedt, Y.G. (ed.) Advances in Cryptology— CRYPTO
’94. pp. 216–233. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

8. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 491–506. Springer (2003)

9. Berti, F., Standaert, F.X., Levi, I.: Authenticity in the presence of leakage using a
forkcipher. Cryptology ePrint Archive, Paper 2024/1325 (2024)

10. Bhargavan, K., Leurent, G.: On the Practical (In-)Security of 64-Bit Block Ciphers:
Collision Attacks on HTTP over TLS and OpenVPN. In: ACM SIGSAC Conference
on Computer and Communications Security. p. 456–467 (2016)

11. Bhati, A.S., Andreeva, E., Vizár, D.: OAE-RUP: a strong online AEAD security
notion and its application to SAEF. In: International Conference on Security and
Cryptography for Networks. pp. 117–139. Springer (2024)

12. Bhati, A.S., Dufka, A., Andreeva, E., Roy, A., Preneel, B.: Skye: An Expanding
PRF based Fast KDF and its Applications. In: Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security. pp. 1082–1098 (2024)

13. Bhati, A.S., Pohle, E., Abidin, A., Andreeva, E., Preneel, B.: Let’s Go Eevee! A
Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Compu-
tation. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security. pp. 2546–2560 (2023)

14. Bhati, A.S., Verbauwhede, M., Andreeva, E.: Breaking, Repairing and Enhancing
XCBv2 into the Tweakable Enciphering Mode GEM. Cryptology ePrint Archive,
Paper 2024/1554 (2024)

15. Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication. In: EUROCRYPT 2002. pp. 384–397 (2002)

16. Cogliati, B., Lee, J., Seurin, Y.: New Constructions of MACs from (Tweakable)
Block Ciphers. IACR Transactions on Symmetric Cryptology 2017(2), 27–58
(2017)



20 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

17. Datta, N., Dutta, A., List, E., Mandal, S.: FEDT: Forkcipher-based leakage-
resilient beyond-birthday-secure AE. IACR Communications in Cryptology (2024)

18. Datta, N., Dutta, A., Mancillas-López, C.: LightMAC: Fork it and make it faster.
Advances in Mathematics of Communications 18(5), 1406–1441 (2024)

19. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
PMAC Plus. IACR Transactions on Symmetric Cryptology pp. 268–305 (2017)

20. Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-schedule
algorithms in rectangle attacks. In: Advances in Cryptology–EUROCRYPT 2022.
pp. 3–33. Springer (2022)

21. Gaži, P., Pietrzak, K., Rybár, M.: The Exact PRF-Security of NMAC and HMAC.
Cryptology ePrint Archive, Paper 2014/578 (2014)

22. Gunsing, A., Mennink, B.: The Summation-Truncation Hybrid: Reusing Discarded
Bits for Free. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology –
CRYPTO 2020. pp. 187–217. Springer International Publishing, Cham (2020)

23. Iwata, T., Kurosawa, K.: OMAC: One-Key CBCMAC. In: Johansson, T. (ed.) Fast
Software Encryption. pp. 129–153. Springer Berlin Heidelberg, Berlin, Heidelberg
(2003)

24. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: a fast tweakable block
cipher mode for highly secure message authentication. In: Annual international
cryptology conference. pp. 34–65. Springer (2017)

25. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. pp. 274–288. Springer (2014)

26. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41 (2016), https://

competitions.cr.yp.to/round3/deoxysv141.pdf

27. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) Fast Software Encryption. pp. 306–327. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

28. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: CRYPTO
2002. pp. 31–46 (2002)

29. List, E., Nandi, M.: Revisiting full-PRF-secure PMAC and using it for beyond-
birthday authenticated encryption. In: Cryptographers’ Track at the RSA Confer-
ence. pp. 258–274. Springer (2017)

30. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey
settings. Cryptology ePrint Archive (2016)

31. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: International Conference on Fast Software Encryption. pp. 43–59.
Springer (2016)

32. Naito, Y.: Full PRF-secure message authentication code based on tweakable block
cipher. In: International Conference on Provable Security. pp. 167–182. Springer
(2015)

33. Patarin, J.: The “Coefficients H” Technique. In: Selected Areas in Cryptography
(SAC). p. 328–345 (2008)

34. Perrin, T.: The Noise protocol framework (2016), noiseprotocol.org
35. Purnal, A., Andreeva, E., Roy, A., Vizár, D.: What the Fork: Implementation As-

pects of a Forkcipher. In: NIST Lightweight Cryptography Workshop 2019 (2019)
36. Qin, L., Dong, X., Wang, X., Jia, K., Liu, Y.: Automated Search Oriented to Key

Recovery on Ciphers with Linear Key Schedule. IACR ToSC pp. 249–291 (2021)
37. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements

to Modes OCB and PMAC. In: ASIACRYPT 2004. pp. 16–31 (2004)

https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
noiseprotocol.org


Sonikku Family of Fast and Secure MACs 21

38. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: EUROCRYPT 2006. pp. 373–390. Springer (2006)

39. Soliton: Teleoperation of Remote Machinery, https://www.solitonsystems.com/
low-latency-video/remote-operation/remote-operation-of-machinery

40. TER: BRICK Radio Remote Control (2018), https://www.controldevices.

group/PDFS/TER/TER%20Brick%20Radio%20Remote%20Control%20Data%20Sheet.

pdf

41. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). IETF
RFC 3610 (Informational) (Sep 2003), http://www.ietf.org/rfc/rfc3610.txt

42. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Cryptographers’ Track
at the RSA Conference. pp. 366–381. Springer (2010)

43. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Annual
Cryptology Conference. pp. 596–609. Springer (2011)

44. YOURCONTROL: The Proxo Wireless Remote Control System, https://

your-control.com/proxo/

45. Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle
attacks on block ciphers with linear key schedule: applications to SKINNY and
GIFT. Designs, Codes and Cryptography 88(6), 1103–1126 (2020)

A Security Analysis of Sonikku MACs

A.1 BabySonicn/a: Proof of Theorem 1

We prove the PRF security of BabySonicn/a[F] by bounding the advantage
of any adversary A in distinguishing it from a uniform random function
(URF). We use the standard indistinguishability game framework, compar-
ing the real game (PRF-real) where A queries the MAC Π with a ran-
dom secret key, against an ideal game (PRF-ideal) where the oracle re-
turns a uniformly random string for each distinct query. The PRF advan-
tage is AdvPRF

Π (A) =
∣∣Pr[APRF-realΠ ⇒ 1]− Pr[APRF-idealΠ ⇒ 1]

∣∣. We slightly
abuse the notation by dropping the bit 1 for brevity and denote it as∣∣Pr[APRF-realΠ ]− Pr[APRF-idealΠ ]

∣∣ .
The BabySonicn/a security proof utilizes a hybrid argument, replacing com-

ponents of the real construction with ideal ones in a sequence of games. Let q
be the number of queries made by A, ℓ the maximum query length in blocks
(i.e., ℓ = max{ℓ1, . . . , ℓq} where ℓi is the length of the ith query in n + t + k
bit blocks), and σ the total number of primitive calls across all q queries. We
denote qi as the number of queries with at least i primitive calls (i.e., containing

at least i message blocks), such that
∑ℓ

i=1 qi = σ. Note that q1 = q.

Recursively replacing F. We first replace the first FK2⊕T2
(K1 ⊕ T1, ·) with

a pair of independent random tweakable permutations π0 = (πT1∥T2,0 ←$

Perm(n))T1∥T2∈{0,1}t+k and π1 = (πT1∥T2,1 ←$ Perm(n))T1∥T2∈{0,1}t+k and let

BabySonic′n/a[STH2[(π0, π1)],STH2[F], . . . ,STH2[F]] denote the BabySonic mode

that uses (π0, π1) in place of the first F call, which yields AdvPRF
BabySonicn/a[F]

(A) ≤
Advxrtk-prtfp

F (Bq1)+AdvPRF
BabySonic′

n/a
[STH2[(π0,π1)],STH2[F],...,STH2[F]](A). Here Bqi is

an xrtk-prtfp-adversary against F that can make at most qi queries to F.

https://www.solitonsystems.com/low-latency-video/remote-operation/remote-operation-of-machinery
https://www.solitonsystems.com/low-latency-video/remote-operation/remote-operation-of-machinery
https://www.controldevices.group/PDFS/TER/TER%20Brick%20Radio%20Remote%20Control%20Data%20Sheet.pdf
https://www.controldevices.group/PDFS/TER/TER%20Brick%20Radio%20Remote%20Control%20Data%20Sheet.pdf
https://www.controldevices.group/PDFS/TER/TER%20Brick%20Radio%20Remote%20Control%20Data%20Sheet.pdf
http://www.ietf.org/rfc/rfc3610.txt
https://your-control.com/proxo/
https://your-control.com/proxo/


22 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

We now replace the first (π0, π1) call and its following STH2 call together
with a random function f = (fT1∥T2

←$ Func(n, n+ a))T1∥T2∈{0,1}t+k , denote it

by BabySonic′n/a[f, STH2[F], . . . ,STH2[F]] and apply the summation-truncation
results from [22, Theorem 2]. This gives us for 0 ≤ a ≤ min{n− 10, 11n/12},

AdvPRF
BabySonic′

n/a
[STH2[(π0,π1)],STH2[F],...,STH2[F]](A)

≤ AdvPRF
BabySonic′

n/a
[f,STH2[F],...,STH2[F]](A) + 3

( q1
2n−a/3

)3/2

+
1√
2π

( q1
2n−5

)2n−a−2

+

√
2q1

2n−a/2

≤ AdvPRF
BabySonic′

n/a
[f,STH2[F],...,STH2[F]](A) +

6q1
2n−a/2

when a ≥ 10, q ≤ 2n−a/2 .

At this step the key input, let say Ki
2, to the second primitive call (or the

current first FC call) in ith query of BabySonic′n/a[f, STH2[F], . . . ,STH2[F]] can

be written as (Ki
2 ⊕ K) ⊕ K where (Ki

2 ⊕ K) is independent of K as Ki
2 is

originally sampled independently and uniformly at random (using f). Hence,
we can follow the same steps as above for this second primitive call and iterate
this procedure until the last primitive call (in the longest query). Combining
the bounds from all these steps, we get for 10 ≤ a ≤ min{n − 10, 11n/12} and
q ≤ 2n−a/2,

AdvPRF
BabySonicn/a[F]

(A) ≤
ℓ∑

i=1

Advxrtk-prtfp
F (Bqi) +

6
∑ℓ

i=1 qi

2n−a/2
+AdvPRF

BabySonic′
n/a

[f,...,f ](A)

≤ ℓ ·Advxrtk-prtfp
F (Bq) +

6σ

2n−a/2
+AdvPRF

BabySonic′
n/a

[f,...,f ](A) .
(1)

Since σ ≥ q, for q > 2n−a/2 this bound becomes void and hence the as-
sumption of q ≤ 2n−a/2 can be dropped. After accounting for the advantages
stemming from the primitive replacement and the STH composition, the remain-
ing task is to bound the advantage of distinguishing the final hybrid game (where
internal states are produced by random functions) from a true uniform random
function i.e., distinguishing between the games PRF-realBabySonic′

n/a
[f,...,f ] and

PRF-idealBabySonic′
n/a

[f,...,f ]. These games are indistinguishable if there are no

collisions among the inputs of f calls that correspond to non-prefixed message
blocks in BabySonic′n/a[f, . . . , f ] over q queries. There are σ f calls in total, tak-
ing corresponding F’s (X,T1, T2) triplet as input. σ− q of these calls correspond
to the message block processing steps (non-final calls), and q calls correspond
to the final block processing. Since the internal states output by these ran-
dom functions are independent, uniformly random (n + a)-bit values, we have
AdvPRF

BabySonic′
n/a

[f,...,f ](A) ≤ (
(
σ−q
2

)
+
(
q
2

)
−
(
q
2

)
)/2n+a where the subtracted term

corresponds to the
(
q
2

)
pairs of input-tweak pairs that are the first distinct input-

tweak pairs in their corresponding queries (and hence there will be no collisions



Sonikku Family of Fast and Secure MACs 23

among them). Thus, for 10 ≤ a ≤ min{n− 10, 11n/12}, we have:

AdvPRF
BabySonicn/a[F]

(A) ≤ ℓ ·Advxrtk-prtfp
F (Bq) +

(σ − q)2

2n+a+1
+

6σ

2n−a/2

and hence the result of Theorem 1. ⊓⊔

A.2 SuperSonic: Proof of Theorem 2

We use the same definition of AdvPRF
Π (A) for a MAC Π as defined in App. A.1.

Replacing F. We first replace FK2⊕T2(K1 ⊕ T1, ·) with a pair of independent
random tweakable permutations π0 = (πT1∥T2,0 ←$ Perm(n))T1∥T2∈{0,1}t+k and
π1 = (πT1∥T2,1 ←$ Perm(n))T1∥T2∈{0,1}t+k and let SuperSonic[(π0, π1)] denote the

SuperSonic mode that uses π0, π1 instead of F, which yields AdvPRF
SuperSonic[F](A) ≤

Advxrtk-prtfp
F (B) +AdvPRF

SuperSonic[(π0,π1)](A) .
Now, the adversary is left with the goal of distinguishing be-

tween the games PRF-realSuperSonic[(π0,π1)] and PRF-idealSuperSonic[(π0,π1)].
For simplicity, we denote these games by “real world” and “ideal
world”, respectively. Hence, we want to bound AdvPRF

SuperSonic[(π0,π1)](A) =∣∣Pr[APRF-realSuperSonic[(π0,π1)] ]− Pr[APRF-idealSuperSonic[(π0,π1)] ]
∣∣ .

We now recall the notation that for the ith query to the MAC oracle with
input M i and output Tagi, SuperSonic (with a provided integer e) first adds
padding of 10∗ in the end of M i and then internally processes the updated M i

in blocks P i
1, . . . , P

i
ℓi−1 (as defined in the MAC algorithm of SuperSonic, Fig. 8).

Here ℓi−1 represents, the length ofM i in (n+t+k−e)-bit blocks. SuperSonic also
processes and XORs the internal chaining values as the accumulated randomness
to its last primitive call which we denote here by (∆i

1, ∆
i
2, ∆

i
3)s where∆

i
1,∆

i
2 and

∆i
3 correspond to the final chaining values used in (or XORed to) the final primi-

tive call’s input, tweak T1 and tweak T2, respectively. Let us denote the internally
processed π0 calls’ outputs as αi

js (corresponding to P i
j = M i

3j−2∥M i
3j−1∥M i

3j)

then we can define ∆s as ∆i
1 = ⊕ℓi−1

j=1 2ℓ
i−jαi

j , ∆
i
2 = ⊕ℓi−1

j=1 (αi
j ⊕M3j−1) and

∆i
3 = ⊕ℓi−1

j=1 M3j . Let us now define the bad events when the real world can be
distinguished from the ideal world.

BadT1 a.k.a. “Final Input Collision in Real-world”: There exists a pair of queries
1 ≤ i′ < i ≤ q such that, the (i, ℓi) block call has tweak-input collision with

the (i′, ℓi
′
) block call, i.e., Ti

ℓi = Ti′

ℓi′ and ∆i
2 = ∆i′

2 .

BadT2 a.k.a. “Output Collision in Ideal-world”: There exists a pair of queries
1 ≤ i′ < i ≤ q such that, they have same tag in the ideal-world and in
real-world, the (i, ℓi) block call has tweak collision with the (i′, ℓi

′
) block call

given that the inputs to these calls are distinct, i.e., in real world we have

Ti
ℓi = Ti′

ℓi′ , ∆
i
2 ̸= ∆i′

2 and in ideal world we have (Tagi1 = Tagi
′

1 ) ∨ (Tagi2 =

Tagi
′

2 ) .



24 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

Note that the last condition in BadT2 of ideal-world tag collision is inde-
pendent of the other two real-world conditions. Let us define BadT2r (resp.,
BadT2i) as BadT2 with the ideal-world tag collision condition (resp., the other
two real-world conditions) removed. Now, it is easy to see that for Πss =
SuperSonic[(π0, π1)] we have AdvPRF

Πss
(A)

≤Pr[BadT1] +
∣∣Pr[APRF-realΠss ∧ ¬BadT1]− Pr[APRF-idealΠss ∧ ¬BadT1]

∣∣
=Pr[BadT1] +

∣∣Pr[APRF-realΠss ∧ BadT2r]− Pr[APRF-idealΠss ∧ BadT2r]
∣∣

=Pr[BadT1] + Pr[BadT2r] ·
∣∣Pr[APRF-realΠss | BadT2r]− Pr[APRF-idealΠss | BadT2r]

∣∣
≤Pr[BadT1] + Pr[BadT2r] · Pr[BadT2i] = Pr[BadT1] + Pr[BadT2] . (2)

Distribution of ∆s. We can notice that ∆3s are deterministic and defined
using public input, however, the other two ∆ values are sampled using random
tweakable permutations. We now define the exhaustive set of possible cases on
how these ∆s are sampled in the ith query (for any 1 ≤ i ≤ q) to define an upper
bound on their sampling probability.

1. For given ith query, if there exists at least 2 underlying block calls (each
processing input of size n + t + k − e bits) that contain unique input when
compared with any of the previous queries i′ < is: Clearly then there are at
least two α values that are fresh outputs of random permutations in both
∆1 and ∆2 equations and hence for any c1, c2 ∈ {0, 1}n we have Pr[∆i

1 =
c1 ∧∆i

2 = c2] = Pr[∆i
1 = c1] · Pr[∆i

2 = c2] ≤ 1/(2n − q)2 .
2. For given ith query, if there exists only one underlying block call (processing

input of size n+ t+ k − e bits) that contains unique input when compared
with some previous query i′ < is: Now, there is only one α value that is
fresh output of a random permutation in both ∆1 and ∆2 equations and
hence for any c1, c2 ∈ {0, 1}n we have Pr[∆i

1 = c1 ∧ ∆i
2 = c2] = Pr[∆i

1 =
c1] · Pr[∆i

2 = c2 | ∆i
1 = c1] ≤ (1/(2n − q)) · Pr[∆i

2 = c2 | ∆i
1 = c1] .

Note that since query i and i′ share all except one block input, lets say ath

one (P i
a), we have that ∆i

1⊕∆i′

1 = 2ℓ−a(∆i
2⊕∆i′

2 ⊕M i
3a−1⊕M i′

3a−1)[1 . . . n]

which means if c1 = ∆i′

1 and c2 = ∆i′

2 then one of the following two always
holds: 1. ∆i

3 ̸= ∆i′

3 and Pr[∆i
1 = c1∧∆i

2 = c2] ≤ (1/(2n−q)) ·1 = 1/(2n−q) .
and 2. ∆i

3 = ∆i′

3 and Pr[∆i
1 = c1 ∧∆i

2 = c2] ≤ (1/(2n − q)) · 0 = 0 . Or in
other words, Pr[∆i

1 = ∆i′

1 ∧∆i
2 = ∆i′

2 ∧∆i
3 = ∆i′

3 ] = 0 .

Hence, we can say that for distinct messages Pr[∆i
1 = ∆i′

1 ∧ ∆i
2 = ∆i′

2 ∧ ∆i
3 =

∆i′

3 ] ≤ 1/(2n − q)2 .

Bounding bad cases: BadT1. Note that under BadT1, we know that there

exists at least one pair of indices i′ < i such that Ti
ℓi = Ti′

ℓi′ and ∆i
2 = ∆i′

2 .
Now, as analyzed above we have that for all i′ < i, the two ∆ masks (∆i

1, ∆
i
2)

are sampled randomly such that the required collisions can only occur with at
most probability 2n−min{n,t−2}(1/(2n − q)2). Since there are total q possible



Sonikku Family of Fast and Secure MACs 25

values of i in a session, each having no more than q possible values of i′, we get

Pr[BadT1] ≤ 2q2

2n+min{n,t−2} for q ≤ 2n−1 .

BadT2. Similarly, under BadT2, we know that there exists at least one pair of

indices i′ < i such that Ti
ℓi = Ti′

ℓi′ , ∆
i
2 ̸= ∆i′

2 but (Tagi1 = Tagi
′

1 ) ∨ (Tagi2 =

Tagi
′

2 ). Note that from the same analysis as BadT1, the first collision of tweaks
here can occur with at most probability of 2n−min{n,t−2}/(2n−q) and further the
tags in the ideal world are chosen independently and uniformly at random. Since
there are total q possible values of i in a session, each having no more than q

possible values of i′, we get Pr[BadT2] ≤ q2

2 ·
2

2min{n,t−2}

(
1
2n + 1

2n

)
= 2q2

2n+min{n,t−2}

for q ≤ 2n−1 .
Now, combining with Exp. 2, we get that AdvPRF

SuperSonic[(π0,π1)](A) ≤
4·q2

2n+min{n,t−2} (we drop the condition q ≤ 2n−1 as for q > 2n−1, this bound
anyway becomes void) and hence the result of Theorem 2. ⊓⊔

A.3 DarkSonic: Proof of Theorem 3

Coefficient H Technique. The coefficient H is a simple but powerful proof
technique by Patarin [33]. It is often used to prove indistinguishability of a
provided construction from an idealized object for an information-theoretic ad-
versary. Coefficient-H based proofs use the concept of “transcripts”. A transcript
is defined as a complete record of the interaction of an adversary A with its or-
acles in the indistinguishability experiment. For example, if (Mi, Ti) represents
the input and output of the i-th query of A to its oracle and the total num-
ber of queries made by A is q then the corresponding transcript (denoted by
τ) is defined as τ = ⟨(M1, T1), . . . , (Mq, Tq)⟩. The goal of an adversary A is to
distinguish interactions in the real world Oreal from the ones in ideal world Oideal.

We denote the distribution of transcripts in the real and the ideal world by
Θreal and Θideal, respectively. We call a transcript τ attainable if the probability
of achieving τ in the ideal world is non-zero. Further, w.l.o.g. we also assume
that A does not make any duplicate or prohibited queries. We can now state the
fundamental Lemma of coefficient H technique.

Lemma 1 (Fundamental Lemma of the coefficient H Technique [33]).
Consider that the set of attainable transcripts is partitioned into two disjoint sets
Tgood and Tbad. Also, assume there exist ϵ1, ϵ2 ≥ 0 such that for any transcript

τ ∈ Tgood, we have Pr[Θreal=τ ]
Pr[Θideal=τ ] ≥ 1− ϵ1, and Pr[Θideal ∈ Tbad] ≤ ϵ2. Then, for all

adversaries A, it holds that

|Pr[AOreal ]− Pr[AOideal ]| ≤ ϵ1 + ϵ2.

Proof of Theorem 3. We use the same definition of AdvPRF
Π (A) for a MAC

Π as defined in App. A.1.

Replacing F. We first replace FK2⊕T2
(K1 ⊕ T1, ·) with a pair of independent

random tweakable permutations π0 = (πT1∥T2,0 ←$ Perm(n))T1∥T2∈{0,1}t+k and



26 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

π1 = (πT1∥T2,1 ←$ Perm(n))T1∥T2∈{0,1}t+k and let DarkSonic[(π0, π1)] denote the

DarkSonic mode that uses π0, π1 instead of F, which yields AdvPRF
DarkSonic[F](A) ≤

Advxrtk-prtfp
F (B) +AdvPRF

DarkSonic[(π0,π1)](A) .
Now, the adversary is left with the goal of distinguishing be-

tween the games PRF-realDarkSonic[(π0,π1)] and PRF-idealDarkSonic[(π0,π1)].
For simplicity, we denote these games by “real world” and “ideal
world”, respectively. Hence, we want to bound AdvPRF

DarkSonic[(π0,π1)](A) =∣∣Pr[APRF-realDarkSonic[(π0,π1)] ]− Pr[APRF-idealDarkSonic[(π0,π1)] ]
∣∣ .

Transcripts. Following the coefficients H technique [33], we describe the inter-
actions of A with its oracles in a transcript :

τ = ⟨(M i, Tagi)qi=1⟩

For the ith query to the MAC oracle with input M i (inc. nonce N i as M i
1) and

output Tagi, DarkSonic first adds necessary padding of 10∗ in the end of M i and
then internally processes the updated M i in blocks P i

1, . . . , P
i
ℓi−1, P

i
∗ (as defined

in the MAC algorithm of DarkSonic, Fig. 8). Here ℓi−1 represents, the length of
M i in (n+ t+k−2)-bit blocks. DarkSonic also processes internal chaining values
defined using underlying permutation calls π0s which we denote here by ∆i,js.
Here (i, j) represents the jth primitive call under the ith message query. We note
that the first and the last primitive call in every query require both permutation
calls (π0, π1) internally and hence generate an extra ∆ value each (from their π1

permutation calls) which we denote by ∆i,0 and ∆i,ℓi+1, respectively. Now, the

final non-shortened/full 2n-bit tag value of Tagi can be written as ∆i,ℓi∥∆i,ℓi+1.

Additional information. To make the proof analysis simple, we additionally
provide the adversary with all the chaining values ∆i,js for 0 ≤ j ≤ ℓi + 1 when
it has made all its queries and only the final response is pending.

In the real world, all of these ∆ variables are internally computed by the
MAC oracle that faithfully evaluates DarkSonic. However, in the ideal world,
the underlying oracle does not make any computations, and hence ∆i,js are not
defined. We therefore have to define the sampling of these variables which will
be done at the end of the experiment (and thus have no effect on the adversarial
queries).

We sample each of the ∆i,js with 1 ≤ j ≤ ℓi uniformly and independently at
random, except

1. when such a value is trivially defined due to a “common prefix”
with a previous query i.e. when j ≤ llcpn+k+t−2(M

i,M i′) for some
i′ < i. To simplify the notations further, we let llcpn+k+t−2(i) denote

max1≤i′<i llcpn+k+t−2(M
i,M i′). Hence, a primitive query (i, j) will be con-

sidered as “prefixed-delta” if j ≤ llcpn+k+t−2(i).
2. when such a value is the output of the first fresh primitive call of the query

with old/repeating message in the tweak part i.e. when j = llcpn+k+t−2(i)+1

and (M i⊕M i′)[(j−1)(n+t+k−2)+n+1 . . . (j−1)(n+t+k−2)+n+k+t−2] =
0k+t−2 for some i′ < i. In such cases, we sample ∆i,js randomly from space



Sonikku Family of Fast and Secure MACs 27

{0, 1}n but without replacement (like a random permutation) i.e. if there are
x many previous queries i′ < is satisfying the above requirement then ∆i,js
are sampled randomly with probability 1/(2n − x) from the space {0, 1}n
with excluding all x many ∆i′,js.

Further, we sample ∆i,0 (and ∆i,ℓi+1) identically to ∆i,1 (and ∆i,ℓi) but with

redefining the sampling excluded set using previous x many ∆i′,0 (and ∆i′,ℓi
′
+1)

values, respectively. Clearly, this give away of additional information can only
help the adversary by increasing its advantage and hence can be considered here
for upper bounding the targeted (above mentioned) adversarial advantage.

Extended transcripts. With the defined additional information to the adver-
sary, we can now re-define the extended transcripts as

τ =

〈((
P i
j

)ℓi
j=1

,
(
∆i,j

)ℓi+1

j=0

)q

i=1

〉
where P i

ℓi
= P i

∗.

Coefficient-H. Let us represent the distribution of the transcript in the real
world and the ideal world by Θre and Θid, respectively.

The proof relies on the fundamental lemma of the coefficient H technique as
defined in Lemma 1 above. We say an attainable transcript τ is bad if one of the
following conditions occurs:

BadT1 a.k.a. “Input Collision”: There exists (i′, j′) < (i, j) with (j′ >
llcpn+k+t−2(i

′)) ∧ (j > llcpn+k+t−2(i)), 1 ≤ j ≤ ℓi, 1 ≤ j′ ≤ ℓi
′
and

max{j, j′} ≠ 1 such that, the (i, j)th primitive call has tweak-input colli-
sion with the (i′, j′)th primitive call, i.e. for z = min{n, t− 2}
1. with (j ̸∈ {1, ℓi}∧ j′ ̸∈ {1, ℓi′})∨ (j = ℓi ∧ j′ = ℓi

′
), P i

j ⊕P i′

j′ = (∆i,j−2⊕
∆i′,j′−2)∥(∆i,j−1 ⊕∆i′,j′−1)[1 . . . z]∥0k+t−2−z

2. or with j = 1∧j′ ̸∈ {1, ℓi′}, P i
j⊕P i′

j′ = ∆i′,j′−2∥∆i′,j′−1[1 . . . z]∥0k+t−2−z

3. or with j ̸∈ {1, ℓi} ∧ j′ = 1, P i
j ⊕ P i′

j′ = ∆i,j−2∥∆i,j−1[1 . . . z]∥0k+t−2−z

BadT2 a.k.a. “Output Collision”: There exists (i′, j′) < (i, j) with (j′ >
llcpn+k+t−2(i

′)) ∧ (j > llcpn+k+t−2(i)), 1 ≤ j ≤ ℓi, 1 ≤ j′ ≤ ℓi
′
and

max{j, j′} ̸= 1 such that, the (i, j)th primitive call has tweak-output col-
lisions with the (i′, j′)th primitive call given that the inputs to these calls
are distinct, i.e. for z = min{n, t− 2}
1. with (j ̸∈ {1, ℓi}∧ j′ ̸= 1)∨ (j = ℓi∧ j′ ̸∈ {1, ℓi′}), (P i

j ⊕P i′

j′ )[n+1 . . . n+

k + t − 2] = (∆i,j−1 ⊕ ∆i′,j′−1)[1 . . . z]∥0k+t−2−z, (P i
j ⊕ P i′

j′ )[1 . . . n] ̸=
∆i,j−2 ⊕∆i′,j′−2 and ∆i,j = ∆i′,j′

3. or with j ̸∈ {1, ℓi} ∧ j′ = 1, (P i
j ⊕ P i′

j′ )[n + 1 . . . n + k + t − 2] =

∆i,j−1[1 . . . z]∥0k+t−2−z, (P i
j ⊕ P i′

j′ )[1 . . . n] ̸= ∆i,j−2 and ∆i,j = ∆i′,j′

3. or with j = 1 ∧ j′ ̸∈ {1, ℓi′}, (P i
j ⊕ P i′

j′ )[n + 1 . . . n + k + t − 2] =

∆i′,j′−1[1 . . . z]∥0k+t−2−z, (P i
j ⊕P i′

j′ )[1 . . . n] ̸= ∆i′,j′−2 and ∆i,j = ∆i′,j′



28 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

4. or with j = ℓi ∧ j′ = ℓi
′
, (P i

j ⊕ P i′

j′ )[n+ 1 . . . n+ k + t− 2] = (∆i,j−1 ⊕
∆i′,j′−1)[1 . . . z]∥0k+t−2−z, (P i

j ⊕ P i′

j′ )[1 . . . n] ̸= ∆i,j−2 ⊕ ∆i′,j′−2 and

(∆i,j = ∆i′,j′ ∨∆i,j+1 = ∆i′,j′+1)

We note that these collisions cannot occur in the real world where the tags
are generated using permutation but they can still occur in the ideal world.
We also note that for the missing possible cases of (j, j′) here, the targeted
tweak-input (or tweak-output, respectively) pairs of any primitive query pairs
are always distinct (due to tweak T1’s domain separating last two bits or both
primitive queries being the first fresh primitive queries of their corresponding
messages) and thus are trivially excluded from the bad cases BadT1 (or BadT2,
respectively). We denote by Tbad, the set of “bad” transcripts that is defined as
the subset of attainable transcripts for which the transcript predicate BadT(τ) =
(BadT1(τ)∨BadT2(τ)) = 1. We denote by Tgood, the set of attainable transcripts
which are not in the set Tbad.

Lemma 2. For Tbad above, we have

Pr[Θid ∈ Tbad] ≤
6(σ − q)2

2n+min{n,t−2} +
2q(µ− 1)

2min{n,t−2} .

Lemma 3. Let τ ∈ Tgood i.e. τ is a good transcript. Then Pr[Θre=τ ]
Pr[Θid=τ ] ≥ 1 .

With the well-defined bad events, both lemmas can be proved using standard
probability analysis. We defer the proof of Lemma 2 and 3 to App. B.

Combining the results of Lemma 2 and 3 (taking ϵ1 = 0) into Lemma 1, we

obtain the upper bound AdvPRF
DarkSonic[(π0,π1)](A) ≤

6(σ−q)2
2n+min{n,t−2} + 2q(µ−1)

2min{n,t−2} and
hence the result of Theorem 3. ⊓⊔

B Omitted Lemma Proofs

B.1 Proof of Lemma 2

BadT1. For any transcript in Tbad with BadT1 set to 1, we know that there exists
(i′, j′) < (i, j) with (j′ > llcpn+k+t−2(i

′)) ∧ (j > llcpn+k+t−2(i)), 1 ≤ j ≤ ℓi, 1 ≤
j′ ≤ ℓi

′
and max{j, j′} ̸= 1 such that, one of the three statements of BadT1 (as

defined above) holds.
Note that under any of these statements, we have the following cases for the

mentioned ∆s (being ∆i,j−1, ∆i′,j′−1, ∆i,j−2 or ∆i′,j′−2).

I. When j = j′ = llcpn+k+t−2(M
i,M i′) + 1: ∆i,j−1 = ∆i′,j′−1 and ∆i,j−2 =

∆i′,j′−2. However, the message parts P i
j ̸= P i′

j′ and therefore, any of the
targeted BadT1 collisions can occur here with probability 0.

II. When j = j′ = llcpn+k+t−2(M
i,M i′) + 2 > 2: ∆i,j−2 = ∆i′,j′−2. However,

∆i,j−1 and ∆i′,j′−1 (if defined) are fresh and chosen uniformly at random
from a subspace of {0, 1}n with probability at most (1/(2n − q)) each. This
implies that any of the targeted BadT1 collisions can occur here with prob-
ability ≤ 2n−z/(2n − q).



Sonikku Family of Fast and Secure MACs 29

III. Otherwise: all mentioned ∆s here are relatively fresh which means in the
ideal world, each one of these ∆s even when fixing the rest three, is chosen
uniformly at random from a subspace of {0, 1}n with probability at most
(1/(2n−q)) each (“at most” because for message queries, the very first fresh
∆s are chosen using a random permutation or a random permutation pair
without replacement). Hence, any of the targeted BadT1 collisions can occur
here with probability ≤ 2n−z/(2n − q)2.

Now, since there are total of q many message queries containing σ ≥ 2q many
total primitive calls, we have at most

(
σ−q
2

)
many (among all except last primitive

calls) and
(
q
2

)
many (among the last primitive calls) possible pairs of (i′, j′) <

(i, j) satisfying all the three statements of BadT1. Out of these,
(
q
2

)
and at most(

q
1

)(
µ−1
1

)
pairs satisfy the above conditions I and II, respectively where µ denotes

the maximum number of times a nonce N can repeat over q queries. With this,

we get under q ≤ 2n−1, Pr[BadT1(Θid) = 1] ≤ (σ−q
2 )+(q2)−(

q
2)−q(µ−1)

2n+z−2 + q(µ−1)
2z−1 ≤

(σ−q)2
2n+z−1 + q(µ−1)

2z−1 .

BadT2. Similarly, for any transcript in Tbad with BadT2 set to 1, we know that
there exists (i′, j′) < (i, j) with (j′ > llcpn+k+t−2(i

′)) ∧ (j > llcpn+k+t−2(i)),

1 ≤ j ≤ ℓi, 1 ≤ j′ ≤ ℓi
′
and max{j, j′} ≠ 1 such that, one of the four statements

of BadT2 (as defined above) holds.

Note that under any of these statements, we have the following cases for the
mentioned ∆s (being ∆i,j−1, ∆i′,j′−1, ∆i,j , ∆i′,j′∆i,j+1 or ∆i′,j′+1).

I. When j = j′ = llcpn+k+t−2(M
i,M i′) + 1: Here distinct inputs with same

tweak imply that ∆i,j ̸= ∆i′,j′ (and additionally when j = ℓi = ℓi
′
, ∆i,j+1 ̸=

∆i′,j′+1) and therefore, any of the targeted BadT2 collisions can occur here
with probability 0.

II. Otherwise: all mentioned ∆s here are relatively fresh which means in the
ideal world, each one of these ∆s even when fixing the rest five, is chosen
uniformly at random from a subspace of {0, 1}n with probability at most
(1/(2n − q)) each. Hence, any of the targeted BadT2 collisions can occur
with probability ≤ 2n−z · (2/(2n − q)2).

Now, since there are total of q many message queries containing σ many to-
tal primitive calls, we have at most

(
σ−q
2

)
many (among all except last prim-

itive calls) and
(
q
2

)
many (among the last primitive calls) possible pairs of

(i′, j′) < (i, j) satisfying the four statements. Out of these,
(
q
2

)
pairs satisfy

the above conditions I. Hence, we get under q ≤ 2n−1, Pr[BadT2(Θid) = 1] ≤
(σ−q

2 )+(q2)−(
q
2)

2n+z−3 ≤ 2(σ−q)2
2n+z−1 .

Thus, we obtain by the union bound that Pr[Θid ∈ Tbad] ≤ 6(σ−q)2
2n+min{n,t−2} +

2q(µ−1)
2min{n,t−2} . ⊓⊔



30 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

B.2 Proof of Lemma 3

Note that a good transcript has the following property that for each (i′, j′) <
(i, j) if the permutation pairs have same tweaks (i.e. the T1∥T2 part) then these
pairs will always have different inputs and different outputs.

The probability to obtain a good transcript τ in the real and the ideal worlds
can now be computed. Let x denote the number of total permutation queries
(π0 and π1 are considered two different queries) that return prefixed-deltas (i.e.
queries that output some repeated old ∆s within τ due to sharing a common
prefix in their corresponding message with some previously queried message)
over all σ + 2q permutation calls. Let yT′ and y′T′ denote the number of per-
mutation queries (i, j, b)s that share a same tweak T1∥T2∥b as T′ (for some
T′ ∈ {0, 1}t+k+1) over all σ + 2q permutation calls that return no prefixed
deltas and over just the first fresh primitive (can be a permutation or a pair of
them) calls, respectively. Here b ∈ {0, 1} is a bit defining the index of permu-
tation πb. Also, let us denote the set of all distinct tweaks used in a session of
σ+2q permutation queries and just the first fresh primitive queries as Ttotal and
Tfirst, respectively. Clearly, with this, we can say

∑
T′∈Ttotal yT′ = σ + 2q − x and

yT′ ≥ y′T′ .
Since in the ideal world, all these non-prefixed ∆s are sampled uniformly

and independently at random except when they are the outputs of the first
fresh primitive query of their messages and are sampled using a random per-
mutation (or a pair of these), we get for g =

∑
T′∈Tfirst y

′
T′ , Pr[Θid = τ ] =

(1x · (1/2n)(σ+2q−x)−g · (
∏

T′∈Tfirst 1/(2
n)y′

T′
)). On the other hand, in the real

world these entities are computed using random tweaked permutations for simi-
lar queries which gives Pr[Θre = τ ] = (1x·(

∏
T′∈Ttotal 1/(2

n)yT′ )) and consequently

Pr[Θre = τ ]

Pr[Θid = τ ]
=

(
2n((σ+2q−x)−g) ·∏T′∈Tfirst

(2n)y′
T′∏

T′∈Ttotal
(2n)yT′

)

=

(∏
T′∈Ttotal

(2n)yT′ ·∏T′∈Tfirst
(2n)y′

T′∏
T′∈Tfirst

(2n)y
′
T′ ·∏T′∈Ttotal

(2n)yT′

)

=


∏

T′∈Ttotal

(2n)
yT′

(2n)y
T′∏

T′∈Tfirst

(2n)
y′
T′

(2n)y′
T′

 ≥ 1 .

We note that the last inequality holds here because yT′ ≥ y′T′ and Tfirst ⊆ Ttotal.
⊓⊔

C Proof of Theorem 4

Proof of Theorem 4. We provide the proof for the information-theoretic (IT)
security of SonicAE[(π0, π1)] where (π0, π1) is a pair of independent random
tweakable permutations π0 = (πT1∥T2,0 ←$ Perm(n))T1∥T2∈{0,1}t+k and π1 =



Sonikku Family of Fast and Secure MACs 31

(πT1∥T2,1 ←$ Perm(n))T1∥T2∈{0,1}t+k replacing F in SonicAE (then from there,
the proof for the computational counterpart is standard and straightforward).

The security of SIV-like constructions is bounded by the PRF security of the
MAC component and the indistinguishability of the encryption component from
a random function when used with a random nonce (derived from the MAC tag).
Following the decomposition method for SIV schemes [38, Theorem 2], the dae
advantage of SonicAE[(π0, π1)] is bounded as:

Advdae
SonicAE[(π0,π1)](A) ≤ AdvPRF

SuperSonic[(π0,π1)](A
′) +

q

22n

+Advive
GCTR′

2-3[(π0,π1)](A
′′) (3)

for adversaries A′ attacking SuperSonic’s IT PRF security and A′′ attacking
GCTR′2-3’s IT privacy (a nonce-based variant of IND-CPA security called ive [1]),
both making at most q queries and inducing σ primitive calls. The term q/22n

accounts for the probability of collisions in the 2n-bit tag output by SuperSonic
over q queries.

The following result directly derived from [1, GCTR2-3 proof and App. B.2]
further bounds the ive advantage of GCTR′2-3:

Advive
GCTR′

2-3[(π0,π1)](A
′′) ≤ Pr[V for GCTR′2-3 | r = min{n, t− 2}]

+
2(2σ − q)q

2n+min{n,t−2}+1

≤ Pr[V for GCTR2-3 | x = q ∧ r = min{n, t− 2}] · max
i ̸=i′≤q

{Pr[N i = N i′ ]}

+
(2σ − q)q

2n+min{n,t−2}

≤ (2σ − q)q

2min{n,t−2}+1
· 1

2n
+

(2σ − q)q

2n+min{n,t−2} =
6qσ − 3q2

2n+min{n,t−2}+1
(4)

where V is the event of cross-query input-tweak pair collisions. We refer the
reader to [1] for more details on these used notations. Here maxi̸=i′≤q{Pr[N i =

N i′ ]} denotes the maximum probability of a nonce repetition over q queries which
is equal to 1/2n as nonce inputs in GCTR′2-3 are defined as the second halves
of uniform random 2n-bit tags. Now, simply combining Exp. 3, 4 and the result
from Theorem 2 gives us the corresponding IT security claim of Theorem 4. ⊓⊔

D Sonikku: Pseudocodes



32 A.S. Bhati, E. Andreeva, S. Müller and D. Vizár

1: function Pad(x, y,M) // y ≤ x
2: I′pad ← 01; res← |M |%x
3: if res ̸= y then
4: I′pad ← 11
5: if res < y then
6: M ←M∥10y−1−res

7: else
8: M ←M∥10x+y−1−res

9: end if
10: end if
11: return M, I′pad
12: end function
13:

14: function BabySonic(K, a, τ,M) //
k ≤ n + a

15: K1, K2 ← Derive(K)
16: M, I′pad ← Pad(n + t + k − 2, 0,M)

17: P1, . . . , Pℓ−1, P∗
n+t+k−2←−−−−−−−M

18: (∆1, ∆2)← (K1, K2)
19: for i← 1 to ℓ− 1 do
20: M3i−2 ← Pi[1 . . . n]
21: M3i−1 ← Pi[n + 1 . . . n + t− 2]
22: M3i ← Pi[n+ t−1 . . . n+ t+k−2]
23: T←M3i−1∥00
24: (∆′

1, ∆
′
2)← F

∆2⊕T,b
∆1⊕M3i

(M3i−2)

25: ∆ ←
∆′

1[1 . . . a]∥∆′
2[1 . . . a]∥((∆′

1 ⊕ ∆′
2)[a +

1 . . . n])
26: (∆1, ∆2) ← (∆[1 . . . k], ∆[k +

1 . . . n + a])
27: end for
28: T← (P∗[n + 1 . . . n + t− 2])∥I′pad
29: X,Y ← F

∆2⊕T,b

∆1⊕P∗[n+t−1...

30: n+t+k−2](P∗[1 . . . n])
31: Z ← X[1 . . . a]∥Y [1 . . . a]∥
32: ((X ⊕ Y )[a + 1 . . . n])
33: Tag ← Z[1 . . . τ ]
34: return Tag
35: end function
36:

37: function SuperSonic(K, e, τ,M)
38: K1, K2 ← Derive(K)
39: M, I′pad ← Pad(n + t + k − e, 0,M)

40: P1, . . . , Pℓ−1
n+t+k−e←−−−−−−−M

41: ∆1, ∆2, ∆3 ← 0n

42: for i← 1 to ℓ− 1 do
43: M3i−2 ← Pi[1 . . . n]
44: M3i−1 ← Pi[n + 1 . . . n + t− e]
45: M3i ← Pi[n+t−e+1 . . . n+t+k−e]
46: T←M3i−1∥⟨i⟩e−2∥00
47: ∆1 ← (F

K2⊕T,0
K1⊕M3i

(M3i−2) ⊕
∆1)⊕t−2 M3i−1

48: ∆2 ← 2 · (FK2⊕T,0
K1⊕M3i

(M3i−2)⊕∆2)

49: ∆3 ←M3i ⊕∆3

50: end for
51: T← ∆1∥I′pad
52: X,Y ← F

K2⊕T,b
K1⊕∆3

(∆2)

53: Tag ← (X∥Y )[1 . . . τ ]
54: return Tag
55: end function
56:

57: function DarkSonic(K, τ,N,M)
58: K1, K2 ← Derive(K)
59: M ← N∥M
60: M, I′pad ← Pad(n+t+k−2, t+k−2,M)

61: P1, . . . , Pℓ−1, P∗
n+t+k−2←−−−−−−−M

62: (∆1, ∆2)← (0n, 0n)
63: for i← 1 to ℓ− 1 do
64: M3i−2 ← Pi[1 . . . n]
65: M3i−1 ← Pi[n + 1 . . . n + t− 2]
66: M3i ← Pi[n+ t−1 . . . n+ t+k−2]
67: T← (M3i−1 ⊕t−2 ∆2)∥00
68: if i = 1 then
69: (∆2, ∆1)← F

K2⊕T,b
K1⊕M3i

(M3i−2)

70: else
71: ∆← ∆2

72: ∆2 ← F
K2⊕T,0
K1⊕M3i

(M3i−2 ⊕∆1)

73: ∆1 ← ∆
74: end if
75: end for
76: T← (P∗[1 . . . t− 2]⊕t−2 ∆2)∥I′pad
77: X,Y ← F

K2⊕T,b

K1⊕P∗[t−1...t+k−2]
(∆1)

78: Tag ← (X∥Y )[1 . . . τ ]
79: return Tag
80: end function

Fig. 8: MAC algorithm/pseudocode of BabySonicn/a (top), SuperSonic (center)
and DarkSonic (bottom) mode. Here Derive is some secure key derivation fumc-
tion that is used to generate k-bit and (t− 2)-bit keys K1 and K2, respectively.


	Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

