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Abstract

Liu et al. (EuroS&P 2019) introduced Key-Insulated and Privacy-Preserving Signature
Scheme with Publicly Derived Public Key (PDPKS) to enhance the security of stealth address
and deterministic wallet. In this paper, we point out that the current security notions are
insufficient in practice, and introduce a new security notion which we call consistency. Moreover,
we explore the unforgeability to provide strong unforgeability for outsider which captures the
situation that nobody, except the payer and the payee, can produce a valid signature. From
the viewpoint of cryptocurrency functionality, it allows us to implement a refund functionality.
Currently, basically there is no way to refund a coin when one mistakenly spends a coin to
an address. This functionality rescues the case, even in the stealth environment that hides
information of the payer. Note that the refund functionality only works before the payee transfers
a coin to own wallet, and it prevents a double spending issue. Finally, we propose a generic
construction of PDPKS that provides consistency and outsider strong unforgeability. The design
is conceptually much simpler than known PDPKS constructions. It is particularly note that the
underlying strongly unforgeable signature scheme is required to provide the strong conservative
exclusive ownership (S-CEO) security (Cremers et al., IEEE S&P 2021). Since we explicitly
require the underlying signature scheme to be S-CEO secure, our security proof introduces a
new insight of exclusive ownership security which may be of independent interest.

1 Introduction

1.1 Background

Liu et al. [37]1 introduced Key-Insulated and Privacy-Preserving Signature Scheme with Publicly
Derived Public Key (PDPKS) to capture and improve the functionality, security, and privacy
requirements of stealth address [19,46] and deterministic wallet [4,24]. Briefly, the flow of PDPKS
is described as follows (See Fig. 1). Assume that a payer Alice wants to transfer funds to a payee
Bob. Bob publishes the master public key mpkB where (mpkB,mskB) ← MasterKeyGen(pp) and
pp ← PDPKS.Setup(1λ) is a common public parameter (here λ is a security parameter). Alice

∗k-emura@se.kanazawa-u.ac.jp
1The full version of [37] is available in [38].
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Figure 1: PDPKS Flow

derives a fresh public key dpkA ← DpkDerive(pp,mpkB), assigns a coin to dpkA, and sends dpkA
to Bob. We remark that this procedure is non-interactive, i.e., Alice can derive dpkA from mpkB
without communicating with Bob. To spend a coin, Bob checks whether dpkA was derived from
mpkB or not by running DpkCheck(pp,mpkB,mskB, dpkA). If the algorithm returns 1 (meaning
that dpkA is linked to mpkB), then Bob generates the corresponding derived secret key dskA ←
DskDerive(pp,mpkB,mskB, dpkA). We remark that this procedure is also non-interactive, i.e., Bob
can derive dskA from dpkA without communicating with Alice (after Bob obtains dpkA). Bob
generates a signature Σ on a message (transaction) M by running Σ ← PDPKS.Sign(pp, dpkA,M,
dskA). Here, anyone can check the validity of (M,Σ) under dpkA by running PDPKS.Verify(pp, dpkA,
M,Σ) without using the corresponding master public key mpkB.

Liu et al. [37] formalized security notions, correctness, unforgeability, and unlinkability. Correct-
ness requires that honestly generated dpk and Σ are always accepted by DpkCheck and PDPKS.Verify
algorithms, respectively. Unforgeability guarantees that no adversary A can produce (dpk∗,M∗,Σ∗)
where PDPKS.Verify(pp, dpk∗,M∗,Σ∗) = 1. Since dpk∗ is produced by A, it guarantees that even
if anyone can derive a public key from a master public key mpk, nobody, except the corresponding
master secret key holder, can produce a valid signature under the derived public key. Unlinkability
guarantees that: (1) a derived public key does not leak information of the corresponding master
public key, and (2) derived public keys do not leak information of whether two public keys are
derived from the same master public key or not.

Liu et al. [37] pointed out that identity-based signature (IBS) is a promising tool to construct
PDPKS but required a special property, that they called MPK-pack-able property. They found
that the Barreto et al. IBS scheme [7] has the property, and proposed a pairing-based PDPKS
scheme which is secure under a q-type assumption in the random oracle model. We introduce their
construction methodology for more detail in the Appendix. As a subsequent work, Liu et al. [35]
proposed a lattice-based PDPKS scheme by combining a lattice basis delegation technique [3] and
public key encryption (PKE) with key privacy [10]. As a concrete lattice-based instantiation of
the underlying key private PKE scheme, they proposed a lattice-based key private PKE scheme
based on the Regev PKE scheme [43] with the Fujisaki-Okamoto transformation [27] to prevent
chosen-ciphertext attacks (CCA).
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1.2 Our Motivation

Generic Construction. Though the first construction [37] is based on IBS, it is not a purely
generic construction (Liu et al. mentioned that “We propose a (partially) generic approach on how
to obtain a PDPKS construction”). Moreover, no generic transformation for adding the MPK-pack-
able property to an IBS scheme has not been proposed so far. The second construction [35] relies
on the specific lattice basis delegation technique (though any key private PKE can be employed).
Giving a generic construction highlights what a sufficient condition is to construct a cryptographic
primitive, and provides several instantiations. Thus, proposing a generic construction of PDPKS
is still open and is desirable.

Security Definitions. We also revisited the security definitions.

• First, we point out that the security notions defined in [35, 37] are not sufficient in practice
because no security of the DpkCheck algorithm is defined. Due to the usage of PDPKS given
in Fig. 1, a payer Alice uses dpkA to specify the receiver of the transaction, and a payee
Bob puts a coin into own wallet if DpkCheck(pp,mpkB,mskB, dpkA) = 1. That is, Bob verifies
whether dpkA is linked to mpkB or not before spending a coin. We remark that correctness just
guarantees that DpkCheck(pp,mpkB,mskB, dpkA) = 1 holds for a derived public key dpkA ←
DpkDerive(pp,mpkB), and does not guarantee that DpkCheck(pp,mpkB,mskB, dpkA) = 0 if
dpkA is not derived from mpkB. We need to strengthen the security of PDPKS in this
perspective.

• Second, we explore unforgeability. In the current definition, an adversary A declares the chal-
lenge derived public key dpk∗ which captures the situation that nobody, except the master
secret key holder (the payee), can produce a valid signature, namely, the payer also is not
allowed to produce a valid signature. In the actual usage, however, it seems acceptable that
the payer also can produce a valid signature unless a third person who just observes dpk
cannot produce a valid signature. From this perspective, we can define a weaker variant of
unforgeability, which we call outsider unforgeability, where dpk∗ is sent to A from the chal-
lenger which captures the situation that nobody, except the payer and the payee, can produce
a valid signature. This relaxation allows us to avoid the above IBS-like construction. From
the viewpoint of cryptocurrency functionality, it allows us to implement a refund function-
ality, and it can be used for instantiating a refundable stealth address. Currently, basically
there is no way to refund a coin when one mistakenly spends a coin to an address. This
functionality rescues the case, even in the stealth environment that hides information of the
payer. Note that the refund functionality only works before the payee transfers a coin to own
wallet, and it prevents a double spending issue. Later, we will mention that refundability has
been implicitly realized via adaptor signatures.

• Third, we further explore unforgeability. The original definition captures a conventional
existential unforgeability: it is required that an adversary A never sends a signing query
(dpk∗,M∗) when A outputs a forgery (dpk∗,M∗,Σ∗). This means that a signature might
be re-randomizable by definition. That is, without contradicting unforgeability, anyone may
be able to produce a valid message-signature pair (M∗,Σ) by re-randomizing Σ∗. In the
cryptocurrency context, a third person (who is neither the payer nor the payee) may be
able to produce a valid (M∗,Σ) on an existing transaction M∗. Of course, if an adversary
generates multiple signatures on an already signed transaction, it cannot forge transactions
or mount double spend attacks. However, any situation that a third party (who does not
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have the signing key) may produce a valid signature should be avoided as much as possible.
Thus, we consider strong unforgeability: A is allowed to issue (dpk∗,M) as a signing query
where M = M∗ is allowed, and obtains Σ. For the forgery (dpk∗,M∗,Σ∗), it is required that
(M∗,Σ∗) ̸∈ {(M,Σ)} holds.

1.3 Our Contribution

In this paper, we revisited the security notions of PDPKS. First, we introduce a new security
notion which we call consistency: for (distinct) two master public keys mpk0 and mpk1, it guaran-
tees that DpkCheck(pp,mpk0,msk0, dpk) = 0 when dpk ← DpkDerive(pp,mpk1) with overwhelming
probability (we define consistency in a computational security manner later). Second, we weaken
unforgeability which we call outsider unforgeability. Third, we strengthen unforgeability to capture
strong unforgeability. By combining outsider unforgeability, which we call outsider strong unforge-
ability, our definition guarantees the situation that nobody, except the payer and the payee, can
produce a valid signature.

As mentioned in the motivation part, from the viewpoint of functionality, outsider unforgeability
allows us to implement a refund functionality. Moreover, it also allows us to remove the IBS-like
construction procedure unlike the Liu et al.’s construction, and can provide a generic construction
of PDPKS. The design is conceptually much simpler than known PDPKS constructions because the
ingredients are only signatures and PKE, and thus we can easily provide strong unforgeability. The
proposed generic construction provides correctness, outsider strong unforgeability, unlinkability,
and consistency.

Feasibility of the Generic Construction. The underlying signature scheme is assumed to be
strongly unforgeable. As a candidate, we can employ the Boneh-Shen-Waters signature scheme [13]
which is strongly unforgeable under the computational Diffie-Hellman assumption in bilinear groups,
and is secure in the standard model. We can also employ generic conversions [44, 45] to obtain a
strongly unforgeable signature scheme from any signature scheme. We also require that the sig-
nature scheme provides strong conservative exclusive ownership (S-CEO) security [21]. S-CEO is
recognized as one of BUFF (Beyond UnForgeability Features) security, and it informally guarantees
that for a verification key vk∗, no adversary can produce vk such that there is (M,Σ) satisfying
Sig.Verify(vk∗,M, σ) = 1, Sig.Verify(vk,M, σ) = 1, and vk ̸= vk∗. Cremers et al. [21] gave a generic
transformation to provide the S-CEO security by adding Hash(vk,M) to a signature. Here, Hash is
a collision resistant hash function and is not modeled as a random oracle. We can add the S-CEO
security to the Boneh-Shen-Waters signature scheme via the generic transformation. As a concrete
scheme, Brendel et al. [14] showed that the Ed25519-LibS signature scheme is strong unforgeable
and provides the malicious-strong universal exclusive ownership (M-S-UEO) security that implies
the S-CEO security. Moreover, Aulbach et al. [5] showed that NIST PQC candidates, CROSS2,
HAETAE3, HAWK4, RACCOON5, and PROV6, provide the S-CEO security. Among them, we
can employ HAETAE, HAWK, and RACCOON because they are strongly unforgeable. See the
algorithm specification documents7 for details.

The underlying CCA-secure PKE scheme is assumed to be key private [10] (it ensures that a
ciphertext does not leak information of the public key) and strongly robust [1] (it ensures that

2https://www.cross-crypto.com/
3https://kpqc.cryptolab.co.kr/haetae
4https://hawk-sign.info/
5https://raccoonfamily.org/
6https://prov-sign.github.io/
7https://csrc.nist.gov/projects/pqc-dig-sig
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Table 1: Comparisons of PDPKS Schemes
Scheme Assumptions ROM/SDM Unforgeability

Liu et al. [37] q-SDH, CDH (in bilinear groups) ROM Nomal
Liu et al. [35] LWE, SIS ROM Nomal

Ours 1 CDH (in bilinear groups), DDH, CR SDM Strong and Outsider
Ours 2 ECDLP, ODH ROM Strong and Outsider
Ours 3 ECDLP, DDH, CR ROM Strong and Outsider
Ours 4-1 MLWE, SIS, CR, LWE, GapSVP ROM Strong and Outsider
Ours 4-2 One-more SVP, CR, LWE, GapSVP ROM Strong and Outsider
Ours 4-3 Self-target MSIS, CR, LWE, GapSVP ROM Strong and Outsider

Table 2: Efficiency Comparisons of DL/Pairing-based PDPKS Schemes
Scheme |mpk| |msk| |dpk| |dsk| |Σ|

Liu et al. [37] 2|G2| 2|Zp| 2|G2| |G1| |G1|+ |Zp|
Generic Construction |PKE.pk| |PKE.dk| |vk|+ |CPKE| |sigk| |Σ|

Ours 1 3|G| 6|Zp| O(log λ)|G1|+ 4|G| |G1| |G1|+ |G2|+ |Zp|+ |CR|
Ours 2 |G| |Zp| 2|G|+ |CSKE|+ |MAC| |Zp| |G|+ |Zp|
Ours 3 3|G| 6|Zp| 5|G| |Zp| |G|+ |Zp|

the decryption result of a ciphertext is ⊥ if the ciphertext is not produced by the corresponding
public key). Abdalla et al. [1] gave a strongly robust variant of the Cramer-Shoup PKE scheme [20]
and the DHIES (Diffie-Hellman integrated encryption scheme) PKE scheme [2], respectively, that
are also CCA secure and key private. Abdalla et al. [1] also proposed a generic transformation to
add robustness to any key private and CCA-secure PKE scheme. The transformation additionally
requires a commitment scheme that provides standard hiding and binding properties. Thus, for a
lattice-based instantiation of the PKE scheme, we can employ a key private variant of the Regev
PKE given by Liu et al. [35], with the Abdalla et al. transformation. Finally, we emphasize that the
proposed generic construction itself does not rely on random oracles. Thus, instantiated PDPKS
schemes are secure in the (quantum) random oracle model if the building block relies on (quantum)
random oracles.

Comparison. In summary, we compare interesting instantiations with previous schemes in Table 1.
Here, ROM stands for random oracle model and SDM stands for standard model. SDH stands for
strong Diffie-Hellman, CDH/DDH stands for computational/decisional Diffie-Hellman, (M)LWE
stands for (module) learning with errors, SIS stands for short integer solution, CR stands for
collision resistant hash, ODH stands for oracle Diffie-Hellman, and SVP stands for shortest vector
problem.

Ours 1: A pairing-based PDPKS scheme without random oracles instantiated from the Boneh-
Shen-Waters signature scheme [13] with Cremers et al.’s conversion [21] and a strongly robust
variant of the Cramer-Shoup PKE scheme [1]. Since previous PDPKS schemes are secure in
the random oracle model. Due to the result by Canetti et al. [15], random oracles should not
be employed as much as possible.

Ours 2: A discrete-logarithm (DL) based pairing-free PDPKS scheme in the random oracle model
instantiated from the Ed25519-LibS signature scheme [14] and a strongly robust variant of
the DHIES PKE scheme [1].

Ours 3: A DL based pairing-free PDPKS scheme in the random oracle model instantiated from

5



the Ed25519-LibS signature scheme [14] and a strongly robust variant of the Cramer-Shoup
PKE scheme [1]. Compared to the scheme described as “Ours 2”, we can avoid to employ
an oracle assumption, and the scheme is secure under standard assumptions in the random
oracle model, whereas the Liu et al. scheme [37] relies on the q-SDH assumption. Due to the
Cheon attack [17], q-type assumptions should not be employed as much as possible.

Ours 4: Lattice-based PDPKS schemes in the random oracle model instantiated from (4-1) HAETAE,
(4-2) HAWK or (4-3) RACCOON, and a strongly robust variant of the Liu et al.’s key private
PKE scheme (i.e., the key private PKE scheme given in [35] is converted by the Abdalla et
al.’s transformation by using a lattice-based commitment scheme such as the KXT commit-
ment [33]).

We also compare the size of keys and signatures among DL/pairing-based PDPKS schemes in
Table 2. To clarify these sizes in the proposed generic construction, we add the generic construction
row in the table. In the generic construction, a PDPKS signature is a signature of the underlying
signature scheme. Thus, we use the same notation Σ. Let (G1,G2,GT ) be bilinear groups with
prime order p and e : G1 ×G2 → GT be a pairing (i.e., BN curves [9] or BLS curves [8]). Let G be
a group with prime order p (i.e, Curve25519 [11]). |CR| is due to Cremers et al.’s conversion, and
is estimated as 2λ due to the birthday bound. For Ed25519, a signature contains an element of the
elliptic curve and a value modulo L. Here, L is specified by the prime generator order where for
a generator g ∈ G, gL = 1 holds.8 Thus, we denote |G| + |Zp| in the table as the signature size of
Ed25519.

Remark. Kulkarni and Xagawa [34] showed that several MPC-in-the-head signatures are strongly
unforgeable and provide the S-CEO security. These signature schemes also can be building blocks
of our generic construction. For example, from the candidates in Round 2 of the NIST additional
PQC signature standardization, we can employ MQOM9, PERK10, RYDE11, and SDitH12. How-
ever, we cannot specify the corresponding PKE scheme secure under the same/similar complexity
assumptions of those of these signatures. Thus, we do not employ them in Table 1.

Technical Overview. We further explore the reason why an IBS-like construction is required
in the Liu et al. PDPKS scheme [37]. Due to the syntax of PDPKS, anyone who observes a
master public key mpkB can derive a public key dpkA, and unforgeability guarantees that nobody,
except the corresponding master secret key holder (the payee Bob), can produce a valid signature
under the derived public key dpkA. That is, dskA is derived from dpkA by using mskB after dpkA
is generated. This key generation process requires an IBS-like construction procedure. Here, we
weaken the unforgeability that captures the situation that nobody, except the payer and the payee,
can produce a valid signature. This relaxation allows a payer Alice to produce dskA together
with dpkA and can remove the IBS-like construction procedure. In our construction, a payer Alice
chooses a verification and signing key pair of a signature scheme (vkA, sigkA) on the fly, and encrypts
sigkA by using the payee’s public key mpkB = PKE.pkB. That is, nobody, except Alice and the
decryption key holder Bob, can produce the corresponding signing key sigkA which means that vkA
is linked to mpkB. By using sigkA, Bob can produce a signature which is valid under vkA. The
design is conceptually much simpler than known PDPKS constructions.

8The authors of [14] employ additive operations. We introduce their notations: E is an elliptic curve, and B is a
generator of the prime order subgroup of E, and c is the log2 of curve cofactor, Then, LB = 0 and 2cL = |E| hold.

9https://mqom.org/
10https://pqc-perk.org
11https://pqc-ryde.org/
12https://sdith.org/
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We need to further assume that the underlying signature scheme is S-CEO secure, which is
the most technical part of this paper. We give an intuition of the security proof of outsider strong
unforgeability (See Section 5 for detail). Let dpk∗ = (vk∗, C∗

PKE) where C
∗
PKE is a ciphertext of sigk∗.

Before reducing strong unforgeability of the underlying signature scheme, we need to guarantee
that A does not produce dpk as a derived secret key corruption query such that dpk = (vk, C∗

PKE),
vk ̸= vk∗, but vk is a valid verification key relative to sigk∗. Since the DpkCheck algorithm returns
1 for dpk, the reduction algorithm needs to respond sigk∗ and fails to reduce strong unforgeability.
To exclude the case, we employ the S-CEO security. The reduction algorithm takes vk∗ from the
challenger of the S-CEO security. C∗

PKE has been replaced by a ciphertext of 0|sigk| by employing
the IND-CCA security of the PKE scheme. Thus, the reduction algorithm can produce dpk∗ =
(vk∗, C∗

PKE). If an adversary sends dpk = (vk, C∗
PKE) where vk ̸= vk∗, the reduction algorithm sends

a signing query m to the challenger, and obtains a signature Σ. If Sig.Verify(vk,m,Σ) = 1, then the
reduction algorithm breaks the S-CEO security, and does not have to respond the derived secret
key corruption query for dpk to reduce strong unforgeability.

Related Work. As a similar primitive of PDPKS, Wang et al. [47] proposed key derivable signature
(KDS) that allows a master secret key to sign a message unlike PDPKS, and proposed a generic
construction of KDS from a key derivation scheme (KDV), PKE, and signatures in the random
oracle model. Though their construction methodology could be employed to construct PDPKS, it
deeply depends on random oracles, whereas our generic construction of PDPKS itself does not rely
on random oracles. Pu et al. [42] proposed a post-quantum stealth signature scheme which they call
Spirit. They also proposed a generic transformation from a stealth signature scheme without key-
exposure into a scheme with unbounded key-exposure. Their construction is not purely generic in
the sense that they first constructed a stealth signature scheme based on Dilithium and transformed
it to a scheme with key exposure. As an independent and concurrent work, Mongardini et al. [40]
proposed identity-based matchmaking signatures (IB-MSS) based on the stealth signatures model
in [42]. As in our outsider unforgeability, the challenge one-time public key is generated by the
challenger, and is not generated by the adversary. One crucial difference is IB-MSS involves a
certification authority (CA) that generates sender/receiver keys using a master secret key to ensure
that participants comply with specific regulations, such as anti-money laundering (AML) and know
your customer (KYC) requirements.

Related Work in terms of Exclusive Ownership security. We explicitly assume that the
underlying signature scheme is S-CEO secure. Unlike strong unforgeability, which is widely used
for enhancing a security level, e.g., the CHK transformation [16], exclusive ownership security
notions have not been widely employed as a security property of the underlying signature scheme,
with the following one exception (to the best of our knowledge). Gunther et al. [31] showed that
a lightweight authenticated key exchange protocol for IoT communication, EDHOC (Ephemeral
Diffie-Hellman Over COSE, COSE stands for CBOR Object Signing and Encryption, and CBOR
stands for Concise Binary Object Representation), the underlying signature scheme is explicitly
assumed to be universal exclusive ownership (S-UEO) secure to provide multi-stage key exchange
security.

As another related works, Boneh et al. [12] introduced strong binding for multi-signatures as a
related definition of message-bound signatures. Ferreira and Pascal [25] employed Dilithium and
EdDSA to instantiate their post-quantum secure ZRTP (which is an authenticated key exchange
protocol for establishing secure communications for Voice over IP applications) and mentioned that
both signature schemes are S-UEO secure. But they did not explicitly require the S-UEO security
to prove the security of their protocol. Jiang and Wang [32] also mentioned exclusive ownership
security notions, but they did not employ the notions and claimed that their protocol is secure
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under the standard unforgeability because both the user and servers employ the user’s fixed public
key for verification.

Since we explicitly require the underlying signature scheme to be S-CEO secure, our security
proof introduces a new insight of exclusive ownership security which may be of independent interest.

Adaptor Signatures. We regard refundability is a suitable functionality, and leave further con-
siderations on the functionality in detail as a future work. Nevertheless, we would like to mention
that refundability has been implicitly realized via adaptor signatures, e.g., [6, 18, 22, 28, 36, 41].
When Alice has a token cA for some cryptocurrency and Bob has a witness y of some instance Y ,
we consider the case that Alice and Bob would like to trade cA and y. Alice generates a pair of
verification key and signing key (vk, sigk) and posts a transaction to the blockchain that transfers
cA to Bob if a valid signature σ under vk is sent. Then, Alice generates a pre-signature on the
transaction using sigk and Y , and sends it to Bob. Bob adopts the pre-signature and generates
a full signature using y. Since the full signature is valid under vk, Bob can obtain cA by sending
σ to the blockchain. After σ is published, Alice can extract y from the pre-signature and the full
signature. Thus, a fair exchange completes.

Obviously, Alice can withdraw cA because Alice has sigk. Gokay et al. [29] explicitly employed
the refund phase when their atomic swap protocol cannot be completed within the time parameter.
As in outsider unforgeable PDPKS, the refund functionality only works before the payee transfers
a coin to own wallet, and it prevents a double spending issue. One crucial difference from ours
is that the adaptor signature based refundable address is not stealth. The common point is both
Alice (the payer) and Bob (the payee) can issue the transaction to spend cA. From this perspective,
PDPKS and adaptive signatures may have a relationship.

2 Preliminaries

2.1 Signatures and PKE

In this section, we define signatures and PKE. We introduce setup algorithms to employ the same
parameter among all users (payers and payees).

Signatures. Let Sig = (Sig.Setup, Sig.KeyGen, Sig.Sign, Sig.Verify) be a signature scheme. The
setup algorithm Sig.Setup takes a security parameter λ, and outputs a common parameter ppSig
that implicitly contains a message space MSSig. The key generation algorithm takes ppSig as input
and outputs a verification and signing key pair (vk, sigk). The signing algorithm Sig.Sign takes
sigk and a message to be signed M ∈ MSSig as input and outputs a signature Σ. The verification
algorithm takes vk, M , and Σ as input and outputs 0 or 1. The correctness requires that for any
λ ∈ N, any ppSig ← Sig.Setup(ppSig), any (vk, sigk) ← Sig.KeyGen(ppSig), and any M ∈ MSSig,
Sig.Verify(vk,M, Sig.Sign(sigk,M)) = 1 holds with overwhelming probability in the security param-
eter λ.

Strong unforgeability is defined as follows. Let A be an adversary and C be the challenger. C
generates ppSig ← Sig.Setup(ppSig) and (vk, sigk) ← Sig.KeyGen(ppSig), and gives (ppSig, vk) to A.
C initiates SigSet = ∅. A is allowed to issue signing queries M . C generates Σ← Sig.Sign(sigk,M)
and returns Σ to A. C stores (M,Σ) to SigSet. Finally, A outputs (M∗,Σ∗). We say that A wins if
Sig.Verify(vk,M∗,Σ∗) = 1 and (M∗,Σ∗) ̸∈ SigSet. The advantage of A is defined as AdvstrongA,Sig (λ) =

Pr[A wins]. We say that Sig is strongly unforgeable if AdvstrongA,Sig (λ) is negligible for all probabilistic
polynomial-time (PPT) adversaries A.

The S-CEO security is defined as follows. Let A be an adversary and C be the challenger. C
generates ppSig ← Sig.Setup(ppSig) and (vk, sigk) ← Sig.KeyGen(ppSig), and gives (ppSig, vk) to A.
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C initiates SigSet = ∅. A is allowed to issue signing queries M . C generates Σ← Sig.Sign(sigk,M)
and returns Σ to A. C stores (M,Σ) to SigSet. Finally, A outputs (vk∗,M∗,Σ∗). We say that A
wins if Sig.Verify(vk∗,M∗,Σ∗) = 1, (M∗,Σ∗) ∈ SigSet (that implies Sig.Verify(vk,M∗,Σ∗) = 1), and
vk∗ ̸= vk. The advantage of A is defined as AdvS-CEO

A,Sig (λ) = Pr[A wins]. We say that Sig is S-CEO

secure if AdvS-CEO
A,Sig (λ) is negligible for all PPT adversaries A.

PKE. Let PKE = (PKE.Setup,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. The setup
algorithm PKE.Setup takes a security parameter λ as input, and outputs a common parameter
ppPKE that implicitly contains a message space MSPKE. The key generation algorithm PKE.KeyGen
takes ppPKE, and outputs a key pair (PKE.pk,PKE.dk). The encryption algorithm PKE.Enc takes
PKE.pk and a plaintext M , and outputs a ciphertext CPKE. The decryption algorithm PKE.Dec
takes PKE.dk and CPKE as input, and outputs M or ⊥. Correctness requires that for any λ ∈ N,
any ppPKE ← PKE.Setup(1λ), any (PKE.pk,PKE.dk) ← PKE.KeyGen(ppPKE), any M ∈ MSPKE,
PKE.Dec(PKE.dk,PKE.Enc(PKE.pk,M)) = M holds with overwhelming probability in the security
parameter λ.

The CCA security is defined as follows. Let A be an adversary and C be the challenger.
C generates ppPKE ← PKE.Setup(1λ) and (PKE.pk,PKE.dk) ← PKE.KeyGen(ppPKE), and gives
(ppPKE,PKE.pk) to A. A is allowed to issue decryption queries CPKE. C returns the result of

PKE.Dec(PKE.dk, CPKE). A declares two equal-length plaintexts M∗
0 and M∗

1 . C chooses b
$←−

{0, 1}, computes the challenge ciphertext C∗
PKE ← PKE.Enc(PKE.pk,M∗

b ), and gives C∗
PKE to

A. A is further allowed to issue decryption queries CPKE ̸= C∗
PKE. C returns the result of

PKE.Dec(PKE.dk, CPKE). Finally, A outputs b′ ∈ {0, 1}. A wins if b = b′. The advantage of
A is defined as AdvIND-CCA

A,PKE (λ) = |Pr[b = b′] − 1/2|. We say that PKE is IND-CCA secure (or

simply CCA secure) if AdvIND-CCA
A,PKE (λ) is negligible for all PPT adversaries A.

Key privacy is defined as follows. Note that the following definition contains CCA secu-
rity. Let A be an adversary and C be the challenger. C generates ppPKE ← PKE.Setup(1λ),
(PKE.pk0,PKE.dk0) ← PKE.KeyGen(ppPKE), and (PKE.pk1,PKE.dk1) ← PKE.KeyGen(ppPKE), and
gives (ppPKE,PKE.pk0,PKE.pk1) to A. A is allowed to issue decryption queries (CPKE, i) where
i ∈ {0, 1}. C returns the result of PKE.Dec(PKE.dki, CPKE). A declares the challenge plaintext

M∗. C chooses b
$←− {0, 1}, computes the challenge ciphertext C∗

PKE ← PKE.Enc(PKE.pkb,M
∗), and

gives C∗
PKE to A. A is further allowed to issue decryption queries (CPKE, i) where i ∈ {0, 1} and

CPKE ̸= C∗
PKE. C returns the result of PKE.Dec(PKE.dki, CPKE). Finally, A outputs b′ ∈ {0, 1}. A

wins if b = b′. The advantage of A is defined as AdvKey-Privacy
A,PKE (λ) = |Pr[b = b′]− 1/2|. We say that

PKE is key private if AdvKey-Privacy
A,PKE (λ) is negligible for all PPT adversaries A.

Strong robustness is defined as follows (here strong means that robustness holds for cipher-
texts declared by an adversary). Let A be an adversary and C be the challenger. C generates
ppPKE ← PKE.Setup(1λ), (PKE.pk0,PKE.dk0) ← PKE.KeyGen(ppPKE), and (PKE.pk1,PKE.dk1)
← PKE.KeyGen(ppPKE), and gives (ppPKE,PKE.pk0,PKE.pk1) to A. A declares the challenge ci-
phertext C∗

PKE. C runs M0 ← PKE.Dec(PKE.dk0, C
∗
PKE) and M1 ← PKE.Dec(PKE.dk1, C

∗
PKE) .

C outputs 1 if M0 ̸= ⊥ and M1 ̸= ⊥ hold, and 0 otherwise. The advantage of A is defined
as Advstrong-robustA,PKE (λ) = Pr[C → 1]. We say that PKE is strongly robust if Advstrong-robustA,PKE (λ) is
negligible for all PPT adversaries A.

2.2 PDPKS

Next, we introduce the syntax and security notions of PDPKS defined by Liu et al. [37]. We
note that the definition of consistency and outsider unforgeability, that are newly introduced in
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this paper, are given in Section 3. Let PDPKS be a PDPKS scheme that consists of seven algo-
rithms (PDPKS.Setup,MasterKeyGen,DpkDerive,DpkCheck,DskDerive,PDPKS.Sign,PDPKS.Verify)
defined as follows.

PDPKS.Setup: The setup algorithm takes a security parameter λ as input, and outputs a common
parameter pp that implicitly contains a message space MSPDPKS.

MasterKeyGen: The master key generation algorithm takes pp as input, and outputs a master public
key and a master secret key pair (mpk,msk).

DpkDerive: The public key derivation algorithm takes pp and mpk as input, and outputs a derived
public key dpk.

DpkCheck: The derived public key checking algorithm takes pp, mpk, msk, and dpk as input, and
outputs 1 (meaning that dpk is linked to mpk) or 0 (meaning that dpk is not linked to mpk).

DskDerive: The secret key derivation algorithm takes pp, mpk, msk, and dpk as input. The algorithm
outputs ⊥ if DpkCheck(pp,mpk,msk, dpk) = 0. Otherwise, the algorithm outputs a derived
secret key dsk corresponding to dpk.

PDPKS.Sign: The signing algorithm takes pp, dpk, dsk, and M ∈ MSPDPKS, and outputs a signature
Σ.

PDPKS.Verify: The verification algorithm tales pp, dpk, M , and Σ as input, and outputs 1 (valid)
or 0 (invalid).

Correctness. It requires that for any λ ∈ N, any pp ← PDPKS.Setup(1λ), any (mpk,msk) ←
MasterKeyGen(pp), any dpk← DpkDerive(pp,mpk), and any M ∈ MSPDPKS,

DpkCheck(pp,mpk,msk, dpk) = 1 and PDPKS.Verify(pp, dpk,M,Σ) = 1

hold with overwhelming probability in the security parameter λ, where Σ← PDPKS.Sign(pp, dpk, dsk,
M) and dsk← DskDerive(pp,mpk,msk, dpk).

Next, we define unforgeability as follows. We explicitly return ⊥ if the DpkCheck algorithm
returns 0 for derived secret key corruption queries. Note that DpkCheck(pp,mpk,msk, dpk) = 1
holds for dpk ∈ Ldpk. Thus, the challenger does not return ⊥ for signing queries. Since it is
required that A did not send (dpk∗,M∗) as a signing query, the following does not capture strongly
unforgeability.

Definition 1 (Unforgeability). Let A be an adversary and C be the challenger. C runs pp ←
PDPKS.Setup(1λ) and (mpk,msk) ← MasterKeyGen(pp), and gives (pp,mpk) to A. C initializes
Ldpk := ∅. A is allowed to issue the following queries.

Derived Public Key Check Query: A sends dpk to C. C returns the result of DpkCheck(pp,mpk,
msk, dpk). If DpkCheck(pp,mpk,msk, dpk) = 1, then C updates Ldpk ← Ldpk ∪ {dpk}.

Derived Secret Key Corruption Query: A sends dpk ∈ Ldpk to C. C returns ⊥ if DpkCheck(pp,mpk,
msk, dpk) = 0. Otherwise, C returns dsk← DskDerive(pp,mpk,msk, dpk).

Signing Query: A sends M ∈ MSPDPKS and dpk ∈ Ldpk to C. C returns Σ← PDPKS.Sign(pp, dpk, dsk,
M) where dsk← DskDerive(pp,mpk,msk, dpk).

10



Finally, A outputs (dpk∗,M∗,Σ∗) where M∗ ∈ MSPDPKS. A wins if dpk∗ ∈ Ldpk, PDPKS.Verify(pp, dpk
∗,

M∗,Σ∗) = 1, A did not send dpk∗ as a derived secret key corruption query, and A did not send
(dpk∗,M∗) as a signing query. The advantage is defined as

AdvunforgeA,PDPKS(λ) = Pr[A wins]

We say that a PDPKS scheme PDPKS is unforgeable if AdvunforgeA,PDPKS(λ) is negligible in the security
parameter λ for all PPT adversaries A.

Next, we define unlinkability as follows. As in unforgeability, we explicitly return ⊥ if the
DpkCheck algorithm returns 0 for derived secret key corruption queries.

Definition 2 (Unlinkability). Let A be an adversary and C be the challenger. C runs pp ←
PDPKS.Setup(1λ), (mpk0,msk0) ← MasterKeyGen(pp), and (mpk1,msk1) ← MasterKeyGen(pp),
C chooses b ← {0, 1} and computes dpk∗ ← DpkDerive(pp,mpkb). C initializes Ldpk,0 := ∅ and
Ldpk,1 := ∅. We remark that dpk∗ ̸∈ Ldpk,0 ∪ Ldpk,1. C gives (pp,mpk0,mpk1, dpk

∗) to A. A is
allowed to issue the following queries.

Derived Public Key Check Query: A sends dpk ̸= dpk∗ and index i ∈ {0, 1} to C. C returns
the result of DpkCheck(pp,mpki,mski, dpk). If DpkCheck(pp,mpki,mski, dpk) = 1, then C
updates Ldpk,i ← Ldpk,i ∪ {dpk}.

Derived Secret Key Corruption Query: A sends dpk ∈ Ldpk,0 ∪ Ldpk,1 to C. C returns ⊥
if DpkCheck(pp,mpki,mski, dpk) = 0 where dpk ∈ Ldpk,i. Otherwise, C returns dsk ←
DskDerive(pp,mpki,mski, dpk).

Signing Query: A sends M ∈ MSPDPKS and dpk ∈ Ldpk,0 ∪ Ldpk,1 ∪ {dpk∗} to C. C returns Σ←
PDPKS.Sign(pp, dpk, dsk,M). Here dsk ← DskDerive(pp,mpki,mski, dpk) where dpk ∈ Ldpk,i

and i = b if dpk = dpk∗.

Finally, A outputs b′ ∈ {0, 1}. A wins if b = b′. The advantage is defined as

AdvunlinkA,PDPKS(λ) = |Pr[b = b′]− 1/2|

We say that a PDPKS scheme PDPKS is unlinkable if AdvunlinkA,PDPKS(λ) is negligible in the security
parameter λ for all PPT adversaries A.

3 New Definitions: Consistency and Outsider Strong Unforgeabil-
ity

3.1 Definition of Consistency

To capture the condition that DpkCheck(pp,mpk,msk, dpk) = 0 if dpk is not derived from mpk,
we define consistency as follows. Here, A is not allowed to issue a derived public key check query
unlike the other definition. This is reasonable because the DpkCheck algorithm is internally run
to respond the query, and consistency considers a security of the DpkCheck algorithm. On the
other hand, we need to guarantee that no adversary can break consistency even if the adversary
has observed a valid signature. Thus, the adversary is allowed to issue signing queries but dpk is
derived by the challenger.
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Definition 3 (Consistency). Let A be an adversary and C be the challenger. C runs pp ←
PDPKS.Setup(1λ), (mpk0,msk0) ← MasterKeyGen(pp), and (mpk1,msk1) ← MasterKeyGen(pp),
and gives (pp,mpk0,mpk1) to A. A is allowed to issue the following queries.

Signing Query: A sends M ∈ MSPDPKS and index i ∈ {0, 1} to C. C runs dpk← DpkDerive(pp,mpki),
dsk ← DskDerive(pp,mpki,mski, dpk), and Σ ← PDPKS.Sign(pp, dpk, dsk,M), and returns
(dpk,Σ) to A.

Finally, A outputs dpk∗. A wins if DpkCheck(pp,mpk0,msk0, dpk
∗) = 1 and DpkCheck(pp,mpk1,

msk1, dpk
∗) = 1 hold. The advantage is defined as

AdvconsistA,PDPKS(λ) = Pr[A wins]

We say that a PDPKS scheme PDPKS is consistent if AdvconsistA,PDPKS(λ) is negligible in the security
parameter λ for all PPT adversaries A.

Analysis of Previous PDPKS schemes: Here, we demonstrate whether previous PDPKS
schemes provide consistency or not. We give a brief analysis and decline to give a formal proof
here. The pairing-based Liu et al. PDPKS scheme [37] is briefly described as follows (Appendix may
help the reader to understand the scheme). Let e : G1 ×G2 → GT be a pairing where G1, G2, and
GT be groups with prime order p, and g1 ∈ G1 and g2 ∈ G2 be generators. mpk = (mpk1,mpk2) =

(gα2 , g
β
2 ) ∈ G2

2 and msk = (msk1,msk2) = (α, β) ∈ Z2
p. To derive dpk, choose r

$←− Zp and compute

dpk = (dpk1, dpk2) = (gr2,mpk2 · g
Hash(gr2 ,mpkr1)
2 ). Here, Hash is modeled as a random oracle. mpkr1 =

gαr2 = dpkmsk1
1 can be seen as a non-interactive key exchange (NIKE) [26] key and mpk2·g

Hash(gr2 ,mpkr1)
2

can be seen as a Pedersen commitment for mpk2 with the randomness (decommit) Hash(gr2,mpkr1).

To check whether dpk is derived from mpk, check whether dpk2 = mpk2 · g
Hash(dpk1,dpk

msk1
1 )

2 holds or
not. Here, dpkmsk1

1 = grα2 is the NIKE key. If dpk is linked to two different master public keys mpk0 =

(gα0
2 , gβ0

2 ) and mpk1 = (gα1
2 , gβ1

2 ), then dpk2 = gβ0
2 · g

Hash(dpk1,dpk
α0
1 )

2 = gβ1
2 · g

Hash(dpk1,dpk
α1
1 )

2 holds.
Since Hash is modeled as a random oracle, h0 = Hash(dpk1, dpk

α0
1 ) and h1 = Hash(dpk1, dpk

α1
1 ) are

uniformly distributed over Zp and h0 ̸= h1. Thus, the probability that dpk2 = gβ0+h0
2 = gβ1+h1

2

holds is negligible. This implies the Liu et al. scheme is consistent. The Liu et al. lattice-based
PDPKS scheme [35] also provides the consistency if the underlying hash functions are modeled as
random oracles. Briefly, dpk is computed by a hash value of a plaintext t and the ciphertext τ
of the underlying PKE scheme, and τ is contained in dpk. That is, Hash(t, τ) can be (informally)
seen as a shared key because a master secret key (decryption key of the PKE scheme) holder can
obtain t from τ . As in the pairing-based scheme, the probability that a random value (generated via
the random oracle) coincidentally satisfies a checking equation is negligible. To sum up, previous
PDPKS schemes are consistent if the underlying hash function is modeled as a random oracle.

3.2 Definition of Outsider Strong Unforgeability

Next, we define outsider strong unforgeability as follows. As mentioned before, we weaken unforge-
ability in the sense that C sends dpk∗ to A, and strengthen unforgeability in the sense that A is
allowed to issue a signing query (dpk∗,M∗).

Definition 4 (Outsider Strong Unforgeability). Let A be an adversary and C be the challenger. C
runs pp← PDPKS.Setup(1λ) and (mpk,msk)← MasterKeyGen(pp), computes dpk∗ ← DpkDerive(pp,
mpk), and gives (pp,mpk, dpk∗) to A. C initializes Ldpk := {dpk∗} and LSig := ∅. A is allowed to
issue the following queries.
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Derived Public Key Check Query: A sends dpk to C (dpk = dpk∗ is allowed). C returns the
result of DpkCheck(pp,mpk,msk, dpk). If DpkCheck(pp,mpk,msk, dpk) = 1, then C updates
Ldpk ← Ldpk ∪ {dpk}.

Derived Secret Key Corruption Query: A sends dpk ∈ Ldpk \ {dpk∗} to C. C returns ⊥ if
DpkCheck(pp,mpk,msk, dpk) = 0. Otherwise, C returns dsk← DskDerive(pp,mpk,msk, dpk).

Signing Query: A sends M ∈ MSPDPKS and dpk ∈ Ldpk to C. C returns Σ← PDPKS.Sign(pp, dpk,
dsk,M) where dsk ← DskDerive(pp,mpk,msk, dpk). Moreover, if dpk = dpk∗, C updates
LSig := LSig ∪ (M,Σ).

Finally, A outputs (M∗,Σ∗) where M∗ ∈ MSPDPKS. A wins if PDPKS.Verify(pp, dpk∗,M∗,Σ∗) = 1
and (M∗,Σ∗) ̸∈ LSig. The advantage is defined as

Advoutsider-strong-unforgeA,PDPKS (λ) = Pr[A wins]

We say that a PDPKS scheme PDPKS is strongly unforgeable for outsider if Advoutsider-strong-unforgeA,PDPKS (λ)
is negligible in the security parameter λ for all PPT adversaries A.

4 Proposed Generic Construction

In this section, we give the proposed generic construction. Let Sig = (Sig.Setup, Sig.KeyGen, Sig.Sign,
Sig.Verify) and PKE = (PKE.Setup,PKE.KeyGen,PKE.Enc,PKE.Dec) be a signature scheme and a
PKE scheme, respectively. A payer (who generates dpk) chooses a verification key and signing
key pair (vk, sigk) and encrypts sigk by using mpk where mpk = PKE.pk. One may think that the
construction is trivial since a signing key is sent via a secure channel encrypted by PKE.pk. This
intuition is true and it well explains the fact that the design is conceptually much simpler than
known PDPKS constructions. However, the security proof is not trivial, e.g., the underlying signa-
ture scheme is required to provide the S-CEO security. First, we give an intuition of the proposed
generic construction as follows.

• The DpkDerive algorithm internally generates a verification key and signing key pair (vk, sigk)
on the fly. Let mpk = PKE.pk and msk = PKE.dk. The algorithm encrypts sigk by using
mpk = PKE.pk such that CPKE ← PKE.Enc(PKE.pk, sigk). Set dpk = (vk, CPKE). Now, vk
is independent of mpk but CPKE depends on mpk. To hide information of mpk, we assume
that the underlying PKE scheme is key private. Moreover, the underlying signature scheme
is required to provide the S-CEO security (See Section 5 for details).

• The DskDerive algorithm decrypts CPKE by using msk = PKE.dk such that sigk ← PKE.Dec
(PKE.dk, CPKE). The algorithm also checks whether sigk is a valid signing key for the verifi-
cation key vk by generating a signature on a random message. To provide the consistency,
we assume that the underlying PKE scheme is robust. Then, ⊥ ← PKE.Dec(PKE.dk, CPKE)
holds with overwhelming probability if PKE.dk ̸= msk.

• To sign a message (transaction) M , the PDPKS.Sign algorithm simply signs M using sigk.
Then, mpk is not required for verifying a PDPKS signature. To provide strong unforgeability,
we assume that the underlying signature scheme is strongly unforgeable. Moreover, the
underlying signature scheme is required to provide the S-CEO security (See Section 5 for
details).
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Here, we give the proposed generic construction.

PDPKS.Setup(1λ): Run ppSig ← Sig.Setup(1λ) and ppPKE ← PKE.Setup(1λ), and output pp =
(ppSig, ppPKE).

MasterKeyGen(pp): Parse pp = (ppSig, ppPKE). Run (PKE.pk,PKE.dk) ← PKE.KeyGen(ppPKE) and
output (mpk,msk) = (PKE.pk,PKE.dk).

DpkDerive(pp,mpk): Parse pp = (ppSig, ppPKE) andmpk = PKE.pk. Run (vk, sigk)← Sig.KeyGen(ppSig)
and CPKE ← PKE.Enc(PKE.pk, sigk). Output dpk = (vk, CPKE).

DpkCheck(pp,mpk,msk, dpk): Parse pp = (ppSig, ppPKE), mpk = PKE.pk, msk = PKE.dk, and dpk =
(vk, CPKE). Output 0 if⊥ ← PKE.Dec(PKE.dk, CPKE). Otherwise, let sigk← PKE.Dec(PKE.dk,

CPKE). Choose m
$←− MSSig,

13 and output the result of Sig.Verify(vk,m, Sig.Sign(sigk,m)).

DskDerive(pp,mpk,msk, dpk): Parse pp = (ppSig, ppPKE), mpk = PKE.pk, msk = PKE.dk, and
dpk = (vk, CPKE). Output dsk = ⊥ if DpkCheck(pp,mpk,msk, dpk) = 0. Otherwise, if
DpkCheck(pp,mpk,msk, dpk) = 1, then sigk are obtained. Output dsk = sigk.

PDPKS.Sign(pp, dpk,M, dsk): Parse pp = (ppSig, ppPKE), dpk = (vk, CPKE), and dsk = sigk. Output
Σ← Sig.Sign(sigk,M).

PDPKS.Verify(pp, dpk,M,Σ): Parse pp = (ppSig, ppPKE) and dpk = (vk, CPKE). Output 1 if Sig.Verify
(vk,M,Σ) = 1 holds, and 0 otherwise.

5 Security Analysis

Obviously, correctness directly holds if Sig and PKE are correct. Next, we prove that the proposed
construction is consistent.

Theorem 1. The proposed construction is consistent if the underlying PKE scheme is strongly
robust.

Proof. Let A be an adversary of consistency and C be the challenger of strong robustness. We
construct an algorithm B that breaks strong robustness by using A as follows. First, C gener-
ates ppPKE ← PKE.Setup(1λ), (PKE.pk0,PKE.dk0)← PKE.KeyGen(ppPKE), and (PKE.pk1,PKE.dk1)
← PKE.KeyGen(ppPKE), and gives (ppPKE,PKE.pk0,PKE.pk1) to B. B sets mpk0 = PKE.pk0
and mpk1 = PKE.pk1. B runs ppSig ← Sig.Setup(1λ) and sets pp = (ppSig, ppPKE). B gives
(pp,mpk0,mpk1) to A. B answers queries issued by A as follows.

Signing Query: A sends M ∈ MSPDPKS and index i ∈ {0, 1} to B. B runs (vk, sigk)← Sig.KeyGen
(ppSig), CPKE ← PKE.Enc(PKE.pki, sigk), and Σ ← Sig.Sign(sigk,M). B returns dpk =
(vk, CPKE) and Σ to A.

Finally, A outputs dpk∗ = (vk∗, C∗
PKE). Since DpkCheck(pp,mpk0,msk0, dpk

∗) = 1 and DpkCheck(pp,
mpk1,msk1, dpk

∗) = 1 hold, the decryption results of C∗
PKE by using PKE.dk0 and PKE.dk1 are both

non-⊥. B outputs C∗
PKE and breaks strong robustness.

13In our construction, DpkCheck is a probabilistic algorithm though it is a deterministic algorithm in the original
definition. This difference does not affect the security.
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Theorem 2. The proposed construction is strongly unforgeable for outsider if the underlying PKE
scheme is CCA secure and the underlying signature scheme is S-CEO secure and strongly unforge-
able.

Before giving our security proof, we give an intuition of the proof. Let dpk∗ = (vk∗, C∗
PKE) where

C∗
PKE is a ciphertext of sigk∗. Our final goal is to reduce strong unforgeability. Then, the challenger

of the signature scheme sends the challenge verification key vk∗ to the reduction algorithm. Since
C∗
PKE is a ciphertext of sigk∗, the reduction algorithm cannot produce dpk∗. Thus, before reducing

to strong unforgeability, we replace C∗
PKE to a ciphertext of 0|sigk| due to the IND-CCA security of

the PKE scheme. Here, we implicitly assume that for any (vk, sigk) ← Sig.KeyGen(ppSig), |sigk| is
the same.14 Now, the reduction algorithm can produce dpk∗ by obtaining vk∗ from the challenger
of the signature scheme and by computing C∗

PKE ← PKE.Enc(PKE.pk, 0|sigk|). The remaining issue
is how to respond a derived public key check query and a derived secret key corruption query for
dpk = (vk, C∗

PKE) where vk ̸= vk∗ but vk is a valid verification key relative to sigk∗. Since the
reduction algorithm needs to return 1 for the derived public key check query dpk, the reduction
algorithm needs to return sigk∗ for the derived secret key corruption query dpk. Thus, we need to
guarantee that A does not produce such a dpk. Now, it is the turn of the S-CEO security. If an
adversary produces such a dpk, the reduction algorithm outputs vk that breaks the S-CEO security.
Finally, we show that an algorithm exists that breaks strong unforgeability of the signature scheme.

Proof. We use a game sequence Game0, Game1, and Game2. Let Ei be an event that A wins in
Gamei.

Game0. This is the security game of outsider strong unforgeability. By definition,

Advoutsider-strong-unforgeA,PDPKS (λ) = Pr[E0]

Game1. This is the same as Game0 except that C∗
PKE is replaced by a ciphertext of 0|sigk

∗|. We
show that there exists an algorithm B1 such that |Pr[E0] − Pr[E1]| ≤ AdvIND-CCA

B1,PKE (λ) as follows.
Let A be an adversary of the outsider strong unforgeability and C be the challenger of the PKE
scheme. C generates ppPKE ← PKE.Setup(1λ) and (PKE.pk,PKE.dk) ← PKE.KeyGen(ppPKE), and
gives (ppPKE,PKE.pk) to B1. B1 runs ppSig ← Sig.Setup(1λ) and sets pp = (ppSig, ppPKE) and

mpk = PKE.pk. B1 runs (vk∗, sigk∗) ← Sig.KeyGen(ppSig) and sends (M∗
0 ,M

∗
1 ) = (sigk∗, 0|sigk

∗|)

to C as the challenge query. C chooses b
$←− {0, 1}, computes the challenge ciphertext C∗

PKE ←
PKE.Enc(PKE.pk,M∗

b ), and returns C∗
PKE to B1. B1 sets dpk∗ = (vk∗, C∗

PKE) and gives (pp,mpk, dpk∗)
to A. B1 initializes Ldpk = {dpk∗}. B1 answers queries issued by A as follows.

Derived Public Key Check Query: A sends dpk = (vk, CPKE) to B1. If dpk = dpk∗, then B1
returns 1. Otherwise, if dpk ̸= dpk∗ and CPKE = C∗

PKE, then B1 chooses m
$←− MSSig. If

Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 1, then B1 updates Ldpk ← Ldpk ∪ {dpk} and returns
1. Otherwise, B1 returns 0. If vk ̸= vk∗ and CPKE ̸= C∗

PKE, B1 sends CPKE to C as a
decryption query. C returns sigk ← PKE.Dec(PKE.dk, CPKE) to B1. B1 returns 0 if sigk = ⊥.
If sigk ̸= ⊥, B1 chooses m

$←− MSSig. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 1, then B1
updates Ldpk ← Ldpk ∪ {dpk} and returns 1. Otherwise, B1 returns 0.

Derived Secret Key Corruption Query: A sends dpk = (vk, CPKE) where dpk ∈ Ldpk \{dpk∗}.
If dpk ̸= dpk∗ and CPKE = C∗

PKE, then B1 choosesm
$←− MSSig. If Sig.Verify(vk,m, Sig.Sign(sigk∗,

14This is not a strong requirement. Even if each signing key has a different size, we can artificially add some
paddings.
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m)) = 1, then B1 returns sigk∗, and Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 0, then B1 returns
⊥. If dpk ̸= dpk∗ and CPKE ̸= C∗

PKE, then B1 sends CPKE to C as a decryption query. C
returns sigk ← PKE.Dec(PKE.dk, CPKE) to B1. B1 returns ⊥ if sigk = ⊥. Otherwise, B1
chooses m

$←− MSSig and returns sigk to A if Sig.Verify(vk,m, Sig.Sign(sigk,m)) = 1, and ⊥ if
Sig.Verify(vk,m, Sig.Sign(sigk,m)) = 0.

Signing Query: A sends M ∈ MSPDPKS and dpk = (vk, CPKE) ∈ Ldpk to B1. Since dpk ∈ Ldpk,
A has sent dpk as a derived public key check query, and B1 retrieves dsk = sigk by internally
issuing a derived secret key corruption query or uses sigk if A has issued dpk as a derived
secret key corruption query. B1 returns Σ← Sig.Sign(sigk,M).

If b = 0, then B1 simulates Game0 and if b = 1, B1 simulates Game1. Thus, |Pr[E0]−Pr[E1]| ≤
AdvIND-CCA

B1,PKE (λ) holds.

Game2. This is the same as Game1 except that the response of derived public key check queries
is changed. Let dpk = (vk, CPKE) be a derived public key check query. If vk ≠ vk∗, CPKE =
C∗
PKE, and Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 1 holds for a random choice of m ∈ MSSig, then

the challenger output 0. If this event does not happen, Game1 and Game2 are identical. Thus,
|Pr[E1]−Pr[E2]| ≤ Pr[E] holds where Pr[E] is the probability that the event happens. We show that
Pr[E] is negligible if Sig provides the S-CEO security as follows. Let A be an adversary of outsider
strong unforgeability and C be the challenger of the signature scheme. We construct an algorithm
B2 that breaks the S-CEO security if the event happens as follows. C runs ppSig ← Sig.Setup(1λ)

and (vk∗, sigk∗)← Sig.KeyGen(ppSig) and sends (ppSig, vk
∗) to B2. B2 runs ppPKE ← PKE.Setup(1λ)

and (PKE.pk,PKE.dk) ← PKE.KeyGen(ppPKE), computes C∗
PKE ← PKE.Enc(PKE.pk, 0|sigk|), sets

pp = (ppSig, ppPKE), mpk = PKE.pk, and dpk∗ = (vk∗, C∗
PKE), and gives (pp,mpk, dpk∗) to A. B2

initializes Ldpk = {dpk∗}. B2 answers queries issued by A as follows.

Derived Public Key Check Query: A sends dpk = (vk, CPKE) to B2. If dpk = dpk∗, then B1
returns 1. Otherwise, if dpk ̸= dpk∗ and CPKE = C∗

PKE, then B2 chooses m
$←− MSSig and sends

m to C as a signing query. C returns Σ← Sig.Sign(sigk∗,m). If Sig.Verify(vk,m,Σ) = 1 (i.e.,
the event happens), then B2 updates Ldpk ← Ldpk ∪ {dpk}, outputs (vk,m,Σ) that breaks
the S-CEO security. Otherwise, B2 computes sigk ← PKE.Dec(PKE.dk, CPKE). B2 returns 0

if sigk = ⊥. Otherwise, B2 chooses m
$←− MSSig. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 1,

then B2 updates Ldpk ← Ldpk ∪ {dpk} and returns 1. Otherwise, B2 returns 0.

Derived Secret Key Corruption Query: A sends dpk = (vk, CPKE) where where dpk ∈ Ldpk \
{dpk∗}. If dpk ̸= dpk∗ and CPKE = C∗

PKE, then B2 has broken the S-CEO security. Otherwise,
B2 computes sigk← PKE.Dec(PKE.dk, CPKE) and returns sigk to A.

Signing Query: A sends M ∈ MSPDPKS and dpk = (vk, CPKE) ∈ Ldpk to B2. If dpk = dpk∗,
then B2 sends M to C as a signing query, obtains Σ, and returns Σ. Otherwise, B2 retrieves
dsk = sigk by internally issuing a derived secret key corruption query or uses sigk if A has
issued dpk as a derived secret key corruption query. B2 returns Σ← Sig.Sign(sigk,M).

If the event happens, then B2 breaks the S-CEO security. Thus, Pr[E] ≤ AdvS-CEO
B2,Sig (λ) holds.

Finally, in Game2, we construct an algorithm B3 that breaks strong unforgeability, i.e., Pr[E2] ≤
AdvstrongB3,Sig

(λ), as follows. In this game, B3 returns 0 for a derived public key check query dpk
where dpk ̸= dpk∗ and CPKE = C∗

PKE due to the modification of the previous game. Let A be
an adversary of outsider strong unforgeability and C be the challenger of the signature scheme. C
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runs ppSig ← Sig.Setup(1λ) and (vk∗, sigk∗) ← Sig.KeyGen(ppSig) and sends (ppSig, vk
∗) to B3. B3

runs ppPKE ← PKE.Setup(1λ) and (PKE.pk,PKE.dk) ← PKE.KeyGen(ppPKE), computes C∗
PKE ←

PKE.Enc(PKE.pk, 0|sigk|), sets pp = (ppSig, ppPKE), mpk = PKE.pk, and dpk∗ = (vk∗, C∗
PKE), and

gives (pp,mpk, dpk∗) to A. B3 initializes Ldpk = {dpk∗}. B3 answers queries issued by A as follows.

Derived Public Key Check Query: A sends dpk = (vk, CPKE) to B3. If dpk = dpk∗, then B3
returns 1. Otherwise, if dpk ̸= dpk∗ and CPKE = C∗

PKE, then B3 returns 0. Otherwise, B3
computes sigk ← PKE.Dec(PKE.dk, CPKE). B3 returns 0 if sigk = ⊥. Otherwise, B3 chooses

m
$←− MSSig. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 1, then B3 updates Ldpk ← Ldpk ∪{dpk}

and returns 1. Otherwise, B3 returns 0.

Derived Secret Key Corruption Query: A sends dpk = (vk, CPKE) where where dpk ∈ Ldpk \
{dpk∗}. If dpk ̸= dpk∗ and CPKE = C∗

PKE, then B3 returns ⊥. Otherwise, B3 computes
sigk← PKE.Dec(PKE.dk, CPKE) and returns sigk.

Signing Query: A sends M ∈ MSPDPKS and dpk = (vk, CPKE) ∈ Ldpk to B3. If dpk = dpk∗, then
B3 sends M to C as a signing query. C returns Σ ← Sig.Sign(sigk∗,M) to B3. B3 returns Σ
to A. Otherwise, B3 retrieves dsk = sigk by internally issuing a derived secret key corruption
query or uses sigk if A has issued dpk as a derived secret key corruption query. B3 returns
Σ← Sig.Sign(sigk,M).

Finally, A outputs (M∗,Σ∗). B3 outputs (M∗,Σ∗) as a forgery and breaks strong unforgeability.

Now, we have

Advoutsider-strong-unforgeA,PDPKS (λ) = Pr[E0]

= Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]

≤ |Pr[E0]− Pr[E1]|+ |Pr[E1]− Pr[E2]|+ Pr[E2]

≤ |Pr[E0]− Pr[E1]|+ Pr[E] + Pr[E2]

≤ AdvIND-CCA
B1,PKE (λ) + AdvS-CEO

B2,Sig (λ) + AdvstrongB3,Sig
(λ)

This concludes the proof.

Theorem 3. The proposed construction is unlinkable if the underlying signature scheme is S-CEO
secure and the underlying PKE scheme is CCA secure and key private.

Before giving our security proof, we give an intuition of the proof. Basically, for the challenge
derived public key dpk∗ = (vk∗, C∗

PKE), no information of mpk is revealed if the PKE scheme is
key private. However, if an adversary issues a derived public key check query dpk = (vk, C∗

PKE)
and i ∈ {0, 1} where vk ̸= vk∗, the reduction algorithm needs to know not only whether vk is a
valid verification key relative to sigk∗ but also C∗

PKE is generated by mpki or not. This implies the
reduction algorithm breaks key privacy without using the adversary, and the reduction algorithm
fails the simulation. Thus, we need to change the game description where the reduction algorithm
returns 0 for a derived public key check query dpk = (vk, C∗

PKE) if vk ̸= vk∗ regardless of i. Here,
the reduction algorithm can respond 0 to the query regardless of i if vk is not a valid verification
key relative to sigk∗. Here, if vk is a valid verification key relative to sigk∗, then we can construct an
algorithm that breaks the S-CEO security, as in the security proof of outsider strong unforgeability.
Thanks to the game modifications, the reduction algorithm (for key privacy) responds 0 for a
derived public key check query dpk = (vk, C∗

PKE) regardless of i.
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Proof. We use a game sequence Game0, Game1, and Game2. Let Ei be an event that A wins in
Gamei.

Game0. This is the security game of unlinkability. By definition,

AdvunlinkA,PDPKS(λ) = |Pr[E0]− 1/2|

Game1. This is the same as Game0 except that C∗
PKE is replaced by a ciphertext of 0|sigk

∗|. We
show that there exists an algorithm B1 such that |Pr[E0] − Pr[E1]| ≤ AdvIND-CCA

B1,PKE (λ) as follows.
Let A be an adversary of unlinkability and C be the challenger of the PKE scheme. Note that the
definition of key privacy contains CCA security but here C is the IND-CCA challenger. C generates
ppPKE ← PKE.Setup(1λ) and (PKE.pk,PKE.dk)← PKE.KeyGen(ppPKE), and gives (ppPKE,PKE.pk)

to B1. B1 runs ppSig ← Sig.Setup(1λ) and sets pp = (ppSig, ppPKE). B1 chooses b′′
$←− {0, 1} and

sets mpkb′′ = PKE.pk. B1 runs (mpk1−b′′ ,msk1−b′′) ← PKE.KeyGen(ppPKE). B1 runs (vk∗, sigk∗) ←
Sig.KeyGen(ppSig) and sends (M∗

0 ,M
∗
1 ) = (sigk∗, 0|sigk

∗|) to C as the challenge query. C chooses

b
$←− {0, 1}, computes the challenge ciphertext C∗

PKE ← PKE.Enc(PKE.pk,M∗
b ), and returns C∗

PKE

to B1. B1 sets dpk∗ = (vk∗, C∗
PKE) and gives (pp,mpk0,mpk1, dpk

∗) to A. B1 initializes Ldpk,0 := ∅
and Ldpk,1 := ∅. B1 answers queries issued by A as follows.

Derived Public Key Check Query: A sends dpk ̸= dpk∗ and index i ∈ {0, 1} to B. Let dpk =
(vk, CPKE). If dpk ̸= dpk∗ and CPKE = C∗

PKE, B1 returns 0 if i ̸= b′′. Otherwise, if i = b′′,

then B1 chooses m
$←− MSSig. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 1, then B updates

Ldpk,i ← Ldpk,i ∪ {dpk} and returns 1. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 0, then B1
returns 0. If CPKE ̸= C∗

PKE and i = b′′, B1 sends CPKE to C as a decryption query. C returns
sigk ← PKE.Dec(PKE.dk, CPKE) to B1. B1 returns 0 if sigk = ⊥. Otherwise, B1 chooses

m
$←− MSSig. If Sig.Verify(vk,m, Sig.Sign(sigk,m)) = 1, then B1 updates Ldpk,i ← Ldpk,i∪{dpk}

and returns 1. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 0, then B1 returns 0. If CPKE ̸= C∗
PKE

and i ̸= b′′, B1 computes sigk ← PKE.Dec(msk1−b′′ , CPKE). B1 chooses m
$←− MSSig. If

Sig.Verify(vk,m, Sig.Sign(sigk,m)) = 1, then B1 updates Ldpk,i ← Ldpk,i ∪ {dpk} and returns
1. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 0, then B1 returns 0.

Derived Secret Key Corruption Query: A sends dpk ∈ Ldpk,0 ∪ Ldpk,1 to B. Let dpk =
(vk, CPKE). If dpk ̸= dpk∗, CPKE = C∗

PKE, B1 returns sigk∗ to A. If CPKE ̸= C∗
PKE and i = b′′,

B1 sends CPKE to C as a decryption query. C returns sigk← PKE.Dec(PKE.dki, CPKE) to B1. B
returns sigk to A. If CPKE ̸= C∗

PKE and i ̸= b′′, B1 computes sigk← PKE.Dec(msk1−b′′ , CPKE)
and returns sigk.

Signing Query: A sends M ∈ MSPDPKS and dpk ∈ Ldpk,0 ∪ Ldpk,1 ∪ {dpk∗} to C. Let dpk =
(vk, CPKE). If CPKE = C∗

PKE and i = b′′, then B1 returns Σ ← Sig.Sign(sigk∗,M). Otherwise,
B1 retrieves dsk = sigk by internally issuing a derived secret key corruption query or uses sigk
if A has issued dpk as a derived secret key corruption query. B1 returns Σ← Sig.Sign(sigk,M).

If b = 0, then B1 simulates Game0 and if b = 1, B1 simulates Game1. Thus, |Pr[E0]−Pr[E1]| ≤
AdvIND-CCA

B1,PKE (λ) holds.

Game2. This is the same as Game1 except that the response of derived public key check queries is
changed. Let dpk = (vk, CPKE) be a derived public key check query. If vk ̸= vk∗, CPKE = C∗

PKE,
and Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 1 holds for a random choice of m ∈ MSSig, then the
challenger outputs 0 for a derived public key check query. If this event does not happen, Game1
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and Game2 are identical. Thus, |Pr[E1] − Pr[E2]| ≤ Pr[E] holds where Pr[E] is the probability
that the event happens. We show that Pr[E] is negligible if Sig provides the S-CEO security as
follows. Let A be an adversary of unlinkability and C be the challenger of the signature scheme.
We construct an algorithm B2 that breaks the S-CEO security if the event happens as follows.
C runs ppSig ← Sig.Setup(1λ) and (vk∗, sigk∗) ← Sig.KeyGen(ppSig) and sends (ppSig, vk

∗) to B2.
B2 chooses b′′

$←− {0, 1}, runs ppSig ← Sig.Setup(1λ), (mpkb′′ ,mskb′′) ← PKE.KeyGen(ppPKE), and

(mpk1−b′′ ,msk1−b′′) ← PKE.KeyGen(ppPKE), computes C∗
PKE ← PKE.Enc(mpkb′′ , 0

|sigk|), sets pp =
(ppSig, ppPKE) and dpk∗ = (vk∗, C∗

PKE), and gives (pp,mpk0,mpk1, dpk
∗) to A. B2 initializes Ldpk,0 :=

∅ and Ldpk,1 := ∅. B2 answers queries issued by A as follows.

Derived Public Key Check Query: A sends dpk ̸= dpk∗ and index i ∈ {0, 1} to B2. Let
dpk = (vk, CPKE). If dpk ̸= dpk∗, CPKE = C∗

PKE, B2 returns 0 if i ̸= b′′. Otherwise, if

i = b′′, then B2 chooses m
$←− MSSig and sends m to C as a signing query, and obtains Σ. If

Sig.Verify(vk,m,Σ) = 1 (i.e., the event happens), then B2 updates Ldpk,i ← Ldpk,i ∪ {dpk},
outputs (vk,m,Σ) that breaks the S-CEO security. If Sig.Verify(vk,m,Σ) = 0, then B2 returns
0. If CPKE ̸= C∗

PKE, B2 computes sigk ← PKE.Dec(mski, CPKE). B2 outputs 0 if sigk = ⊥.
Otherwise, B2 chooses m

$←− MSSig. If Sig.Verify(vk,m, Sig.Sign(sigk,m)) = 1, then B2 updates
Ldpk,i ← Ldpk,i ∪ {dpk} and returns 1. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 0, then B2
returns 0.

Derived Secret Key Corruption Query: A sends dpk ∈ Ldpk,0 ∪ Ldpk,1 to B2. Let dpk =
(vk, CPKE). If dpk ̸= dpk∗, CPKE = C∗

PKE, and i = b′′, B2 has broken the S-CEO security.
Now, CPKE ̸= C∗

PKE. B2 computes sigk← PKE.Dec(mski, CPKE) and returns sigk.

Signing Query: A sends M ∈ MSPDPKS and dpk ∈ Ldpk,0 ∪ Ldpk,1 ∪ {dpk∗} to B2. Let dpk =
(vk, CPKE). If dpk = dpk∗, then B2 returns Σ ← Sig.Sign(sigk∗,M). Otherwise, B2 retrieves
dsk = sigk by internally issuing a derived secret key corruption query or uses sigk if A has
issued dpk as a derived secret key corruption query. B2 returns Σ← Sig.Sign(sigk,M).

If the event happens, then B2 breaks the S-CEO security. Thus, Pr[E] ≤ AdvS-CEO
B2,Sig (λ) holds.

Finally, in Game2, we construct an algorithm B3 that breaks key privacy, i.e., |Pr[E2]− 1/2| ≤
AdvKey-Privacy

B3,PKE
(λ), as follows. Let A be an adversary and C be the challenger of the PKE scheme.

C generates ppPKE ← PKE.Setup(1λ), (PKE.pk0,PKE.dk0) ← PKE.KeyGen(ppPKE), and (PKE.pk1,
PKE.dk1) ← PKE.KeyGen(ppPKE), and gives (ppPKE,PKE.pk0,PKE.pk1) to B3. B3 runs ppSig ←
Sig.Setup(1λ) and (vk∗, sigk∗)← Sig.KeyGen(ppSig). B3 sends 0|sigk

∗| to C as the challenge plaintext.

C chooses b
$←− {0, 1}, computes the challenge ciphertext C∗

PKE ← PKE.Enc(PKE.pkb, 0
|sigk∗|), and

gives C∗
PKE to B3. B3 sets pp = (ppSig, ppPKE), (mpk0,mpk1) = (PKE.pk0,PKE.pk1), and dpk∗ =

(vk∗, C∗
PKE), and sends (pp,mpk0,mpk1, dpk

∗) to A. B3 initializes Ldpk,0 := ∅ and Ldpk,1 := ∅. B3
answers queries issued by A as follows.

Derived Public Key Check Query: A sends dpk ̸= dpk∗ and index i ∈ {0, 1} to B3. Let
dpk = (vk, CPKE). If dpk ̸= dpk∗ and CPKE = C∗

PKE, then B3 returns 0 regardless of i due to
the modification of the previous game. If CPKE ̸= C∗

PKE, B3 sends (CPKE, i) to C as a decryption
query where dpk ∈ Ldpk,i. C returns sigk ← PKE.Dec(PKE.dki, CPKE) to B3. B3 returns 0 if

sigk = ⊥. Otherwise, B3 chooses m
$←− MSSig. If Sig.Verify(vk,m, Sig.Sign(sigk,m)) = 1, then

B3 updates Ldpk,i ← Ldpk,i ∪ {dpk} and returns 1. If Sig.Verify(vk,m, Sig.Sign(sigk∗,m)) = 0,
then B3 returns 0.
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Derived Secret Key Corruption Query: A sends dpk ∈ Ldpk,0 ∪ Ldpk,1 to B3. Let dpk =
(vk, CPKE). Note that if CPKE = C∗

PKE (i.e., vk ̸= vk∗), then dpk ̸∈ Ldpk,0 ∪ Ldpk,1. Thus, we
consider the case that CPKE ̸= C∗

PKE. B3 sends (CPKE, i) to C as a decryption query where
dpk ∈ Ldpk,i. C returns sigk← PKE.Dec(PKE.dki, CPKE) to B3. B3 returns sigk to A.

Signing Query: A sends M ∈ MSPDPKS and dpk ∈ Ldpk,0 ∪ Ldpk,1 ∪ {dpk∗} to C. If dpk = dpk∗,
then B3 returns Σ ← Sig.Sign(sigk∗,M). Otherwise, B3 retrieves dsk = sigk by internally
issuing a derived secret key corruption query or uses sigk if A has issued dpk as a derived
secret key corruption query. B3 returns Σ← Sig.Sign(sigk,M).

Finally, A outputs b′ ∈ {0, 1}. B3 outputs b′ and breaks key privacy with the advantage at least
AdvunlinkA,PDPKS(λ). Thus, |Pr[E2]− 1/2| ≤ AdvKey-Privacy

B3,PKE
(λ) holds.

Now, we have

AdvunlinkA,PDPKS(λ) = |Pr[E0]− 1/2|
= |Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]− 1/2|
≤ |Pr[E0]− Pr[E1]|+ |Pr[E1]− Pr[E2]|+ |Pr[E2]− 1/2|
≤ |Pr[E0]− Pr[E1]|+ Pr[E] + |Pr[E2]− 1/2|

≤ AdvIND-CCA
B1,PKE (λ) + AdvS-CEO

B2,Sig (λ) + AdvKey-Privacy
B3,PKE

(λ)

This concludes the proof.

6 One-time PDPKS

Liu et al. [37] mentioned that “Note that the concept of PDPKS is motivated by the security and
privacy problems in cryptocurrency, where it is suggested that each public/verification key, as the
coin address, is used only once. But in this paper we do not restrict the concept to one-time
signature scheme, which requires that for each public key the signing oracle can be queried at most
once. Our proposed PDPKS requires stronger security, namely, even if the users use the freshly
derived key pairs multiple times, the system is still safe.”. Thus, in their security model (and our
outsider strong unforgeability), an adversary A is allowed to issue signing queries (dpk∗,M) in
multiple times.

Again, each dpk is used only once as a coin-receiving address, and each fresh dpk is a different
value (if a different randomness is used for key derivation). From this perspective, we can define
a one-time variant of outsider strong unforgeability where A is allowed to issue a signing query
(dpk∗,M) only once. Intuitively, we can employ a one-time signature scheme instead of a signa-
ture scheme that seems effective to improve the efficiency of PDPKS schemes instantiated via the
proposed generic construction. For example, with the Cremers et al.’s conversion [21] to add the
S-CEO security, we may be able to employ the DL based Groth strongly unforgeable one-time
signature scheme [30, 48] or the lattice-based Lyubashevsky-Micciancio strongly unforgeable one-
time signature scheme [39]. However, in the security proof of outsider strong unforgeability, the
reduction algorithm B2 may issue signing queries to the challenger more than once. Concretely, let
A issue dpk = (vk, C∗

PKE) where vk ̸= vk∗ as a derived public key check query (resp. a derived secret
key key query). Then, B2 sends m to C as a signing query and obtains Σ. If Sig.Verify(vk,m,Σ) = 1
holds, then B2 breaks the S-CEO security. However, if Sig.Verify(vk,m,Σ) = 0, then B2 returns
0 (resp. ⊥) to A and the game goes on. Later, if A issues a signing query (dpk∗,M), then B2
needs to send a signing query M to C but it is prohibited if the signature scheme is restricted as
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one-time use. The same thing happens in the proof of unlinkability. Thus, though one-time PDPKS
seems sufficient for cryptocurrency applications such as stealth address and deterministic wallet,
our generic construction is currently not applicable for instantiating a one-time PDPKS scheme.
We leave how to construct an efficient one-time PDPKS scheme is left as a future work of this
paper.

7 Conclusion

In this paper, we introduced consistency and outsider strong unforgeability, and proposed a generic
construction of PDPKS from signatures and PKE. To the best of our knowledge, no isogeny-
based CCA secure key private PKE scheme has been proposed so far. Thus, currently our generic
construction does not give an isogeny-based PDPKS scheme. Das et al. [23] proposed an isogeny-
based deterministic threshold wallet. Though the functionality is incompatible to PDPKS, their
construction technique may be applicable to PDPKS. We leave it as a future work of this paper.
Zhu et al. [49] investigated universal composability (UC) of PDPKS and showed that the game-
based definitions (unforgeability and unlinkability) given by Liu t al. [37] and the UC-security of
PDPKS are equivalent. Since we gave a new security definition of PDPKS, it would be desirable
to investigate whether our definition is still equivalent to the UC-security or not. We leave it as a
future work of this paper.
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Appendix

In this Appendix, we introduce the construction methodology of Liu et al. [37] which may help the
reader to understand their scheme. They pointed out that IBS is a promising tool to construct
PDPKS but required a special property, that they called MPK-pack-able property. Briefly, it
requires that there exists a function F and a verification algorithm VerifyF , where, for an identity
ID and a message-signature pair (M,σ),

VerifyF (F (IBS.mpk, ID),M, σ) = IBS.Verify(IBS.mpk, ID,M, σ)

holds and no information of IBS.mpk is leaked from F (IBS.mpk, ID). The main reason why Liu et al.
introduced the MPK-pack-able property is the verification algorithm of IBS needs to take the corre-
sponding master public key that violates the unlinkability. Intuitively, for (IBS.mpkB, IBS.mskB)←
IBS.MasterKeyGen(ppIBS), where ppIBS is a common parameter, a payee Bob sets mpkB = IBS.mpkB
and mskB = IBS.mskB. A payer Alice computes F (mpk, ID) for some ID, and sets dpkA =
F (mpkB, ID). Bob generates IBS.sk ← IBS.KeyDer(mpkB,mskB, ID) and sets dskB = IBS.sk.
Then, due to the MPK-pack-able property, an IBS signature σ generated by dskB can be verified
by dpkA = F (mpkB, ID) and information of mpkB is not leaked from dpkA.
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The last piece is how Bob to know ID and how Bob to check the validity of dpkA. Liu et al.
implicitly employed non-interactive key exchange (NIKE) [26].15 By using a NIKE protocol, the con-
struction idea of Liu et al. is explained as follows. A payee Bob sets mpkB = (IBS.mpkB,NIKE.pkB)
and mskB = (IBS.mskB,NIKE.skB). A payer Alice generates a fresh key pair (NIKE.pkA,NIKE.skA)
and computes a shared key shkAB by (NIKE.skA,NIKE.pkB). Let F = (Commit,ComOpen) be a
commitment scheme. Alice sets

dpkA = (c,NIKE.pkA)

where c = Commit(mpkB, shkAB), i.e., the shared key shkAB is set as the decommit (and ID in
the above explanation). Due to the hiding property of the commitment scheme, no information of
mpkB is leaked from c. Moreover, NIKE.pkA is independent of mpkB. Due to the binding property
of the commitment scheme, mpkB is linked to c. Bob also generates shkAB by (NIKE.pkA,NIKE.skB)
and checks whether c is a commitment of mpkB by ComOpen(mpkB, shkAB, c). To support the con-
dition VerifyF (Commit(mpkB, shkAB),M, σ) = IBS.Verify(IBS.mpkB, shkAB,M, σ), the MPK-pack-
able property has the central roles of this construction methodology.

15Let two users, Alice and Bob, would like to share a key. Then, Alice and Bob generate (NIKE.pkA,NIKE.skA)
and (NIKE.pkB ,NIKE.skB), respectively. Then, a shared key shkAB can be generated by either (NIKE.pkA,NIKE.skB)
or (NIKE.skA,NIKE.pkB) and is indistinguishable from random. In the actual syntax of NIKE, identities (Alice and
Bob here) are also included to generate shkAB . We omit them here.

25


	Introduction
	Background
	Our Motivation
	Our Contribution

	Preliminaries
	Signatures and PKE
	PDPKS

	New Definitions: Consistency and Outsider Strong Unforgeability
	Definition of Consistency
	Definition of Outsider Strong Unforgeability

	Proposed Generic Construction
	Security Analysis
	One-time PDPKS
	Conclusion

