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Abstract. This paper studies quantum linear key-recovery attacks on block ciphers.
The first such attacks were last-rounds attacks proposed by Kaplan et al. (ToSC
2016), which combine a linear distinguisher with a guess of a partial key. However, the
most efficient classical attacks use the framework proposed by Collard et al. (ICISC
2007), which computes experimental correlations using the Fast Walsh-Hadamard
Transform. Recently, Schrottenloher (CRYPTO 2023) proposed a quantum version of
this technique, in which one uses the available data to create a quantum correlation
state, which is a superposition of subkey candidates where the amplitudes are the
corresponding correlations. A limitation is that the good subkey is not marked in
this state, and cannot be found easily.
In this paper, we combine the correlation state with another distinguisher. From
here, we can use Amplitude Amplification to recover the right key. We apply this
idea to Feistel ciphers and exemplify different attack strategies on LOKI91 before
applying our idea on the CAST-128 and CAST-256 ciphers. We demonstrate the
approach with two kinds of distinguishers, quantum distinguishers based on Simon’s
algorithm and linear distinguishers. The resulting attacks outperform the previous
Grover-meet-Simon attacks.
Keywords: Quantum cryptanalysis · Linear cryptanalysis · Fast Fourier Transform
· CAST

1 Introduction
In the past decade, many studies have shown that classical cryptanalysis techniques can
be adapted to the quantum setting, such as differential and linear attacks [KLLN16b],
rebound attacks [HS20], (Demirci-Selçuk) meet-in-the-middle attacks [BNS19b], to cite
only a few. In fact, most of these attacks follow from a re-optimization of classical attacks
combined with Grover’s search algorithm [Gro96], quantum amplitude amplification (QAA)
and amplitude estimation [BHMT02]. These algorithms offer a quadratic speedup (O(2n)
to O

(
2n/2)), meaning that in general, quantum attacks which only use these tools are

limited to an overall quadratic speedup.
In the context of key-recovery attacks on block ciphers, which this paper focuses on, the

generic exhaustive search is also quadratically accelerated. As a consequence, the security
margin regarding quantum search-based attacks is often equal or higher than classical
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Figure 1: Simplified scenario of FFT-based linear attack against an n-bit block cipher.
Here EM is the part of the cipher with a linear approximation (α, β). Π is a keyless
permutation.

attacks (to put it differently, a valid quantum attack using only Grover’s search could be
“dequantized” into a valid classical attack).

It has been known since the work of Kuwakado and Morii [KM10, KM12] that Simon’s
algorithm [Sim97] can obtain better speedups than quadratic in symmetric cryptanalysis,
leading to total quantum breaks of some symmetric cryptosystems in the superposition
(Q2) query model. When the amount of data is relatively low with respect to the attack’s
cost, such attacks can be upgraded to the classical (Q1) query model, in which the
adversary owns a quantum computer but only accesses classical data [BHN+19]. In this
context, some “super-quadratic” speedups are still reachable, using Simon’s algorithm as
a distinguisher: the offline-Simon algorithm reaches a 2.5 (O

(
22.5n

)
to O(2n)) speedup

on the 2-XOR-Cascade block cipher construction [BSS22]. However, Simon’s algorithm
only distinguishes very specific structures, such as the Even-Mansour cipher [KM12] and
reduced-round Feistel networks [KM10, IHM+19, NIDI19, SCQ+23].

Another example of super-quadratic speedup was given in [Hos23], using multidimen-
sional linear (zero-correlation) distinguishers. This highlights the potential for quantum
linear attacks.

Quantum Linear Attacks. The first results of quantum linear cryptanalysis were given
by Kaplan et al. [KLLN16b], using quantum counting for the linear distinguisher (which
estimates the correlation of a given linear approximation), and Grover’s search for the
key-recovery part.

Advanced linear key-recovery attacks use the Fast Fourier Transform (FFT) to compute
quickly the correlations [CSQ07]. In effect, the correlation of the reduced-round cipher for
a given subkey guess can be expressed as a convolution of functions. The FFT serves to
quickly compute this convolution, allowing to retrieve easily the subkeys which exhibit the
largest correlations, suggesting good candidates.

As an example, if we consider the situation of Figure 1, where the cipher has block
length n and EM admits an approximation (α, β) of correlation |c| ≫ 2−n/2, then k can
be retrieved in about O(n2n) operations instead of O

(
2n × c2) previously.

This classical key-recovery served in [Sch23] as an inspiration for a quantum one based
on the quantum Fourier transform. Let ĉor(z) be the correlation of α·x⊕β ·EK(Π−1(x)⊕z),
whose absolute value is higher when z is equal to k. Then one can compute a so-called
correlation state:

|Cor⟩ =
∑

z

ĉor(z) |z⟩ .

With high probability over the master key K, the good subkey k has amplitude around
|ĉor(k)| ≃ |c| ≫ 2−n/2. However, this is not immediately exploitable. The strategy used
in [Sch23] was to complete the subkey z into the full cipher key, to check if the full key is
good using a few plaintext-ciphertext pairs (like in Grover’s search), and perform quantum
amplitude amplification (QAA). The correlation state can be seen as an improved starting
state for QAA, which creates a speedup with respect to exhaustive search. Unfortunately,
very few examples of attacks could be given, and the margin with respect to exhaustive
search was limited by a factor 2n/2/c, which tends to be quite small.
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Contribution. In this paper, we extend the framework of [Sch23] and give new quantum
linear attacks using the QFT. Our main observation is that any distinguisher for EM

allows to turn the correlation state into a marked state:∑
z

ĉor(z) |z⟩ |(z ?= k)⟩ .

This allows to run QAA, without necessarily guessing the full key. We give examples with
two types of distinguishers: using Simon’s algorithm, and using a linear approximation.

We apply this idea to the cryptanalysis of Feistel networks in the Q1 and Q2 setting
starting with round-reduced LOKI91. Surprisingly, we do not get any benefit from applying
a linear approximation. By using Simon’s algorithm we reduce the complexity from 233.65

(counted in block cipher calls) to 223.73 but we need 232 additional classical calls resulting
from the round function which is rather problematic for our attacks. In contrast, we provide
quantum attacks on reduced-round CAST-128 and CAST-256. These attacks can be seen
as accelerations of the previous attacks based on Grover’s search and Simon’s algorithm,
starting from the correlation state to reduce the number of iterations of the key-recovery.
On CAST-128, we reduce the complexity from 264.5 to 261.1. On CAST-256, we increase
the number of attacked rounds by 1 compared to the previous Grover-meet-Simon attack,
from 23 to 24 [SCQ+23].

Furthermore, we show that when using the same linear approximation as a distinguisher,
the QFT-based framework will always improve over the previous attacks of Kaplan et
al. [KLLN16b], even though the advantage might become negligible due to the too small
correlation. This confirms the potential of QFT-based linear attacks for block cipher
cryptanalysis. Using a linear distinguisher, we give another 24-round quantum attack on
CAST-256.

Super-quadratic Speedups in Quantum Cryptanalysis. While this is not the case for the
block ciphers studied in this paper, it was noticed in [Sch23] that this attack framework
may achieve speedups better than quadratic for key-recovery attacks on some specific
designs. The example given in [Sch23] is that of an acceleration from O

(
22.5n

)
to Õ(2n),

similar to the one offered by the offline-Simon algorithm [BSS22].
Despite reaching seemingly the same gap, our analysis suggests that there is an impor-

tant difference between these two frameworks. When using the offline-Simon algorithm,
the speedup with respect to Grover’s search comes entirely from the distinguisher, which
internally speeds up from O

(
2n/2) to O

(
n3), leading to the 0.5n advantage in the 2.5n

speedup. In contrast, part of the speedup that we can gain in the linear attack comes from
the key search itself, since we use the correlation statistic to accelerate it. By combining
this with an efficient distinguisher, we conjecture that one may reach an even larger
speedup than the 2.5n – unfortunately, the block cipher would have to be specifically
designed for this purpose.

On the use of qRAM / Q2 Queries. The attacks studied in this paper require fast
access to large quantum-accessible classical memories (QRACM), and / or superposition
(Q2) queries. While both models are quite common in the literature, we favor QRACM
over Q2 queries as it is a computational assumption (that memory access is relatively
inexpensive) rather than an assumption on the attack scenario (that superposition queries
are accessible). How to mitigate this QRACM requirement remains an open question.

Organization. Section 2 gives a collection of results pertaining to the Fourier analysis of
Boolean functions, and quantum computing. In Section 3 we recall linear cryptanalysis,
key-recovery using the FFT, and the technique of [Sch23]. Next, in Section 4 we introduce



Kaveh Bashiri, Xavier Bonnetain, Akinori Hosoyamada, Nathalie Lang and André
Schrottenloher 3

our extension that combines the correlation state with a distinguisher, with a detailed and
self-contained analysis.

Our new quantum attacks span the rest of the paper. In Section 5 we use LOKI91 as an
example for our different attack strategies. Our new attacks on CAST-128 and CAST-256,
using a distinguisher based on Simon’s algorithm, are given in Section 6 and Section 7
respectively. Our alternative attack on CAST-256 based on a linear distinguisher is given
in Section 8.

Our results on LOKI91, CAST-128 and CAST-256 are summarized respectively in
Table 1, Table 2 and Table 3.

2 Preliminaries
In this section, we give some useful definitions related to the Fourier analysis of Boolean
functions, and important subroutines of our quantum algorithms.

2.1 Fourier Transforms and Convolutions
In this paper, we will consider discrete Fourier transforms (DFT) defined over Z2n and
Zn

2 , the latter being called the Walsh-Hadamard transform (WHT). We will use the same
notation for both, which shall be clear from context. We note ι =

√
−1 and use ⊕ for

(bitwise) addition in Zn
2 , not to be confused with + for (modular) addition in Z2n .

Let f : Z2n → C be a function, its DFT f̂ : Z2n → C is defined as:

f̂(x) :=
∑

y∈Z2n

exp(−2ιπxy/2n)f(y) . (1)

The inverse Fourier transform (IFT) is defined as:

f̃(x) :=
∑

y∈Z2n

exp(2ιπxy/2n)f(y) . (2)

We have the following property: ˜̂
f = ̂̃

f = 2nf . (3)

The DFT can be generalized to functions with multiple input variables. More precisely,
if f is defined over a product

∏
0≤i≤m−1 Z2ni (where m,n0, . . . , nm−1 ∈ N), the DFT is

defined as:

f̂(x0, . . . , xm−1) =
∑

y0,...,ym−1

∏
i

exp(−2ιπxiyi/2ni)f(y0, . . . , ym−1) , (4)

and the IFT similarly. In particular, for the special case that m = n and n0 = · · · = nm−1 =
1, the DFT of a function f defined over Zn

2 is called the Walsh-Hadamard Transform
(WHT)1 and f̂ : Zn

2 → C is defined as:

f̂(x) =
∑

y∈Zn
2

(−1)x·yf(y) . (5)

In this case, the transformation is an involution (the WHT and its inverse are the same),
so we use only the notation f̂ .

1Some authors make a difference between the DFT and the WHT, depending on the normalization
coefficient.
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There is a natural bridge between the DFT and the so-called discrete convolution,
which, for two functions f, g defined over

∏
0≤i≤m−1 Z2ni , is given by:

(f ⋆ g) (x0, . . . , xm−1) =
∑

y0,...,ym−1

f(y0, . . . , ym−1)g(x0 − y0, . . . , xm−1 − ym−1) , (6)

and in the case of Zn
2 , is defined by:

(f ⋆ g) (x) =
∑

y

f(y)g(x⊕ y) . (7)

The connection between the DFT and the discrete convolution is given through the
following identity, which we will used througout this paper.
Lemma 1 (Convolution theorem). For two functions f, g defined over

∏
1≤i≤ℓ Z2ni :(

ℓ∏
i=1

2ni

)
(f ⋆ g) = ˜̂

f · ĝ . (8)

Moreover, we will also use the following well-known fundamental properties.
Lemma 2 (Product). For a family of functions {fi : Z2ni → C}1≤i≤ℓ, let f1f2 · · · fℓ :∏

1≤i≤ℓ Z2ni → C denote the function defined by (f1f2 · · · fℓ)(x1, . . . , xℓ) =
∏

1≤i≤ℓ fi(xi).
Then ̂f1f2 · · · fℓ = f̂1f̂2 · · · f̂ℓ and ˜f1f2 · · · fℓ = f̃1f̃2 · · · f̃ℓ .

Lemma 3 (Parseval identity). For a function f defined over
∏

1≤i≤ℓ Z2ni :

∑
y

f̂2(y) =
∑

y

f̃2(y) =
(

ℓ∏
i=1

2ni

)∑
y

f2(y) . (9)

In particular, if f is a function to {−1, 1}:

∑
y

f̂2(y) =
∑

y

f̃2(y) =
(

ℓ∏
i=1

2ni

)2

. (10)

2.2 Preliminaries of Quantum Computing
We assume some familiarity of the reader with the basics of quantum computing [NC02]
such as quantum states, qubits, basic operations and the quantum circuit model. For
a unitary U implemented as a quantum circuit, its inverse U† can be implemented by
reverting the sequence of operations of U . We denote the gate count of a quantum
algorithm A as G(A).

In this paper, we are interested in quantum key-recovery attacks on block ciphers. These
attacks are quantum algorithms described as quantum circuits. For any block cipher EK of
key length |K|, there is a quantum exhaustive search attack of complexity O

(
2|K|/2) using

negligible memory and data, by Grover’s quantum search algorithm [Gro96]. Similarly to
classical cryptanalysis, our goal is to obtain a smaller time complexity.

Q1 and Q2 Settings. In symmetric quantum cryptanalysis, there is a gap between the
Q1 setting (only classical chosen-plaintext queries available) and the Q2 setting, where
the adversary has access to a quantum black-box oracle for the cipher (and sometimes
its inverse): |x⟩ |0⟩ 7→ |x⟩ |EK(x)⟩ . It is known that some ciphers are secure in Q1 but
insecure in Q2, like the Even-Mansour cipher [KM12, ABKM22]. Yet, as we explain below,
if the key length is twice as large as the block size, the Q2 setting can be replaced by
a hardware assumption (the QRACM model) at the expense of a large classical data
complexity.
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Quantum RAM. The quantum RAM model is an assumption used commonly in quantum
algorithms to minimize their gate count. Quantum RAM allows complex memory operations
to be made in quantum circuits, provided that the so-called “qRAM gate” has cost 1 (like
other basic gates). In this paper, we will rely only on quantum random-access classical
memory (QRACM). This is a large classical memory array M which can be accessed
through qRAM gates of the form:

|i⟩ |y⟩ qRAM7−−−→ |i⟩ |y ⊕Mi⟩ (11)

where Mi is the bit (or the data) at index i in the array. We assume that such qRAM
gates can be efficiently implemented.
Remark 1 (Relation between QRACM and the Q2 model). Consider an n-bit block cipher
with |K|-bit keys, where |K| ≥ 2n. Then the complexity of Grover’s exhaustive search
is a bit larger than 2n. This means that in an attack, we can afford to query the entire
classical codebook of the cipher and store it in a QRACM of size 2n. After doing so, the
Q2 oracle to the cipher (and its inverse) can be implemented by querying the QRACM.

Complexity Estimates. The cost of a quantum circuit is best estimated by its number of
qubits, gates, and its total depth. In this paper, we will favor a simpler but more imprecise
estimation of the complexity.

First, regarding the memory complexity: as the number of computational qubits used
in our attacks will remain relatively small (polynomial in the block size), we ignore it. We
focus instead on the amount of QRACM used, counted in blocks.

Second, our algorithms are sequential, like Grover’s search, so instead of comparing
the depth we focus on the gate count. We approximate it by counting in calls to the
attacked block cipher, i.e., relatively to the cost of an implementation of the cipher as
a quantum circuit. A Q2 query corresponds to one call. Following the relation between
QRACM and Q2 queries, we assume that a QRACM query has equivalent cost. Whenever
we need to implement the cipher’s sub-components, we may upper bound the cost by 1 call.
Other components of the algorithms (such as Grover’s diffusion transform) can typically
be neglected.

2.3 Simon’s Algorithm
Simon’s algorithm [Sim97] is a polynomial-time quantum algorithm to solve the following
problem.

Problem 1 (Hidden Boolean period). Given a quantum oracle Of for a two-to-one
function f : {0, 1}n → {0, 1}m such that ∃s,∀x, y, f(x) = f(y) ⇐⇒ y = x ∨ y = x⊕ s,
find s.

This problem has been particularly useful in symmetric cryptanalysis, leading to both
Q2 [KM10, KM12, KLLN16a] and Q1 [BHN+19, BSS22] attacks. In these applications,
however, the function is not two-to-one. Rather, being built from (supposedly) secure
cryptographic components, it behaves statistically like a random function. It is well-known
that the original algorithm from Simon still functions in such a case [KLLN16a].

Another restriction is when the function has a small codomain, for example a single-bit
output. Notably, May and Schlieper considered the case of a compressed function [MS22].
Obviously, a single-bit output subsumes the case of any function f , which can either be
compressed or truncated using the method of [HS18, BBC+21].

While most works use Simon’s algorithm as is, the algorithm that we give below moves
slightly away from it, as its goal is to be tailored to the single-bit output case.
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Simon’s Algorithm as a Fourier Analysis Problem. In the case m = 1, consider the
quantum subroutine of Algorithm 1, which calls a phase oracle for f : |x⟩ 7→ (−1)f(x) |x⟩.
Such an oracle can easily be constructed from any implementation of f .

Algorithm 1 Simon’s algorithm with a phase oracle
1: Initialize a register for x: |0⟩
2: Apply a Hadamard transform: 1

2n/2

∑
x |x⟩

3: Call f : 1
2n/2

∑
x(−1)f(x) |x⟩

4: Apply a Hadamard transform: 1
2n

∑
y

(∑
x(−1)x·y(−1)f(x)) |y⟩

Here ĝ(y) :=
∑

x(−1)x·y(−1)f(x) is a Walsh-Hadamard coefficient of the function
g : x 7→ (−1)f(x), and this subroutine merely creates a quantum state whose amplitudes
are these coefficients (rescaled): 1

2n

∑
y ĝ(y) |y⟩.

The following property of the coefficients is at the heart of Simon’s algorithm.

Lemma 4. If f is periodic of period s ̸= 0 (for all x, f(x⊕ s) = f(x)), then for all y such
that y · s = 1, ĝ(y) = 0.

Proof. We first partition the input space {0, 1}n into two subsets X and X ⊕ s. Then,
since f is periodic, we have:

ĝ(y) =
∑
x∈X

(−1)x·y(−1)f(x)+(−1)(x⊕s)·y(−1)f(x⊕s) =
∑
x∈X

(−1)x·y(1+(−1)y·s)(−1)f(x) = 0 .

The other Walsh-Hadamard coefficients are equal to 2
∑

x∈X(−1)x·y(−1)f(x). In par-
ticular, the probability to measure 0 in the output state is equal to: |̂g(0)|2

22n = |#{x, f(x) =
0} − #{x, f(x) = 1}|2/22n = O(1/2n) if the function is random. The exact probability to
measure each y depends on the function f , but if it behaves like a random function, we
can expect to measure each y with roughly the same probability. These considerations are
studied extensively in [Bon21], and we rely on their analysis for concrete estimates.

Therefore, after running Algorithm 1 n+k times (for some well-chosen k) and performing
a measurement after each run, we obtain a set of vectors y1, . . . , yn+k that define a linear
system on s, from which we can obtain s. If the function is random and not periodic, then
we will simply measure random vectors and the family y1, . . . , yn+k will be full rank.

This observation has the following by-product: We can use Algorithm 1 to detect,
whether the function is periodic or whether it is random (and hence not periodic). In
other words: We can use this algorithm to distinguish periodic functions from random
functions. In this paper we will apply Algorithm 1 with this objective.

Running the Procedure Coherently. Computing the rank of the family can be performed
coherently, giving us a function to test whether f is periodic or not. This test can make
errors: even in the random case, we can happen to pick random vectors y1, . . . , yn+k that
do not form a full-rank family. Increasing k reduces such errors exponentially.

In general, we use Simon’s algorithm inside a Quantum Amplitude Amplification routine.
Following Bonnetain’s analysis of the offline-Simon algorithm (Heuristic 5 in [Bon21]), we
consider that if Simon’s algorithm is embedded in a search with 2ℓ/2 iterations, n+ℓ+α+4
vectors are sufficient to succeed with an overall probability of at least 1 − 2−α.

2.4 Quantum Distinguishers on Feistel Ciphers
Kuwakado and Morii [KM10] showed that the 3-round Feistel could be distinguished
from a random permutation in polynomial time using Simon’s algorithm. Since then,
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Figure 2: 4-round Feistel distinguisher of [IHM+19].

many quantum distinguishers on (Generalized) Feistel networks have been given [IHM+19,
DLW19, NIDI19, BNS19a, HK20, CHLS20, SCQ+23, CLS22, XWY+24]. In this paper,
we will use a distinguisher on the 4-round Feistel of [IHM+19] and a distinguisher on
the 17-round CAST-256 structure of [SCQ+23]. We recall the former in Figure 2. Being
generic, we will apply it to both LOKI91 and CAST-128.

Let α0, α1 be a pair of constants and let E be the 4-round Feistel with unknown round
functions F1, F2, F3, F4. Let f(x, αb) be constructed as in Figure 2, by calling E on input
(x, αb), swapping the outputs, XORing α0 ⊕ α1, calling E−1 and truncating to a single
branch. Then:

f(x, α0) = f(x⊕ F1(α0) ⊕ F1(α1), α1) ⊕ (α0 ⊕ α1) . (12)

Indeed, if we introduce a difference α0 ⊕ α1 in the constant input branch, we only need to
correct the value of x by (F1(α0) ⊕F1(α1)) and we get the same output, up to a difference
α0 ⊕ α1. This means that the function:

F (x, b) = f(x, αb) ⊕ αb (13)

is periodic of period (F1(α0) ⊕F1(α1), 1). Using Simon’s algorithm on this function allows
to distinguish E from a random permutation. Furthermore each call to F contains one
call to E and one call to E−1.

Extension to a Grover-meet-Simon Distinguisher. In the applications of this paper,
we will typically extend a Simon distinguisher by guessing the keys of additional rounds,
turning it in practice into a Grover-meet-Simon [LM17] distinguisher. Given access to
the cipher, one performs a Grover’s search over the additional round keys, expecting
one solution. A value for them is tested by running the Simon distinguisher on the
reduced-round cipher (to which we have now access since the outer keys are guessed). In
the random case, no key leads to a periodic function. Otherwise, the right key (that leads
to a periodic function) is found by Grover’s search.
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2.5 Quantum Amplitude Amplification (QAA)
Let f : {0, 1}n → {0, 1} be a Boolean function, U be a unitary operator acting on n-qubit
quantum states, and p be the probability that the outcome x ∈ {0, 1}n satisfies f(x) = 1
when the quantum state U |0n⟩ is measured. In cryptanalysis, the function f is typically
defined so that f(x) = 1 iff x matches a secret value that we want to recover with a high
probability. The Quantum Amplitude Amplification (QAA) is an algorithm that amplifies
the probability p by iteratively applying U and the (phase) oracle of f .

More precisely, define the unitary operator:

Q(U, f) := US0U
†Sf ,

where the unitary operators Sf and S0 are defined as:

Sf |x⟩ = (−1)f(x) |x⟩ ,

S0 |x⟩ = (−1)x
?=0 |x⟩ .

The operator Sf is a phase oracle, flipping the sign of the state |x⟩ only when f(x) = 1.
The operator S0 flips the phase only of the |0n⟩ state, hence acting as a reflection about
the subspace orthogonal to |0n⟩.

The composition US0U
† represents the conjugation of S0 by U , which geometrically

corresponds to a reflection about the state U |0n⟩.
Thus, Q(U, f) performs a composite reflection:

1. Sf reflects about the good subspace, namely the solutions to f(x) = 1.

2. US0U
† reflects about the initial state U |0n⟩.

This double reflection defines a rotation in the 2D subspace spanned by the good
(f(x) = 1) and bad (f(x) = 0) components of U |0n⟩, thereby increasing p.

Given this, the following theorem holds.

Theorem 1 ([BHMT02]). Let m :=
⌊
π/(4 arcsin √

p)
⌋
. If we measure the quantum state

(Q(U, f))mU |0n⟩, then the outcome x ∈ {0, 1}n satisfies f(x) = 1 with a probability of at
least max{p, 1 − p}. In other words, we can amplify the probability of measuring such x to
Θ(1) by applying U , U†, S0 and Sf for O

(√
1/p
)

times.

This matches Grover’s search [Gro96] when U is the Hadamard transform.
Reaching a probability of success close to 1 requires knowing the parameter p. However,

if only a lower bound on p is given, running a QAA with a random number of iterates still
allows to succeed with good probability.

Lemma 5 (QAA with unknown success probability [SS24, Lemma 2]). Assume that
p ≥ pmin. There is a quantum procedure that finds x such that f(x) = 1 with probability
greater than 0.5 using on average 2

⌈
1.21√
pmin

⌉
+ 2 calls to U and U†.

2.6 Quantum Counting (QC)
Again, let f : {0, 1}n → {0, 1} be a Boolean function, and let X := #{x : f(x) = 1}.
The goal of quantum counting (QC) is to estimate X. We will make use of the following
theorem:
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Theorem 2 ([BHMT02, Theorem 12]). There is a quantum algorithm Est_Amp estimating
the amplitude a ∈ {0, 1} of measuring a “good” outcome, namely an x such that f(x) = 1.
More precisely, for any positive integers k and q, Est_Amp outputs ã with (0 ≤ ã ≤ 1) such
that

|ã− a| ≤ 2πk

√
a(1 − a)

q2 + k2
(
π

q

)2

with probability at least 8
π2 when k = 1 and with probability greater than 1 − 1

2(k−1) for
k ≥ 2. It uses exactly q evaluations of f . If a = 0 then ã = 0 with certainty, and if a = 1
and q is even, then ã = 1 with certainty.

Suppose that a quantum circuit implementing f with gate count G(f) is availabe.
Assign k = 1. Let a = X

2n . Based on Theorem 2, we can observe that, for any positive
integer q, there is a unitary operator QCq satisfying the following properties:

1. Measuring (some part of) the quantum state QCq |0⟩, the outcome X̂ is an integer
such that

∣∣∣X̂ −X
∣∣∣ ≤ 2π

√
X(2n −X)/q2 +(π ·2n/2/q)2 with a probability of at least

8
π2 ≈ 0.8.

2. QCq can be implemented on a quantum circuit such that it makes exactly q queries
to f and its gate count is approximately q ·G(f).

Following [KLLN16b], we will use the algorithm for linear distinguishers.

3 Quantum Linear Cryptanalysis using the QFT
In this section, we recollect previous work on linear key-recovery attacks using the FFT,
and the QFT in the quantum setting. First, we recall the concept of linear cryptanalysis,
the experimental correlation statistic and the (classical) FFT technique for computing
correlations. Second, we present the technique of [Sch23], the computation of the correlation
state using the QFT and how it extends to a key-recovery attack.

3.1 Linear Cryptanalysis
Linear cryptanalysis, introduced by Matsui [Mat93, Mat94], is a powerful cryptanalysis
method based on linear distinguishers.

Let EK be an n-bit block cipher. A linear approximation on a reduced-round version
EM is given by a pair of masks (α, β) such that the correlation:

corK(α, β) := 1
2n

∑
x∈Fn

2

(−1)α·x⊕β·EM (x) (14)

is much larger than for a random function, i.e., much larger than 2−n/2. In general, EM is a
keyed function, and the correlation depends on the key. The strength of the approximation
is determined by its ELP (Expected Linear Potential):

ELP := 1
2|K|

∑
K∈F|K|

2

corK(α, β)2 . (15)

The scenario that we consider is represented in Figure 3. We assume having access to a
database D containing N := |D| distinct known plaintext-ciphertext pairs. After guessing
the subkey material kin, kout as zin, zout, one computes the experimental correlation:

ĉor(zin, zout) = 1
N

∑
(x,EK(x))∈D

(−1)α·F L
zin (x⊕zout)(−1)β·F R

zin (EK(x)) . (16)
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x F L

→ EM
F R

←

kout kin kin

EK(x)

Figure 3: Attack scenario (figure adapted from [Sch23]). Here EM is the part of the cipher
with a linear approximation (α, β), FL and FR are functions which allow to compute the
value in the input and output masks respectively.

When zin, zout ̸= kin, kout, the experimental correlation is the correlation of (α, β) for a
random-looking permutation. Its statistic is given by the following wrong-key randomization
hypothesis.

Assumption 1 (Wrong-key randomization). At fixed K, ĉor(z) is a random variable over
z following a normal distribution N (0, σ2

W ) where σ2
W =

(
2n−N
2n−1

)
1
N + 2−n.

When zin, zout = kin, kout, the experimental correlation becomes the correlation of
EM . Its statistic is given by the right-key randomization hypothesis. This hypothesis
differs whether the linear approximation has many dominating characteristics, whose
correlations interfere, or a single one. In this paper, we use linear approximations with a
single characteristic of correlation ±c (where the sign depends on the master key). We
will make the assumption that this characteristic dominates. On the contrary in [Sch23]
the cases studied had many characteristics, and the statistic is different [BN16].

Assumption 2 (Right-key randomization, single characteristic, see Theorem 4 in [BN17]).
For the right subkey guess (kin, kout), ĉor(kin, kout) is a random variable over (kin, kout)
following a normal distribution N (µR, σ

2
R) where µR = ±c and σ2

R = 1
N + ELP − c2

We make furthermore the simplifying assumption that ELP = c2. Classical cryptanaly-
sis distinguishes these two cases thanks to their different statistics. Quantum cryptanalysis
relies mostly on a lower bound for the correlation of the right key. Indeed, as a consequence
of right-key randomization, with probability 0.95, a random key will satisfy:

|ĉor(kin, kout) − (±c)| ≤ 2√
N

=⇒ c+ 2√
N

≥ |ĉor(kin, kout)| ≥ c− 2√
N

. (17)

3.2 The FFT Technique
Collard et al. [CSQ07] introduced an efficient method of evaluating the experimental
correlations when part of the key is XORed to the internal state of the cipher. In Figure 3,
we will now separate the roles of kin and kout, and rewrite the experimental correlation
(Equation 16) as a convolution of two functions over Fn

2 :
fzin(x) := (−1)α·F L

zin (x)

gzin(x) := 1[x ∈ D](−1)β·F R
zin (EK(x))

ĉor(zin, zout) = 1
N (fzin ⋆ gzin) (zout) .

(18)

Here 1[x ∈ D] is 1 if x appears in the database of known plaintexts, and 0 otherwise.
Then, in order to compute efficiently the correlation, one first guesses zin, then evalu-

ates all ĉor(zin, zout) using the convolution theorem (Lemma 1). The Walsh-Hadamard
transforms of fzin and gzin are evaluated in time O(n2n) by the Fast Walsh-Hadamard
transform algorithm (a special case of the more general Fast Fourier Transform), then
multiplied pointwise, and one takes the WHT again to obtain the correlations for all zout.
This method requires O(2|kin| × n2n) time and O(2n) space.
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More generally as shown in [FN20], one can separate the kout part in the first and last
rounds of the cipher. This requires a distillation phase of the data which reorders the
database by separating the input and output differently, since some part of EK(x) will
now go in f and some part of x will go in g.

Finally, [WWBC14] introduced a variant of this FFT-based approach in which parts
of the key kout can be added with ⊕, and parts with modular additions. In fact, this only
changes the input space of the functions fzin and gzin (where they still have the same
definition); one uses the more general convolution theorem (Lemma 1) to express the
correlation.

3.3 Quantum Version: Correlation State
A crucial step in the QFT-based linear cryptanalysis introduced in [Sch23]is the computa-
tion of a correlation state. This state is given by the superposition over all key candidates
with the corresponding amplitudes in this superposition being determined by the respective
experimental correlation. In this way, we obtain a quantum state, where the information
about the linear approximation is directly encoded inside the amplitudes (i.e. in the
measurement probabilities). In particular, as a consequence, the right key has the largest
amplitude among all key candidates as it has the experimental correlation with the largest
modulus.

In mathematical terms, the correlation state, in the way we use it here in this paper, is
defined as follows:

|Corzin⟩ :=
√
N

2n/2

∑
zout

ĉor(zin, zout) |zout⟩ (19)

where the sum is on all 2n possibilities of zout.
Remark 2 (Normalization of |Corzin⟩). As |Corzin⟩ is a quantum state, it has to be normal-
ized. This is the reason why its definition (19) includes the prefactor

√
N

2n/2 . Indeed, following
the wrong-key randomization hypothesis, ĉor(zin, zout) follows a normal distribution with
average 0 and variance σ2 = 2n−N

(2n−1)N + 2−n ≃ 1
N + 2−n, meaning that 1

σ2 ĉor(zin, zout)2

follows a χ2 distribution with average 1. By summing over all wrong keys, we have:∑
zout

ĉor(zin, zout)2 ≃ 2nσ2 ≃ 2n

(
2−n + 2n −N

(2n − 1)N

)
≃ 1 + 2n −N

N
= 2n

N
. (20)

We can neglect the correlation of the right key, as in practical applications it does not
dominate (unless the function is very close to linear). Notice that if the full codebook is
available, N = 2n and the normalization factor of Equation 19 is simplified into 1.

This version differs significantly from the classical one. First, in the way the correlation
state is constructed, which we explain below. Second, in the way it can be used for
cryptanalysis. Indeed, while classical linear cryptanalysis uses very small values of the
correlations to distinguish from the random case, the same cannot be done generically in
the quantum setting. Given an algorithm that produces |Corzin⟩, finding the value of zout

which has the largest amplitude in the state seems to be a very difficult problem.
In order to avoid this, the idea of [Sch23] is to guess the remainder of the key, which

“completes” the correlation state into a superposition over all possible key guesses, where
the amplitude on the good subkey is larger (due to the larger correlation that one has at
the beginning).

Indeed, by Equation 17, we know that |ĉor(kin, kout)| ≥
√

ELP − 2√
N

. Thus in |Corkin⟩
the absolute amplitude on kout is lower bounded by:

√
N

2n/2

(√
ELP − 2√

N

)
=

√
N

2n/2

√
ELP − 2−n/2+1 . (21)
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Remark 3 (On the normalization). The amount of data intervenes as a scaling factor in
this amplitude, which directly impacts the time complexity. This is why we will most often
consider having access to the full codebook.

3.4 Construction of the Correlation State
Since in the end, our goal is only to bound the amplitude on the correct subkey, we
only need a subroutine that on input |kin⟩ |0⟩, returns |kin⟩ |Corkin⟩. We do not need this
subroutine to work for all possible zin. In practice, this simply means that we can afford
relatively lower probabilities of success.

We slightly adapt the subroutine given in [Sch23].

Lemma 6 (From [Sch23], adapted). Assume that we have a pair of unitary operations to
access D: |0⟩ InitD7−−−→ 1√

N

∑
x∈D |x⟩

|x⟩ |0⟩ QueryD7−−−−→ |x⟩ |D(x)⟩
(22)

where D(x) := EK(x) if x ∈ D and ⊥ otherwise.
Let fFourier be a unitary that maps:

|kin⟩ |x⟩ |0⟩ fFourier7−−−−→ |kin⟩ |x⟩

(
f̂kin(x)
G

|0⟩ + |∗⟩

)
, (23)

where |∗⟩ is a superposition of non-zero basis states, and G is an upper bound on the moduli
of all Fourier coefficients of f̂kin (we make no assumption on the behaviour of the unitary
for zin ̸= kin).

Then the unitary described in Algorithm 2 maps (up to negligible error):

|kin⟩ |0⟩ Corcomp7−−−−−→ |kin⟩ |Corkin⟩ . (24)

Its gate count can be approximated by:(
π

2
G

2n/2 + 3
)(

2G(QueryD) + G(InitD) + 2G(FR) + G(fFourier) + O(n)
)
. (25)

Proof. The only substantial technicality in Algorithm 2 is the number of iterations to
perform at step 6. We notice that the total amplitude on 0 at this point is:

1
G22nN

∑
x

(f̂kin(x))2(ĝkin(x))2

By Parseval’s equality and the convolution theorem (see Subsection 2.1) we have:∑
x

(f̂kin(x))2(ĝkin(x))2 = 2n
∑

x

(fkin ⋆ gkin)2 = 2nN2
∑

x

ĉor(zin, x)2 .

Using the approximation
∑

x ĉor(zin, x)2 ≃ 2n

N from Equation 20, the total amplitude on 0
is equal to:

1
G22nN

× 2nN2 × 2n

N
= 2n

G2 ,

meaning that (roughly) π
2

G
2n/2 QAA iterates are required.
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Algorithm 2 Implementation of Corcomp, adapted from [Sch23]
1: Call InitD: |kin⟩ 1√

N

∑
x∈D |x⟩

2: Call QueryD: |kin⟩ 1√
N

∑
x∈D |x⟩ |E(x)⟩ |FR(E(x))⟩

3: Compute (−1)β·F R(E(x)) by a controlled phase flip, erase FR and E:
|kin⟩ 1√

N

∑
x gkin(x) |x⟩

4: Compute a Hadamard transform |kin⟩ 1√
N2n/2

∑
x ĝkin(x) |x⟩

5: Compute fFourier |kin⟩ 1√
N2n/2

∑
x ĝkin(x) |x⟩

(
f̂kin (x)

G |0⟩ + |∗⟩
)

6: Amplify the part of the state which ends with 0. This requires to repeat all the previous
operations. We obtain the state:

|kin⟩ 1
2n

√
N

∑
x

ĝ(x)f̂(x) |x⟩ .

7: Compute a Hadamard transform of the output. By the convolution theorem we obtain:

|kin⟩ 1
2n/2

√
N

∑
x

(f ⋆ g) |x⟩ = |Corkin⟩ .

Remark 4. Note that we always have G ≤ 2n. However, as the gate count in Lemma 6
scales in G, it is important to find a better bound on G. This is one of the tasks in our
concrete attacks in the Sections 5, 6, 7 and 8.

Since we can only estimate (rather than compute exactly) the number of QAA iterates
to perform in Corcomp, we expect a minor relative error. This error simply modifies the
probability to measure the right kin, kout in the obtained state, so it does not disrupt the
QAAs that we perform later, and remains inconsequential for our attacks.

For a random function, the bound G is such that G = Õ
(
2n/2), ensuring that the

number of QAA iterates is polynomial in n. However, the function f does not always
behave as random. Furthermore, one needs to implement the fFourier unitary, which is a
technical step.

The unitary fFourier is a special case of quantum state preparation. We recall the
method of [SLSB19], which is used in [Sch23].

Lemma 7 (Amplitude transduction by comparison, from [SLSB19]). Given access to a
unitary: |kin⟩ |x⟩ |0⟩ 7→ |kin⟩ |x⟩ |f̂kin(x)⟩ which computes f̂kin(x) digitally, there exists an
implementation of fFourier (which computes f̂kin(x), rescaled by G, in the amplitudes) that
calls this unitary and its inverse once and uses O(n) additional gates.

Proof. In the following we write f̂kin(x) = m(kin, x) exp(ιθ(kin, x)), where m(kin, x) is a
positive real, and assume (for simplicity) that we can use some fixed-precision encoding
of m(kin, x) and θ(kin, x) into n-qubit registers, and that we can neglect the errors. In
general we would need to bound the errors arising from the encoding, but a precision of
O(n) bits ensures that the errors are inverse-exponential in n and negligible for the rest of
the computations.

The key operation in Algorithm 3 is the comparison at Step 4. Without it, register 1
would remain disentangled from the others and the second H layer (Step 5) would simply
map it back to |0⟩.

After the comparison, when performing the Hadamard layer, any |y⟩ such that y/2n <
m(kin, x)/G is mapped to 1

2n/2 |0⟩ + |∗⟩ where |∗⟩ is a (non-normalized) superposition of
non-zero basis states. Any other y is mapped to a superposition of non-zero basis states
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Algorithm 3 Implementation of fFourier using a comparison, from [SLSB19].
1: Start in the state: |kin⟩ |x⟩︸ ︷︷ ︸

Register 0

|0n⟩︸︷︷︸
Register 1

|0⟩︸︷︷︸
Register 2

|0n⟩ |0n⟩︸ ︷︷ ︸
Ancillas

2: Compute f̂kin(x)/G: |kin⟩ |x⟩ |0⟩ |0⟩ |m(kin, x)/G⟩ |θ(kin, x)⟩
3: Apply H on register 1: |kin⟩ |x⟩ 1

2n/2 (
∑

y |y⟩) |0⟩ |m(kin, x)/G⟩ |θ(kin, x)⟩
4: Compare y/2n and m(kin, x)/G: write 1 in register 2 if y/2n ≥ m(kin, x)/G
5: Apply H on register 1
6: Apply a rotation of angle θ(kin, x), controlled on registers 1 and 2
7: Uncompute f̂kin(x)

(since register 2 is 1). So in the second to last step, one obtains a superposition of the
form:

|kin⟩ |x⟩
(

|{y, y/2n < m(kin, x)/G}|
2n

|0⟩ |0⟩ + |∗⟩
)

|m(kin, x)/G⟩ |θ(kin, x)⟩ (26)

where |{y,y/2n<m(kin,x)/G}|
2n is exactly the fixed-point approximation of m(kin, x)/G that

we use here. Finally the controlled rotation transforms this into:

|kin⟩ |x⟩
(

exp(ιθ(kin, x))m(kin, x)
G

|0⟩ |0⟩ + |∗⟩
)

|m(kin, x)/G⟩ |θ(kin, x)⟩ . (27)

We can then erase the value f̂kin(x) by calling the inverse of the digital computation
unitary. The key operation here is the comparison at Step 4.

In particular, if the input space of f̂ is small enough, the function can be precomputed
and stored in a QRACM table. This makes the implementation of fFourier efficient, and
the complexity of Corcomp will remain dominated by the queries to the database. This
will be the case in our applications.

3.5 Simple Quantum Key-recovery
At this point, one has implemented the unitary that constructs the correlation state:

|kin⟩ |0⟩ Corcomp7−−−−−→ |kin⟩ |Corkin⟩ .

If the key-schedule is simple enough, one can append to this a uniform superposition
over the remaining key bits, obtaining a superposition of possible master keys:∑

z

αz |z⟩

where the amplitude on the right key k can be larger, depending on the corresponding
correlation. Then, one appends to this algorithm a test of z, which is the same as in
Grover’s search: one encrypts a few known plaintexts and sees if they match the expected
results. This creates a unitary that produces a superposition

∑
z αz |z⟩ |(z ?= k)⟩.

Amplitude Amplification (Theorem 1) can immediately be applied. Since one expects
the starting amplitude for k to be larger than in an exhaustive search, less iterates will
have to be performed. This advantage with respect to Grover’s search leads to the attacks
presented in [Sch23].

Obviously this approach has two main limitations:
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• The speedup is limited by the experimental correlation. The smaller the correlation,
the smaller the speedup with respect to exhaustive search. However, in classical
linear cryptanalysis, the correlations tend to be the smallest possible (since one only
wishes to distinguish the right key from the wrong ones), and this makes the speedup
vanish.

• “Completing” the key only works if the key schedule is simple, and it is not clear if
this technique can always be competitive with a quantum linear attack that does
not use the QFT [KLLN16b].

In the next section, we show how to remove this second issue.

4 Improved Linear Attack using a Distinguisher
In this section, we depart from the framework of [Sch23]. We notice the following general-
ization: after computing the correlation state, what we really need is a distinguisher that
will recognize the right key in the superposition. “Completing the key” as in [Sch23] is
only a specific way to distinguish.

More formally, we prove the following result.

Theorem 3. Let c =
√

ELP. Let Dist be a unitary such that:

|zin, zout⟩ |b⟩ Dist7−−→
{

|zin, zout⟩ |b⊕ 1⟩ if zin, zout = kin, kout

|zin, zout⟩ |b⟩ otherwise (28)

Then there is a quantum algorithm that uses on average less than

2
⌈

1.21 2|kin|/2

c− 2/
√
N

2n/2
√
N

⌉
+ 2 (29)

calls to Dist and Corcomp and returns kin, kout with probability ≥ 0.5.

Proof. The algorithm is a QAA over (kin, kout) that uses Corcomp to produce the superpo-
sition of candidate keys and Dist to identify the correct key.

The unitary Corcomp produces a superposition of key guesses:∑
zin,zout

αzin,zout |zin, zout⟩ . (30)

By calling Dist immediately after, we obtain the superposition∑
zin,zout

αzin,zout |zin, zout⟩ |bzin,zout⟩ . (31)

By correctness of the distinguisher, (kin, kout) is the only element with a flag bzin,zout = 1.
Furthermore, by Equation 17, it has amplitude:

|αkin,kout | ≥ (c− 2/
√
N)2−|k

in|/2
√
N

2n/2 . (32)

We use QAA to boost the amplitude of the right key. As we only know a lower bound on
the amplitude, we use Lemma 5. The unitary U from this lemma is simply the composition
of CorComp and Dist, which produces the state from Equation 31. From Equation 32,
√
pmin = (c− 2/

√
N)2−|kin|/2

√
N

2n/2 . Hence, Lemma 5 produces the wanted result.
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The above lemma shows that we obtain a key-recovery attack once we have an imple-
mentation of Dist. To implement it, we need a distinguisher on EM in Figure 3, which
highly depends on the structure of EM . If a periodic function can be derived from EM ,
we could apply an efficient Simon-based distinguisher.

Even if no Simon-based distinguisher is available, a linear distinguisher can always be
applied. This is because, in the first place, EM is assumed to have the linear approximation.
We will elaborate the details in Subsection 4.3.

4.1 Attack Blueprint
Intuitive summary. We need two ingredients in our attacks:

• a high-correlation linear trail, that we use to create a quantum state biased towards
the correct key,

• a distinguisher (that can be linear, a Grover-meet-Simon or anything else) to efficiently
identify the correct key.

While using two kind of distinguishers on the same cipher with the same number of rounds
may seem redundant, we can beat both pure quantum linear attacks and pure other
distinguisher-based attacks when the conditions are right.

For the attack, we add rounds before and after the distinguisher part. Then, it is
essentially a quantum amplitude amplification over the keys in the added rounds using
the distinguisher, except that instead of starting from the uniform superposition of keys,
we start from a state that has a higher amplitude for the correct key, thanks to the
high-correlation trail.

Attack framework. Each attack presented in this paper relies on Theorem 3 and follows
the same steps, which we summarize here.

First, we need to find the path of the attack:

1. We separate the cipher E into the key-recovery rounds and the rounds for the linear
approximation (E′), such that there exists a high-correlation linear trail, and we
determine a lower bound on the corresponding ELP;

2. We choose a distinguisher for E′, not necessarily related to the linear approximation;

3. For the key-recovery rounds, we separate the subkey into kout (which goes into the
FFT) and kin (which is guessed);

4. We express the experimental correlation ĉor(z) as a convolution of two functions f
and g.

Second, we perform the complexity analysis:

1. We estimate the complexity of Corcomp. Following Lemma 6, it depends mainly on:

• The bound G on the Fourier coefficients of the function f . If possible, we give
an exact bound. Most often, we estimate it by making heuristic assumptions.

• The cost of the fFourier unitary. In the attacks of this paper, we implement
fFourier via Lemma 7 and precomputed tables for the Fourier coefficients of f .

2. We estimate the complexity of Dist.

3. We use the formula of Theorem 3 to conclude.
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4.2 Comparison with Other Techniques and Observations
This subsection compares the key-recovery attack of Theorem 3 with other techniques and
obtains some important observations. We focus on the case where the full codebook of the
target cipher is available in QRACM and N(= |D|) ≃ 2n for simplicity.

We assume that a non-trivial linear approximation of EM in Figure 3 (with
√
ELP = c

for some c ≫ 2−n/2) exists, and that an implementation of Dist of Equation 28 is available.
The implementation may be based on a very efficient Simon-based distinguisher, a linear
distinguisher we will explain in Subsection 4.3, or another algorithm. We do not specify it
here.

The complexity of the key-recovery attack shown in Theorem 3 is about

2|kin|/2

c

(
G(Dist) + G(Corcomp)

)
.

Here, an important consideration is that the term G(Corcomp) could be as small as or even
smaller than G(Dist) by performing some precomputations. In this case the complexity
becomes about

2|kin|/2

c
· G(Dist). (33)

Meanwhile, if a distinguisher on EM is available, we can also mount a different key-
recovery attack that just applies the Grover search on kin and kout, using the distinguisher
to check if a given pair (zin, zout) matches (kin, kout). Since kout is n-bit, the complexity
of this attack is about

2(|kin|+n)/2 · G(Dist). (34)

Since the factor 1/c is smaller than 2n/2 by assumption, we obtain the following observation.

Observation 1. If G(Corcomp) ≪ G(Dist), then the key-recovery attack combining FFT
and QFT (Theorem 3 / Equation 33) is always faster than the attack searching for (kin, kout)
just by using Grover’s algorithm (Equation 34), regardless of what kind of distinguisher is
available for EM . Especially, if Dist is realized with a quantum linear distinguisher, the
attack of Theorem 3 is faster than the quantum linear key-recovery attack that does not use
QFT [KLLN16b], so the second issue mentioned at the end of Subsection 3.5 is resolved.

This simple but important observation is not noted in [Sch23], and we emphasize that
this paper is the first to point it out. The attack on CAST-256 in Section 8 is mounted
with this observation in mind.

Furthermore, since the classical FFT key recovery requires the complexity about
2kin × n2n (see Subsection 3.2), we also have the following observation.

Observation 2. Suppose G(Corcomp) ≪ G(Dist) and G(Dist)/c ≪ 2n/2. Then, with the
key-recovery attack combining FFT and QFT (Theorem 3 / Equation 33), we achieve a
super-quadratic speed-up compared to the classical FFT key-recovery attack.

We have not found a concrete example demonstrating such a super-quadratic speed-up,
but this observation could be a basis of very powerful quantum attacks in future works.

Remark 5. Since the right key has amplitude 1/c in the correlation state, another possibility
is to measure directly and find the key that appears most often. This can be combined
with a Grover’s search on the inner key, leading to a complexity: Õ

(
2|kin|/2

c2 G(Corcomp)
)

.
However the computation of Corcomp is typically non negligible, and in practice this would
lead to a much higher complexity.
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4.3 How to Realize Dist with a Linear Distinguisher
This subsection discusses the details about how to implement Dist as a (quantum) linear
distinguisher. The implementation is generic in that it can always be applied regardless of
the structure of EM in Figure 3 because EM is assumed to have a linear approximation.

For simplicity, we focus on the case where the quantum oracle of a target cipher is
available. That is, the attack model is Q2, or the model is Q1 but the full codebook of the
cipher has been stored in QRACM and the quantum oracle is efficiently simulatable. We
denote the cost to encrypt once with EK (i.e., the gate count to implement the cipher on
a quantum circuit) by Q.

Kaplan et al. [KLLN16b] have already shown how to speed-up a classical distinguisher
using the quantum counting algorithm, so we could use it to realize Dist. However, they
do not provide detailed analysis of the distinguisher’s errors. Quantum algorithms cannot
be used as a subroutine of another quantum algorithm if the errors are too large, and we
would like to provide as precise analysis as possible. Therefore, we modify Kaplan et al.’s
distinguisher so that the errors will be small enough.

Specifically, we run multiple instances of the quantum counting algorithm and then
perform a majority vote, unlike Kaplan et al.’s running a single instance. The idea of
running multiple instances and performing majority vote are quite similar to those of JDG
in [Hos24].

Define a Boolean function fzin,zout : {0, 1}n → {0, 1} by fzin,zout(x) = 1 iff α · FL
zin(x⊕

zout) = β ·FR
zin(EK(x)). Let q, ℓ, and T be parameters (fixed later), and consider to run the

following quantum algorithm without intermediate measurements, assuming |zin, zout, b⟩ is
given as an input (b is a single bit to which the result of the distinguisher is added).

Algorithm 4 Algorithm LinDist.
1: for i = 1, . . . , ℓ do
2: Run QCq of Subsection 2.6 to estimate |f−1

zin,zout(1)|. Denote the result by X̃i.
3: end for
4: If the number of indices i satisfying |2X̃i/2n − 1| ≥ T is greater than or eqal to ℓ/2,

XOR 1 to b (meaning that the algorithm judges (zin, zout) = (kin, kout)). Otherwise,
do nothing (meaning that the algorithm judges (zin, zout) ̸= (kin, kout)).

5: Uncompute Step 1.

Then, the following lemma holds.
Lemma 8. Let κ := |kin| + |kout|. The gate count of the above algorithm is ap-
proximated by 8qℓQ. In addition, if T = 3

8
√
ELP , q =

⌈
16π/

√
ELP

⌉
, and 1 ≫

√
ELP ≥ 2−n/2 · (4

√
2κ) holds, then the following statement holds with probability

of at least around 0.95 − (2/e)κ/
√

2κ (over the choice of the key): As a unitary op-
erator, the algorithm LinDist approximates the unitary operator Dist : |zin, zout, b⟩ 7→
|zin, zout, b⊕ ((zin, zout) ?= (kin, kout))⟩ with an error in 2(|kin|+|kout|)/2−0.045ℓ+2 with re-
spect to the operator norm.

Suppose a quantum algorithm calls Dist as a subroutine r times, and LinDist is used as
a distinguisher to approximate Dist. In such a case, by setting

ℓ := 1
0.045

(
|kin| + |kout|

2 + log2 r + 2n
)
, (35)

this lemma guarantees that the errors caused by replacing Dist with LinDist are kept within
O(2−2n) and can be ignored (with a high probability over the choice of the key). The total
gate count of LinDist with this ℓ is in O

(
(|kin| + |kout| + log2 r + n)Q/

√
ELP

)
.

A proof of the lemma can be found in Appendix A.
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Remark 6. A previous work [Hos24] also utilizes correlations for both preparing a quantum
state and amplifying a correct value, but it is in the context of fast correlation attacks on
LFSR-based stream ciphers.

5 Quantum Linear Cryptanalysis of LOKI91
In this section we use LOKI91 as an example for applying both the framework of [Sch23]
and our new extensions. Our results and the comparison with the state of the art are
summarized in Table 1.

We start with the description of a new attack on a round-reduced version of LOKI91
using the framework of [Sch23]. Next, we introduce an alternative approach applying the
strategy summarized in Subsection 4.1 based on a Simon-based distinguisher. Finally, we
discuss a third strategy, where we apply the linear distinguisher (LinDist).

5.1 Specification of LOKI91 and Summary of Results
LOKI91 [BKPS91] is a 64-bit block cipher with 64-bit key. It is a 16-round Feistel network.
The 64-bit master key k is divided into 32-bit halves kl and kr, which are then processed
to generate the sequence of 16 round keys:

• After every round r, the corresponding round key kr is rotated whereby the rotations
alternate between 13 bits (ROL 13) and 12 bits (ROL 12).

• After every second round, the halves are swapped.

In particular, we observe that k1 = kl and k3 = kr. For each round r, let yr be the right
half of the input. The round key kr is XORed with yr and the result is passed as input to
the non-linear round function F defined as

F = P (S(E(yr ⊕ kr))),

where E expands the 32-bit input to 48 bits, S is an S-Box layer of four identical 12-to-8
bit S-Boxes and P is a permutation. We omit further details that are not relevant for our
analysis.

We attack a 6-round version of LOKI91 as represented in Figure 4. Obviously the
cipher itself is insecure due to a too small key length; besides, many more rounds can
be broken by linear cryptanalysis [SF97]. Our goal is only to compare different quantum
linear attacks on this particular example.

Table 1: Classical and quantum attacks on 6-round LOKI91. “Q0” indicates a classical
attack. Quantum time complexities are counted in equivalent computations of the cipher.

Setting Type Rounds Data Time QRACM Reference

Q0
Linear 6 232.2 251 [TSM94]
Linear 6 223 237 [ÖBR23]
Linear 10 254.83 254.83 [SF97]

Q1 Grover’s search 6 2 233.65 None

Q1 Linear + QFT
+ Grover 6 232 232.78+

232 classical 232 Sec. 5.2

Q2 Linear + QFT
+ Simon 6 223.71 223.73+

232 classical 232 Sec. 5.3
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F

F

F

F

F

F

x y

EL
K(x, y) ER

K(x, y)

ROL 13

ROL 12

ROL 13

ROL 12

ROL 13

ROL 12

kl
1 kr

1

Figure 4: 6 rounds of LOKI91

Linear approximation. All attacks presented in this section rely on the linear approxima-
tion on 5-round LOKI91 from [TSM94], which holds with probability 1

2 − 1.6 × 2−15. The
input mask has only three non-zero bits (18,22,26) in the right branch. The output mask
has three non-zero bits (18,22,26) in the left branch, and 5 nonzero bits (18,19,21,23,24) in
the right branch.

By the consequence of the right-key hypothesis (Equation 17), we can assume that
the corresponding correlation is bounded from below by 2 × 1.6 × 2−15 − 2 × 2−16 =
2−13.32 − 2−15 = 2−13.86 .

In the following we apply this linear approximation for input plaintexts, whose left half
is fixed to 0 ∈ {0, 1}32. This is feasible due to the specific form of the linear approximation
mask.

5.2 Attacking LOKI91 using the strategy from [Sch23]

In the following, the complexity is counted in queries to the cipher. A large QRACM
access is assumed to cost the same, and this quantity is denoted Q.

Path of the Attack. Our first attack on LOKI91 follows the strategy from [Sch23]
outlined in Subsection 3.5. Due to the simple key schedule of LOKI91, this strategy is
successful. That is, we obtain an attack, which is more efficient than a Grover search for
the 64-bit masterkey. Note that a Grover search to find the 64-bit-masterkey has the cost
π
4 × 232 × 4Q ≃ 233.65Q (4 block cipher calls per iteration).
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Experimental Correlation. Let n = 64/2 = 32. Define:

ĉor(z) = 1
2n

∑
y∈{0,1}n

(−1)α·F (z⊕y)(−1)β·EK (0,y)

where α, β correspond to the linear mask associated to the linear approximation mentioned
above, and we denote by EK(0, y) the output of the 6-round LOKI91 block cipher (the
left half of the plain text being given by 0 ∈ {0, 1}n and the right half by y ∈ {0, 1}n).

Note that here, in contrast with some other parts of this paper (especially Figure 1
and Figure 3), n is equal to half of the block size of the cipher. This is due to the fact
that here, for the experimental correlation, we fix half of the input to the cipher. However,
on the other hand, this way we are aligned with the notation in Equation 14, and thus
also with the notation used in Lemma 6 and Theorem 3, which we apply in this section.

We introduce the two functions f and g as{
f(y) = (−1)α·F (y)

g(y) = (−1)β·EK(0,y)

Then, the experimental correlation is: ĉor(z) = 1
2n (f ⋆ g)(z) .

Computation of the Correlation State. We follow Lemma 6 to construct the correlation
state via the unitary Corcomp. For a technical reason which is detailed later, we swap
the roles of the functions f and g. This means that we need to precompute ĝ, using 232

classical queries and somewhat more classical computations. We store ĝ in a QRACM of
size 232.

Recall that, according to Lemma 6, the unitary performs
(

π
2G/2n/2 + 3

)
iterations

where G = maxx |ĝ(x)|. Each iteration contains one computation of f and an amplitude
transduction with ĝ, which contains two QRACM queries.

Assuming that g behaves as a random function, we can follow [Sch23, Lemma 10]
(presented in Appendix B) showing that G is O

(√
n2 n

2
)
. The cost of each iteration is

dominated by the QRACM queries. Overall the complexity is such that CorComp does not
dominate in the rest of our analysis, and can be neglected.

Cost of the Distinguisher. It remains to implement the distinguisher Dist for kl. As
already mentioned, in this subsection, we follow the strategy of [Sch23] outlined in Sub-
section 3.5. That is, we perform a Grover’s exhaustive search of kr

1, the right half of the
64-bit masterkey. Indeed, once kr

1 is known we have the full masterkey, and we can test if
it’s correct using two plaintext-ciphertext pairs. For a given key zl

1, checking if there exists
zr

1 such that (zl
1, z

r
1) is the correct master key requires to perform π

4 216 search iterates,
with 2 × 2 block cipher computations per iterate.

Cost of the Attack. According to Theorem 3 we know that there is a quantum algorithm
that makes less than

2
⌈

1.21 1
2−13.86

⌉
+ 2 ≃ 215.13 (36)

calls to Corcomp and the just-described distinguisher Dist, where we used that |ĉor(kl)| ≥
2−13.86 . Hence, we obtain a total time equivalent to:

215.13 × π

4 216 × 22Q ≃ 232.78Q . (37)

This is slightly below the number of computations required for exhaustive Grover key
search.
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5.3 Improved Linear Attack using a Simon-based Distinguisher
In this subsection we follow the approach outlined in Subsection 4.1 by using a Simon-
based distinguisher. Note that the experimental correlation and the cost of preparing the
correlation state are the same as in Subsection 5.2.

Cost of the Distinguisher. It starts from a 4-round generic distinguisher on a Feistel
network using Simon’s algorithm, which is described in [IHM+19]; cf. Subsection 2.4. This
distinguisher requires access to both the cipher and its inverse. By using 96 = 26.58 queries
in Simon’s algorithm (hence 27.58 Q2 queries to the cipher), we ensure a large success
probability.

From this distinguisher, we implement a unitary SimonDist that given a guess for the
key kl, unrolls the first two rounds (in which only kl intervenes) and distinguishes the
remaining 4 rounds. The cost of this unitary:

|z⟩ |b⟩ SimonDist7−−−−−−→ |z⟩ |b⊕ (z ?= kl)⟩

can be approximated by 28.58Q.

Cost of the Attack. The cost of the attack up to now can be estimated to:

215.13 × 28.58Q ≃ 223.71Q . (38)

For this attack it does not seem possible to get rid of Q2 queries, as we need to craft
specific inputs to the 4-round reduced cipher for the Simon-based distinguisher. However,
we still need to make 232 classical queries, and precomputations, in order to construct
easily the correlation state.

Note that, up to now, this attacks recovers only kl. An additional Grover search yields
also kr. The total cost of key-recovery becomes:

223.71Q+ π

4 216 × 22Q = 223.71Q+ 217.65Q = 223.73Q . (39)

The difference is modest since we have already recovered a good proportion of the key. In
the other attacks of this paper, we will omit this last step.

5.4 Remark about using LinDist as the Distinguisher
As a last attempt, we use a distinguisher based on the linear distinguisher LinDist from Sub-
section 4.3. It is interesting to see that LinDist is not the right distinguisher to use for
LOKI91. The first reason for that is that the condition 1 ≫

√
ELP ≥ 2−n/2 · (4

√
2κ)

in Lemma 8 is not fulfilled for the given linear approximation. The second reason is
that, although we know from Section 4 that this attack strategy will be more efficient
asymptotically (as the complexity will go down from O

(
2n/2) to O

(
c−2)), it turns out

that the constant factors that are contained in the complexity estimation of Lemma 8 are
too large (as we can see in the following).

Cost of the Distinguisher. According to Lemma 8 the cost of this distinguisher is given
by 8qℓQ, where

q = ⌈16π/c⌉ ≃ 218.97, ℓ := 1
0.045

(
|kout|

2 + log2 r + n

)
= 1

0.045

(
5
4n+ log2 r

)
≃ 211.04

where
r = 2

⌈
1.211

c

⌉
+ 2 ≃ 214.59 .
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That is, the complexity of LinDist becomes

8qℓQ = 23 × 218.97 × 211.04Q = 232.01Q ,

which is far too expensive.

5.5 Remark on the Fourier Transforms
The swapping of f and g limits greatly this particular application, since an incompressible
cost of 232 classical queries, classical computations, and QRACM, needs to be taken into
account.

The reason for this tweak is the following. If we try to follow directly our blueprint,
we need to perform amplitude transduction of the function: f(y) = (−1)α·F (y). To
apply Lemma 6, we need a bound G on |f̂(y)|. Contrary to g, f cannot be modeled as a
random function. To analyze it precisely, we must look into the round function F .

In LOKI91, F contains an expansion E (which permutes and copies some of the bits)
from 32 to 48 bits, followed by a layer of 4 S-Boxes mapping 12 bits to 8 bits each, followed
by a bit permutation. It can be noticed that for the choice of α that we took from [TSM94],
α · F (y) depends only on a single S-Box, hence only on 12 bits of the input y.

This is actually a problem for the attack. Indeed, the function f is far from a random
Boolean function on 32 bits: it has many zero Fourier coefficients, and the nonzero ones
are very large. Therefore the bound G becomes much larger as well, making the Corcomp
procedure inefficient.

6 New Quantum Attack on CAST-128
In this section, we give a quantum attack on CAST-128 reduced to 7 rounds using linear
cryptanalysis and FFT. Our results are summarized in Table 2.

As explained in Subsection 2.2, we let Q be the cost (gate count) of a 7-round CAST-128
computation, and both a Q2 query and a QRACM query are assumed to cost Q. As a
consequence the cost of Grover’s search can be lower bounded by: π

4 2128/2×2×2Q = 265.7Q
(each iteration requires two block cipher computations and their uncomputation).

The cost of a partial computation of the cipher, as well as a QRACM query to a smaller
database, will be upper bounded by Q. At some point, we will also need to compare Q to
an actual gate count. Neglecting the key schedule, we estimate that the cipher contains
(4 + 7 × 2 + 7 × 4) = 25.5 32-bit operations (modular addition, subtraction) and that each
of them contains at least 64 = 26 quantum gates. Therefore we have Q ≥ 211.5.

6.1 Specification of CAST-128 and Summary of Results
We start here by summarizing the design of the CAST-128 cipher. We focus only on the
parts that are relevant for our analysis, and ignore the key-schedule (we consider all round
keys to be independent).

CAST-128 [Ada97a, Ada97b] is a 64-bit block cipher with up to 128 bits of key (we
consider only the 128-bit key version). It is a 16-round Feistel network, as represented
in Figure 5. The round function alternates between three designs F1, F2, F3, which are not
permutations. Each round uses 37 bits of subkey material: a 5-bit value kr

i which controls
a shift, and a 32-bit one km

i which is alternatively added, XORed or subtracted in the
order that can be seen on the figure.

The definition of F1, F2 and F3 is as follows. Let X be the branch value before key
addition and I = Ia|Ib|Ic|Id be the value after key addition with least significant byte to
most significant byte. CAST uses 4 S-Boxes S1, S2, S3, S4 mapping a byte to 32 bits.
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Type 1 I = ((km
i +X) ≪ kr

i ) F1(I) = ((S1[Ia] ⊕ S2[Ib]) − S3[Ic]) + S4[Id]
Type 2 I = ((km

i ⊕X) ≪ kr
i ) F2(I) = ((S1[Ia] − S2[Ib]) + S3[Ic]) ⊕ S4[Id]

Type 3 I = ((km
i −X) ≪ kr

i ) F3(I) = ((S1[Ia] + S2[Ib]) ⊕ S3[Ic]) − S4[Id]

The best classical attack targets 8 rounds, using a 5-round multidimensional linear
distinguisher [ÖBR23] and 3 rounds for key-recovery. A meet-in-the-middle attack given
in [IS13] also allows to target 8 rounds.

In the quantum setting, it is possible to attack 7 rounds of CAST-128 using the Grover-
meet-Simon algorithm [LM17]. One will guess 3 subkeys, for a total of 111 bits. The
remaining 4-round Feistel can be distinguished from a random permutation in polynomial
time with Simon’s algorithm of [IHM+19]. We estimate (Subsection 6.6) that this attack
has complexity 264.5Q, with Q2 queries or QRACM.

Table 2: Classical and quantum attacks on CAST-128. “Q0” indicates a classical attack.
Quantum time complexities are counted in equivalent computations of the corresponding
cipher.

Setting Type Rounds Data Time QRACM Reference

Q0

MITM ASR 7 6 2114 [IS12]
Linear 6 253.96 288.51 [WWH08]

MITM ASR 8 8 2118 [IS13]
Linear 8 235 2114 [ÖBR23]

Q1 Grover’s search 7 2 265.7 None
Q2 Grover-meet-Simon 7 264.5 264.5 None
Q1 Grover-meet-Simon 7 264 264.5 264

Q1 Linear + QFT + Simon 7 264 261.1 264 Section 6

In this section, we use the combination of a quantum linear attack using the QFT, and
a distinguisher based on Simon’s algorithm, to reduce the complexity of the 7-round attack
on CAST-128.

6.2 Path of the Attack and Distinguishers
The path of the attack is represented in Figure 5. It combines two rounds of FFT-based key-
recovery (first and last round in the figure), a 5-round linear distinguisher (5 middle rounds
in the figure) and the 4-round Simon-based distinguisher of [IHM+19] (see Subsection 2.4),
which is extended to a 5-rounds distinguisher by guessing the 37 bits of key (kr

2, k
m
2 ) (5

middle rounds in the figure).
For the linear distinguisher, we use a linear approximation holding for F1 and F3 at

the same time. Following Table 1 in [WWH08], we find that a mask α activating only the
18-th bit allows to approximate both F1 and F3 with quite a large bias: 0 → α holds with
bias 2−14.41 for F1 (correlation 2−13.41) and bias 2−14.47 for F3 (correlation 2−13.47).

By combining these two approximations, the approximation (0, α) → (0, α) holds for
the 5 middle rounds in Figure 5 with correlation 2−26.88. For the right key guess, when
using at least 263 data, by Equation 17 we can lower bound the experimental correlation
by 2−26.88 − 2 × 2−63/2 ≃ 2−27.0 .

6.3 Data
In the following, we denote (x, y, EL

K(x, y), ER
K(x, y)) the respective left and right hand

sides of a plaintext and its corresponding ciphertext.
We start from a database D of known-plaintext queries, which is stored in QRACM.

At first, we may consider D as a list of tuples (x, y, EL
K(x, y), ER

K(x, y)). However, in order
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0 α

F3(k
r
2)

km2
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F2(k
r
7)

km7

Linear
approximation
(0, α) → (0, α) Simon

distinguisher

Figure 5: 7-round attack. The keys in blue are guessed to extend the Simon distinguisher.

to facilitate quick (and quantum) access to its elements, we may index the 4-tuples on any
pair of values.

For example, if we index them on (x,EL
K(x, y)), we can call a function:

(z, t) 7→

{
(y,ER

K(x, y)) if ∃(x, y) ∈ D, z = x, t = EL
K(x, y)

⊥ otherwise

In order to define this function, we are required to keep only one (arbitrary) corresponding
entry.

If we start from the full codebook, we expect the function to be defined for approximately
(1 − e−1)2n ≃ 2n−0.66 values, which is the average number of image points in a random
function from n to n bits.
Remark 7. We do not detail here how this data structure can be implemented in QRACM,
and assume that the operations of creating superpositions over the data, and getting the
data in superposition, are given.

By abuse of notation, we use D to denote any such function, e.g.:

D(x,EL
K(x, y)) = y,ER

K(x, y) ,

which given an index specifying at most O(1) tuples in the database, arbitrarily selects
one such tuple if it exists and returns the missing values. And in the following, we denote
by N := |D| = 2n−0.66 the amount of available data (which is also the amount of data that
we need to store in QRACM).
Remark 8. The construction of this function D is similar to the distillation phase used
in classical cryptanalysis [FN20], except that we suffer here from additional requirements
from the quantum setting: when there are collisions between tuples, we must drop some of
them, and we cannot use all the data.
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Experimental Correlation. In our attack, the inner keys are kin = kr
1, k

r
7 and the outer

keys are kout = km
1 , k

m
7 . We denote by zr

1 , z
r
7 , z

m
1 , z

m
7 a guess of these keys. We intro-

duce the database D and use the function: D(x,EL
K(x, y)) = (y,ER

K(x, y)) (over valid
entries). We rewrite this as a function that, to any entry (z, t) := (x,EL

K(x, y)), as-
sociates (D(z, t)L,D(z, t)R) := (y,ER

K(x, y)) . Summing over the database D (of size
N := |D| = 2n−0.66), the correlation is:

ĉor(zm
1 , z

m
7 , z

r
1 , z

r
7) = 1

N

∑
z,t

(−1)α·(D(z,t)L⊕F2(zr
1 ,zm

1 ⊕z))(−1)α·(D(z,t)R⊕F2(zr
7 ,zm

7 ⊕t)) . (40)

We define two functions fzr
1 ,zr

7
and g as follows:{

g(z, t) = 1[(z, t) ∈ D](−1)α·(D(z,t)R⊕D(z,t)L)

fzr
1 ,zr

7
(z, t) = (−1)α·(F2(zr

1 ,z)⊕F2(zr
7 ,t)) (41)

and the experimental correlation becomes:

ĉor(zm
1 , z

m
7 , z

r
1 , z

r
7) = 2n

N

(
fzr

1 ,zr
7
⋆ g
)

(zm
1 , z

m
7 ) . (42)

In the remainder of this section, we explain how we compute the correlation state (in
superposition over zr

1 , z
r
2):

|Corzr
1 ,zr

7
⟩ :=

√
N

2n/2

∑
zm

1 ,zm
7

ĉor(zm
1 , z

m
7 , z

r
1 , z

r
7) |zm

1 , z
m
7 ⟩ . (43)

Afterwards, we explain how this fits into the attack and finish the complexity analysis.

6.4 Computation of the Correlations
In order to compute Corzr

1 ,zr
7

we need to implement the unitary:

|zr
1 , z

r
7⟩ |x, y⟩ |0⟩ 7→ |zr

1 , z
r
7⟩ |x, y⟩

(
f̂zr

1 ,zr
7
(x, y)
G

|0⟩ + |∗⟩

)
(44)

where G is an upper bound which remains to be determined, and f̂zr
1 ,zr

7
(x, y) has the

expression:

f̂zr
1 ,zr

7
(x, y) =

(∑
u

(−1)x·u(−1)α·F2(zr
1 ,u)

)
×

(∑
u

(−1)y·u(−1)α·F2(zr
7 ,u)

)
.

We will be able to determine G exactly, thanks to the simple definition of f . Indeed, let
us focus on:

f ′zr
1
(x) :=

∑
u

(−1)x·u(−1)α·F2(zr
1 ,u)

=
∑

w∈F32
2

(w=u≪zr
1 )

(−1)α·F2(0,w)(−1)(w≫zr
1 )·x

=
∑

u∈F32
2

(−1)α·F2(0,u)(−1)u·(x≪zr
1 ) .
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We separate u into 4 bytes ua, ub, uc, ud and decompose F2 with the 4 S-Boxes S1, S2, S3, S4
(which are functions from F8

2 to F32
2 ).

f ′zr
1
(x) =

∑
u∈F32

2

(−1)α·S4(ud)(−1)α·[(S1(ua)−S2(ub))+S3(uc)](−1)u·(x≪zr
1 ) . (45)

In the end we see that f ′zr
1
(x) is the product of a Walsh coefficient of an 8-bit func-

tion: ud 7→ (−1)α·S4(ud), and a Walsh coefficient of a 24-bit function: ua, ub, uc 7→
(−1)α·[(S1(ua)−S2(ub))+S3(uc)]. The value of zr

1 only changes which coefficient we select.
The function ud 7→ (−1)α·S4(ud) is bent (by property of the S-Boxes used in CAST).

Therefore its Walsh coefficients have all the same absolute value. For the second function,
we compute its Walsh coefficients experimentally and take the following upper bound:

∀x, ∀zr
1 , |f ′zr

1
(x)| ≤ 24 × 216 = 220 . (46)

From which the upper bound: G := 240 follows.

Computation. Our goal now is to actually implement the operation of Equation 44.
This is actually quite simple, since the output of f̂zr

1 ,zr
7
(x, y) is the product of four Walsh

coefficients of functions of at most 24 bits. Since we are using QRACM, we can precompute
these functions and access the QRACM for their values.

Then we compute the four values in the amplitude independently using the method
of Lemma 7. The amplitude over the full-zero state is indeed the product of these four
values, and gives the wanted result. This required 8 QRACM lookups. The gate count is
thus approximately 8Q.

Using Lemma 6 with π
2

G
2n/2 ≃ 28.7, we conclude that we can implement Corcomp with

gate count: 28.7Q+ 211.7Q ≃ 211.9Q.

6.5 Cost of the Distinguisher
Assuming km

1 , k
r
1, k

m
7 , k

r
7 are known, the remaining 5 rounds in Figure 5 can be distinguished

using an instance of the Grover-meet-Simon algorithm. The key guess is km
2 , k

r
2 (37 bits).

Since the function is on 32 bits, by using 27 = 128 queries in Simon’s algorithm, we ensure
to detect a periodic function with overwhelming probability.

Lemma 9. There exists an implementation of Dist :

|zm
1 , z

r
1 , z

m
7 , z

r
7⟩ |b⟩ 7→ |zm

1 , z
r
1 , z

m
7 , z

r
7⟩

{
|b⊕ 1⟩ if guess is good
|b⟩ otherwise

using gate count ≤ 227.5Q.

Proof. Starting from |zm
1 , z

r
1 , z

m
7 , z

r
7⟩, we perform a Grover search in a new register |zm

2 , z
r
2⟩.

The test in this search looks whether the cipher defined by removing the first two rounds,
and the last one, is a 4-round Feistel or not. This is done using the distinguisher of [IHM+19]
recalled in Subsection 2.4, where the periodic function contains one call to the cipher and
one to its inverse.

After π
4 218.5 search iterates, we know that |zm

3 , z
r
3⟩:

• Contains the key |km
3 , k

r
3⟩ with high probability if our guess was correct;

• Does not contain the key otherwise.

Therefore, we apply the Simon-based test again and flip the flag b depending on its result.
Each search iterate contains:
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• 128 × 2 = 28 (QRACM) calls to EK (for computing and uncomputing) and 28 calls
to E−1

K : cost 29Q

• 3 × 29 ≃ 210.6 CAST S-Boxes and 32-bit operations (approximately 25Q)

• 1 call to a quantum circuit that computes the rank of a 32 × 128 matrix, and flips b if
this rank is maximal. Using the circuit of [BJ22], we need about 2×32×128×32 = 218

Toffoli gates. By our assumption on the value of Q, this is smaller than 26.5Q.

The total cost can then be upper bounded by:
π

4 218.5 (29Q+ 25Q+ 26.5Q
)

≃ 227.5Q . (47)

6.6 Cost of the Attack
We use Theorem 3 with:

kin = kr
1, k

r
7, kout = km

1 , k
m
7 , |kin| = 10, |kout| = 64 . (48)

The entire key-recovery attack performs:

2
⌈
1.21 × 227.0 × 25 × 20.33⌉ ≃ 233.6 (49)

calls to both CorComp and Dist to succeed with probability ≥ 0.5.
This gives the following gate count:

233.6 × (211.9Q+ 227.5Q) ≃ 261.1Q ,

where we see that the cost of the Grover-meet-Simon distinguisher largely dominates.
As a comparison, the Grover-meet-Simon attack simply guesses 3 round keys and uses

the same Simon-based distinguisher. Its complexity is approximately: 237+27.5Q = 264.5Q.
Since the computation of Corcomp does not dominate in our attack, the gain comes

entirely from having to perform less QAA iterates.

7 New Quantum Attack on CAST-256
We present here an attack on CAST-256 similar to the one of Section 6, which combines a
Simon-based distinguisher with a linear approximation, and applies FFT-based key-recovery
on part of the input and the output of the cipher.

In addition to Section 6, we use a generalized FFT. Indeed, in a quad-round starting
from x, y, z, t, we can express the value of y after the first two rounds as:

y′ = y ⊕ F2(kr
2, k

m
2 ⊕ z ⊕ F1(kr

1, k
m
1 + t)) .

Thus we will use FFT for a function of Fn
2 × Z2n .

7.1 Specification of CAST-256 and Summary of Results
The CAST-256 [Ada97a, AG99] cipher is a 48-round type-1 Generalized Feistel scheme
which was a candidate to the AES competition. It has a block size of 128 bits and a key
length up to 256 bits (we will focus on the 256-bit version).

CAST-256 borrows the definition of the S-Boxes and the round functions F1, F2, F3
from CAST-128 (see Subsection 6.1). We omit the description of its key schedule, and
consider all round keys to be independent.
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Figure 6: CAST-256 quad-round.

The rounds in CAST-256 are bundled in quad-rounds (Figure 6), so that the full cipher
contains 6 quad-rounds, followed by 6 reverse quad-rounds, in which the order of the
operations is reversed.

In Table 3, we recall a few results of classical and quantum cryptanalysis on CAST-256.
The best linear attack reaches 32 rounds. In the quantum setting, the best known attack
uses the Grover-meet-Simon algorithm [SCQ+23], where a distinguisher on 17-round CAST-
256 is combined with a Grover’s search for 6 subkeys. The complexity given in [SCQ+23]
is 2111. However, since we take into account the cost of Simon’s algorithm, we increase it
to 2123.7Q (we use about 28 queries in each Simon subroutine).

Table 3: Classical and quantum attacks on CAST-256. “Q0” indicates a classical attack.
Quantum time complexities are counted in equivalent computations of the corresponding
cipher.

Setting Type Rounds Data Time QRACM Reference

Q0

Linear 24 2124.1 2156.52 [WWH08]
Multidimensional ZC 28 298.8 2246.90 [BLNW12]

Multiple ZC 29 2123.2 2218.1 [WWBC14]
Linear 32 2126.8 2251.00 [ZWW14]

Q1 Grover’s search 24 2 2129.65 None
Q2 Grover-meet-Simon 23 2123.7 2123.7 None [SCQ+23]
Q1 Linear + QFT + Simon 24 2128 2124.5 2128 Section 7
Q1 Linear + QFT + Linear 24 2128 2128.68 2128 Section 8

In this section, we show how to combine a Simon-based distinguisher and a linear
key-recovery on CAST-256 to achieve a 24-round attack. This attack will be subsequently
modified in the next section by using a linear distinguisher instead.

7.2 Distinguisher
We use the 17-round distinguisher of [SCQ+23], which is represented in Figure 7. This
distinguisher calls Simon’s algorithm on a 32-bit function which contains two calls to the
cipher’s inverse. More precisely, if E′ is the 17-round reduced cipher, the periodic function
is:

x 7→ f(x, α0) ⊕ f(x, α1) = (E′)−1(c, c, α0, x)3 ⊕ (E′)−1(c, c, α1, x)3 (50)

where c, α0, α1 are constants. We refer to [SCQ+23] for the proof.
Similarly to Subsection 6.5, we extend this 17-round distinguisher into a Grover-meet-

Simon distinguisher, that also guesses 3 × 37 = 111 bits of key (in blue in Figure 7), in
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x1 x2 x3 x4

F1(k
r
1)

km1

F2(k
r
2)

km2

F3(k
r
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km3
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r
4)

km4

F1(k
r
5)

km5

∗ ∗ f(x, α) ∗
F2(k

r)

F3(k
r)

F1(k
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F1(k
r)
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17-round
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Simon

distinguisher

Figure 7: Path of the attack on 24-round CAST-256. The three guessed keys at the top,
in order to extend the distinguisher by 3 rounds, are highlighted in blue.
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order to reach 20 rounds. We use 28 = 256 queries in Simon’s algorithm in order to detect
a periodic function with large probability. This will be our implementation of Dist for this
section. We upper bound its cost by π

4 2111/2 × 210Q ≃ 265.2Q.

Linear Approximation. We use the following linear approximation for F2 found by Wang
et al. [WWH08]: 0 → 03400000 which holds with a bias of 2−12.91 (i.e., correlation 2−11.91).
Then the linear approximation (0, 03400000, 0, 0) → (0, 03400000, 0, 0) holds for the 20
rounds of the distinguisher with correlation (2−11.91)4 = 2−47.64. For the right key guess,
when using at least 2127 data, by Equation 17 we can lower bound the experimental
correlation by 2−47.64 − 2 × 2−127/2 ≃ 2−47.64 .

7.3 FFT Key-recovery Process
We append two rounds both in input and output of the distinguisher, as shown in Figure 7.
Hence we target a total of 24 rounds or 6 quad-rounds. We denote the input of this 24-round
CAST as x := (x1, x2, x3, x4) and the output as E(x) := E(x)1, E(x)2, E(x)3, E(x)4. Let
α := 03400000. The value in branch 1 after the first two rounds can be expressed as:

x2 ⊕ F2(kr
2, k

m
2 ⊕ x3 ⊕ F1(kr

1, k
m
1 + x4)) , (51)

and the value in branch 1 before the last two rounds is:

E(x)2 ⊕ F2(kr
23, k

m
23 ⊕ E(x)3 ⊕ F1(kr

24, k
m
24 + E(x)4)) . (52)

Considering a database of plaintext-ciphertext entries D, we have the following expres-
sion for the experimental correlation, depending on the chosen value (zm

1 , z
m
2 , z

m
23, z

m
24) for

the 128-bit key km
1 , k

m
2 , k

m
23, k

m
24 and the value (zr

1 , z
r
2 , z

r
23, z

r
24) for the keys kr

1, k
r
2, k

r
23, k

r
24:

ĉor(zm
1 , z

m
2 , z

m
23, z

m
24, z

r
1 , z

r
2 , z

r
23, z

r
24) =

1
|D|

∑
(x1,x2,x3,x4,

E(x)1,E(x)2,E(x)3,E(x)4)∈D

(−1)α·(x2⊕F2(zr
2 ,zm

2 ⊕x3⊕F1(zr
1 ,zm

1 +x4)))

(−1)α·(E(x)2⊕F2(kr
23,zm

23⊕E(x)3⊕F1(kr
24,zm

24+E(x)4))) . (53)

By indexing the database on x3, x4, E(x)3, E(x)4, we can define a function D(u, v, w, t)
that, on input a 32 × 4-bit value representing x3, x4, E(x)3, E(x)4, outputs a 32-bit value
representing E(x)2 ⊕ x2.

The experimental correlation becomes the convolution of two functions fzr
1 ,zr

2 ,zr
23,zr

24
and g over (F32

2 )2 × (Z232)2:{
g(u, v, w, t) = 1[(u, v, w, t) ∈ D](−1)α·D(u,v,w,t)

fzr
1 ,zr

2 ,zr
23,zr

24
(u, v, w, t) = (−1)α·F2(zr

2 ,u⊕F1(zr
1 ,w))(−1)α·F2(zr

23,v⊕F1(zr
24,t)) (54)

When the full codebook is available, the amount of data available after constructing the
database is |D| = 2128−0.66 following a similar analysis as in Section 6.

7.4 Computation of the Correlations
We now need to implement the unitary fFourier:

|zr
1 , z

r
2 , z

r
23, z

r
24⟩ |u, v, w, t⟩ 7→ |zr

1 , z
r
2 , z

r
23, z

r
24⟩ |u, v, w, t⟩

(
f̂zr

1 ,zr
2 ,zr

23,zr
24

(u, v, w, t)
G

|0⟩ + |∗⟩

)
.

(55)



32 Improved Quantum Linear Attacks and Application to CAST

Like in Section 6, f is a product of two independent functions, so its FFT as well. Let
us define:

f ′zr
1 ,zr

2
(u,w) = (−1)α·F2(zr

2 ,u⊕F1(zr
1 ,w)) (56)

then we have:
f̂zr

1 ,zr
2 ,zr

23,zr
24

(u, v, w, t) = f̂ ′zr
1 ,zr

2
(u,w)f̂ ′zr

23,zr
24

(v, t) . (57)

We focus on the Fourier transform of f ′:

f̂ ′zr
1 ,zr

2
(u,w) =

∑
y∈Z232

exp(2ιπyw/232)
∑

x∈F32
2

(−1)x·u(−1)α·F2(zr
2 ,x⊕F1(zr

1 ,y))

︸ ︷︷ ︸
Change of variable: x← x⊕ F1(zr

1 , y)

=
∑

y∈Z232

exp(2ιπyw/232)
∑

x∈F32
2

(−1)F1(zr
1 ,y)·u(−1)x·u(−1)α·F2(zr

2 ,x)

=

 ∑
y∈Z232

exp(2ιπyw/232)(−1)F1(zr
1 ,y)·u


︸ ︷︷ ︸

:=pzr
1

(u,w)

 ∑
x∈F32

2

(−1)x·u(−1)α·F2(zr
2 ,x)


︸ ︷︷ ︸

:=qzr
2

(u)

.

From Section 6, we know that |qzr
2
(u)| ≤ 220 for all u. Furthermore, we compute that for

all zr
2 , |qzr

2
(0)| = |

∑
x(−1)α·F2(0,x)| ≃ 216.62 .

Bound on p. For p we notice first that ∀zr
1 , pzr

1
(0, 0) = 232. For non-zero (u,w), we can

compute a more precise bound. We start by a triangle inequality:

|pzr
1
(u,w)| ≤

∣∣∣∣∣∣
∑

y∈Z232

cos
(

2yw
232

)
(−1)F1(zr

1 ,y)·u

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

y∈Z232

sin
(

2yw
232

)
(−1)F1(zr

1 ,y)·u

∣∣∣∣∣∣ .
We consider a random (u,w) ̸= (0, 0). For fixed y, we introduce a random variable
Xy := cos(yw/232)(−1)F1(zr

1 ,y)·u which has average 0 over (u,w), and values in the interval
[−1; 1]. Likewise we introduce a random variable Yy := sin(yw/232)(−1)F1(zr

1 ,y)·u. If all
random variables Xy (resp. Yy) were independent, using Hoeffding’s inequality, we would
obtain:

∀t,Pru,w(|pzr
1
(u,w)| ≥ 2t) ≤ Pru,w(|

∑
y

Xy| + |
∑

y

Yy| ≥ 2t)

= Pru,w(|
∑

y

Xy| + |
∑

y

Yy| ≥ 2t, |
∑

y

Yy| < t)

+ Pru,w(|
∑

y

Xy| + |
∑

y

Yy| ≥ 2t, |
∑

y

Yy| ≥ t)

≤ Pru,w(|
∑

y

Xy| ≥ t) + Pru,w(|
∑

y

Yy| ≥ t)

≤ 2e−2t2/(4×232) .

We will make the heuristic assumption that the variables behave as independent, and
find a bound t so that the inequality is satisfied for all u,w, zr

1 (space of size 264+5) with
probability 1 − 2−4. This puts the following constraint on t:

2e−t2/233
269 ≤ 2−4 =⇒ t2

233 ≥ 74 log 2 =⇒ t ≃ 223.34 .
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Lemma 10. Under the heuristic of independence in the sum for p, with probability 1−2−4:

∀u,w, zr
1 , z

r
2 , |f̂ ′zr

1 ,zr
2
(x, y)| ≤ max(220.34 × 220, 232 × 216.62) = 248.62 .

Consequently the bound G for |f̂ | can be taken as (248.62)2 = 297.2 . This bound is
actually much larger than if f behaved as a random function; the 0 Fourier coefficient of f
is higher, meaning that the function is slightly unbalanced.

Computation of f̂ . We can precompute the functions pzr
1

and qzr
2

using around 210 × 296

classical floating-point operations, and store their values in around 264 QRACM. Then
we use Lemma 7 to implement the computation of f̂ in the amplitudes. These costs of
precomputation remain negligible with respect to the rest of the attack.

Implementation of CorComp. By Lemma 6, we can compute the correlation state with
gate count: (

π

2
G

2n/2 + 3
)

(10Q) = 238.2Q , (58)

where we have counted 4 QRACM queries for the computation of f̂ .

7.5 Cost of the Attack
Similarly to Subsection 6.5, we can directly use Theorem 3 with:

kin = kr
1, k

r
2, k

r
23, k

r
24, kout = km

1 , k
m
2 , k

m
23, k

m
24, |kin| = 20, |kout| = 128 . (59)

Using Theorem 3, the entire key-recovery attack performs:

2
⌈
1.21 × 247.64 × 210 × 20.33⌉ = 259.3 (60)

calls to both CorComp and Dist in order to retrieve the key with probability at least 0.5.
The gate count is given by:

259.3 ×
(
238.2Q+ 265.2Q

)
= 2124.5Q . (61)

Despite the large value of the bound G that we had to use, the computation of Corcomp
is still inconsequential, and the complexity is dominated by the distinguisher. Here, our
advantage with respect to the Grover-meet-Simon attack, which comes from the large
correlation (reducing the number of outer iterates), allows us to increase the number of
attacked rounds.

8 Quantum Attack on CAST-256 with LinDist
For comparison, this section shows an attack on the 24-round CAST-256 when a linear
distinguisher (LinDist of Lemma 8) is used instead of the Simon-based distinguisher. The
resulting attack is slower than the attack in the previous section, but still faster than the
exhaustive key search with Grover’s algorithm.

Comparison with the Previous Section. The linear approximation we use here is the
same as before, i.e., the 20-round approximation of the absolute correlation 2−47.64, which
applies for the cipher shown in Figure 7 except for the first two rounds and the last two
rounds. The distinguisher LinDist is also applied to this 20-round part.
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Cost of the Distinguisher. We apply LinDist with ℓ = 26.08n = 213.08. The ELP is
approximately lower bounded by 2−47.64. By Lemma 8, the gate count of LinDist is
approximately upper bounded by 23 ·

⌈
16π/

√
ELP

⌉
· 212 ·Q ≤ 269.38Q.

Cost of Corcomp. Since the cost of Corcomp does not depend on distinguishers, it is the
same as before, i.e., 238.2Q.

Overall Complexity. Before running quantum algorithms, the full codebook is queried
and stored in QRAM, together with the data structure D of size ≃ 2128−0.66. As before, by
Theorem 3, the attack calls LinDist and Corcomp at most 2

⌈
1.21 × 210 × 247.64 × 20.33⌉ ≤

259.3 times. Hence the overall gate count is at most

259.3 (269.38Q+ 238.2Q
)

≃ 2128.68Q.

This is worse than the attack in the previous section by a few bits. Still, it is slightly faster
than the Grover search, which requires at least 2 × 2 × 2128 = 2130 encryptions, considering
the cost of uncomputation and that the key length is twice as large as the block lengths.

Remark 9. Note that the precision of LinDist to approximate Dist is sufficiently high: Since
LinDist is called in the attack at most 259.3 times, the parameter ℓ we use in the attack
(ℓ = 213.08) is larger than the right hand side of Equation 35.

9 Conclusion

In this paper, we showed how to combine a linear key-recovery attack based on the quantum
Fourier transform with a distinguisher (related or not), in order to speed up some quantum
key-recovery attacks.

Although our concrete results remain relatively modest, such as a speedup of a factor 23

of a 7-round attack on CAST-128, and an improvement by 1 round of a quantum attack on
CAST-256, we believe that this framework may lead to further applications, by leveraging
multiple cryptanalytic properties at the same time, which seems to be a first in quantum
cryptanalysis. More generally, as there is no generic limitation to quadratic speedups with
this approach, we believe it is very promising.

A problem that remains unsolved (already noticed in [Sch23]) is how to use zero-
correlation linear hulls. Indeed, what the QFT-based method gives in such a case is
a quantum state where the good key does not appear, rather than a state in which it
appears with good probability. In our case we could use the zero-correlation property as a
distinguisher, but we wouldn’t gain anything more from it.
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A Proof of Lemma 8
To show Lemma 8, we need two lemmas below.
Lemma 11. Let κ := |kin| + |kout|. If n ≥ 3, T = 3

8
√
ELP , and 1 ≫

√
ELP ≥

2−n/2 · (4
√

2κ) holds, then

3
√
ELP ≥ |cor(kin, kout)| ≥

√
ELP/2 (⇔ 8T ≥ |cor(kin, kout)| ≥ (4/3)T )

and
|cor(zin, zout)| ≤

√
ELP/4 = (2/3)T

hold for all (zin, zout) ̸= (kin, kout) with probability at least around 0.95 − (2/e)κ
√

2κ over
the choice of the key.
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Proof. By the assumption
√
ELP ≥ 2−n/2 · (4

√
2κ) (and κ ≥ |kout| = 1), we have

√
ELP > 4 · 2−n/2 = 4/

√
N.

This inequality and Equation 17 imply

Pr
K

[
|cor(kin, kout)| <

√
ELP/2 or |cor(kin, kout)| > 3

√
ELP

]
≤ Pr

K

[
|cor(kin, kout)| <

√
ELP − 2/

√
N or |cor(kin, kout)| >

√
ELP + 2/

√
N
]

≤ 0.05. (62)

In addition, by the wrong key hypothesis, the value cor(zin, zout) follows N (0, 2−n) for
(zin, zout) ̸= (kin, kout). Hence, it holds that

Pr
K

[
∃(zin, zout) ̸= (kin, kout), |cor(zin, zout)| >

√
ELP/4

]
≤ 2 Pr

K

[
∃(zin, zout) ̸= (kin, kout), cor(zin, zout) > 2−n/2√

2κ
]

≤ 2
∑

(zin,zout) ̸=(kin,kout)

Pr
K

[
cor(zin, zout) > 2−n/2√

2κ
]

≃ 2κ+1
√

2π

∫ ∞
√

2κ

e−x2/2dx ≤ 2κ

∫ ∞
√

2κ

x√
2κ
e−x2/2dx = − 2κ

√
2κ

∫ ∞
√

2κ

(
e−x2/2

)′
dx

= 2κ

√
2κ
e−κ. (63)

The claim follows from Equation 62 and Equation 63.

Lemma 12. Suppose T = 3
8
√
ELP and q =

⌈
16π/

√
ELP

⌉
. In addition, assume ELP ≪

1, 8T ≥ |cor(kin, kout)| ≥ (4/3)T , and |cor(zin, zout)| ≤ (2/3)T for all (zin, zout) ̸=
(kin, kout). If QCq runs on fzin,zout under this assumption, then with probability of at least
0.8 it outputs an integer X̃ such that |2X̃/2n − 1| ≥ T if (zin, zout) = (kin, kout) and
|2X̃/2n − 1| < T if (zin, zout) ̸= (kin, kout).

Proof. Let X := #{x : fzin,zout(x) = 1}(= #{x : α · FL
zin(x ⊕ zout) = β · FR

zin(EK(x))}).
Then we have

X = 1 + cor(zin, zout)
2 · 2n and 2n −X = 1 − cor(zin, zout)

2 · 2n.

As we are assuming 8T ≥ |cor(kin, kout)| holds, |cor(zin, zout)| ≤ (2/3)T for all (zin, zout) ̸=
(kin, kout), and that

√
ELP ≪ 1,

X(2n −X) = 1 − cor(zin, zout)2

4 · 22n ≃ 22n−2

holds.
By the explanation in Subsection 2.6 and the assumption

√
ELP ≪ 1, we have∣∣X̃ −X

∣∣ ≤ 2π
√
X(2n −X)/q2 + (π · 2n/2/q)2

⪅ 2π2n−1/
(

16π/
√
ELP

)
+
(
π · 2n/2/(16π/

√
ELP )

)2

= 2n
√
ELP/16 + (2n

√
ELP/256) ·

√
ELP

≃ 2n
√
ELP/16. (64)
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Multiplying both sides of the inequality 2n
√
ELP/16 >

∣∣X̃ −X
∣∣ by 2/2n, we obtain

√
ELP/8 > (2/2n)

∣∣X̃ −X
∣∣ =

∣∣(2X̃/2n − 1) − (2X/2n − 1)
∣∣

=
∣∣(2X̃/2n − 1) − cor(zin, zout)

∣∣ ,
which implies

∣∣(2X̃/2n − 1) − cor(zin, zout)
∣∣ < T/3. (65)

Due to the current assumption that |cor(kin, kout)| ≥ (4/3)T and |cor(zin, zout)| ≤ (2/3)T
for all (zin, zout) ̸= (kin, kout), the claim of the lemma follows.

Proof of Lemma 8. The gate count to implement f is at most about 4Q, so the claim
about the gate count immediatley follows.

Let U1 and U2 be the uniary operators corresponing to Step 1 and Step 2 of LinDist,
respectively. As Step 3 is the uncomputaion of Step 1, we have

LinDist = U†1U2U1.

In adition, let Uflip be the unitary operator such that

Uflip |b⟩ = |b⊕ 1⟩

for b ∈ {0, 1}.

We first analyze the behavior of LinDist on the right key. Suppose that the assumption
of Lemma 12 holds and that we run LinDist on (zin, zout) = (kin, kout), measuring the state
just after Step 1 (i.e., we start from the non-superposed state |kin, kout, b⟩ for some b ∈ {0, 1}
and measure U1 |kin, kout, b⟩). Let cnt be the number of i satisfying |2X̃i/2n − 1| ≥ T .
In addition, let Πgood (resp., Πbad) be the projector onto the space of quantum states
corresponding to cnt ≥ ℓ/2 (resp., cnt < ℓ/2). Then, cnt follows the binomial distribution
B(ℓ, p) for some p ≥ 0.8 by Lemma 12, and we have

∥ΠbadU1 |kin, kout, b⟩ ∥2

Pr
[
Step 2 fails (i.e., judges that (zin, zout) ̸= (kin, kout))

]
= Pr [cnt < ℓ/2] ≤ Pr

[
cnt < 5

8pℓ
]

≤
(∗)

(
e−3/8

(5/8)5/8

)pℓ

≤
(

1
2

)0.09ℓ

, (66)
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where (∗) follows from the Chernoff bound. This implies∥∥∥∥∥∥∥LinDist |kin, kout, b⟩ − Dist |kin, kout, b⟩︸ ︷︷ ︸
=|kin,kout,b⊕1⟩=Uflip|kin,kout,b⟩

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥U
†
1U2(Πgood + Πbad)U1 |kin, kout, b⟩ − Uflip︸︷︷︸

commutative with U1 and U†
1

|kin, kout, b⟩

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥U†1 U2Πgood︸ ︷︷ ︸
=UflipΠgood

U1 |kin, kout, b⟩ − U†1UflipU1 |kin, kout, b⟩

∥∥∥∥∥∥∥+
∥∥∥U†1U2ΠbadU1 |kin, kout, b⟩

∥∥∥
=

∥∥∥∥∥∥∥U†1UflipΠgoodU1 |kin, kout, b⟩ − U†1Uflip U1︸︷︷︸
=(Πgood+Πbad)U1

|kin, kout, b⟩

∥∥∥∥∥∥∥+
∥∥ΠbadU1 |kin, kout, b⟩

∥∥
=
∥∥∥U†1UflipΠbadU1 |kin, kout, b⟩

∥∥∥+
∥∥ΠbadU1 |kin, kout, b⟩

∥∥
≤ 2

∥∥ΠbadU1 |kin, kout, b⟩
∥∥ ≤ 2

(
1
2

)0.045ℓ

(67)

for any b ∈ {0, 1}. We can show

∥∥LinDist |zin, zout, b⟩ − Dist |zin, zout, b⟩
∥∥ ≤ 2

(
1
2

)0.045ℓ

(68)

for (zin, zout) ̸= (kin, kout) and b ∈ {0, 1} in the same way. Therefore, for arbitrary quantum
state of the form |ψ⟩ =

∑
zin,zout,b αzin,zout,b |zin, zout, b⟩,

∥LinDist |ψ⟩ − Dist |ψ⟩∥ ≤
∑

zin,zout,b

|αzin,zout,b|
∥∥LinDist |zin, zout, b⟩ − Dist |zin, zout, b⟩

∥∥
≤

∑
zin,zout,b

|αzin,zout,b|2
(

1
2

)0.045ℓ

≤ 2(|kin|+|kout|)/2−0.045ℓ+2
√ ∑

zin,zout,b

|αzin,zout,b|2

≤ 2(|kin|+|kout|)/2−0.045ℓ+2, (69)

where the second last inequality follows from Jensen’s inequality.
Thus, the claim of Lemma 8 follows from Lemma 11.

B Lemma 10 from [Sch23]
For completeness, we provide the following lemma, used in Subsection 5.2.

Lemma 13 ([Sch23, Lemma 10]). Let fi : {0, 1}n → {−1, 1}, 1 ≤ i ≤ M be a family of
independent random functions. With probability at least 0.99, it holds that:

∀z,∀i, |f̂i(z)| ≤ 2n/2
√

6 (ln(100) + (n+ 1) ln(2) + ln(M)) .
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