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Abstract. As datasets grow, users increasingly rely on cloud services
for data storage and processing. Consequently, concerns regarding data
protection and the practical use of encrypted data have emerged as sig-
nificant challenges. One promising solution is order-revealing encryption
(ORE), which enables efficient operations on encrypted numerical data.
To support distributed environments with different users, delegatable
ORE (DORE) extends this functionality to multi-client settings, en-
abling order comparisons between ciphertexts encrypted under different
secret keys. However, Hahn et al. proposed a token forgery attack against
DORE with a threat model and introduced the secure DORE (SEDORE)
scheme as a countermeasure. Despite this enhancement, we claim that
SEDORE remains vulnerable under the same threat model.
In this paper, we present a novel Universal Token Reusability Attack,
which exposes a critical vulnerability in SEDORE with the identical
threat model. To mitigate this, we introduce the concept of verifiable
delegatable order-revealing encryption (VDORE), along with a formal
definition of token unforgeability. Building on this, we design a new
scheme, Token Unforgeable DORE (TUDORE), which ensures token un-
forgeability. Moreover, TUDORE achieves 1.5× faster token generation
than SEDORE with enhanced security.

Keywords: Order-revealing encryption · Cross-database system · Token-
based authentication

1 Introduction

With the increasing size of datasets, processing tasks on local machines are be-
coming impractical, thereby driving the demand for cloud-based services. How-
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ever, uploading data to cloud services without protections raises privacy con-
cerns. Clients encrypt their data before outsourcing it to servers to address these
issues. However, even after encryption, there remains a need to support efficient
queries, particularly range queries, which are fundamental in applications such
as health service [36,22], finance [33], and location-based service (LBS) [10,35].
For instance, doctors may need to determine whether a patient’s HIV viral load
exceeds a clinical threshold, financial systems may compare encrypted bids to
identify those above the current maximum, and location-based services may re-
trieve nearby points of interest within a specified distance for route planning.

Since standard encryption schemes do not preserve the order of values, spe-
cialized cryptographic constructions are required to support range queries. Typ-
ical solutions include fully homomorphic encryption (FHE), order-preserving
encryption (OPE), and order-revealing encryption (ORE). FHE provides strong
privacy by allowing computations over encrypted data without leakage, but its
high computational cost limits practical use [13]. OPE is a symmetric scheme
that allows direct ciphertext comparison by preserving plaintext order with low
overhead. However, OPE leaks more information than ideal ORE schemes [6].

To strike a better balance between efficiency and security, ORE has been
proposed as a means to support such secure operations [11,8,18,17,14,27,5,24].
ORE is a method that reveals only the order by using a publicly disclosed com-
parison function, without leaking any information about the numerical datasets.
For instance, ORE takes two ciphertexts as input and returns the order asso-
ciated with the underlying plaintexts. With the advancement of ORE, Li et al.
[17] proposed a delegatable ORE (DORE) scheme, which supports comparisons
across different encryption keys. DORE enables data owners to issue one-time
authorization tokens to users based on their secret keys.

However, Hahn et al. [14] identified vulnerabilities in DORE, demonstrat-
ing that authorization tokens could be forged by unauthorized users under a
practical threat model, which was later adopted by [27]. In these attacks, an au-
thorized user (traitor) who receives an access token from the data owner (victim)
collaborates with an unauthorized user (attacker) to enable illegal query execu-
tion on the victim’s database. These attacks result not only in unauthorized
data access but also in financial losses for victims. Because many modern cloud
service providers (CSPs) [9,20] adopt a pay-per-query model. Furthermore, such
attacks are stealthy since the data owner cannot identify the traitor. In response
to these risks, Hahn et al. proposed secure DORE (SEDORE), which strengthens
token unforgeability. Building on this, Xu et al. [34] introduced efficient DORE
(EDORE), which enhances performance compared to SEDORE.

1.1 Our contribution

Despite the improvements in SEDORE and EDORE to mitigate practical forgery
attacks, we discover that the same vulnerability exists in DORE [17], SEDORE
[14], and EDORE [34] under the identical threat model proposed by [14]. We
term this vulnerability as universal token reusability. This attack remains highly
threatening, as it adheres to the practical and reasonable threat model defined
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by [14], even though the traitor provides the attacker with one additional piece
of information in our scenario compared to that of [14].

Given the limitations of prior work, we propose a revised DORE scheme
incorporating a verification algorithm, termed verifiable DORE (VDORE). We
formally define the token unforgeability of the VDORE scheme for provable secu-
rity and also explain the limitations of [14]’s security analysis. Moreover, we pro-
pose TUDORE, a novel token-unforgeable DORE scheme, built upon VDORE.
Like SEDORE [14], our scheme retains the original algorithms of DORE [17]
for setup, key generation, encryption, and test, while modifying the token gen-
eration algorithm to prevent attacks. This ensures minimal computational and
storage overhead. Additionally, we incorporate digital signature schemes [29,7]
into the token generation process to guarantee token unforgeability. We provide
security analysis and experimental results showing that TUDORE achieves com-
petitive efficiency compared to previous works [17,14,34]. In summary, we make
the following main contributions:

1. Universal Token Reusability Attack. We first highlight that token-based
DORE schemes [17,14,34] remain vulnerable to token forgery attacks. Specif-
ically, under the same threat model described in [14], we introduce a new
attack called universal token reusability attack in Section 4.

2. Token Verification and Security Definition. To counter the security
threats revealed by the attack scenario, we revise the token-based DORE
scheme by integrating a token verification algorithm. We explain the neces-
sity of verification and shortcomings of [14]’s security analysis in Section 4.
This revision introduces verifiable DORE (VDORE), which ensures prov-
able security through three properties: correctness, data privacy, and token
unforgeability in Section 5.

3. Token Unforgeable VDORE Scheme. We present a new secure VDORE
scheme, named token unforgeable DORE (TUDORE), which leverages digi-
tal signature schemes [29,7]. Especially, we prove that TUDORE satisfies the
properties of correctness, data privacy, and token unforgeability in Section 6.

4. Implementation of TUDORE. We provide implementation results to
compare existing schemes [17,14,34] with our proposed method (TUDORE).
Our experimental evaluation demonstrates that TUDORE is not only prac-
tical and feasible but also enhances security compared to prior schemes, as
detailed in Section 7.

1.2 Related Works

Homomorphic Comparison from Fully Homomorphic Encryption. Cheon
et al. [13] introduced homomorphic comparison for private queries based on fully
homomorphic encryption (FHE), which has been further improved in subsequent
works [31,12]. These approaches encode the comparison function as an arith-
metic circuit and evaluate it homomorphically using FHE. Owing to the strong
cryptographic guarantees of FHE, the protocols achieve post-quantum security.
However, evaluating even a single 64-bit comparison typically takes several sec-
onds [13,31,12], which is impractical in real-world scenarios. Moreover, to the
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best of our knowledge, no existing FHE-based construction has been proposed
that supports delegatability. This limitation renders such methods impractical
in multi-client scenarios where secret key sharing is undesirable or infeasible.
Order-preserving Encryption. Order-preserving Encryption (OPE) was ini-
tially introduced by Agrawal et al. [4]. Subsequently, Boldyreva et al. [6] intro-
duced the notion of “best possible” security, referred to as indistinguishability
under ordered chosen-plaintext attack (IND-OCPA). This property ensures that
two ciphertexts reveal no information about plaintexts other than their order.
However, Boldyreva also pointed out that achieving this ideal security is not
feasible for stateless and immutable OPE schemes. Therefore, as an effort to re-
solve these limitations, Popa et al. [26] proposed an interactive order-preserving
encoding method via server state. However, their scheme is interactive, requiring
O(logN) communication rounds for both database updates and query execution.
To address this, alternative solutions impose a trade-off by incurring client-side
storage costs ranging from O(N) [16] to O(Nδ) [28], where 0 < δ < 1. Nonethe-
less, despite improvements, OPE remains limited by interaction and trade-offs
between performance and security.
Order-revealing Encryption. Order-revealing encryption (ORE) is a tech-
nique that encrypts numerical data without preserving the order of the plaintext,
allowing the comparison of two ciphertexts using a public function to determine
their order. To improve efficiency, Chenette et al. [11] proposed a practical ORE
scheme that supports bitwise encryption and comparison. Cash et al. [8] intro-
duced a parameter-hiding ORE (pORE) that reveals only the equality pattern
of the most significant differing bit (msdb). However, these schemes are limited
to a single-user environment. Subsequently, various schemes have been proposed
to support multi-client settings [18,24,17,27,34,5]. Especially, [17] proposed del-
egatable ORE (DORE), which supports comparisons over ciphertexts encrypted
under different keys. Moreover, recent research [5] on ORE extends beyond tradi-
tional database applications and explores its use in machine learning algorithms.
Organization. This paper is organized as follows. In Section 2, we present
the background of cross-database systems, delegatable ORE, and our system
and threat model. Section 3 reviews existing token-based DORE schemes. In
Section 4, we introduce a new attack called the universal token reusability attack
targeting these schemes and the weaknesses in [14]’s security analysis. To address
this, we propose the concept of verifiable DORE along with a formal security
definition in Section 5. Finally, Section 6 and Section 7 describe the construction
of a novel token-unforgeable DORE scheme and its experimental evaluation.

2 Background and Models

2.1 Background

Cross-database systems. In our system, similar to DORE [17], SEDORE [14],
and EDORE [34], we consider a cross-database scenario. The cross-database
system allows multiple users to upload their encrypted databases onto the server,
based on their raw data. Users who want to collaborate and share datasets
can perform relevant operations by sending queries to each other’s databases.
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User A

1) Key generation

Numerical data

2) Encryption

Encrypted data

User B

3) Token generation
Authorization token

4) Test 

Uses the tokens for test

Cloud

Upload

Upload

Encrypted data Encrypted data

Fig. 1: The description of delegatable order-revealing encryption. The orange box
with a solid line indicates the operations executed by User A, whereas the blue
box with a dotted line represents the processes handled by the cloud.

However, it is essential to note that not all users on the cloud server can access all
databases; only those users authorized by the database owner can utilize specific
databases. From this, the database owner distributes authorization tokens to
grant authorized users access.
Delegatable Order-Revealing Encryption. DORE scheme has been intro-
duced in a multi-client environment [17]. This scheme allows the data owner to
grant authorization tokens to other users, enabling them to perform operations
on each other’s databases based on different secret keys.

In Figure 1, we show the process of delegatable order-revealing encryption
and explain it as follows: 1) User A generates their secret key using a key gener-
ation algorithm. 2) Afterward, they encrypt their numerical data with the key
and upload it to the cloud. 3) If User A wishes to perform computations on User
B’s dataset, they obtain an authorization token from User B and then generate a
token related to their dataset using the token generation algorithm. 4) When the
server receives the tokens, it compares the encrypted data of User A and B with
the tokens using a test algorithm. Finally, it determines the orders. Note that,
the token is not issued per query but only once and remains valid thereafter.

2.2 System model

We consider a scenario involving cross-database environments with encrypted
databases. In this context, there are three entities with the following roles:

– The data owner: Encrypts data using the secret key and uploads it to the
server. The data owner also provides authorization tokens to users who are
authorized to access its databases.

– The user: Requests an authorization token from the data owner. Upon re-
ceiving the token, the user can use it to perform computations involving their
own database and the data owner’s database.

– The server: Acts as a storage system for encrypted data uploaded by multiple
data owners and processes incoming range queries from users.
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Note that the entities uploading data to the server can all become data owners.
Moreover, entities obtaining authorization tokens from different data owners can
also access other databases.

2.3 Threat Model

Following the attack scenario described in [14], we consider two threat models
related to data privacy violations and token forgeability, as follows:

– Data privacy violation: The server might attempt to disclose the content of
the stored data, along with trying to acquire not only the ordering information
and the index of the first differing bit between the two ciphertexts but also to
recover the data.

– Token forgeability: The server and unauthorized users may attempt to ac-
cess the victim’s database by creating forged tokens.

From this perspective, we focus on the notion of token forgeability. There are
three entities involved in token forgery attacks: a victim (V), who owns the
database; an unauthorized user (A) who tried to access victim’s database with-
out any permission; an authorized user (M), who may illegally assist the unau-
thorized user (A) in generating forged tokens.

Importantly, we assume that M never shares its secret key with A, as such
disclosure would allow A to exploit not only V’s database, but alsoM’s database
by enabling the generation of tokens derived fromM’s secret key.

3 Overview of Token-Based DORE Schemes

3.1 Basic Notation

We first define some notations before revisiting the schemes. We denote Zp as a
prime field that is isomorphic to the integers mod p. Uniform sampling is denoted
by $←. For instance, a $←Zp indicates that a is uniformly chosen from Zp. H and
F denote a cryptographic hash function whose range will be specified from the
context. To describe bilinear groups, we denote ⟨p,G1,G2, g1, g2,GT , e⟩, that
stands for prime p and cyclic groups G1,G2,GT of order p, generators g1 ∈ G1

and g2 ∈ G2, and bilinear map e : G1×G2 → GT , which is non-degenerate and a
computable function satisfies e(P a,Kb) = e(P,K)ab for all a, b ∈ Zp. Hereafter,
we assume that the prime p is sufficiently large because the security of DORE
schemes relies on the discrete logarithm assumption.

3.2 Token-based DORE schemes

Li et al. [17] first proposed a token-based delegatable ORE scheme. The data
owner delegates the management of data, but can manage authorization through
the tokens. DORE scheme consists of 5 algorithms as follows:
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– pp← DORE.Setup(1λ): It takes the security parameter 1λ as input and returns
the public parameter pp.

– (pk, sk)← DORE.Keygen(pp) : It receives a public parameter pp as input and
returns a pair of public key and secret key (pk, sk)

– ct ← DORE.Enc(pp,m, sk): It takes a message m ∈ {0, 1}∗ and sk as input
and returns a ciphertext ct.

– tok(v→u) ← DORE.Token(pp, pk(v), sk(u)): It takes the public key pk(v) of user
v and the secret key sk(u) of user u as input and returns an authorization
token tok(v→u), indicating that user v is authorized by user u.

– res ← DORE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)): It takes the two cipher-
text ct(u) and ct(v), along with two tokens, tok(v→u) and tok(u→v), as input
and returns the comparison result res ∈ {−1, 0, 1}. The output values rep-
resent the following: 1 indicates mu > mv, 0 indicates mu = mv, and −1
indicates mu < mv, where m□ denotes the plaintext of ct(□) for □ = u, v.

Li et al.[17] introduced two security properties for DORE: correctness and
IND-OCPA. Furthermore, Hahn et al.[14] emphasized that token forgeability is
a critical security concern in the DORE scheme. Building on these works, token-
based DORE schemes should satisfy three essential properties: correctness, data
privacy, and soundness. We formalize and refine these properties in Section 5.
DERE-to-DORE framework. In [17], Li et al. proposed a framework for con-
structing a DORE scheme from a token-based Delegatable Equality-Revealing
Encoding (DERE). The primary difference lies in the test algorithm: the DERE
test algorithm is restricted to checking only the equality between two cipher-
texts. From a DERE scheme, DORE leverages the key generation, encryption,
and testing algorithms of DERE and constructs its own encryption and test
algorithms by iteratively running the encryption and test algorithms of DERE.
Subsequent researchs [14,34] follow this framework. For this reason, we now focus
on the DERE scheme rather than the DORE scheme itself.

Li et al. constructed the DERE scheme based on the bilinear setting under the
generic group model (GGM) [17]. To prevent a token forging attack, Hahn et al.
revised the token generation of DERE and then proposed a new DERE scheme,
SEDERE [14]. We describe the DERE and SEDERE schemes in Figure 2.
One-sided token is sufficient. In the Test algorithm, it currently requires two-
sided tokens, tok(v→u) and tok(u→v). When a user u queries a ciphertext ct(v)
stored in v’s database, u first generates tok(v→u) locally. Since the public key
pk(v) is openly available, u can compute tok(v→u) independently, without need-
ing v’s secret key. Subsequently, u uses the pair of tokens, tok(v→u) (generated
locally) and tok(u→v) (received from user v), to perform the Test algorithm.

4 Concrete Attack and Security Analysis of SEDORE

In this section, we present a concrete attack, named the Universal Token
Reusability Attack, on the SEDORE scheme, demonstrating its vulnerability
under the threat model described in Section 2.3. We then discuss how this at-
tack relates to the soundness guarantees of SEDORE as proven in [14].
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– pp← DERE.Setup(1λ): It takes the security parameter 1λ as input and returns the
public parameter pp = (⟨p,G1,G2, g1, g2,GT , e⟩, H,F ).

– (pk, sk) ← DERE.Keygen(pp) : It takes a public parameter pp as input and
uniformly chooses a, b

$←Zp. After that, it returns a pair of public key and se-
cret key (pk, sk) = (ga2 , (a, b)). Additionally, We denote a key pair of user u as
(pk(u), sk(u)) = (g

a(u)

2 , (a(u), b(u))).
– ct ← DERE.Enc(pp,m, sk): It takes a message m ∈ {0, 1}∗ and sk as input. It

randomly picks r
$←Zp and return ct := (c0, c1) = ((grb1 H(m))a, c1 = gr1). For user

u, we rewrite ct as ct(u) = (c0(u), c
1
(u)).

– tok(v→u) ← DERE.Token(pp, pk(v), sk(u)): It takes the public key pk(v) = g
a(v)

2 of
user v and the secret key sk(u) = (a(u), b(u)) of user u and returns an authorization
token tok(v→u). (v → u) from tok(v→u) means that the user u sends the authoriza-
tion token to user v and tok(v→u) consists of t0(v→u) and t1(v→u).

• (type-1, DERE [17]): t0(v→u) = pk(v), t1(v→u) = pk
a(u)b(u)

(v)

• (type-2, SEDERE [14]):t0(v→u) = F
(
pk

a(u)

(v)

)a−1
(u)

, t1(v→u) = F
(
pk

a(v)

(v)

)b(v)

Finally, it returns tok(v→u) := (t0(v→u), t
1
(v→u)).

– 0\1← DERE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)): It takes the ciphertexts from
user v and u, ct(v) and ct(u), and the tokens, tok(v→u) and tok(u→v) as input. After

that, it computes d0 =
e(c0(u),t

0
(v→u))

e(c1
(u)

,t1
(v→u)

)
, d1 =

e(c0(v),t
0
(u→v))

e(c1
(v)

,t1
(u→v)

)
. It then compares them:

if d0 = d1, it returns 1; otherwise, it returns 0.

Fig. 2: DERE and SEDERE Scheme

4.1 Universal Token Reusability Attack
Following the DERE-to-DORE framework, the vulnerability in SEDERE also
leads to SEDORE. For this reason, we present an attack on the SEDERE scheme
in Figure 2, to validate the existence of the vulnerability in SEDORE. Before
explaining the attack, we propose the notion of a universal forged token in the
bilinear setting. A universal forged token uft(V),h2

is a forged token to access V
based on group element h2. Using uft(V),h2

and h2, any adversary can query the
database of V without authorized token from V. We define a universal forged

token as uft(V),h2
= (h

a−1
(V)

2 , h
b(V)

2 ) in our attack. We introduce it as follows:
Step 1: The user V creates authorization token tok(M→V) by using (type-2)
DERE.Token algorithm 4 in Figure 2 and sends it to user M as below:

tok(M→V) =

(
F
(
pk

a(V)

(M)

)a−1
(V)

, F
(
pk

a(V)

(M)

)b(V)

)
4 If the map F is the identity map on G2, type-2 DERE scheme becomes identical

to the type-1 DERE scheme. Thus, the following attack against the type-2 DERE
scheme can naturally be applied to the type-1 DERE scheme.
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Step 2: AfterM receives it,M randomly picks r $←Zp and sets a group element
h2 = F (pk

a(M)

(V) )r. And then M computes a universal forged token uft(V),h2
as

following:

uft(V),h2
= tokr(M→V) =

((
F (pk

a(V)

(M))
r
)a−1

(V)

,
(
F (pk

a(V)

(M))
r
)b(V)

)
After then, M sends h2 and uft(V),h2

to A. Note that M can compute uft(V),h2

by symmetric property pk
a(V)

(M) = gaVaM
2 = pk

a(M)

(V) . Since h2 is randomized by
M’s randomness r, (h2, uft(V),h2

) ∈ G3
2 look like uniformly random in the view

of A. By DL assumption, it is interactable for the A to find M’s secret key
(a(M), b(M)) from h2 and uft(V),h2

. For this reason, M may help adversary A
without concern about leakingM’s secret.
Step 3: After receiving (h2, uft(V),h2

), A samples sk(A) = (a(A), b(A))
$←Z2

p. And
it computes the counterpart forged token uft(A),h2

as follows:

uft(A),h2
= (h

a−1
(A)

2 , h
b(A)

2 )

For the query, A generates ct(A) ← DERE.Enc(pp,m, sk(A)) using her secret key
(a(A), b(A)) and then use a pair of forged tokens uft(A),h2

and uft(V),h2
.

For a given message m, let us denote the victim’s ciphertext as ct(V) =

((g
b(V)r(V)

1 H(m))a(V) , g
r(V)

1 ). Then we can get DERE.Test(ct(V), ct(A), uft(V),h2
,

uft(A),h2
) = 1 by the following equations: For i = 0, 1, α0 = V and α1 = A,

di =
e(c0(αi)

, uft0(αi),h2
)

e(c1(αi)
, uft1(αi),h2

)
=

e((g
b(αi)

r(αi)

1 H(m))a(αi) , h
a−1
(αi)

2 )

e(g
r(αi)

1 , h
b(αi)

2 )

=
e(g

b(αi)
r(αi)

1 H(m), h2)

e(g
b(αi)

r(αi)

1 , h2)
= e(H(m), h2).

In other words, A can be identified as equality between ct(V) and ct(A) plain-
texts by the Test algorithm without the authorized token. The universal token
reusability attack can also be applied to EDORE, but we defer the attack to the
full version [25] due to space limitations.

4.2 Limitation of security analysis in [14].

In [14], the authors proposed a soundness game to evaluate the resilience of
SEDORE against token forgery attacks. In this game, the adversary aims to
construct a forged token tok∗(C→A) which, when used with a valid token tok(A→C)
generated by DERE.Token, yields a valid result under DERE.Test in Figure 2.
They incorporated cryptographic hash functions into the token generation to
ensure soundness, making it computationally infeasible to construct tok∗(C→A).

However, the structure of the soundness game limits the capabilities of the ad-
versary. In practice, an adversary may generate a pair of forged tokens (tok∗(V→A),
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tok∗(A→V)), that deviate from the expected structure in Figure 2. Although the
protocol assumes that only properly generated token pairs can be used to query
the database, our findings from the attack described above demonstrate that
even malformed tokens can still produce valid results under the DERE.Test algo-
rithm. Therefore, the soundness definition in [14] should be revised to account
for such adversarial behavior.

The main reason for this vulnerability is that the DERE.Test algorithm does
not verify the validity of tokens by itself. Therefore, before executing the test,
the server (i.e., the tester) must ensure that the tokens were genuinely issued by
authorized users and have not been forged.

5 Verifiable DORE (VDORE) and Token Unforgeability

As we mentioned in Section 4, the tester should check the validity of the tokens
to prevent universal token reusability attacks. To give a verifiability on DORE
scheme (Section 3.2), we revise the Keygen algorithm to output verification key
vk and we newly propose a verification algorithm Vfy. We define a verifiable
DORE scheme VDORE := (Setup,Keygen,Enc,Token,Test,Vfy) as follows:

– pp ← VDORE.Setup(1λ): It takes the security parameter 1λ as input and
returns the public parameter pp.

– (pk, vk , sk)← VDORE.Keygen(pp): It takes a public parameter as input and
returns a key tuple of public key, verification key, and secret key, (pk, vk, sk).
The verification key is used to verify the validity of tokens. Both pk and vk
may be managed publicly, but sk should be managed privately.

– ct ← VDORE.Enc(pp,m, sk): It takes a message m ∈ {0, 1}∗ and sk as input
and returns a ciphertext ct.

– tok(v→u) ← VDORE.Token(pp, pk(v), sk(u)): It takes the public key pk(v) of
user v and the secret key sk(u) of user u as input and returns an authorization
token tok(v→u), indicating that user v is authorized by user u.

– res← VDORE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)): It takes the two cipher-
text ct(u) and ct(v), along with two tokens, tok(v→u) and tok(u→v), as input
and returns the comparison result res ∈ {−1, 0, 1}. The output values rep-
resent the following: 1 indicates mu > mv, 0 indicates mu = mv, and −1
indicates mu < mv, where m□ denotes the plaintext of ct(□) for □ = u, v.

– 0\1← VDORE.Vfy(pp, vk(u), vk(v), tok(v→u), tok(u→v)) : It takes the two ver-
ification keys vk(u) and vk(v), and two tokens tok(v→u) and tok(u→v) as input.
If both tokens tok(v→u) and tok(u→v) go through (token validity) verification,
it returns 1 (accept); otherwise, it returns 0 (reject).

To ensure a secure VDORE scheme, we consider three properties: correctness,
data privacy, and token unforgeability.
Correctness. The correctness of VDORE ensures that the test algorithm accu-
rately discerns the sequence of two ciphertexts provided by two mutually au-
thenticated users. Let (m(u),m(v)) be a pair of messages, (pk(u), vk(u), sk(u)),
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1. Setting Phase: C runs the setup algorithm pp← Setup(1λ) and the key generation
algorithm (sk(C), vk(C), pk(C)) ← Keygen(pp). It then sends (pp, vk(C), pk(C)) to A
and keeps sk(C) local storage.

2. Query Phase: A can query to C:
(a) Key Query: A sends a query with index i. Upon receiving the query, C checks

whether (i, pk(i), vk(i)) ∈ Skey. If so, it returns (i, pk(i), vk(i)) to A. Otherwise, it
generates a new key triple by running (pk(i), vk(i), sk(i))← Keygen(pp), returns
(pk(i), vk(i)) to A, and adds the tuple (i, pk(i), vk(i)) to the key query set Skey.

(b) Token Query: If A sends a query with a received public key pk(i) ∈ Skey,
C generates an authorized token tok(i→C) ← Token(pp, pk(i), sk(C)) and then
sends tok(i→C) to A and adds tok(i→C) to token query set Stok.

(c) One-way function Query: If A sends a query with index i and one-way
function f , C output f(sk(i)).

3. Challenge Phase: A outputs a verification key vk∗(A) and a pair of tokens
(tok∗(C→A), tok

∗
(A→C)). The A wins if Vfy(pp, vk(C), vk∗(A), tok

∗
(A→C), tok

∗
(C→A)) = 1.

Fig. 3: Token forging Game

(pk(v), vk(v), sk(v)) be a pair of keys generated by Keygen algorithm, and ct(u),
ct(v) be a ciphertext of m(u) and m(v) with key sk(u) and sk(v) respectively. We
say VDORE scheme is correct if for any pair of messages (m(u),m(v)) and keys
(pk(u), vk(u), sk(u)), (pk(v), vk(v), sk(v)), the following holds:

– VDORE.Vfy(pp, vk(u), vk(v), tok(v→u), tok(u→v)) = 1
– VDORE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)) = res
• If m(u) > m(v), then res = 1
• If m(u) < m(v), then res = −1
• Otherwise, res = 0

Data Privacy. The data privacy of VDORE ensures that the ciphertexts ct
generated by Enc algorithm do not leak information except order. VDORE pro-
vides data privacy if Enc algorithm satisfies indistinguishability under an ordered
chosen plaintext attack (IND-OCPA) [17].
Token Unforgeability. Vfy algorithm of the VDORE scheme should detect
forged tokens. To give provable security, we propose a new definition of token
unforgeability. First, we construct a token forging game to give a game-based
security. We describe the roles of adversary and challenger in Figure 3.

We denote theA’s advantage to the token forging game of VDORE scheme(or
Vdere scheme) AdvTF[A,VDORE](or AdvTF[A,VDERE]), which is a probability
that A wins the token forging game under the VDORE(or VDERE) scheme.

Definition 1 (Token Unforgeability). Let (Setup,Keygen,Enc,Token,Test,
Vfy) be a VDORE (or VDERE) scheme. We say that VDORE (or VDERE) satisfies
token unforgeability if for any PPT adversary A against token forging game in
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Figure 3, the A’s advantage to the game AdvTF[A,VDORE] (or AdvTF[A,VDERE])
is less than negl(λ).

Token Forging Game and Attack Scenario. In this paragraph, we explain
the relationship between the token forging game and the attack scenario. The
key pair (pk(C), vk(C)) sent by C represents the public and verification keys of the
victim V. Note that other users, including the adversary, may know the public
key pk(V) and verification key vk(V) of V.

After that, we allow the adversary A to make three types of queries: key
queries, token queries, and one-way function queries. Through key and token
queries, A can obtain multiple public and verification keys along with their
corresponding authorized tokens—representing resources obtained from collud-
ing users. Additionally, we allow A to make one-way function queries to obtain
specific values derived from the secret keys of colluding users. Due to the one-
wayness of the function, it remains computationally hard for A to recover the
secret key from the output, thereby modeling feasible collusion scenarios without
revealing the users’ secret keys.

The goal of A is to find a pair of forged tokens that successfully pass the
verification algorithm Vfy. The difficulty of producing such a pair directly cor-
responds to the difficulty of forging tokens. Therefore, our definition of token
unforgeability captures the security of the scheme against token forgery attacks.
Comparison with the attack game in [14]. As discussed in Section 4, the
security game should account for a broader class of adversarial strategies. To
this end, our token-forging game in Figure 3 allows the adversary to output an
arbitrary pair of tokens, (tok∗(A→C), tok

∗
(C→A)). In contrast, the soundness game

in [14] only allows the adversary to output a forged token tok∗(A→C) corresponding
to a given valid token tok(C→A), which fails to capture the UTRA attack.

Furthermore, by incorporating a verification algorithm Vfy, we revise the
adversary’s winning condition—from obtaining a valid output from the test al-
gorithm Test to receiving an acceptance from Vfy. To analyze previous schemes
such as DORE and SEDORE within our framework, one can adapt the winning
condition in the token-forging game accordingly: replacing acceptance from Vfy
with the ability to obtain a valid output from Test. For further details, please
refer to the full version [25].

6 TUDORE: Token Unforgeable DORE

In this section, we first construct our novel VDERE scheme TUDERE. And then,
following the framework in [17], we complete the TUDORE scheme by using the
TUDERE scheme. One of the main concerns is how to construct a verification
algorithm. To guarantee token unforgeability, we apply digital signature schemes.

6.1 Signature Schemes compatible with DERE scheme.

A digital signature is a cryptographic scheme for the authenticity of digital
messages. A valid digital signature on a message gives a recipient confidence
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that the message came from a sender known to the recipient. In our scenario,
a signature scheme can give a token validity due to its unforgeability property.
Signature schemes consists of four algorithms Sig = (Setup,Keygen,Sign,Verify)
as follows:

– ppsig ← Sig.Setup(λ): This algorithm takes the security parameter λ as input
and returns the public parameter ppsig.

– (vksig, sksig) ← Sig.Keygen(ppsig): It takes a public parameter as input and
outputs a key tuple of signing key sksig and verifying key vksig.

– σ ← Sig.Sign(ppsig, sksig,m): It takes public parameter ppsig, signing key sksig
and message as input and outputs signature σ.

– 0\1 ← Sig.Verify(ppsig, vksig,m, σ): It takes public parameter ppsig, the veri-
fying key vksig , message m, and signature σ as input. If the signature is valid,
it returns 1; otherwise, it returns 0.

DERE scheme in Figure 2 utilize discrete logarithmic (DL)-related keys:
pk = ga2 and sk = (a, b). To utilize the secret key as a signing key, we con-
sider signature schemes with DL-related keys, e.g. Schnorr’s signature [29] and
BLS signature [7]. Concretely, both signature schemes utilize the signing key
sksig = b and verification key vksig = gb1. Furthermore, both schemes satisfy
existential unforgeability under chosen message attack (EUF-CMA). For more
details about both signature schemes, please refer to the full version [25].

6.2 Construct TUDORE using Signature Scheme

By combining type-1 DERE scheme in Figure 2 with signature schemes Sig, we
construct a token unforgeable DORE scheme: TUDERE = (Setup,Keygen,Enc,
Token,Test,Vfy). The main difference between DERE and TUDERE lie in Keygen,
Token, and Vfy. In Keygen, an additional token verification key vk = gb1 is gener-
ated. The Token algorithm outputs a token that includes a signature. Finally, the
Vfy algorithm checks the token using the verification algorithm of the signature
scheme Sig. We describe TUDERE in Figure 4.

In a similar way in the DERE-to-DORE framework [17], we construct TUDORE
scheme using TUDERE scheme in Figure 4; iteratively running Enc and Test al-
gorithms but keeping other algorithms of TUDERE. We describe the scheme
TUDORE in Figure 6 in the Appendix.

6.3 Security Analysis

In [17], the authors provided a security proof for the correctness and IND-OCPA
for the DORE scheme in the GGM. With the proof in [17] and the EUF-CMA
signature scheme, we can conclude the following theorem.

Theorem 1. Assume H and T are modeled as a random oracle and Sig is an
EUF-CMA signature scheme. Then, the TUDORE scheme (Figure 6) under the
TUDERE scheme (Figure 4) satisfies the correctness, data privacy, and token
unforgeability under the generic group model.
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– pp← TUDERE.Setup(1λ): This algorithm takes the security parameter 1λ as input
and returns the public parameter pp = (⟨p,G1,G2, g1, g2,GT , e⟩, H,T ). Addition-
ally, it sets ppsig := (⟨p,G1, g1⟩, T ).

– (pk, vk , sk) ← TUDERE.Keygen(pp): This algorithm takes the public parameter

pp as input and randomly chooses a, b $←Zp. After that, it returns a tuple of keys as
sk = (a, b), pk = ga2 , and vk = gb1. Additionally, it sets signature keys as sksig := b,
and vksig := vk.

– ct← TUDERE.Enc(pp,m, sk): This algorithm takes a public parameter pp, a mes-
sage m ∈ {0, 1}∗, and sk = (a, b) ∈ Z2

p as input and randomly picks r
$←Zp and

computes c0 and c1 as below:

c0 =
(
grb1 H(m)

)a

, c1 = gr1 .

Finally, it returns ct = (c0, c1).
– tok(u→v) ← TUDERE.Token(pp, pk(u), sk(v)): This algorithm takes the public key

pk(u) ∈ G2 of u and the secret key sk(v) = (a(v), b(v)) ∈ Z2
p of v as input and returns

the token tok(u→v) = (t0(u→v), t
1
(u→v), σv ) as follows:

t0(u→v) = pk(u), t1(u→v) = pk
a(v)b(v)

(u)

σv ← Sig.Sign(ppsig, sksig,(v), (t
0
(u→v), t

1
(u→v)))

– 0\1 ← TUDERE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)):
This algorithm takes the two ciphertexts and tokens for u and v and computes

d0 =
e
(
c0(u), t

0
(v→u)

)
e
(
c1(u), t

1
(v→u)

) , d1 =
e
(
c0(v), t

0
(u→v)

)
e
(
c1(v), t

1
(u→v)

)
Finally, it compares d0 and d1, and if d0 = d1, it returns 1 and 0 otherwise.

– 0\1 ← TUDERE.Vfy(pp, vk(u), vk(v), tok(v→u), tok(u→v)): This algorithm takes
a public parameter pp, a pair of verification keys vk(u), vk(v) and tokens
tok(u→v), tok(v→u). It parses tok(u→v) and tok(v→u) to ((t0(u→v), t

1
(u→v)), σv) and

((t0(v→u), t
1
(v→u)), σu) respectively. Then, run verification algorithms as follows:

• resv ← Sig.Vfy(ppsig, vk(v), (t
0
(u→v), t

1
(u→v)), σv)

• resu ← Sig.Vfy(ppsig, vk(u), (t
0
(v→u), t

1
(v→u)), σu)

If resv = resu = 1, then it outputs 1. Otherwise, outputs 0.

Fig. 4: TUDERE Scheme

Proof Sketch. (Correctness) The correctness of TUDERE holds in the similar
way of [17]. Concretely, for a valid token and ciphertext, the intermediate values
d0 and d1 of Test should be equal by the bilinearity of the pairing operation.
Additionally, from the correctness of the signature scheme, Vfy should output 1
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Table 1: A comparative analysis for element and n-bit comparison
Schemes Storage cost Computational Cost

Enc Token Enc Test Token Vfy

DORE [17] 4n|G1| 2|G2| 6nEG1 8nPGT EG2 ×
SEDORE [14] 4n|G1| 2|G2| 6nEG1 8nPGT 3EG2 ×
EDORE [34] 4n|Zp|+ 2n|G2| 2|G1| 2nEG2 8nEG1 + 4nPGT 3EG1 ×
TUDORE (Schnorr) 4n|G1| 1|G1|+ 2|G2|+ 1|Zp| 6nEG1 8nPGT EG1 + EG2 4EG1

TUDORE (BLS) 4n|G1| 1|G1|+ 2|G2| 6nEG1 8nPGT EG1 + EG2 4PGT

|Gi|: size of a group element in Gi, |Zp|: size of a field element in Zp,
EGi : group exponentiation on Gi, PGT : bilinear pairing operation,

× indicates the Verification algorithm is not available.

so that TUDERE satisfies the correctness. Since TUDORE.Test consists of several
correct TUDERE.Test algorithms, it follows that TUDORE satisfies correctness.
(Data privacy) Since our underlying encryption algorithm is the same as DERE
[17], we can prove IND-OCPA in a similar way in [17]. Since DORE encryption
underlying the DERE scheme satisfies IND-OCPA in the generic group model,
our TUDORE encryption underlying the TUDERE scheme satisfies IND-OCPA.
Therefore, our TUDORE scheme satisfies Data privacy.
(Token Unforgeability) Because the Vfy algorithm contains sign verification,
TUDERE satisfies the token unforgeability of the EUF-CMA signature scheme.

Concretely, to complete the proof, we construct an EUF-CMA adversary
B using the token forgeability adversary A. To simulate the token query of
A, we should restrict A not get the public key locally. Since the public keys
consist of group elements and the adversary does not get the group element
itself in GGM, we ensure A does not get an arbitrary token tok(i→C) without the
corresponding key query for pk(i). Therefore, we claim that TUDERE satisfies
token unforgeability if the underlying signature scheme satisfies EUF-CMA. For
the complete proof, please refer to the full version [25].

7 Performance
7.1 Theoretical Performance

In Table 1, we present a comparative analysis of storage and computational
costs, where the left side (group elements) shows storage costs and the right side
(group/pairings) shows computational costs. Since the Enc and Test algorithms
in SEDORE and TUDORE are identical to those in DORE, their performance
remains the same. EDORE improves efficiency by reducing the number of group
elements and pairing operations. TUDORE increases the token size due to the
use of Schnorr or BLS signatures, reflecting a trade-off between security and
efficiency. For the Token algorithm, DORE requires only a single group expo-
nentiation, while SEDORE and EDORE require three, and TUDORE requires
two. Consequently, TUDORE is approximately twice as slow as DORE, but 1.5×
faster than both SEDORE and EDORE.
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Notably, only TUDORE includes a verification algorithm that ensures token
unforgeability. Verifying Schnorr and BLS signatures requires four exponentia-
tions and four pairings, respectively. Based on their priorities, users can choose
the scheme that best balances token size and computational efficiency.

7.2 Implementation and Performance.
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In Figure 5b, 8–24 bit settings use the age dataset [32], while 32–64 bit settings use
the stock dataset [23]. In Figure 5c’s x-axis, “G” indicates Google, “I” indicates IBM,
and “A” indicates Amazon, respectively.

Fig. 5: The performance graphs for DORE, SEDORE, and our TUDORE.

In this section, we present the implementation results of token-based DORE
schemes: DORE, SEDORE, EDORE, and our proposed TUDORE.
Environment. To ensure realistic evaluation, we conducted experiments in two
environments: a server (Linux desktop with a 5.20 GHz Intel i9-12900K CPU and
64GB RAM for testing and verification) and a user device (Linux laptop with a
1.4 GHz AMD Ryzen 7 4700U CPU and 16GB RAM for token generation). We
implemented TUDORE and the baseline schemes for comparison. Our imple-
mentation uses OpenSSL for hashing, the PBC library (in C) with the MNT224
curve for bilinear maps [19], and the GMP library for large integer arithmetic.
For the verification algorithm, we adopt both Schnorr and BLS signatures [29,7],
allowing users to select based on their computational environment.
Dataset. We utilize the dataset from the United Nations [32], which provides
population estimates across five-year age groups. However, due to its limited
range, we also incorporate real stock volume data from FAANG companies [23].
We use 10,000 samples for our experiments, comprising 5,000 from each dataset.
Token generation time. We compare the token generation time for issuing to-
kens to different numbers of users (10, 100, 1,000, 10,000, and 100,000). As shown
in Figure 5a, SEDORE and EDORE take approximately 3 times longer than
DORE, while TUDORE is about 1.5 times faster than SEDORE and EDORE.
Therefore, our method improves both security and token generation efficiency.
Test time. As shown in Figure 5b and consistent with Table 1, in each dataset,
the computational time increases linearly with the bit size due to paddings. The
test times for DORE, SEDORE, and TUDORE are identical, while EDORE is
the fastest. Moreover, it can be observed that the computational time at 32 bits
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is faster than that at 16 and 24 bits. This is because the order in the 32-bit
dataset is determined by the bits closer to the most significant bit (MSB).
Verification time. We evaluate the verification algorithm using Schnorr and
BLS signatures [29,7] across varying user counts (10, 100, 1,000, 10,000, and
100,000). To assess real-world applicability, we simulate cloud service provider
(CSP) environments based on employee numbers at Google (182,502) [2], Ama-
zon (1,608,000) [1], and IBM (282,200) [3]. Figure 5c shows that verification
times with 100,000 users are 79s / 84s (Schnorr / BLS). In CSP-scale scenarios,
the times are 144s / 164s for Google, 217s / 310s for IBM, and 1,247s / 1,783s
(20.8min / 29.7min) for Amazon. Despite Amazon’s high total time, the amor-
tized cost remains low at 0.77ms / 1.1ms, demonstrating practical efficiency.
Range query and test algorithm. From the token-based DORE query via
the test algorithm, one can obtain the order information, whether a value is less
than or greater than the encrypted data. Leveraging this property, a range query
can be implemented by performing the DORE test twice for a single encrypted
value, separately comparing the encrypted value against the lower and upper
query. Although we do not directly evaluate range queries, their cost can be
inferred from our experiments with the DORE scheme. Since each range query
involves two comparisons per encrypted data point, the cost per encrypted value
is approximately twice that of a single test execution.

8 Conclusion
We demonstrate the vulnerability of DORE, SEDORE, and EDORE within the
identical threat model of token forgeability, as suggested by [14]. Although SE-
DORE and EDORE aim to achieve the token unforgeability property, we identify
that both schemes are still vulnerable. To illustrate this vulnerability, we propose
an attack strategy called the universal token reusability attack under the same
threat model. From the attack, SEDORE and EDORE remain vulnerable to to-
ken forgery. To address these security concerns, we propose the VDORE with an
enhanced security notion. We introduce TUDORE, which leverages the Schnorr
and BLS signature schemes to prevent universal token reusability attacks. We
provide a formalized definition and proof to clarify the unclear definitions and
proofs of token unforgeability in previous work. Moreover, our scheme offers a
faster token generation algorithm than SEDORE and EDORE.

Since the ORE scheme itself aims to compare numerical values, the input
data is limited to numerical datasets. However, to apply it to various appli-
cations with other types, one can consider an appropriate encoding/decoding
process to convert the data type to a numerical type. Additionally, considering
the significance of range queries, exploring the integration of TUDORE-based
range queries into real-world applications remains an important direction. We
leave these as future work.
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A Deffered Figures

A.1 TUDORE from the TUDERE.

Following the DERE-to-DORE framework, we construct TUDORE from TUD-
ERE as shown in Figure 4. The conversion process is described in the following
figure.

– pp ← TUDORE.Setup(1λ): With the inputs, run TUDERE.Setup algorithm and
output pp.

– (pk, vk, sk) ← TUDORE.Keygen(pp): With the inputs, run TUDERE.Keygen(pp)
algorithm and output (pk, vk, vk).

– tok(u→v) ← TUDORE.Token(pp, pk(u), sk(v)): With the inputs, run TUDERE.Token
algorithm and output tok(u→v).

– 0\1 ← TUDERE.Vfy(pp, vk(u), vk(v), tok(v→u), tok(u→v)): With the inputs, run
TUDERE.Vfy algorithm and output decision bit 0\1.

– ct ← TUDORE.Enc(pp,m, sk): It takes a message m ∈ {0, 1}∗ and sk as in-
put. It encrypts message bit encodings ϵ(mi, a), which is defined as ϵ(mi, a) =
(i,m1m2 . . .mi||0n−i, a) for a ∈ {0, 1, 2}, as follows:
If mi = 0, it computes ciphertexts ct[i] = (ct[i, 0], ct[i, 1]) as follows:

ct[i, 0] = TUDERE.Enc(pp, ϵ(mi, 0), sk), ct[i, 1] = TUDERE.Enc(pp, ϵ(mi, 1), sk).

Else if mi = 1, it computes ciphertexts ct[i] = (ct[i, 0], ct[i, 1]) as follows:

ct[i, 0] = TUDERE.Enc(pp, ϵ(mi, 1), sk), ct[i, 1] = TUDERE.Enc(pp, ϵ(mi, 2), sk).

Finally, this algorithm returns ct = (ct[1], . . . ct[n]).
– res ← TUDORE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)): It takes a pair of ci-

phertexts ct(u), ct(v) and tokens tok(v→u), tok(u→v) as input. Test algorithm runs
TUDERE.Test iteratively. For i = 1 to n, the algorithm follows it:
1. If i = n+ 1, then return 0
2. Else Compute resiu and resiv as follows:

• resiu ← TUDERE.Test(ct(u)[i, 0], ct(v)[i, 1])
• resiv ← TUDERE.Test(ct(u)[i, 1], ct(v)[i, 0])

(a) If resiu = 1, then returns 1
(b) Else if resiv = 1, then return −1
(c) Else i← i+ 1

Fig. 6: TUDORE scheme from TUDERE
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B Universal Token Reusability Attack on efficient DORE

This section shows how to adapt our UTRA method to EDORE [34]. Before
describing our attack, we show the EDERE suggested by [34].

B.1 Efficient DERE

EDERE scheme consists of five algorithms: (Setup,Keygen,Enc,Token,Test) as
follows:

– pp ← EDERE.Setup(1λ): It takes the security parameter 1λ as input and
returns the public parameter pp = (⟨p,G1,G2, g1, g2,GT , e⟩, H,F ).

– (pk, sk)← EDERE.Keygen(pp) : This algorithm takes a public parameter (pp)
as input and returns a pair of public key and secret key (pk, sk). From this,
it uniformly chooses a, b, ξ

$←Z∗
p and generates sk and the corresponding pk

as below:
pk = ga2 , sk = (a, b, ξ)

We denote a key pair of user u as (pk(u), sk(u)) = (g
a(u)

2 , (a(u), b(u), ξ(u))).
– ct ← EDERE.Enc(pp,m, sk): This algorithm receives a message m ∈ {0, 1}∗

and sk as input and returns a ciphertext ct. This algorithm randomly picks
r, η

$←Zp and computes c1, c2, and c3 as below:

c1 = r − ξη, c2 = η, c3 = H(m)(br)
−1

After that, it returns ct = (c0, c1, c2). For user u, we rewrite ct as ct(u) =
(c0(u), c

1
(u), c

2
(u)).

– tok(v→u) ← EDERE.Token(pp, pk(v), sk(u)): This algorithm takes the public
key pk(v) = g

a(v)

2 of user v and the secret key sk(u) = (a(u), b(u), ξ(u)) of
user u and returns an authorization token tok(v→u) consisting of t1(v→u) and
t2(v→u).

t1(v→u) = F (pk
a(u)

(v) )b(u) , t2(v→u) = F (pk
a(u)

(v) )b(u)ξ(u)

Finally, it returns tok(v→u) := (t1(v→u), t
2
(v→u)).

– 0\1 ← EDERE.Test(ct(u), ct(v), tok(v→u), tok(u→v)): This algorithm receives
the ciphertexts from user v and u, ct(v) and ct(u), and the tokens tok(v→u)

and tok(u→v) as input. After that, it computes

d0 = e

(
2∏

k=1

(tk(v→u))
ck(u) , c3(u)

)
, d1 = e

(
2∏

k=1

(tk(u→v))
ck(v) , c3(v)

)
.

Finally, it compares d0 and d1 and returns 1 if d0 = d1 and 0 otherwise.
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B.2 UTRA for EDORE.

Xu et al. also follow the DERE-to-DORE framework to construct EDORE [34].
Due to the equivalence of the Vfy algorithm between EDORE and EDERE, we
consider the universal token reusability attack on EDERE scheme. The scenario
is as follows:
Step 1: The user V creates authorization token tok(M→V) by using EDERE.Token
algorithm and sends it to userM as below:

tok(M→V) =
(
F (pk

a(V)

(M))
b(V) , F (pk

a(V)

(M))
b(V)ξ(V)

)
Step 2: AfterM receives it,M randomly picks r $←Zp and sets a group element
h2 = F (pk

a(M)

(V) )r. And then M computes a universal forged token uft(V),h2
as

following:

uft(V),h2
= tokr(M→V)

=
((

F (pk
a(V)

(M))
r
)b(V)

,
(
F (pk

a(V)

(M))
r
)b(V)ξ(V)

)
After then, M sends uft(V),h2

and h2 to A. Note that M can compute uft(V),h2

by symmetric property pk
a(V)

(M) = gaVaM
2 = pk

a(M)

(V) . Since h2 is randomized by r,
h2 looks like uniform random in the view of A. Furthermore, it is intractable
for the A to find a secret key (a(M), b(M)) of M from h2 and uft(V),h2

due to
the discrete logarithm assumption. For this reason, M may help adversary A
without concern about leakingM’s secret.
Step 3: When A receives uft(V),h2

and h2, she samples her secret key sk(A) =

(a(A), b(A), ξ(A))
$←Z3

p and then computes the counterpart forged token uft(A),h2

as follows:

uft(A),h2
= (h

b(A)

2 , h
b(A)ξ(A)

2 )

For the query, A generates ct(A) ← EDERE.Enc(m, sk(A)) using her secret key
(a(A), b(A), ξ(A)) and then use a pair of forged tokens uft(A),h2

and uft(V),h2
.

For a given message m, let us denote the victim’s ciphertext as ct(V) = (r(V)−
ξ(V)η(V), η(V), H(m)(b(V)r(V))

−1

). Then we can get DERE.Test(ct(V), ct(A), uft(V),h2
,

uft(A),h2
) = 1 by the following equations.

d0 = e

(
2∏

k=1

(uftk(V),h2
)c

k
(V) , c3(V)

)
= e(h

b(V)(r(V)−ξ(V)η(V))
2 · hb(V)ξ(V)η(V)

2 , H(m)(b(V)r(V))
−1

)

= e(h
b(V)r(V)

2 , H(m)(b(V)r(V))
−1

) = e(h2, H(m)).
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d1 = e

(
2∏

k=1

(uftk(A),h2
)c

k
(A) , c3(A)

)
= e(h

b(A)(r(A)−ξ(A)η(A))
2 · hb(A)ξ(A)η(A)

2 , H(m)(b(A)r(A))
−1

)

= e(h
b(A)r(A)

2 , H(m)(b(A)r(A))
−1

) = e(h2, H(m)).

C Refinement of Security Definition and analysis of
UTRA

1. Setting Phase: C runs the setup algorithm pp← Setup(1λ) and the key generation
algorithm (sk(C), pk(C)) ← Keygen(pp). It then sends (pp, pk(C)) to A and keeps
sk(C) local storage.

2. Query Phase: A can query to C:
(a) Key Query: A sends a query with index i. Upon receiving the query, C

checks whether (i, pk(i)) ∈ Skey. If so, it returns (i, pk(i)) to A. Otherwise, it
generates a new key triple by running (pk(i), vk(i), sk(i))← Keygen(pp), returns
(pk(i), vk(i)) to A, and adds the tuple (i, pk(i), vk(i)) to the key query set Skey.

(b) Token Query: If A sends a query with a received public key pk(i) ∈ Skey,
C generates an authorized token tok(i→C) ← Token(pp, pk(i), sk(C)) and then
sends tok(i→C) to A and adds tok(i→C) to token query set Stok.
The number of queries is at most polynomially large at λ.

3. Challenge Phase:
(a) C sends a ciphertext ct(C) ← Enc(pp,mC, sk(C)) for a message mC and a chal-

lenge resulting bit res
$←{−1, 0, 1}.

(b) After receiving ct(C), A samples its own keys (pk(A), sk(A)) ← Keygen(pp)
locally. A picks a message mA and encrypts it ct(A) ← Enc(pp,mA, sk(A)).

(c) A generates a token tok(C→A) ← Token(pp, pk(C), sk(A)).

(d) A forges a token tok∗(A→C) and finally outputs ct(A), tok
∗
(A→C), tok(C→A)

The A wins if Test(pp, ct(C), ct(A), tok
∗
(A→C), tok(C→A)) = res.

Fig. 7: Soundness Game in [14]

In this section, we review the soundness game defined in [14] and present a
refined version. The original soundness game is illustrated in Figure 7.

In this game, the adversary is only allowed to forge a token tok∗(A→C), which
serves as a counterpart to the valid token tok(C→A) generated using the adver-
sary’s own secret key. Hahn et al. provided a soundness proof for SEDORE based
on this game, relying on the random oracle model and the discrete logarithm
assumption to argue that forging such a counterpart token is infeasible.

However, this formulation does not capture our Universal Token Reusability
Attack (UTRA), which does not require access to a valid token tok(C→A). To
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1. Setting Phase: C runs the setup algorithm pp← Setup(1λ) and the key generation
algorithm (sk(C), pk(C)) ← Keygen(pp). It then sends (pp, pk(C)) to A and keeps
sk(C) local storage.

2. Query Phase: A can query to C:
(a) Key Query: A sends a query with index i. Upon receiving the query, C

checks whether (i, pk(i)) ∈ Skey. If so, it returns (i, pk(i)) to A. Otherwise, it
generates a new key triple by running (pk(i), vk(i), sk(i))← Keygen(pp), returns
(pk(i), vk(i)) to A, and adds the tuple (i, pk(i), vk(i)) to the key query set Skey.

(b) Token Query: If A sends a query with a received public key pk(i) ∈ Skey,
C generates an authorized token tok(i→C) ← Token(pp, pk(i), sk(C)) and then
sends tok(i→C) to A and adds tok(i→C) to token query set Stok.

(c) One-way function Query : If A sends a query with index i and one-way
function f , C output f(sk(i)).
The number of queries is at most polynomially large at λ.

3. Challenge Phase:
(a) C sends a ciphertext ct(C) ← Enc(pp,mC , sk(C)) for a message mC and a chal-

lenge resulting bit res
$←{−1, 1} .

(b) After receiving ct(C), A samples its own keys (pk(A), sk(A)) ← Keygen(pp)
locally. A picks a message mA and encrypts it ct(A) ← Enc(pp,mA, sk(A)).

(c) A forges a pair of tokens (tok∗(A→C), tok
∗
(C→A)) and finally outputs

ct(A), tok
∗
(A→C), tok

∗
(C→A).

The A wins if Test(pp, ct(C), ct(A), tok
∗
(A→C), tok

∗
(C→A)) = res.

Fig. 8: Refinement of Soundness Game

address this gap, we propose a refined soundness game that accommodates a
broader class of attacks, including UTRA.

To refine the game, we do not require the adversary to generate a valid
token tok(C→A) via the Token algorithm; instead, it may produce a forged token
tok∗(C→A) through an arbitrary method. In addition, we allow A to make one-
way function queries to model more general collusion scenarios. Specifically, in
the UTRA attack described in Section 4, we present a collusion case where an
authorized userM sends h2 = F (pk

a(M)

(V) )r to the adversary A. As noted,M can
participate in the collusion without the risk of leaking their secret key sk(M),
due to the one-wayness of group exponentiation under the discrete logarithm
assumption.

Furthermore, we restrict the challenger’s response bit res to be sampled from
{−1, 1}, which indicate whether the left ciphertext is greater or the right cipher-
text is greater, respectively. We exclude the case res = 0, which corresponds
either to equality of the inputs or to a failure caused by invalid tokens. The
equality case is semantically meaningful and should not be conflated with in-
valid inputs. However, if res = 0 is allowed as a winning case, an adversary
could trivially win by submitting arbitrary invalid tokens. Therefore, we elimi-
nate 0 to prevent such trivial wins.
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We denote the A’s advantage to the soundness game of DORE scheme(or
DERE scheme) AdvSound[A,DORE](or AdvSound[A,DERE]), which is a probabil-
ity that A wins the token forging game under the DORE(or DERE) scheme,
respectively.

Definition 2 (Refined Soundness). DORE scheme described in Section 3.2
is sound if the probability inequality holds:

|AdvSound[A,DORE]− 1/2| ≤ negl(λ)

To give a formality of security analysis, we prove the unsoundness of SE-
DORE following the refined soundness game in Figure 8.

Theorem 2. SEDORE scheme in [14] is unsound under the definition of Defi-
nition 2

Proof. Since SEDORE scheme follows DERE-to-DORE framework, the unsound-
ness of SEDERE implies these of SEDORE. In terms of SEDERE forging, the
adversary can universal forged token uft(C),h2

as follows:

1. A makes a key and token query and obtains (pk(i), tok(i→C)).
2. A samples r ← Z and makes a one-way function query on the value F (pka(C))

r,
where (a, b) = sk, with input index i. From this query, A obtains h2 =
F (pk

a(i)

(C) )
r, where a(i) is a component of sk(i).

3. A sets uft(C),h2
= tokr(i→C).

4. A samples sk(A) = (a(A), b(A))
$←Z2

p. And it computes the counterpart forged

token uft(A),h2
= (h

a−1
(A)

2 , h
b(A)

2 ).

As described in Section 4, the adversary A can obtain a valid result from
the DERE.Test algorithm using the pair of forged tokens uft(A),h2

, uft(C),h2
. With

this result, A can extract the plaintext mC = m1 · · ·mn from the ciphertext ct(C)
by executing bitwise SEDERE. Note that ct(C) consists of bitwise encryptions
ct1 · · · ctn, which can be individually recovered using the DERE.Test algorithm
with the forged tokens. After extracting the plaintext, depending on the challenge
result value res, A can adaptively generate and submit its own ciphertext ct(A)

to win the game.
From Theorem 2, we argue that the existing soundness definition for the

DORE scheme must be revised to the one in Definition 2 to adequately address
the UTRA attack. However, before constructing a secure DORE scheme that
satisfies this refined soundness notion, we first consider a stronger property:
token unforgeability.
Necessity of Verifying Token Validity. The Test algorithm does not directly
indicate whether a token is forged. While soundness definition ensures that a
forger cannot extract order information without valid tokens, the tester itself is
unable to detect the use of invalid tokens. Therefore, incorporating a verification
algorithm not only strengthens the security notion by enforcing unforgeability
but also empowers the tester to detect forged tokens. For this reason, we pro-
pose the VDORE scheme in Section 5, which extends the DORE framework by
integrating a verification algorithm with token unforgeability property.
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D Security Definitions

Definition 3 (DL Assumption). Let G be a group generation algorithm that
outputs cyclic group G with prime order p ∈ Zp and generator g ∈ G. We say that
G satisfies the discrete logarithm (DL) assumption if, for any PPT adversary
A, the following inequality holds:

Pr

[
gx = h

∣∣∣∣∣ (p, g,G)← G(1λ), h $← G;
x← A(p, g, h,G)

]
≤ negl(λ)

Definition 4 (EUF-CMA). Let Sig = (Setup,Keygen,Sign,Vfy) be a signa-
ture scheme. We say that Sig is Existential Unforgeability under Chosen Message
Attack (EUF-CMA) if for any PPT A, the A’s advantage AdvEUF−CMA[A,Sig]
to the game in Figure 9 is negl(λ).

Signature Forge game
A(1λ)→ (m∗, σ∗)

1. Setting Phase: Csig runs setup algorithm ppsig ← Setup(1λ) and key generation
algorithm (vksig, sksig)← Keygen(ppsig). And then sends (ppsig, vksig) to A.

2. Query Phase: A sends a query to C with chosen message m. Then, C generates
signature σm ← Sign(ppsig, sksig,m) and return it to A. Additionally, C adds m in
queried message setM. The number of queries is at most polynomially large at λ.

3. Challenge Phase: A outputs a message m∗ with forging signature σm∗ . The A
wins if Vfy(ppsig, vksig,m

∗, σm∗) = 1 and m∗ /∈M.

Fig. 9: EUF-CMA Game

E Signature Schemes

Schnorr Signature Scheme [29] Schnorr Signature scheme is a EUF-CMA
signature scheme under the DL assumption. The Schnorr signature scheme Sch
consists of four algorithms (Setup, Keygen, Sign, Verify) as follows:

– ppsig ← Sch.Setup(λ): This algorithm takes the security parameter λ as
input and returns the public parameter ppsig = (⟨p,G, g⟩, T ). p is a prime
order of group G and g is a generator of G. T : {0, 1}∗ → Zp is a hash
function.

– (vksig, sksig)← Sch.Keygen(ppsig): It takes a public parameter as input and

picks random a
$←Zp. And then, it returns a key tuple of signing key sksig = a

and verifying key vksig = A = ga.
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– σ ← Sch.Sign(ppsig, sksig,m): It takes public parameter ppsig, signing key
sksig = a and message m ∈ {0, 1}∗. The signing process is as follows:
1. Picks random r

$←Zp and compute R← gr

2. Compute c← T (R ∥ m)
3. Compute s← r + ca

And then, it returns σ = (R, s) ∈ G× Zp

– 0\1← Sch.Verify(ppsig, vksig,m, σ): It takes public parameter ppsig, the veri-
fying key vksig = A, message m, and signature σ = (R, s). If gs = R·AT (R∥m)

it returns 1; otherwise, it returns 0.

BLS Signature Scheme [7] The BLS signature is a pairing-based signature
scheme satisfying EUF-CMA under the CDH assumption, which is implied by
the DL assumption. The BLS signature scheme BLS consists of four algorithms
(Setup, Keygen, Sign, Verify) as follows:

– ppsig ← BLS.Setup(λ): This algorithm takes the security parameter λ as
input and returns the public parameter ppsig = (⟨p,G1,G2,GT , g1, g2, e⟩, T ).
G1,G2 and GT are groups of prime order p. g1 and g2 are generators of G1

and G2, respectively. e : G1 × G2 → GT is a degenerated bilinear map.
T : {0, 1}∗ → G2 is a cryptographic hash function.

– (vksig, sksig)← BLS.Keygen(ppsig): It takes a public parameter as input and

picks random a
$←Zp. And then, it returns a key tuple of signing key sksig = a

and verifying key vksig = A = ga1 .
– σ ← BLS.Sign(ppsig, sksig,m): It takes public parameter ppsig, signing key

sksig = a and message m ∈ {0, 1}∗. And then, it returns σ = T (m)a

– 0\1 ← BLS.Verify(ppsig, vksig,m, σ): It takes public parameter ppsig, the
verifying key vksig = A, message m, and signature σ ∈ G2. If e(g1, σ) =
e(A, T (m)) it returns 1; otherwise, it returns 0.

Generic Group Model [30,21] A generic group model (GGM) is an idealized
model for a group whose operations are carried out by making oracle queries.
The GGM is designed to capture the behavior of general algorithms that oper-
ate independently of any particular group descriptions. By this restriction, the
GGM establishes a lower bound on the cost of solving the discrete logarithm
(DL) problem, which is sub-exponential [30,21]. In other words, GGM implies
DL assumption, which serves as the underlying assumption of both Schnorr’s
signature [29] and BLS signatures [7].

Specifically, we consider the bilinear GGM, which additionally simulates a
bilinear map e : G1×G2 → GT as proposed in [15]. The bilinear GGM is defined
by the following:

Definition 5 (Bilinear Generic Group Algorithm [30,15]). A bilinear
generic group algorithm A is an algorithm that can access bilinear generic group
oracle OBL to treat group operation. The bilinear generic group oracle runs as
follows in Figure 10.
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Generic Group Oracle OBL

– Query format: two indices with op-type (i, j, op) ∈ Zp × Zp × {×1,×2,×T , e}.
– Output: a bitstring s ∈ {0, 1}∗.
– Encoding List: L := {(i, type), s ∈ Zp × {1, 2, T} × {0, 1}∗}, the O manages the

list L locally.
– Group Operation: If O takes a query (i, j,×type) for type ∈ {1, 2, T}, then O

follows the process.
1. If the index-type tuple (i+j, type) belongs to the list L, then outputs (i+j, type)

corresponding string s where (i+ j, type, s) ∈ L
2. Else, sample s

$←{0, 1}∗ until (∗, ∗, s) /∈ L
3. Output s and adds (i+ j, type, s) to the list L

– Bilinear Map: If O takes a query (i, j, e), then O follows the process.
1. If the index-type tuple (ij, T ) belongs to the list L, then outputs (ij, T ) corre-

sponding string s where (ij, T, s) ∈ L
2. Else, sample s

$←{0, 1}∗ until (∗, ∗, s) /∈ L
3. Output s and adds (ij, T, s) to the list L

Fig. 10: Bilinear Generic Group Oracle

F Token Unforgeability of TUDORE (Proof of Thm. 1)

In this section, we complete token unforgeability of VDORE scheme. As we men-
tioned, we show that the adventage of token forging game adversary A should
be negligible.

Let A and B be adversaries against the token forging game (Figure 3) and
EUF-CMA game (Figure 9) respectively. Now we construct B which exploits
A. Note that B roles challenger in token forging game against A. Additionally,
we restrict A should send key query to get a public key, which is reasonable
under GGM. Specifically, we consider the bilinear GGM model to access OBL in
Figure 10.

Simulation C against A As we mentioned, B should simulate challenger C for
the token forging game in Figure 3. We describe how to simulate C in Figure 11.

In the setting phase, B generates pk(B) using generic group oracle OBL in
Figure 10. And then, sends verificatino key vk(B) = vksig received by Csig and
public key pk(B) of B to A.

In the key query phase, B simulates C using OBL. Concretely, B runs Keygen
with accessing OBL.

In the token query phase, by our premise, B already knows an exponent a(A)

of token queried public key pk(A), which should belong to the key query set
Skey. Then, B can generates (t0(A→B), t

1
(A→B)) = (pk(A), pk

a(B)

A = g
a(A)a(B)

2 ) with
accessing OBL. After then, B gets signature σB from signature query to Csig.
Therefore B can response the token query by getting tok(A→C) from OBL.
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BA(1λ)→ (m̂, σ̂)

1. Setting Phase: Csig runs setup algorithm ppsig := (⟨p, [G1, g1]OBL⟩, T ) ←
Setup(1λ) and key generation algorithm (vksig, sksig) ← Keygen(ppsig). And then
sends (ppsig, vksig) to B.

2. Simulation C against A: B roles token forging game challenger C against A.
(a) Setting Phase: B construct pp = (⟨p, [G1,G2, g1, g2,GT , e]OBL⟩, H,T ) using

ppsig. And then B samples a(B)
$←Zp and access generic group oracle OBL to

get a public key pk(B) ← OBL(a(B), 0,×2). And then B sends (pp, vk(B) =
vksig, pk(B)) to A.

(b) Key Query: If A sends key query with index i to B, then B follows the role
of challenger in Figure 3. If (i, pk(i), vk(i)) ∈ Skey, then output (i, pk(i), vk(i)).
Otherwise, it runs (sk, pk, tk) ← KeygenOBL(pp). And it returns (pk, tk) and
adds the tuple (i, pk, tk) to key query set Skey

(c) Token Query: If A sends token query with pk(A), then B finds a(A) from
the key query set Skey. And then B access generic group oracle OBL to get
random string t1(A→B) ← OBL(a(A)a(B), 0,×2). After then, B sends signature
query (t0(A→B) := pk(A), t

1
(A→B)) to Csig and gets a signature σB. Finally, B

responses tok(A→B) = (t0(A→B), t
1
(A→B), σB) to A

(d) Receive Forged Token: B recieves forged token (v̂k(A), ̂tok(B→A), ̂tok(A→B))
from A.

3. Challenge Phase: B answers ̂tok(A→B) =
(
( ̂t0(A→B),

̂t1(A→B)), σ̂B

)
= (m̂, σ̂) to

Csig.

Fig. 11: Construct B using A

Finally, B receives the forged token from A and then uses it to win the
EUF-CMA game (Figure 9).

In the simulation process, B does not fail to respond to the A’s queries, and
the responses follow the same distribution as in the real game. This means that,
from the adversary’s perspective, the real game in Figure 3 is indistinguishable
from the simulated game by B in Figure 11.

Probability Analysis If A succeeds to forge the token, then the signature parts
σ̂B should be valid signature for the message m̂ = ( ̂t0(A→B),

̂t1(A→B)). That means,
B can succeed in the forging signature of adaptively chosen message m̂. Then,
we get the following inequality.

AdvTF[A,VDERE] ≤ AdvEUF−CMA[B,SSig] (1)

where AdvTF[A,VDERE] is A’s advantage to the token forging game (Fig-
ure 3) and AdvEUF−CMA[B,SSig] is B’s advantage to the EUF-CMA game Figure 9
under the security parameter λ.

By our premise, AdvEUF−CMA[B,SSig] is at most negligible to λ. Then, Equa-
tion (1) implies the following inequality: AdvTF[A,VDERE] < negl(λ). Thus, we
can conclude that VDERE satisfies token unforgeability.
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Fig. 12: The performance graphs for encryption time, ciphertext storage cost, and
test time for DORE, SEDORE, and our VDORE. In Figure 12c, B indicates Best
and W indicates Worst.

This section introduces the performance for encryption time, ciphertext stor-
age cost, and test time. The encryption is executed by the users, and the test is
operated by the servers. As shown in Figure 12, we can identify all values are
identical throughout DORE, SEDORE, and VDORE because the three schemes
use the same encryption and test algorithm. Furthermore, in Figure 12c, we show
the evaluation of the test algorithm for the best and worst scenarios. From this,
the best-case scenario involved comparing two plaintexts where the most signifi-
cant bit (MSB) differed. For instance, comparing 1 · · · b6b7(2) and 0 · · · b′6b′7(2) in
an 8-bit scenario. Therefore, we compare values for this experiment where only
the MSB of each bit length is set to 1 and 0. On the other hand, the worst-case
scenario involves comparing two identical plaintexts. The light-colored graphs
represent results for the worst-case scenario, while the dark-colored ones depict
the best-case scenario. In the best-case scenario, regardless of the bit length,
each has a fixed cost of about 1 second. In the worst-case scenario, three ORE
schemes take approximately 19 seconds and 158 seconds for 8-bit and 64-bit op-
erations, respectively. In Figure 5b, we show that the computational time falls
within the range of Figure 12c.
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