
On the BUFF Security of ECDSA with Key Recovery

Keita Emura∗1,2

1Kanazawa University, Japan
2AIST, Japan

June 23, 2025

Abstract

In the usual syntax of digital signatures, the verification algorithm takes a verification key
in addition to a signature and a message, whereas in ECDSA with key recovery, which is used
in Ethereum, no verification key is input to the verification algorithm. Instead, a verification
key is recovered from a signature and a message. In this paper, we explore BUFF security
of ECDSA with key recovery (KR-ECDSA), where BUFF stands for Beyond UnForgeability
Features (Cremers et al., IEEE S&P 2021). As a result, we show that KR-ECDSA provides
BUFF security, except weak non-resignability (wNR). We pay attention to that the verification
algorithm of KR-ECDSA takes an Ethereum address addr as input, which is defined as the
rightmost 160-bits of the Keccak-256 hash of the corresponding ECDSA verification key, and
checks the hash value of the recovered verification key is equal to addr. Our security analysis
shows that this procedure is mandatory to provide BUFF security. We also discuss whether
wNR is mandatory in Ethereum or not. To clarify the above equality check is mandatory to
provide BUFF security in KR-ECDSA, we show that the original ECDSA does not provide any
BUFF security. As a by-product of the analysis, we show that one of our BUFF attacks also
works against the Aumayr et al.’s ECDSA-based adaptor signature scheme (ASIACRYPT 2021)
and the Qin et al.’s blind adaptor signature scheme (IEEE S&P 2023), which is based on the
Aumayr et al.’s scheme. We emphasize that the attack is positioned outside of their security
models.

1 Introduction

Signatures over Elliptic Curves. ECDSA (Elliptic Curve Digital Signature Algorithm) has
obtained citizenship in blockchain communities since it is used for verifying transactions in the
actual systems. The security of ECDSA has been widely estimated. To name a few, Vaudenay [36]
introduced a domain parameter shifting attack against ECDSA where the base point G is replaced
by an adversary. Fersch et al. [17] proved that ECDSA is existentially unforgeable against chosen
message attack (EUF-CMA) under the elliptic curve discrete logarithm (ECDLP) assumption in
the bijective random oracle model, and Brown [5] proved that ECDSA is strongly EUF-CMA secure
in the generic group model (we will further discuss the strong EUF-CMA security of ECDSA in
Section 4.1). Hartmann and Kiltz [22] focused on the programmability of the conversion function
which maps an elliptic curve point into its x-coordinate modulo the group order, and showed that

∗k-emura@se.kanazawa-u.ac.jp

1

Transformation Signature S-CEO S-DEO M-S-UEO MBS NR

PS-1 Sign(sk,m), H(m)
√ √

PS-2 Sign(sk,m), H(vk)
√ √ √

BUFF-lite Sign(sk,m), H(m, vk)
√ √ √ √

BUFF Sign(sk,H(m, vk)), H(m, vk)
√ √ √ √ √

Table 1: BUFF Transformations [8]

an algebraic security reduction for ECDSA can only exist if the security reduction is allowed to
program the conversion function.

Brendel et al. [4] estimated the security of Ed25519 [3]. In addition to (strong) EUF-CMA,
they considered BUFF (Beyond UnForgeability Features) security [1, 8], S-UEO (Strong Universal
Exclusive Ownership), M-S-UEO (Malicious Strong Universal Exclusive Ownership), and MBS
(Message Bound Security). Intuitively, the BUFF security (except MBS) considers cases that an
adversary produces another verification key that works against a signature which is valid under
the original verification key. MBS considers other scenario that an adversary produces a signature
and a verification key together with two different messages where the signature is valid with each
message under the verification key. We will introduce these security notions in detail in Section 2.

Generic Transformations. Here, we introduce generic transformations that add BUFF security
to any signature scheme summarized by Cremers et al. [8] in Table 1. We denote the transformations
given by Pornin and Stern [30] are PS-1 and PS-2, respectively, and the transformations given by
Cremers et al. [8] are BUFF-lite1 and BUFF, respectively. Let Sign be a signing algorithm of the
underlying signature scheme, (vk, sk) is a pair of verification key and signing key. We omit PS-3:
(Sign(sk,H(m, vk))) from the table because it assumes that no weak key exists.2 Cremers et al. [8]
gave implication results: S-CEO (Strong Conservative Exclusive Ownership) and S-DEO (Strong
Destructive Exclusive Ownership) are equivalent to S-UEO, and S-UEO is implied by M-S-UEO.
Aulbach et al. [1] defined that a signature scheme is said to have full BUFF security if it satisfies
S-CEO, S-DEO, MBS, and wNR (weak Non-Resignability).

ECDSA with Key Recovery. In the usual syntax of digital signatures, the verification algorithm
takes a verification key in addition to a signature and a message, whereas in ECDSA with key
recovery (we denote it KR-ECDSA hereafter3), which is used in Ethereum, no verification key is
input to the verification algorithm. Instead, a verification key is recovered from a signature and a
message. Moreover, the verification algorithm of KR-ECDSA takes an Ethereum address addr as
input (we regard addr as a part of a signature), which is defined as the rightmost 160-bits of the
Keccak-256 hash of the corresponding ECDSA verification key, and checks the hash value of the
recovered verification key is equal to addr. Moreover, it also checks whether a part of a signature
value s is 0 < s < q/2 + 1 where q is the order of the underlying elliptic curve.

Our Motivation. Remarkably, the security of KR-ECDSA, including BUFF security, has not been
explicitly analyzed so far, to the best of our knowledge. More precisely, Ethereum Yellow Paper [37]
refers the document by Johnson, Menezes, and Vanstone [24] that does not explicitly analyze

1We refer the ePrint version posted on October 2023 [7] which was updated according to the result by Don et
al. [14]

2Düzlü and Struck [16] claimed that MBS rules out the possibility of weak keys, and showed that if the original
signature schemes satisfies MBS, then the PS-3 transform is sufficient to achieve BUFF security.

3Ethereum Yellow Paper [37] denotes the ECDSA variant recoverable ECDSA. In this paper, we intentionally
denote it key recovery to clarify what the recoverable value is.

2

Strong EUF-CMA S-CEO S-DEO M-S-UEO MBS wNR

ECDSA
√

(w/ the format checking)
KR-ECDSA

√ √ √ √ √

We regard ECDSA with the format checking is strongly EUF-CMA secure due to the result by
Groth and Shoup [21]. See Section 4.1.

Cremers et al. [8] have mentioned that ECDSA does not provide MBS.

Table 2: Summary of Our Result

KR-ECDSA. Moreover, Groth and Shoup [21] analyzed ECDSA with additive key derivation and
presignatures but did not analyze KR-ECDSA. Even if BUFF security mainly focuses on PQC
(Post-Quantum Cryptography) signatures in [1, 8, 15, 25], analyzing whether a currently-employed
signature scheme provides BUFF security is also important. Moreover, since transactions are signed
by KR-ECDSA in Ethereum and high amounts of cryptocurrency are exchanged, any potential
attack against KR-ECDSA should be identified/recognized. Due to this motivation, we analyze the
BUFF security of KR-ECDSA.

Our Contribution. In this paper, we show that KR-ECDSA provides BUFF security as it is but
does not provide wNR. By regarding addr as H(vk) in KR-ECDSA, a signature of KR-ECDSA
consists of (Sign(sk,H(m)),H(vk)). Since H(vk) is added to a signature, KR-ECDSA is at least
secure as a signature scheme transformed by PS-2: (Sign(sk,m), H(vk)) that provides M-S-UEO.
This observation shows that KR-ECDSA provides M-S-UEO and thus S-CEO and S-DEO. How-
ever, it is not clear whether KR-ECDSA provides MBS and wNR or not since the signature form
(Sign(sk,H(m)),H(vk)) is not the same as those of PS-1, PS-2, BUFF-lite, and BUFF summarized
in Table 1.

• We formally prove that KR-ECDSA is strongly EUF-CMA secure if ECDSA with the format
checking is strongly EUF-CMA secure in Section 4.1 (Theorem 1).

• We formally prove that KR-ECDSA provides MBS if the hash function is collision resistant
(with respect to the rightmost 160-bits of the hash) in Section 4.3 (Theorem 2).

• We gave a concrete wNR attack against KR-ECDSA in Section 4.4.

To clarify which part is mandatory to provide BUFF security in KR-ECDSA, we show that the
original ECDSA does not provide any BUFF security.

• We gave concrete S-CEO and S-DEO attacks against ECDSA in Section 4.2.

Note that Cremers et al. [8] have mentioned that ECDSA does not provide MBS. Our result is
summarized in Table 2.

As a by-product of the analysis, we show that our S-DEO attack against the original ECDSA
also works against the Aumayr et al.’s ECDSA-based adaptor signature scheme [2] and the Qin
et al.’s blind adaptor signature scheme [31], which is based on the Aumayr et al.’s ECDSA-based
adaptor signature scheme.

Research Ethics. In this paper, we showed that KR-ECDSA does not provide wNR and gave a
concrete attack. Potentially, this may cause an issue in the actual Ethereum transactions. However,
as mentioned in the discussion, we would like to claim that the attack is not a realistic threat in
Ethereum. We emphasize that we never deny the meaningfulness of NR in other context such

3

as [13, 23]. See Section 4.4 for detail. We also did not find a vulnerability in the applications
of (blind) adaptor signatures. See Section 5 for detail. We also declare all authors do not have
Ethereum accounts.

2 Definitions

Let Sig = (KeyGen, Sign,Verify) be a signature scheme. The key generation algorithm KeyGen takes
a security parameter λ as input and outputs a verification and signing key pair (vk, sk). The signing
algorithm Sign takes sk and a message to be signed M as input and outputs a signature σ. The
verification algorithm Verify takes vk, M , and σ as input and outputs 0 or 1. The correctness
requires that for any λ ∈ N, any (vk, sk)← KeyGen(1λ), and any M , Verify(vk,M, Sign(sk,M)) = 1
holds with overwhelming probability in the security parameter λ.

2.1 Strong EUF-CMA

The strong unforgeability is defined as follows. Let A be an adversary and C be the challenger. C
generates (vk, sk) ← KeyGen(1λ), and gives vk to A. C initiates SigSet = ∅. A is allowed to issue
signing queries M . C generates σ ← Sign(sk,M) and returns σ to A. C stores (M,σ) to SigSet.
Finally, A outputs (M∗, σ∗). We say that A wins if

Verify(vk,M∗, σ∗) = 1 ∧ (M∗, σ∗) ̸∈ SigSet

The advantage of A is defined as AdvstrongA,Sig (λ) = Pr[A wins]. We say that Sig provides strongly

existentially unforgeability against chosen message attack (strong EUF-CMA) if AdvstrongA,Sig (λ) is
negligible for all probabilistic polynomial-time (PPT) adversaries A. If A is not allowed to send
M∗ as a signing query, then we say that Sig is EUF-CMA secure.

2.2 S-CEO, S-DEO, and M-S-UEO

Intuitively, S-CEO guarantees that no adversary can produce a new verification key that ac-
cepts a signature which is valid under the original verification key. That is, for (M∗, σ∗) where
Verify(vk,M∗, σ∗) = 1, the adversary wins if it produces vk∗ ̸= vk where Verify(vk∗,M∗, σ∗) = 1
holds. The S-CEO security is formally defined as follows. Let A be an adversary and C be the
challenger. C generates (vk, sk) ← KeyGen(1λ), and gives vk to A. C initiates SigSet = ∅. A is
allowed to issue signing queries M . C generates σ ← Sign(sk,M) and returns σ to A. C stores
(M,σ) to SigSet. Finally, A outputs (vk∗,M∗, σ∗). We say that A wins if

Verify(vk∗,M∗, σ∗) = 1 ∧ (M∗, σ∗) ∈ SigSet ∧ vk∗ ̸= vk

hold. Here, (M∗, σ∗) ∈ SigSet implies Verify(vk,M∗, σ∗) = 1. The advantage of A is defined as
AdvS-CEO

A,Sig (λ) = Pr[A wins]. We say that Sig provides S-CEO if AdvS-CEO
A,Sig (λ) is negligible for all

PPT adversaries A.
Basically, S-DEO guarantees the same as those of S-CEO except that A produces a different

message. That is, for (M ′, σ∗) where Verify(vk,M ′, σ∗) = 1, A wins if A produces vk∗ ̸= vk and
M∗ ̸= M ′ where Verify(vk∗,M∗, σ∗) = 1 holds. The advantage of A is defined as AdvS-DEO

A,Sig (λ) =

Pr[A wins]. We say that Sig provides S-DEO if AdvS-DEO
A,Sig (λ) is negligible for all PPT adversaries

A.

4

Finally, we introduce M-S-UEO that is the strongest variant of the exclusive ownership notions.
The adversary A (which implicitly takes a security parameter and other parameter, i.e., (E,G, p, q)
in the case of (KR-)ECDSA) outputs (M1,M2, σ, vk1, vk2). We say that A wins if

Verify(vk1,M1, σ) = 1 ∧ Verify(vk2,M2, σ) = 1 ∧ vk1 ̸= vk1

hold. The advantage of A is defined as AdvM-S-UEO
A,Sig (λ) = Pr[A wins]. We say that Sig provides

M-S-UEO if AdvM-S-UEO
A,Sig (λ) is negligible for all PPT adversaries A.

In PS-2, a signature contains H(vk). Observe that a targeted signature σ∗ is produced via
a signing query in the definitions of S-CEO and S-DEO. Thus, no adversary can produce a new
verification key vk∗ unless it breaks the collision resistance of the hash function H. This is the
main reason behind that PS-2 provides S-CEO and S-DEO security. Moreover, again due to the
hash function H, no adversary can produce two distinct verification keys vk1 and vk2 satisfying
H(vk1) = H(vk2). This is the main reason behind that PS-2 provides M-S-UEO security.

2.3 MBS

Intuitively, MBS guarantees that no adversary A can produce two distinct messages that are ac-
cepted by a signature and verification key pair. If MBS does not hold, then A could switch a
message after producing a signature, and could claim that it actually signed a different message.
Here, A is allows to introduce vk (and thus A is allowed to know the corresponding sk or A may
not generate vk via the KeyGen algorithm). The MBS security is formally defined as follows. The
adversary A (which implicitly takes a security parameter and other parameter, i.e., (E,G, p, q) in
the case of (KR-)ECDSA) outputs (M1,M2, σ, vk). We say that A wins if

Verify(vk,M1, σ) = 1 ∧ Verify(vk,M2, σ) = 1 ∧M1 ̸= M2

hold. The advantage of A is defined as AdvMBS
A,Sig(λ) = Pr[A wins]. We say that Sig provides MBS

if AdvMBS
A,Sig(λ) is negligible for all PPT adversaries A.

2.4 wNR

Intuitively, NR guarantees that no adversary A can produce a signature and a verification key
when A obtains a signature but does not know the message. For example, (KR-)ECDSA computes
h = H(M) and h is used for signing. Then, A may not be able to obtain M even if h is revealed (in
the sense of one-wayness of H). Aulbach et al. [1] introduced a slightly weaker version of NR, which
they call weak NR (wNR) which does not introduce auxiliary information about the message. Let
A0 and A1 be adversaries and C be the challenger. C generates (vk, sk)← KeyGen(1λ), and gives vk
to A0. A0 declares M∗. C generates σ ← Sign(sk,M∗) and gives (vk, σ) to A1.

4 We remark that A1

is not explicitly given M∗ since no state information is shared between A0 and A1. A1 produces
(vk∗, σ∗). We say that (A0,A1) win if

Verify(vk∗,M∗, σ∗) = 1 ∧ vk ̸= vk∗

hold. The advantage of (A0,A1) is defined as AdvwNR
(A0,A1),Sig

(λ) = Pr[(A0,A1) wins]. We say that

Sig provides wNR if AdvwNR
(A0,A1),Sig

(λ) is negligible for all PPT adversaries (A0,A1).

4Don et al. [13] introduced a variant of NR where sk is given to an adversary. We do not consider the notion in
this paper since our attack completes even an adversary does not have sk.

5

3 KR-ECDSA

According to Ethereum Yellow Paper [37], let B96..255 be the rightmost 160-bits of the hash of the
input. Then, addr = B96..255(H(vk)). Let p and q be prime numbers, H : {0, 1}∗ → Zq be a hash
function, E/Fp : y

2 = x3 + ax+ b be an elliptic curve with order q defined over Fp, and G ∈ E(Fp)
be a base point. We assume that each algorithm implicitly takes (E,G, p, q) as input. We denote
the coordinate of a point R ∈ E(Fp) as R = (Rx, Ry). Here, there are two y-coordinates for Rx

satisfying R2
y = R3

x + aRx + b. To uniquely recover R from Rx, KR-ECDSA introduces the flag v
that decides whether Ry is greater than q/2 or not. That is, R = (Rx, Ry) is uniquely determined
by (Rx, v).

KeyGen(1λ): Choose d
$←− Zq and compute P = dG. Output vk = P , sk = (d, P), and addr =

B96..255(H(P)).

Sign(sk,M): Parse sk = (d, P). Choose r
$←− Zq, and compute h = H(M) and R = rG. Let

R = (Rx, Ry) and v be the flag. Compute s = h+dRx
r mod q. If 0 < s < q/2 + 1, then output

a signature σ = (addr, s, Rx, v) where addr = B96..255(H(P)). Otherwise, set s′ = −s mod q
and v̄ is set the opposite flag of v, and output a signature σ = (addr, s′, Rx, v̄).

Verify(σ,M): Parse σ = (addr, s, Rx, v). Output 0 if 0 < s < q/2 + 1 does not hold. Otherwise,
compute R = (Rx, Ry) from (Rx, v), and recover P = s

Rx
(R − h

sG). Output 1 if addr =
B96..255(H(P)) and 0 otherwise.

The verification algorithm of the original ECDSA (that additionally takes P as input) outputs 1 if
the x-coordinate of h

sG+ Rx
s P is Rx since

h

s
G+

Rx

s
P =

h

s
G+

Rxd

s
G =

h+Rxd

s
G = rG = R

holds. From this verification equation,

P =
s

Rx
(R− h

s
G)

holds.
We remark that h

−sG + Rx
−sP = −R holds when h

sG + Rx
s P = R. Since the x-coordinates of R

and −R are the same, if the range of s is not checked, then (addr,−s,Rx, v̄) is also a valid signature
if (addr, s, Rx, v) is a valid signature. KR-ECDSA explicitly checks the range of s.

4 Security Analysis of KR-ECDSA

4.1 Strong EUF-CMA

We remark that KR-ECDSA is not strongly EUF-CMA secure if the format checking (whether
0 < s < q/2 + 1 or not) is not employed. The concrete attack is described as follows. An
adversary issues a signing query M and obtains σ = (addr, s, Rx, v). Then, the adversary outputs
σ∗ = (addr,−s mod q,Rx, v̄) (v̄ is set the opposite flag of v). Here, σ∗ is a valid signature on M and
σ ̸= σ∗. That is, the format checking is at least mandatory to provide strong EUF-CMA security.
The above attack works against the original ECDSA that contradicts the proof by Brown [5] where
ECDSA is strongly EUF-CMA secure if the hash function is collision resistant in the generic group

6

model. Stern et al. [32] mentioned that “What goes wrong here is the adequacy of the model.
The proof is correct but the underlying model is flawed, since it disallows production of malleable
signatures”. Fersch et al. [17] introduced GenDSA which is an abstract signature framework that
subsumes both DSA and ECDSA in unmodified form. They introduced a function φ and proved that
GenDSA is EUF-CMA secure if φ is semi-injective, the hash function H is secure, and the discrete
logarithm problem is hard in the bijective random oracle model. Though they also mentioned that
GenDSA is strongly unforgeable if and only if φ is injective, they mentioned that “our overall results
in a nutshell are: DSA signatures are strongly unforgeable, and ECDSA signatures are existentially
unforgeable.” Aumayr et al. [2] called ECDSA with the format checking the positive ECDSA scheme,
and mentioned that it is assumed to be strong EUF-CMA. However, no formal security proof was
given. Groth and Shoup [21] said that two ECDSA signatures (s,Rx) and (−s,Rx) are equivalent
“up to sign” and said that ECDSA is strongly unforgeable “up to sign” if it is hard to construct
a valid signature on a message other than one that is equivalent up to sign. They mentioned that
strong unforgeability up to sign implies that ECDSA can be trivially converted to a strongly secure
signature scheme, simply by requiring that a valid signature (s,Rx) satisfies 0 < s < q/2 + 1.
According to the above situation, we assume that ECDSA with the format checking is strongly
EUF-CMA secure.

Theorem 1 KR-ECDSA is strongly EUF-CMA secure if ECDSA with the format checking is
strongly EUF-CMA secure.

Proof. Let A be an adversary of EUF-CMA against KR-ECDSA and C be the challenger of EUF-
CMA against ECDSA with the format checking. We construct a reduction algorithm R that breaks
the EUF-CMA security of the ECDSA by using A as follows. C sends vk∗ = P ∗ to R. R forwards
P ∗ to A. Since addr = B96..255(H(P ∗)) is determined by P ∗, A also knows addr.

When A sends a signing query M to R, R sends M to C as a signing query and obtains (s,Rx).
Here, due to the format checking procedure, 0 < s < q/2 + 1 holds. R computes h

sG + Rx
s P = R

where h = H(M) and determines v by R = (Rx, Ry), and returns σ = (addr, s, Rx, v) to A.
Finally, A outputs σ∗ = (addr, s∗, R∗

x, v
∗) and M∗ where for h∗ = H(M∗) and R∗ which is

determined by (R∗
x, v

∗), s∗

R∗
x
(R∗ − h∗

s∗ G) = P ∗, 0 < s∗ < q/2 + 1, and addr = B96..255(H(P ∗)) hold.

Let (s,Rx) be a signature onM∗ thatR obtains from C as the response to the signing query M∗, and
σ = (addr, s, Rx, v) be the response to A as the signing query M∗. Due to the winning condition, A
did not obtain σ∗ as the response to the signing query M∗. That is, σ∗ ̸= σ. Since 0 < s < q/2+1,
the corresponding v is uniquely determined from (s,Rx). Moreover, P ∗ is uniquely recovered from
(s,Rx, v). Since H is a deterministic function, addr = B96..255(H(P ∗)) is also uniquely determined
from P ∗. To sum up, if σ∗ ̸= σ, then (s∗, R∗

x) ̸= (s,Rx) holds. R outputs (s∗, R∗
x) and M∗ that

breaks the strong EUF-CMA security of ECDSA with the format checking. □
As a remark, strong EUF-CMA security prevents to re-randomize a signature. That is, a

signature is non-malleable. Since signature malleability could lead to replay attacks, strong EUF-
CMA security seems critical for blockchain applications.

4.2 S-CEO, S-DEO, and M-S-UEO

To clarify which part is mandatory to provide S-CEO, S-DEO, and M-S-UEO in KR-ECDSA, we
show that the original ECDSA does not provide S-CEO and S-DEO as follows (this implies the
original ECDSA does not provide M-S-UEO since S-CEO and S-DEO are equivalent to S-UEO,
and S-UEO is implied by M-S-UEO). We remark that Pornin and Stern [30] gave an attack for DSA
which they called second key construction, and claimed that the attack can trivially be applied to

7

ECDSA. Their attack changes the base point G and can be regarded as a variant of the domain
parameter shifting attack [36]. In our attack, we do not change G that follows the definitions of
S-CEO and S-DEO.

Our S-CEO Attack. Let σ = (s,Rx) be a ECDSA signature on M and P = dG be a ECDSA
verification key. That is, h

sG + Rx
s P = R and R = (Rx, Ry) holds. An S-CEO adversary can

produce other verification key P ∗ = −2h
Rx

G− P . Then,

h

s
G+

Rx

s
P ∗ =

h

s
G+

Rx

s
(
−2h
Rx

G− P)

=
h

s
G− 2h

s
G− Rx

s
P

= −(h
s
G+

Rx

s
P)

= −R

hold. Thus, σ = (s,Rx) is a valid ECDSA signature on M under P ∗ and P ̸= P ∗ (if d ̸= h
Rx

that
holds with overwhelming probability). Clearly, our S-CEO attack above does not work well for
ECDSA with the format checking and highlights other effectiveness of the format checking besides
providing strong EUF-CMA. We emphasize that it does not formally prove ECDSA the format
checking provides S-CEO security here. Our S-DEO Attack. Similarly, the original ECDSA

does not provide S-DEO as follows. Let σ = (s,Rx) be a ECDSA signature on M and P be a
ECDSA verification key. An S-DEO adversary chooses M∗ ̸= M , computes h∗ = H(M∗) and
h
sG+ Rx

s P = R, and sets P ∗ = s
Rx

(R− h∗

s G). Then,

h∗

s
G+

Rx

s
P ∗ =

h∗

s
G+

Rx

s
(
s

Rx
(R− h∗

s
G))

= R

hold. Thus, σ = (s,Rx) is a valid ECDSA signature on M∗ under P ∗ and P ̸= P ∗ and M ̸= M∗.
Remark that P = P ∗ is equivalent to h = h∗. Since M ̸= M∗, we can assume that h ̸= h∗ due to
the collision resistance of H.

Clearly, our S-DEO attack above works well for ECDSA with the format checking. As a by-
product of our S-DEO attack above, we show that the attack also works against the Aumayr et
al.’s ECDSA-based adaptor signature scheme [2]. See Section 5.

KR-ECDSA provides M-S-UEO (and thus S-CEO and S-DEO). By regarding addr as
H(vk) in KR-ECDSA, a signature of KR-ECDSA consists of (Sign(sk,H(m)), H(vk)). More pre-
cisely, for addr, let the address holder who has sk = d issue a transaction M with a signature σ.
To verify σ, the verifier knows addr. Thus, even if an adversary produces P ∗ ̸= P , the attack
is prevented by checking addr := B96..255(H(P ∗)) holds. Due to PS-2: (Sign(sk,m), H(vk)) that
provides M-S-UEO, KR-ECDSA provides M-S-UEO (and thus S-CEO and S-DEO).

4.3 MBS

To clarify which part is mandatory to provide MBS in KR-ECDSA, we show that the original
ECDSA does not provide MBS as follows. Note that Cremers et al. [8] have mentioned that
ECDSA does not provide MBS, and the following attack is essentially the same as that of Stern

8

et al. (See Section 4. Duplicates in ECDSA in [32]) and Vaudenay (See Section 2.1. Signature
Manipulation in ECDSA in [35]).

Let σ = (s,Rx) be a ECDSA signature and P = dG be a ECDSA verification key. For a point
R = (Rx, Ry), we denote (R)x = Rx and (R)y = Ry, respectively. We consider when σ is valid
under P for both M1 and M2 and M1 ̸= M2. Due to the collision resistance of H, for h1 = H(M1)
and h2 = H(M2), h1 ̸= h2 holds if M1 ̸= M2. If h1

s G + Rx
s P = h2

s G + Rx
s P , then h1 = h2. Thus,

h1
s G+ Rx

s P ̸= h2
s G+ Rx

s P must hold. The possibility is (h1
s G+ Rx

s P)x = (h2
s G+ Rx

s P)x = Rx but

(h1
s G+ Rx

s P)y ̸= (h2
s G+ Rx

s P)y, i.e.,
h1
s G+ Rx

s P = (Rx, Ry) and
h2
s G+ Rx

s P = (Rx,−Ry). From

this relation, we obtain h1
s G+ Rx

s P + h2
s G+ Rx

s P = O and h1 + h2 = −2dRx. From this relation,
we can attack ECDSA as follows.

1. Choose distinct M1 and M2, and let h1 = H(M1) and h2 = H(M2).

2. Choose r
$←− Zq and compute R = rG. We denote R = (Rx, Ry).

3. Define d = −h1+h2
2Rx

and compute P = dG.

4. Compute s = h1−h2
2r

5. Output (M1,M2, (s,Rx), P).

Here, σ = (s,Rx) is valid under P for both M1 and M2 since h1
s G + Rx

s P = h1+dRx
s G = rG =

(Rx, Ry) and
h2
s G+ Rx

s P = −rG = (Rx,−Ry) hold. Clearly, the MBS attack above does not work
well for ECDSA with the format checking and highlights other effectiveness of the format checking
besides providing strong EUF-CMA. We emphasize that it does not formally prove ECDSA with
the format checking provides MBS security here.

KR-ECDSA provides MBS. The main observation of the above attack is the ECDSA verifica-
tion algorithm just checks the x-coordinate of h

sG+ Rx
s P . At the first sight, the attack is prevented

in KR-ECDSA by additionally checking 0 < s < q/2 + 1. We observe that the verification algo-
rithm recover R from (Rx, v) that implicitly prevents to use −R. That is, the format checking
is unnecessary at least for providing MBS. Formally, we prove that KR-ECDSA provides MBS as
follows.

Theorem 2 KR-ECDSA provides MBS if H is a collision resistant hash function.

Proof. Let A be an adversary of MBS. A outputs (M1,M2, (addr, s, Rx, v)). From (Rx, v), R =
(Rx, Ry) is uniquely determined. Let h1 = H(M1), h2 = H(M2), P1 = s

Rx
(R − h1

s G), and P2 =
s
Rx

(R − h2
s G). If P1 ̸= P2, then the collision resistance is broken since addr = B96..255(H(P1)) =

B96..255(H(P2)) hold. Thus, P1 = P2 and then h1 = h2 holds. Then the collision resistance is broken
since M1 ̸= M2. In both cases, we can reduce the collision resistance of the hash function. In the
strict sense, the usual collision resistance does not guarantee that B96..255(H(P1)) ̸= B96..255(H(P2))
holds for P1 ̸= P2. Here, we assume that H is collision resistant with respect to the rightmost 160-
bits of the hash. □

4.4 wNR

Here, we show that KR-ECDSA does not provide wNR, and discuss its influence.

Our wNR Attack. We construct adversaries (A0, A1) as follows. C generates vk = P and gives
P to A0. A0 declares a message M (we do not require any stricture here and a random message

9

is enough). C computes σ = (addr, s, Rx, v) on M and sends σ to A1. Again, A1 is not explicitly
given M since no state information is shared between A0 and A1. A1 chooses s∗ ∈ Zq such that
0 < s∗ < q/2 + 1, sets r∗ = 1/s∗, and computes R∗ = r∗G. A1 implicitly defines d∗ = 1−h

R∗
x

where

R∗ = (R∗
x, R

∗
y). We remark that A1 does not explicitly know h but can compute hG = sR − RxP

since h
sG+ Rx

s P = R holds and R is uniquely determined from (Rx, v). A1 computes P ∗ such that

P ∗ =
1

R∗
x

G− 1

R∗
x

(sR−RxP) =
1

R∗
x

G− h

R∗
x

G =
1− h

R∗
x

G = d∗G

A1 outputs (addr∗, s∗, R∗
x, v

∗) where addr∗ = B96..255(H(P ∗)) and v∗ is determined from R∗ =
(R∗

x, R
∗
y). Here, 0 < s∗ < q/2 + 1 holds. Moreover, R∗ = (R∗

x, R
∗
y) is uniquely determined from

(R∗
x, v

∗), and P ∗ can be recovered such that

s∗

R∗
x

(R∗ − h

s∗
G) =

1

R∗
x

1

r∗
(r∗G− r∗hG) =

1− h

R∗
x

G = P ∗

and thus addr∗ = B96..255(s∗

R∗
x
(R∗ − h

s∗G)) holds. That is, the verification algorithm outputs 1.
Here, the probability that P = P ∗ holds is negligible since M and d are randomly chosen and
H(M) = 1− dR∗

x holds with negligible probability. □
Similarly, ECDSA also does not provide wNR. The attack is essentially the same as above: (s∗, R∗

x)

is a valid signature under P ∗ since h
s∗G+ R∗

x
s∗ P

∗ = r∗G holds.

Is wNR Mandatory in Ethereum? First of all, we would like to claim that the above attack
is not a realistic threat in Ethereum due to the following reasons. In the actual usage, the verifier
knows both σ andM sinceM is a transaction. Thus, it is quite unnatural to assume that adversaries
just know σ without knowing the corresponding transaction M . More precisely, for addr, let
the address holder who has sk = (d, P) issue a transaction M with a signature σ. To verify σ,
the verifier knows both addr and M . Then, the verifier recovers P from σ and M and checks
addr = B96..255(H(P)) holds or not. Since M is opened, anyone can re-sign M by introducing
a new key pair (vk∗, sk∗) and run Sign(sk∗,M). This is inevitable even if the signature scheme
provides wNR. Thus, even if KR-ECDSA can provide wNR with some additional costs, e.g., via
the BUFF transformation, this attempt provides a limited effect.

In our wNR attack, adversaries produce addr∗. This might be a natural situation since adver-
saries produce (vk∗, σ∗) in the definition of wNR, addr∗ is a part of σ∗, an address holder usually
produces a signature, and addr∗ is determined by vk∗. Here, we pay attention to the fact that addr
is stored on the blockchain. Again, addr has the same roles of appending H(vk) to a signature as in
PS-2: (Sign(sk,m), H(vk)) and provides S-CEO and S-DEO. We observe that there is a difference
between the case that addr is stored on the blockchain and the case that H(vk) is just added to a
signature such as PS-2. To clear the difference, we borrow the explanation for the reason why the
PS-2 transformation does not provide NR given by Cremers et al. [8]:

“NR is in general not achieved since the signature of the original scheme σ may contain
the message directly, allowing the adversary to re-sign this message under a new key”.

That is, if an adversary can extract m from Sign(sk,m), then the adversary generates a new key pair
(vk′, sk′)← KeyGen(1λ) and outputs (Sign(sk′,m),H(vk′)). This attack is possible in the case that
H(vk) is just added to a signature. However, when addr is stored on the blockchain, introducing
other H(vk′) is prevented due to the unforgeability of the blockchain. From this perspective, the

10

definition of wNR where adversaries produce addr∗ seems too much in the Ethereum context. Note
that Brendel et al. [4] did not consider NR when they estimated the security of Ed25519. Moreover,
Cremers et al. [8] regarded NR as an optional security (See Section 5: BUFF transformations:
Generic transformations for provably achieving M-S-UEO, MBS, and optionally NR). To sum up,
wNR is unnecessary in the Ethereum context from our understanding. We emphasize that we never
deny the meaningfulness of NR in other context such as [13, 23].

5 On ECDSA-based Adaptor Signatures

In this section, we show that our S-DEO attack against the original ECDSA given in Section 4.2
also works against the Aumayr et al.’s ECDSA-based adaptor signature scheme [2]. We emphasize
that the attack is positioned outside of their security model. Our attack is currently theoretical
in the sense that we did not find a vulnerability in the applications of adaptor signatures, atomic
swap, payment channels [29], private coin mixing [28,31], and oracle-based payments [28]. However,
it would be meaningful to explicitly give our attack here because, potentially, our S-DEO attack
may cause an issue in an application of adaptor signatures. We remark that the definitions given
by Gerhart et al. [20], which provides the strongest security definitions of adaptor signatures so far
(to the best of our knowledge), do not consider BUFF security.

Let Rel be a hard relation. We denote (Y, y) ∈ Rel for a statement Y and a witness y. An adaptor
signature AS = (pSign, pVerify,Adapt,Ext) w.r.t. a signature scheme Sig = (KeyGen, Sign,Verify)
and a hard relation Rel consists of four algorithms defined as follows. Let (vk, sk)← KeyGen(1λ) and
σ ← Sign(sk,M). Dai et al. [10] defined unlinkability. It guarantees that an adapted signature and a
signature generated by the Sign algorithm are indistinguishable and Gerhart et al. [20] also employed
unlinkability. Liu et al. [27] defined witness hiding that is implied by unlinkability. Ciampi et al. [6]
followed the Liu et al.’s definition. Due to the situation, unlinkability is a natural requirement and
thus we use the same notation σ as an adapted signature as in a signature generated by the Sign
algorithm.

Definition 1 (Adaptor Signatures)

pSign(sk,M, Y) : The pre-signature algorithm takes a signing key sk, a message M to be signed,
and a statement Y as input, and outputs a pre-signature σ̃.

pVerify(vk,M, σ̃, Y) : The verification algorithm for a pre-signature takes a verification key vk, M ,
σ̃, and Y as input, and outputs 0 or 1.

Adapt(vk,M, σ̃, y) : The adaption algorithm takes vk, M , σ̃, and a witness y as input, and outputs
an adapted signature σ.

Ext(vk,M, Y, σ̃, σ) : The extraction algorithm takes vk, M , Y , σ̃, and σ, and outputs y or ⊥.

Next, we define a S-DEO security for adaptor signatures. Since ECDSA with the format
checking is not S-DEO secure, we consider a S-DEO security for pre-signatures. Let A be an
adversary and C be the challenger. We emphasize that the following definition is weak (but sufficient
to show our attack) in the sense that A is not allowed to send a pre-signature query (C chooses a
message M and sends the pre-signature σ̃ to A) and A is also not allowed to issue a signing query.
First, C generates (vk, sk) ← KeyGen(1λ) and gives vk to A. C chooses M and (Y, y) ∈ Rel, and
sends (M,Y, σ̃) to A where σ̃ ← pSign(sk,M, Y). A outputs (vk∗,M∗) where vk∗ ̸= vk, M∗ ̸= M ,
and pVerify(vk∗,M∗, σ̃, Y) = 1.

11

Aumayr et al. [2] proposed an adaptor signature w.r.t. the ECDSA with format checking (they
called the scheme the positive ECDSA scheme). Since we focus on the ECDSA-based adaptor
signature scheme, for G = E(Fp) where |E(Fp)| = q, we define three elliptic curve oriented relations
employed in the scheme as follows: RelG : G× Zq is defined as

RelG := {(Y, y) : Y = yG}

Rel′G is defined as
Rel′G := {((Y, πY), y) : (Y, y) ∈ RelG ∧ VG(Y, πY) = 1}

where πY is a non-interactive zero-knowledge proof of knowledge for y satisfying Y = yG and
(PG,VG) is a proof system (i.e., a prover and a verifier). Rel(Y,G) : G2 × Zq is defined as

Rel(Y,G) := {((R̃, R), r) : R̃ = rY ∧R = rG}

Here, (P(P,G),V(P,G)) is a proof system. Aumary et al. employed a function f . We explicitly define
f that takes a point R and outputs the x-coordinate Rx. Let σ = (s,Rx) be a ECDSA signature,
vk = P and sk = d such that P = dG. We remark that we sometime denote y with the meaning
“the y-coordinate of a point”. We describe the Aumary et al.’s adaptor signature scheme as follows.

Aumayr et al.’s ECDSA-based Adaptor Signature Scheme.

pSign(sk,M, (Y, πY)) : Parse sk = d. Choose r
$←− Zq. Compute h = H(M), R = rG, R̃ = rY

which we denote R̃ = (R̃x, R̃y), s̃ = h+dR̃x
r mod q. If s̃ > q/2 + 1, then set s̃ := −s̃ mod q.

Compute π ← P(Y,G)((R̃, R), r). Output σ̃ = (s̃, R̃x, R̃, π).

pVerify(vk,M, σ̃, (Y, πY)) : Parse vk = P . If VG(Y, πY) = 0, then output 0. If s̃ ≤ q/2+ 1 does not

hold, then output 0. Compute h = H(M) and R = h
s̃G+ R̃x

s̃ P . If V(Y,G)((R̃, R), π) = 0, then

output 0. Output 1 if (R̃)x = R̃x and 0 otherwise.

Adapt(vk,M, σ̃, y) : Parse σ̃ = (s̃, R̃x, R̃, π). Compute s = s̃y−1 mod q and output σ = (s, R̃x).

Ext(vk,M, (Y, πY), σ̃, σ) : Parse σ̃ = (s̃, R̃x, R̃, π) and σ = (s, R̃x). Compute y = s−1s̃ mod q.
Output y If ((Y, πY), y) ∈ Rel′G, and ⊥, otherwise.

Our S-DEO attack is described as follows. C chooses d ∈ Zq and computes P = dG and (Y, πY).
C chooses M and sends (M, (Y, πY), σ̃) to A where σ̃ = (s̃, R̃x, R̃, π) is a pre-signature on M . A
chooses M∗ ̸= M and computes h∗ = H(M∗), R = h

s̃G+ R̃x
s̃ P , and

P ∗ :=
s̃

R̃x

(R− h∗

s̃
G)

Here pVrfy(P ∗,M∗, σ̃, (Y, πY)) = 1 holds since VG(Y, πY) = 1 and 0 < s̃ < q/2 + 1 hold and
V(Y,G)((R̃, R), π) = 1 also holds since

h∗

s̃
G+

R̃x

s̃
P ∗ =

h∗

s̃
G+

R̃x

s̃
(
s̃

R̃x

(R− h∗

s̃
G)) = R

hold. A outputs (P ∗,M∗) and breaks the S-DEO security.
The main reason why the attack works is that the format checking does not affect the attack.

Due to the format checking, our S-CEO attack given in Section 4.2 and the MBS attack given in
Section 4.3 do not work well since they compute −R in the verification procedure. We remark that

12

this fact does not formally prove that the Aumary et al.’s adaptor signature scheme is S-CEO and
MBS secure.

As a building block of BlindHub, Qin et al. [31] introduce a blind adaptor signature scheme
based on the Aumayr et al.’s ECDSA-based adaptor signature scheme. Next, we show that our
S-DEO attack works against the blind adaptor signature scheme as well. Again, we emphasize
that the attack is positioned outside of their security model. Basically, the blind adaptor signature
scheme is the same as that of the adaptor signature scheme except the interactive signing protocol
between a user and a signer as follows.

Qin et al.’s ECDSA-based Blind Adaptor Signature Scheme (Signing).

User. Compute h = H(M) and a proof-of-knowledge πh of the pre-image of h. Send (h, πh) to the
signer who manages the verification key P .

Signer. If the proof πh is not correct, then abort. Otherwise, basically the signer runs the orig-

inal pre-signing algorithm: Choose r
$←− Zq. Compute R = rG, R̃ = rY which we de-

note R̃ = (R̃x, R̃y), s̃ = h+dR̃x
r mod q. If s̃ > q/2 + 1, then set s̃ := −s̃ mod q. Compute

π ← P(Y,G)((R̃, R), r). Return σ̃ = (s̃, R̃x, R̃, π) to the user.

User. Abort if s̃ = 0 or pVerify(P,M, σ̃, (Y, πY)) = 0.

Since σ̃ = (s̃, R̃x, R̃, π) is the same as that of the original adopter signature scheme, the user can
produce (P ∗,M∗) that pVerify(P ∗,M∗, σ̃, (Y, πY)) = 1 holds and P ∗ ̸= P and M∗ ̸= M . We note
that an adversary (user) chooses M unlike the S-DEO attack for the Aumayr et al.’s ECDSA-based
adaptor signature scheme, due to the syntax of blind signatures. Clarifying an impact of the S-
DEO attack (and other BUFF security) on the blind adaptor signature scheme and applications of
adaptor signatures are left as a future work of this paper.

As a subsequent work of Aumary et al., Tu et al. [34] proposed two ECDSA-based adaptor
signature schemes which they called ECDSA-ASsk and ECDSA-ASwit. They focused on the fact
that the pSign algorithm above computes π ← P(Y,G)((R̃, R), r) for a random r chosen in the
algorithm. That is, π is not pre-computable. In the ECDSA-ASsk scheme, sk = d is regarded as the
witness instead of r. Compute Z = dY and a proof π of d satisfying P = dG and Z = dY . Here, π
is pre-computable (i.e., the signer can compute π offline). The pVerify algorithm checks the validity

of π and checks whether or not the x-coordinate of h
s̃Y + R̃x

s̃ Z and R̃x are the same. Obviously,
our S-DEO attack does not work well since the validity check of π prevents to use P ∗ ̸= P . In the
ECDSA-ASwit scheme, compute Z = dY and a proof π of y satisfying Y = yG and Z = yP . Again,
π is pre-computable. The pVerify algorithm checks the validity of π and checks whether or not

the x-coordinate of h
s̃Y + R̃x

s̃ Z and R̃x are the same. Our S-DEO attack does not work well since
(logG Y)P ∗ ̸= Z. Though this fact does not formally prove that the Tu et al.’s adaptor signature
schemes are S-DEO secure, the construction methodology to reduce online computations may be
applicable to provide S-DEO security.

6 Remark on Domain Parameter Shifting Attack

BUFF security basically does not capture the domain parameter shifting attack [36]. We remark
that Vaudenay explains the attack as follows: an adversary tries to modify the subgroup generator
G to modify the elliptic curve a and b domain parameters. Here, we also consider the case that G is

13

modified to other point G′ on the same elliptic curve. As a concrete example, we introduce CVE-
2020-0601 reporting that a spoofing vulnerability exists in Windows CryptoAPI (Crypt32.dll).5

The attack behind is a domain parameter shifting attack: for vk = P = dG, an adversary chooses
a random t ∈ Zq and sets G′ = 1

tP . The adversary, who does not know sk = d, can produce a
valid ECDSA signature (s,Rx) on arbitrary M under P with the forged base point G′ such that

h = H(M), r
$←− Zp, R = rG′ = (Rx, Ry), and s = h+tRx

r mod q. Then, σ = (s,Rx) is a valid

ECDSA signature under P with G′. Since P can be recovered by P = s
Rx

(R − h
sG

′), the attack
works for KR-ECDSA.

This attack can be prevented in the BUFF security context by simply defining vk = (G,P).
Then, adding H(vk) to a signature as in PS-2 prevents to produce other G. We remark that the
modification of verification key form does not fit KR-ECDDA since Ethereum address is defined as
B96..255(H(P)). Thus, the domain parameter checking is mandatory in KR-ECDSA even it provides
S-CEO, S-DEO, M-S-UEO, and MBS.

7 Conclusion

In this paper, we analyzed the security of KR-ECDSA and showed that KR-ECDSA provides strong
EUF-CMA security, S-CEO, S-DEO, M-S-UEO, and MBS but does not provide wNR. Since the
original ECDSA does not provide S-CEO, S-DEO, and MBS, KR-ECDSA is more secure than the
original ECDSA in the sense of BUFF security. We also show that our S-DEO attack against the
original ECDSA works against the Aumayr et al.’s ECDSA-based adaptor signature scheme and
the Qin et al.’s blind adaptor signature scheme.

Though BUFF security has been somewhat overlooked in enhanced signatures (such as (blind)
adaptor signatures as mentioned in this paper), recently, Fischlin et al. [18] considered BUFF
security in the threshold signature context. They proposed a generic compiler that transforms
any threshold signature scheme to satisfy BUFF security. Due to the compiler, threshold ECDSA
protocols (e.g., [9, 11, 12, 19, 26, 38]) provide BUFF security even ECDSA does not provide BUFF
security. Providing such a compiler for adaptor signatures is left as a future work of this paper.
Moreover, Struck and Weishäupl [33] introduced a general framework of binding properties that
encompasses existing BUFF security. Considering their extended BUFF security in the (KR-
)ECDSA context is also an interesting future work.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers JP21K11897
and JP25H01106.

References

[1] Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck, and Maximiliane Weishäupl.
Hash your keys before signing: BUFF security of the additional NIST PQC signatures. In
Post-Quantum Cryptography, pages 301–335, 2024.

[2] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Mat-
teo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. Generalized channels from limited
blockchain scripts and adaptor signatures. In ASIACRYPT, pages 635–664, 2021.

[3] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. In CHES, pages 124–142, 2011.

5https://nvd.nist.gov/vuln/detail/CVE-2020-0601

14

https://nvd.nist.gov/vuln/detail/CVE-2020-0601

[4] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. The provable security of
Ed25519: Theory and practice. In IEEE S&P, pages 1659–1676, 2021.

[5] Daniel R. L. Brown. Generic groups, collision resistance, and ECDSA. Designs, Codes and
Cryptography, 35(1):119–152, 2005.

[6] Michele Ciampi, Xiangyu Liu, Ioannis Tzannetos, and Vassilis Zikas. Universal adaptor sig-
natures from blackbox multi-party computation. In CT-RSA, pages 375–398, 2025.

[7] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson. BUFFing
signature schemes beyond unforgeability and the case of post-quantum signatures. IACR
Cryptology ePrint Archive, page 1525, 2020. Version 1.4.1, October 2023.

[8] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson. BUFFing
signature schemes beyond unforgeability and the case of post-quantum signatures. In IEEE
S&P, pages 1696–1714, 2021.

[9] Handong Cui, Kwan Yin Chan, Tsz Hon Yuen, Xin Kang, and Cheng-Kang Chu. Bandwidth-
efficient zero-knowledge proofs for threshold ECDSA. The Computer Journal, 67(4):1265–1278,
2024.

[10] Wei Dai, Tatsuaki Okamoto, and Go Yamamoto. Stronger security and generic constructions
for adaptor signatures. In INDOCRYPT, pages 52–77, 2022.

[11] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In IEEE S&P, pages 1051–1066, 2019.

[12] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA in three
rounds. In IEEE S&P, pages 3053–3071, 2024.

[13] Jelle Don, Serge Fehr, Yu-Hsuan Huang, Jyun-Jie Liao, and Patrick Struck. Hide-and-seek
and the non-resignability of the BUFF transform. In TCC, pages 347–370, 2024.

[14] Jelle Don, Serge Fehr, Yu-Hsuan Huang, and Patrick Struck. On the (in)security of the BUFF
transform. In CRYPTO, pages 246–275, 2024.

[15] Samed Düzlü, Rune Fiedler, and Marc Fischlin. Buffing FALCON without increasing the
signature size. In Selected Areas in Cryptography, pages 131–150, 2024.

[16] Samed Düzlü and Patrick Struck. The role of message-bound signatures for the beyond un-
forgeability features and weak keys. In ISC, pages 61–80, 2024.

[17] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable security of (EC)DSA
signatures. In ACM CCS, 2016.

[18] Marc Fischlin, Aikaterini Mitrokotsa, and Jenit Tomy. BUFFing threshold signature schemes.
In Public-Key Cryptography, pages 137–168, 2025.

[19] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In Applied Cryptography and Network
Security, pages 156–174, 2016.

[20] Paul Gerhart, Dominique Schröder, Pratik Soni, and Sri Aravinda Krishnan Thyagarajan.
Foundations of adaptor signatures. In EUROCRYPT, pages 161–189, 2024.

15

[21] Jens Groth and Victor Shoup. On the security of ECDSA with additive key derivation and
presignatures. In EUROCRYPT, pages 365–396, 2022.

[22] Dominik Hartmann and Eike Kiltz. Limits in the provable security of ECDSA signatures. In
TCC, pages 279–309, 2023.

[23] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse. Seems legit: Automated
analysis of subtle attacks on protocols that use signatures. In ACM CCS, pages 2165–2180,
2019.

[24] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature algo-
rithm (ECDSA). https://web.archive.org/web/20170921160141/http://cs.ucsb.edu/

~koc/ccs130h/notes/ecdsa-cert.pdf.

[25] Mukul Kulkarni and Keita Xagawa. Strong existential unforgeability and more of MPC-in-
the-head signatures. IACR Cryptol. ePrint Arch., page 1069, 2024. https://eprint.iacr.

org/2024/1069.

[26] Yehuda Lindell. Fast secure two-party ECDSA signing. In CRYPTO, pages 613–644, 2017.

[27] Xiangyu Liu, Ioannis Tzannetos, and Vassilis Zikas. Adaptor signatures: New security defini-
tion and a generic construction for NP relations. In ASIACRYPT, pages 168–193, 2024.

[28] Varun Madathil, Sri Aravinda Krishnan Thyagarajan, Dimitrios Vasilopoulos, Lloyd Fournier,
Giulio Malavolta, and Pedro Moreno-Sanchez. Cryptographic oracle-based conditional pay-
ments. In NDSS. The Internet Society, 2023.

[29] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry. Sprites
and state channels: Payment networks that go faster than lightning. In Financial Cryptography
and Data Security, pages 508–526, 2019.

[30] Thomas Pornin and Julien P. Stern. Digital signatures do not guarantee exclusive ownership.
In Applied Cryptography and Network Security, pages 138–150, 2005.

[31] Xianrui Qin, Shimin Pan, Arash Mirzaei, Zhimei Sui, Oguzhan Ersoy, Amin Sakzad,
Muhammed F. Esgin, Joseph K. Liu, Jiangshan Yu, and Tsz Hon Yuen. BlindHub: Bitcoin-
compatible privacy-preserving payment channel hubs supporting variable amounts. In IEEE
S&P, pages 2462–2480, 2023.

[32] Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart. Flaws in applying
proof methodologies to signature schemes. In CRYPTO, pages 93–110, 2002.

[33] Patrick Struck and Maximiliane Weishäupl. A framework for advanced signature notions.
IACR Cryptol. ePrint Arch., page 960, 2025. https://eprint.iacr.org/2025/960.

[34] Binbin Tu, Min Zhang, and Chen Yu. Efficient ECDSA-based adaptor signature for batched
atomic swaps. In ISC, pages 175–193, 2022.

[35] Serge Vaudenay. The security of DSA and ECDSA. In Public Key Cryptography, pages 309–
323, 2003.

[36] Serge Vaudenay. Digital signature schemes with domain parameters: Yet another parameter
issue in ECDSA. In ACISP, pages 188–199, 2004.

16

https://web.archive.org/web/20170921160141/http://cs.ucsb.edu/~koc/ccs130h/notes/ecdsa-cert.pdf
https://web.archive.org/web/20170921160141/http://cs.ucsb.edu/~koc/ccs130h/notes/ecdsa-cert.pdf
https://eprint.iacr.org/2024/1069
https://eprint.iacr.org/2024/1069
https://eprint.iacr.org/2025/960

[37] Gavin Wood. Ethereum yellow paper (Shanghai version 9fde3f4-2024-09-02), 2024. https:

//ethereum.github.io/yellowpaper/paper.pdf.

[38] Guy Zyskind, Avishay Yanai, and Alex Pentland. Unstoppable wallets: Chain-assisted thresh-
old ECDSA and its applications. In ASIACCS. ACM, 2024.

17

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	Definitions
	Strong EUF-CMA
	S-CEO, S-DEO, and M-S-UEO
	MBS
	wNR

	KR-ECDSA
	Security Analysis of KR-ECDSA
	Strong EUF-CMA
	S-CEO, S-DEO, and M-S-UEO
	MBS
	wNR

	On ECDSA-based Adaptor Signatures
	Remark on Domain Parameter Shifting Attack
	Conclusion

