
Simple is COOL: Graded Dispersal and its Applications

for Byzantine Fault Tolerance∗

Ittai Abraham
Intel Labs

ittai.abraham@intel.com

Gilad Asharov
Bar-Ilan University

Gilad.Asharov@biu.ac.il

Anirudh Chandramouli
Bar-Ilan University

Anirudh.Chandramouli@biu.ac.il

December 16, 2024

Abstract

The COOL protocol of Chen (DISC’21) is a major advance that enables perfect security for
various tasks (in particular, Byzantine Agreement in Synchrony and Reliable Broadcast in Asyn-
chrony). For an input of size L bits, its communication complexity is O(nL + n2 log n), which is
optimal up to a log n factor. Unfortunately, Chen’s analysis is rather intricate and complex.

Our main contribution is a simple analysis of a new variant of COOL based on elementary
counting arguments. Our main consistency proof takes less than two pages (instead of over 20
pages), making the COOL protocol much more accessible. In addition, the simple analysis allows us
to improve the protocol by reducing one round of communication and reducing the communication
complexity by 40%.

In addition, we suggest a new way of extracting the core properties of COOL as a new primitive,
which we call Graded Dispersal. We show how Graded Dispersal can then be used to obtain effi-
cient solutions for Byzantine Agreement, Verifiable Information Dispersal, Gradecast, and Reliable
Broadcast (in both Synchrony and Asynchrony, where appropriate). Our improvement of COOL
directly applies here, and we improve the state-of-the-art in all those primitives by reducing at least
one round and 40% communication.

1 Introduction

Byzantine agreement (BA), introduced by [PSL80, LSP82], is a fundamental problem in distributed
protocol design. It involves n parties, each holding an initial input vi, who must agree on a common
value v. BA requires satisfying two key properties: Agreement, where all honest parties must
output the same value, and Validity, which ensures that if all honest parties begin with the same
initial value v, their output should also be v. These security properties must be guaranteed even in the
presence of up to t corrupted parties, which may deviate arbitrarily from the protocol’s specifications.
This work focuses on perfect security with optimal resilience (t < n/3).

It is known that agreement on a single bit requires Ω(n2) bits of communication when the protocol
is deterministic [DR82], or even randomized, against strongly-adaptive adversaries [ACD+23] (for
any t = O(n)). Moreover, agreeing on an L bit message requires Ω(nL) communication, since we
might have O(n) parties that do not hold the agreed message as input and to receive that message.
Furthermore, it has been shown that for any Byzantine agreement protocol with perfect security, there
exists an execution that requires t + 1 rounds [FL82]. These impossibilities imply that the best one
can hope for is O(nL + n2) for agreeing on a message of size L. However, achieving this bound has
been an elusive goal for extensive research.

The baseline protocol [BGP92] for binary Byzantine agreement has a communication complexity
of O(n2) and runs in Θ(n) rounds. For messages of size L, this implies a communication complexity of

∗Presented at ITCS 2025. Asharov and Chandramouli are supported by the Israel Science Foundation (grant
No. 2439/20), and by JPM Faculty Research Award.

1

O(n2L). Liang and Vaidya [LV11] proposed a protocol with a communication complexity of O(nL+
n4

√
L+n6) communication; Ganesh and Patra [GP21], and Loveless, Dreslinski, and Kasikci [LDK20]

introduced protocols with a complexity of O(nL+n4 log n) communication; Subsequently, Nayak, Ren,
Shi, Vaidya, and Xiang [NRS+20] improved on this with a protocol that achieves O(nL + n3 log n)
communication.

The COOL protocol. The paper of Chen [Che21] further advanced the state of the art by presenting
a deterministic byzantine agreement protocol, named COOL (stands for coded BA protocol), that
achieves O(nL + n2 log n) communication complexity, which is only a logarithmic factor away from
the best possible one can hope for. He shows:

Theorem 1.1 (Byzantine agreement [Che21]). There exists a perfectly secure and deterministic
Byzantine agreement protocol over a synchronous network for messages of size L bits with communi-
cation complexity of O(nL+ n2 log n) with Θ(n) rounds, resilient to t < n/3 malicious faults.

Unfortunately, the analysis in [Che21] is complex and lengthy, making it difficult to understand.
Our goal is to provide a simplified analysis of the protocol, offering new insights into the technique
and its limitations. The COOL approach has already been applied to related primitives, such as
broadcast and gradecast [ZLC23] in the synchronous settings, and reliable broadcast in asynchronous
settings [ADD+22], and holds promise for broader applications as well.

1.1 Our Contributions

In this paper, we provide the following contributions:

Graded dispersal. The COOL protocol of [Che21] is tailored for Byzantine agreement, and its
core was later adopted for reliable broadcast [ADD+22] and gradecast by [ZLC23]. We show that this
core of COOL is essentially a new variant of dispersal (a part of a Verifiable Information Dispersal
protocol [CT05]). We call this new variant graded dispersal. We note that dispersal typically needs a
designated sender; in our abstraction, we assume the parties have already received the message from
some “virtual sender” and wish to verify that they have enough information to retrieve and agree on
it later. Defining this graded dispersal variant allows us to distill the novelty of COOL’s protocol
consistency check and build applications that are based on COOL in a more modular fashion.

Simple analysis. The analysis in [Che21] is rather involved and relies on various tools; cit-
ing [Che21] “the proof borrows tools from coding theory, together with graph theory and linear
algebra”. As mentioned above, this also makes the result hard to verify. We provide a new analysis of
our graded dispersal protocol. Notably, our analysis is significantly more concise, much shorter than
the original COOL analysis, and uses only simple counting. Given the centrality of the result and its
simple analysis, we believe that this protocol will be a good candidate for being part of a curriculum in
distributed computing classes as a prime example of the centrality of polynomials in obtaining efficient
perfect security.

Applications. We show how to apply graded dispersal to achieve the following (1) gradecast
(synchrony); (2) multi-valued Byzantine agreement; (3) broadcast; and (4) reliable broadcast (asyn-
chrony).

Gradecast introduced by Feldman and Micali [FM88] (“graded-broadcast”) is a fundamental prim-
itive used for various consensus algorithms.

Bracha’s Reliable Broadcast [Bra87] is a useful building block in asynchronous protocols. The
recent paper of Das, Xiang, and Ren [DXR22] has a detailed survey of the usefulness of communication-
efficient Reliable Broadcast. In particular, it implies Asynchronous Verifiable Secret Sharing and
Asynchronous Distributed Key Generation [AJM+21].

One round less. Our new protocol reaches agreement faster than the COOL protocol. Specifi-
cally, while COOL requires three rounds of reporting agreements to one another (see more in-depth in

2

section 2), we show that two rounds suffice. This improvement becomes particularly significant when
utilizing the COOL technique in constant round protocols such as reliable broadcast and gradecast -
and improves the state-of-the-art for those primitives.

Less communication. Our new protocol improves the communication complexity by 40%.
Specifically, the protocol of COOL divides the messages into blocks of polynomials of degree d = t/5.
Our protocol works when dividing the messages into blocks of degree d = t/3. Changing the degree
enhances the state-of-the-art in all our applications – multi-valued byzantine agreement, broadcast,
gradecast, and reliable broadcast.

We consolidate the costs of gradecast and reliable broadcast in table 1.

Gradecast (synchrony)

Communication Rounds

[FM88] O(n2L) 2
[AAPP22] O(nL+ n3 log n) 9
[ZLC23] O(nL+ n2 log n) 8

This work O(nL+ n2 log n) 5

Reliable Broadcast (asynchrony)

Communication Rounds

[Bra87] O(n2L) 4
[Pat11] O(nL+ n4 log n) 11

[NRS+20] O(nL+ n3 log n) 7
[ADD+22] O(nL+ n2 log n) 9

This work O(nL+ n2 log n) 6

Table 1: The communication complexity (in bits) and round complexity of our gradecast and reliable broadcast
compared to previous works. We compare here protocols with perfect security and optimal resilience only (see section 2.3
for other settings). The reported numbers of rounds are for non-balanced protocols; Making the protocols balanced
increases the number of rounds by one (except for [FM88, Bra87], which remain the same).

2 Technical Overview

In this section, we provide a technical overview of the different primitives. We denote by n the number
of parties and by t the number of corrupted parties. We assume a finite field F of size at least n+ 1
(and for simplicity, poly(n)). We let t < n/3 bound the number of corrupted parties (corresponding
to optimal resilience in the plain model, that is, in the absence of a PKI).

We consider both synchronous communication, in which protocols proceed in rounds (section 2.1),
and asynchronous communication networks (section 2.2). Messages between honest parties in the
asynchronous network are guaranteed to be delivered, but the adversary can introduce arbitrary
delays.

2.1 Synchrony

The COOL protocol in a nutshell. The protocol of COOL divides the value vi of size L into
blocks, where each block is a polynomial of degree-d over a finite field F. For simplicity of exposition,
assume that L = (d+ 1) log |F| (i.e., we have a single block – one polynomial).

Two parties Pi and Pj that wish to check whether their polynomials fi(x), fj(x) are identical
can do so efficiently using randomization and with a statistical error based on the Schwartz-Zippel
lemma [Sch80, Zip79]. Each pair evaluates its respective polynomials on a random point r ∈ F and
verify that fi(r) = fj(r). This approach was taken in [AA22] for gradecast and reliable broadcast.
The novelty of COOL protocol is that it achieves a similar effect of equality check of polynomials,
deterministically, and error free. Each pair of parties exchange just O(1) points, as in the statistical
case. Specifically, Pi sends to Pj the points fi(i) and fi(j) only, and Pj verifies that those two points
agree with its polynomial fj(x). If a party agrees with n − t parties - then the party is happy. The
protocol proceeds in a few rounds, during which each party reports to others whether it is happy. A
party remains happy if at least n− t parties in its agreement set report they are happy. Interestingly,

3

the proof of COOL shows that after three rounds of repeating this process, all parties that report that
they are happy must hold the same polynomial.

Graded dispersal. We formalize a variant of dispersal, which, as mentioned, distills the consistency
property achieved by COOL. We require the following properties from a graded dispersal protocol.
Each party holds some polynomial fi(x) as input (of degree-d). The parties output (f ′

i(x), gi) where
f ′
i(x) is a polynomial of degree-d (might be ⊥), and gi is a grade in {0, 1, 2}. The guarantees are:
(1) Validity: If all honest parties start with the same polynomial f(x), then they all must output
(f(x), 2); (2) Graded agreement: If some honest party outputs (f(x), 2) then at least t + 1 honest
party output f(x) with a grade at least 1, and all other honest parties output (⊥, 0). Note that we
have no guarantee in the case where no honest party outputs grade 2, i.e., in that case, different honest
parties might have different polynomials as output (with grade 1). Furthermore, our formalization of
graded dispersal allows two honest parties to output grades of 2 and 0, respectively. This is different
from the typical definition of graded primitives (such as gradecast), where if an honest party outputs
grade 2, then all honest parties output a grade at least 1. However, looking ahead, we show that this
weak formalization of graded dispersal suffices for all the applications we consider, including reaching
a full byzantine agreement.

We implement graded-dispersal based on the COOL protocol. The crux of our contribution is in
providing a simple proof for this construction. Moreover, we show we can achieve it in one round of
reporting happiness less than COOL. Specifically, we show that:

1. Initially, only two sets of parties, A and B, holding polynomials fA(x) and fB(x), respectively,
can report that they are happy after the initial pairwise checks. Since two polynomials might
agree on only d common points, three parties holding distinct polynomials cannot have enough
agreements and cannot all be happy. See Claim 3.4.

2. We show that if there is one set of parties A, all holding the same polynomial fA(x) and |A| ≥
t+ 1, then only parties from A can output grade at least 1, and all other parties output (⊥, 0).
Intuitively, if another set of parties B with |B| ≤ t holds polynomial fB(x), then those parties
cannot remain happy due to inconsistencies with the larger set A. See Claim 3.5. Importantly,
a party outputs grade 2 if it is happy and it received at least 2t+ 1 reports from its agreement
set in the last round. This implies that it received at least t+ 1 reports from honest parties. In
that case, a party can output grade 2, and the other happy parties must also hold fA(x), and
we have at least t+ 1 parties with the same (and only) output polynomial, fA(x).

3. If no large set exists, no party outputs grade 2 (no party is happy and received 2t+1 reports of
happiness from its agreed set in the last round). See Claim 3.6.

Our graded dispersal works in three rounds and requires O(nL+ n2 log n) for inputs of size L.

Data dissemination. In section 3.2, we show a protocol that allows parties to reconstruct the
output f(x) once there are at least t + 1 honest parties that hold the same input f(x) (and other
honest parties hold ⊥). Essentially, this is precisely the guarantee we have once one party outputs 2
in the graded dispersal protocol. Simply, each party that has an input f(x) sends to each party Pi its
point f(i). Pi then takes as its point the majority value that it received, and since t+1 honest parties
that hold f(x) and there are at most t corrupted parties, we are guaranteed that the majority of Pi

is f(i). Once each party Pi has a point f(i), the parties reconstruct f by sending their points to one
another and using Reed-Solomon decoding.

Given graded dispersal and data dissemination, we provide three applications in synchrony.

Application I: Gradecast. Gradecast is a relaxation of broadcast and involves a sender that holds
a message M , and all parties output (Mi, gi) with gi ∈ {0, 1, 2}. If the sender is honest, all parties
must output (M, 2). The guarantee is that if one honest party outputs (M, 2), all honest parties must
output (M, gi) with gi ≥ 1. We remark that the definition that we provide is a relaxation of Gradecast
that was formalized by Katz and Koo [KK09], which allows the parties to output different messages

4

when there is no honest party with grade 2 (just as in our graded dispersal). We are unaware of any
application of gradecast in which the relaxed definition does not suffice.

We show how to implement gradecast using graded dispersal and data dissemination. Specifically,
the sender sends its message to all parties, and the parties then run graded-dispersal. After that, they
run data dissemination and output the message they received in the data dissemination with their
grade in the graded dispersal. It is easy to see that the requirements for gradecast are met.

The last round of graded dispersal can be run parallel to the first round of data dissemination,
so we can get a protocol that runs in a total of 5 rounds. This results in an improvement of 3
rounds compared to the state-of-the-art [ZLC23]; yet, our guarantee is slightly weaker. We also show
how to satisfy the [FM88] definition at the expense of adding one more round. We then get a strict
improvement of 2 rounds with the same security definition (and reduce communication by 40%). The
improvement of 2 rounds is due to some redundancy in the protocol of [ZLC23].

We emphasize that the “relaxed” gradecast suffice for all the applications we are aware of, specifi-
cally to achieve broadcast with an expected constant number of rounds (see section 2.3). We therefore
advocate using the relaxed version.

Application II: Multi-Valued Byzantine Agreement. We compose graded-dispersal, with
binary agreement (on whether a party has grade 2), and data dissemination to achieve multi-valued
byzantine agreement. As mentioned, our protocol has one less round than the state-of-the-art and
40% less communication. The protocol runs in O(nL+ n2 log n) with Θ(n) rounds (due to the binary
agreement).

Application III: Broadcast. Again, by composing graded-dispersal, binary agreement, and data
dissemination, we obtain a broadcast protocol that runs in O(nL+n2 log n) communication and Θ(n)
rounds.

For gradecast and broadcast, we also show a variant where the protocol is balanced: each party
sends or receives O(L+ n log n), and there is no party whose communication load is higher than the
others. This comes at the expense of adding an extra round.

2.2 Asynchrony

In reliable broadcast, there is a sender who holds a message M . If the sender is honest, then the
protocol always terminates, and all honest parties must output M . If the sender is corrupted and the
honest parties terminate, then they must all output the same message M ′. Note that the protocol
might not terminate if the sender is not honest.

Based upon graded dispersal in synchrony, we show a dispersal protocol in asynchrony (section 4.1).
We show perfect asynchronous data dissemination which has a weak agreement property. Our protocol
and formalization is identical to that of [DXR21] and we present it here for completeness of our result.

We have to add one more round than synchrony to guarantee the termination of honest parties for
the honest sender case. We also provide an asynchronous variant of data dissemination (section 4.2).
Combining those primitives, we obtain a reliable broadcast.

Our reliable broadcast is deterministic and runs in 6 rounds. This is an improvement of 3 rounds,
in addition to 40% reduced communication, compared to [ADD+22] that is based on COOL. See sec-
tion 4.3 for the protocol, and table 1 for the improvements over previous protocols.

2.3 Related Work

All our protocols are deterministic and error-free. The applications we are considering (broadcast,
multi-valued BA, gradecast, and reliable broadcast) were also studied in different settings.

Protocols with an expected number of rounds. As mentioned, broadcast and byzantine agree-
ment in that setting must incur Ω(n) rounds [FL82]. The broadcast and byzantine agreement presented
in our paper achieves O(n) rounds in the worst case. Rabin [Rab83] and Ben-Or [Ben83] studied the

5

Graded Dispersal

Sec. 3.1

O(nL+ n2 log n)

3 rounds

Data Dissemination
Sec. 3.2

O(nL+ n2 log n)

2 rounds

Binary Byzantine

Agreement [BGP92]

O(n2)

RBA rounds

Gradecast
Sec. 3.3

O(nL+ n2 log n)

5 rounds

Multi-Valued BA
Sec. 3.4

O(nL+ n2 log n)

5 +RBA rounds

Broadcast
Sec. 3.5

O(nL+ n2 log n)

5 +RBA rounds

(a) Synchrony

Asynchronous

Dispersal

Sec. 4.1

O(nL+ n2 log n)

4 rounds

Asynchronous

Data Dissemination
Sec. 4.2

O(nL+ n2 log n)

2 rounds

Reliable Broadcast
Sec. 4.3

O(nL+ n2 log n)

6 rounds

(b) Asynchrony

Figure 1: A roadmap of the paper, and the different primitives we construct. Next to each primitive, we report the
round complexity and the communication complexity. When reporting the number of rounds – we report for a non-
balanced protocol variation. Making each protocol balanced requires one more round of communication.

effect of randomization on round complexity, and Feldman and Micali [FM88] gave the first protocol
with an expected constant round protocol for byzantine agreement with optimal resilience. Many
works have improved the communication complexity of expected constant round Byzantine agreement
protocols with optimal resilience [KK06, NRS+20, AAPP22, AC24] where the current state of the art
is O(nL+n3 log2 n) with expected constant number of rounds. We remark that in all those protocols,
the sender first gradecasts its message, and therefore using our improved gradecast (whose relaxed
notion suffices for this application) improves the constant in the “expected constant” of these works.

Gradecast. Gradecast is an important primitive used for various consensus algorithms, e.g., multi-
consensus, approximate agreement [BDH10], or Phase-King [ALP22]. Our round complexity is the
most efficient in the perfect setting. However, the protocol of Abraham and Asharov [AA22] is one
round better at the expense of introducing some error (i.e., statistical security).

Reliable broadcast. In the computational setting, the protocol of Cachin and Tessaro [CT05]
achieves O(nL+ κn2 log n) where κ is the computational security parameter. This is improved by Al-
haddad et al.[ADD+22] to O(nL+n2κ) with 4 rounds of communication. The recent work by Locher
and Shoup looks into the constants and obtains 1.5nL+O(κn2 log n).

Organization

The rest of the paper is organized as follows. The synchronous protocols appear in section 3, and the
asynchronous protocols appear in section 4. See also Figure 1 for the previous primitives and their
interplay.

3 Synchrony

In this section, we provide the protocols for synchronous communication.

Preliminaries. In the analysis, we sometimes use H ⊆ [n] to denote the set of honest parties and
I ⊆ [n] to denote the set of corrupt parties. Our protocols also use Reed Solomon decoding. Let
R = {(i, vi)} denote a set of evaluations of a degree d polynomial over F where up to t of the points
may be incorrect. If |R| > 2t+ d, then there exists an efficient algorithm that upon input R, d and t,
can recover a degree-d polynomial f(x) such that for |R| − t points (i, vi) ∈ R, it holds that f(i) = vi.
We denote this algorithm as RSDec(R).

Communication complexity. In each of our protocols, we assume that the input (either of the
designated sender or each one of the parties) is a polynomial of degree at most d over the field F.

6

For the general case of an L-bit input, the parties segment the L-bit message into ℓ =
⌈

L
(d+1) log |F|

⌉
blocks of (d + 1) log |F| bits each (with appropriate padding for the last block if L is not a multiple
of (d+ 1) log |F|). The parties then execute ℓ instances of the same protocol, where the input for the
mth instance is the mth block interpreted as a polynomial of degree at most d. Aggregation over the
ℓ different executions is performed in a natural way, e.g., a party Pi agrees with Pj if and only if they
agree in all the ℓ instances. We, therefore, omit such details. We report the communication complexity
of our protocols over inputs of size L bits while we present the protocols assuming |L| = (d+1) log |F|.
Additionally, note that log |F| ∈ O(log n) and our communication complexity is reported in that light.

The degree d. We set the degree of our polynomials to be d = ⌊t/3⌋. Looking ahead, we remark
that the only place this is necessary (except for requiring d ≤ t) is in the proof of Claim 3.4.

3.1 Building Block I: Graded Dispersal

We introduce the notion of graded dispersal:

Definition 3.1 (Graded Dispersal). A protocol for parties P1, . . . , Pn where

• Input: Each party Pi holds as input some polynomial fi(x) of degree d over F;.
• Output: An output (fi(x), gi) with grade 2 or 1, or an output (⊥, 0).

is graded dispersal protocol tolerating t malicious parties if the following properties hold:

• Validity: If all honest parties start with the same polynomial f(x), then all output (f(x), 2).

• Weak Graded Agreement: If an honest party outputs (f(x), 2), then at least t + 1 honest
parties output (f(x), gi) with gi ≥ 1, and all other honest parties output (⊥, 0).

Note that if there is no honest party with grade 2 then honest parties with non-⊥ output and grade
1, may disagree on their output value. Moreover, grade 2 does not imply full agreement among the
honest parties.

Nevertheless, we show that this Weak Graded Agreement property is sufficient to work well with
the Data Dissemination protocol (see section 3.2).

Protocol 3.2: Graded Dispersal

Input: Each party Pi holds fi(x) of degree at most d = ⌊t/3⌋ over F to encode d log n bits.
The protocol:

1. Exchange:

(a) Pi sends (fi(i), fi(j)) to each Pj .

2. Dynamic set A1
i :

(a) Let (uj , vj) be the two values that Pi receives from Pj . If fi(j) = uj and vj = fi(i) then
add j to A1

i .

(b) If |A1
i | ≥ n− t then send OK1 to all parties.

3. Dynamic set A2
i :

(a) If OK1 is received from Pj for j ∈ A1
i then add j to A2

i .

(b) If |A2
i | ≥ n− t then send OK2 to all parties.

4. Output:

(a) If sent OK2, and received at least 2t+ 1 messages OK2, then output (fi(x), 2).

(b) If sent OK2, but received ≤ 2t messages OK2, then output (fi(x), 1).

(c) Otherwise, output (⊥, 0).

7

In the COOL protocol, there is an additional round of OK3 messages and the degree is d = ⌊t/5⌋.
In our protocol, there are just two rounds of OK and the degree is d = ⌊t/3⌋. Hence our protocol
reduces the number of rounds from 3 to 2 (by %33) and reduces the overhead per bit from 15 to 9 (by
%40). Note that when L > d log n, only the first round is parallelized.

Theorem 3.3. Protocol 3.2 is a graded-dispersal protocol for messages of size L = d log n bits where
d = ⌊t/3⌋ that is resilient to t = ⌊(n − 1)/3⌋ malicious parties. The protocol runs in 3 rounds and
incurs a total communication of ≤

(
n
2

)
log n+ 2

(
n
2

)
< n2 log n bits.

Proof. We now show that all the properties hold as in Definition 3.1.

Validity. Assume that all honest parties have the same input f(x). For each party Pi, the set A1
i

will contain the set of all honest parties and therefore |A1
i | ≥ n − t and Pi sends OK1. Moreover, it

will receive OK1 from all honest parties; therefore, Pi also sends OK2. We get that all honest parties
send OK2, and consequently, all receive at least 2t+ 1 OK2, so all output (f(x), 2).

Weak graded agreement. If one party outputs (f(x), 2), then there are at least t+1 honest parties
that output (f(x), g) with g ≥ 1, and all the others output (⊥, 0). This is done in 3 steps:

• Claim 3.4 proves that there cannot be three honest parties that hold different inputs, that all
send OK1. Hence there exists at most two inputs fa, fb such that each honest party that sends
OK1 must hold one of these two inputs.

• Given this, Claim 3.5 proves that if there is a set of at least t + 1 honest parties that all have
the same input, then no honest party holding a different input will send OK2.

• Claim 3.6 shows that if there is no set with at least t + 1 honest parties that have the same
input, then no honest party outputs grade 2.

Proof of Weak graded agreement given the Claims 3.4, 3.5, 3.6. If an honest party outputs
grade 2, then from Claim 3.6 we must be in the case where there are at least t + 1 honest parties as
in Claim 3.5 and from that all honest parties that send OK2 (hence output grade 1) must output the
same value.

Proving Claims 3.4, 3.5, 3.6 concludes the proof of the Theorem.

Claim 3.4. There can be at most two distinct inputs, such that there exist honest parties that hold
these inputs and send OK1 messages.

Proof. Seeking a contradiction, assume there exist honest parties Pa, Pb, Pc that hold distinct input
polynomials fa, fb, and fc, such that Pa, Pb, Pc all send OK1 messages.

Let H be the set of all honest parties and let I = [n] \H be the malicious parties.
For any x ∈ {a, b, c} define Sx as the set of all the honest parties that agree with Px:

Sx := A1
x ∩H .

Observe that:

• For any x ∈ {a, b, c}, |Sx| ≥ n− t− |I|. Because if Px sent OK1, it must agree with at least n− t
parties, and thus with at least n− t− |I| honest parties.

• For any x, y ∈ {a, b, c}, |Sx ∩ Sy| ≤ d. Because for any j ∈ Sx ∩ Sy then fx(j) = fj(j) = fy(j).
So if |Sx ∩ Sy| ≥ d + 1 then fx and fy agree on at least d + 1 points, and therefore, must be
identical.

8

So from inclusion-exclusion:

|Sa ∪ Sb ∪ Sc| = |Sa|+ |Sb|+ |Sc| − |Sa ∩ Sb| − |Sa ∩ Sc| − |Sb ∩ Sc|+ |Sa ∩ Sb ∩ Sc|
≥ 3(n− t− |I|)− 3d+ 0 .

Since d = ⌊t/3⌋ so 3d ≤ t:

|Sa ∪ Sb ∪ Sc| ≥ 3n− 3t− 3|I| − t = 3n− 4t− 3|I| .

On the other hand, (Sa ∪ Sb ∪ Sc) ⊆ H, and therefore |Sa ∪ Sb ∪ Sc| ≤ |H| = n− |I|:

3n− 4t− 3|I| ≤ |Sa ∪ Sb ∪ Sc| ≤ n− |I| .

Using n ≥ 3t+ 1 and |I| ≤ t:

2n− 4t ≤ 2|I|
2(3t+ 1)− 4t ≤ 2n− 4t ≤ 2|I| ≤ 2t

2t+ 2 ≤ 2t ,

which is a contradiction.

So let Ta and Tb be the at most two sets of honest parties with inputs fa and fb respectively such
that only members in those sets send OK1. Since A2

j ⊆ A1
j for each honest party Pj then only parties

in Ta or Tb may send OK2.
Assume wlog that |Ta| ≥ |Tb|.
Define:

Ta+ = {i ∈ Ta | fa(i) = fb(i)} , Ta− = Ta \ Ta+ (= {i ∈ Ta | fa(i) ̸= fb(i)}) ,
Tb+ = {i ∈ Tb | fa(i) = fb(i)} , Tb− = Tb \ Tb+ (= {i ∈ Tb | fa(i) ̸= fb(i)}) .

Claim 3.5. If |Ta| ≥ t+ 1 then no party in H \ Ta sends OK2.

Proof. From Claim 3.4, honest parties not in Ta ∪ Tb do not send OK1.
Observe that parties in Tb− do not send OK1. This is because |Ta| ≥ t + 1, all j ∈ Tb− have

fa(j) ̸= fb(j) by definition. Therefore, any j ∈ Tb− cannot receive support from Ta and thus

|A1
j | ≤ n− |Ta| ≤ n− t− 1 < n− t .

Given this, parties in in Tb+ do not send OK2. This is because the only honest parties that can
send OK1 that will be accepted by Tb+ are from Ta+ ∪ Tb+, but |Ta+ ∪ Tb+| ≤ d because otherwise
fa = fb. So for any party j ∈ Tb+ must have

|A2
j | ≤ |Ta+|+ |Tb+|+ |I| ≤ d+ t ≤ 2t < n− t .

Claim 3.6. If |Ta| ≤ t then no party outputs grade 2.

Proof. Observe that the parties in Ta− and Tb− do not send OK2. This is because all parties not in
Ta, Tb do not send OK1, and for x ∈ {a, b}, a party in Tx− can receive OK1 only from Tx and the
corrupted parties. Thus,

|A2
x| ≤ |Tx|+ |I| ≤ t+ t = 2t < n− t .

Given this, only parties in Ta+, Tb+ might send OK2. However, no party can receive 2t + 1 OK2

messages. This is because |Ta+ ∪ Tb+| ≤ d so

|A2
x| ≤ |Ta+|+ |Tb+|+ |I| ≤ d+ t ≤ 2t < n− t .

9

This concludes the proof of Theorem 3.3.

Note: adding one more round. We are unaware of an application that actually requires this
a property, where grade 2 implies that all parties output the same value with grade > 2 (so graded
agreement not just weak graded agreement as in Definition 3.1). Nevertheless, we comment here that
can be obtained by one more round.

To achieve this, parties that receive n−t OK2s send OK3, and then: (1) if Pi sent OK3 and received
2t+1 OK3 it outputs (f(x), 2); (2) otherwise, if it sent OK3 it outputs (f(x), 1); (3) otherwise, (it did
not send OK3) it outputs (⊥, 0).

If all parties start with the same input f(x) then they all send and receive n − t OK3s and all
output (f(x), 2). In addition, if there is no set |Ta| ≥ t+1, then all honest parties must output (⊥, 0).
In this case, Claim 3.6 shows that no party receives 2t+1 OK2; therefore, no honest party sends OK3.

3.2 Building Block II: Data Dissemination

Definition 3.7. A protocol for parties P1, . . . , Pn is where each party Pi has an input fi(x) (of degree
d over field F, might be ⊥) and an output f ′

i(x), is data dissemination protocol tolerating t malicious
parties if it satisfies the following property:

• Output consistency: If there exists a polynomial f∗(x) such that there are at least t + 1
honest parties with the input f∗(x), and all other honest parties start with input ⊥, then all
honest parties output f∗(x).

Protocol 3.8: Data Dissemination

Input: Each party Pi holds fi(x) as input, of degree at most d. Some Pi might have input ⊥.
The protocol:

1. Round I – Exchange: If fi(x) ̸= ⊥, send to each Pj its point fi(j).

2. Round II – Set and send your point: Each party Pi receives messages (u1, . . . , un). Let ui
be the value received at least t+ 1 times. Send ui to all parties.

Output: Let (y1, . . . , yn) be the received values. Run Reed Solomon decoding RSDec on (y1, . . . , yn)
to find a unique polynomial of degree-d f ′

i(x) with at most t errors. Output f ′
i(x). If there is no

unique decoding, output ⊥.

Theorem 3.9. Protocol 3.8 is a data-dissemination protocol tolerating t < n/3 malicious parties (as
per Definition 3.7). The protocol takes two rounds of communication and O(nL+ n2 log n) communi-
cation, where each party starts with an input of size L.

Proof. Assume that t+1 honest parties start with the same input f(x). Each honest party Pj receives
f(j) at least t + 1 times. All other honest parties that hold ⊥ send nothing in the first message.
As such, the majority value of Pj must be f(j), and it sends it to all other parties in the second
round. Therefore, all honest parties must receive (y1, . . . , yn) that is of distance at most t from
(f(1), . . . , f(n)). Since n > 2t+ d, the Reed Solomon decoding guarantees that all output f(x).

Protocol 3.8 as described above incurs a total communication of O(n2 log n) bits and this cor-
responds to the case when each party starts with an input of size (d + 1) log |F| bits. Hence, the
communication complexity of Protocol 3.8, where each party starts with inputs of size L bits, is
O(nL+ n2 log n) bits.

10

3.3 Application I: Gradecast

We now show how the above protocols can be utilized to achieve gradecast.
Gradecast is a relaxation of broadcast introduced by Feldman and Micali in 1988 [FM88]. Our

protocol follows a relaxed notion of Gradecast formalized by Katz and Koo [KK09].

Definition 3.10. A protocol for parties P1, . . . , Pn, where a distinguished sender P ∗ ∈ {P1, . . . , Pn}
holds an initial input M is a gradecast protocol tolerating t malicious parties if the following conditions
hold for any adversary controlling at most t parties:

• Each honest party Pi outputs a message mi and a grade gi ∈ {0, 1, 2}.
• If the sender is honest, then the output of every honest party Pi satisfies mi = M and gi = 2.

• If there exists an honest party Pi which outputs a message mi and the grade gi = 2, then the
output of every honest party Pj satisfies mj = mi and gj ≥ 1.

Protocol 3.11: Gradecast from Graded-Dispersal and Data Dissemination

Input: The sender P ∗ holds f(x) of degree at most d. Other parties have no input.
The protocol:

1. The sender: The sender sends f(x) to all parties.

2. Each party Pi: The parties invoke the graded-dispersal protocol (Protocol 3.2) where Pi inputs

f
(1)
i (x). Let (f

(2)
i (x), gi) be the output of the graded-dispersal protocol.

3. Each party Pi: The parties run the data-dissemination protocol (Protocol 3.8) with input

f
(2)
i (x). Let f

(3)
i (x) be the output.

4. Output: If gi = 2, then output (f
(3)
i (x), 2). Otherwise, if f

(3)
i (x) ̸= ⊥, then output (f

(3)
i (x), 1).

Otherwise, output (⊥, 0).

Theorem 3.12. Protocol 3.11 is a Gradecast protocol tolerating up to t < n/3 malicious parties (as
per Definition 3.10). The protocol takes 5 rounds and O(nL+n2 log n) communication for gradecasting
a message of size L.

Proof. We prove the case of an honest sender and a corrupted sender.

An honest sender. We first show that if the sender is honest and has an input f(x), then all honest
parties output (f(x), 2). Specifically, all honest parties start the graded dispersal with the same input
f(x). Therefore, from the validity of graded-dispersal, all honest parties output (f(x), 2). Moreover,
since more than t+ 1 honest parties hold the same input f(x) in the data-dissemination protocol, all
honest parties output f(x) in that protocol, and output (f(x), 2) in the gradecast protocol.

An honest party with output grade 2. We next consider the case where there exists an honest
party Pj with an output grade 2. In that case, Pj must have grade 2 in the graded-dispersal protocol.
As such, from the graded agreement, there are at least t + 1 honest parties that output the same
polynomial f(x) with grade gi ≥ 1 from graded dispersal. Moreover, from the properties of graded-
dispersal, parties with output that is not f(x) use ⊥ as their input in the data dissemination protocol.
Thus, there are at least t+ 1 honest parties with input f(x) in the data dissemination protocol, and
therefore all honest parties must output f(x) in the data dissemination. All honest parties output
f(x) with a grade of at least 1.

Reducing one-round. We can reduce one round of interaction by sending the first round of the
data-dissemination protocol together with the last round of the graded dispersal protocol. Specifically,

11

each party that sends OK2 message to Pj (the last round of the weak dispersal) sends together with
it the point fi(j) to party Pj (the first message of the data dissemination).

We, therefore, get that the total round complexity of the protocol is five rounds (Theorem 3.12 is
reported in that light).

Making the protocol balanced. In the protocol as described, the communication complexity
of the sender is O(n(d + 1) log n) while the communication complexity of every other party is just
O(n log n). To reduce the communication complexity for the sender, the sender can first send to each
party Pi its point f(i). Each party forwards the point it received to all others, and the parties use
Reed Solomon decoding to reconstruct the polynomial f(x).

Stronger property. As mentioned, we use the relaxed definition of gradecast as defined in [KK06].
The definition by [FM88] requires that in the absence of a party with grade 2, all parties with grade
1 must agree on their message as well. This can be achieved at the expense of adding one round to
the graded-dispersal, as discussed in Section 3.1.

3.4 Application II: Multi-Valued Byzantine Agreement

Definition 3.13 ((Binary/Multi-valued) Byzantine Agreement). A protocol for parties P1, . . . , Pn

where each party Pi holds initial input vi, is a Byzantine agreement protocol tolerating t malicious
parties if the following conditions hold for any adversary controlling at most t parties:

• Agreement: All honest parties must output the same value.

• Validity: If all honest parties begin with the same input value v, then all honest parties output v.

• Strong consistency: If not all honest parties begin with the same input v, then all honest
parties output the same value, which was an input of some honest party.

For brevity, if the values {vi} are restricted to binary values, then we call the protocol a binary
Byzantine agreement.

Protocol 3.14: Multi-Valued Byzantine Agreement from Graded Dispersal, Binary
Byzantine Agreement, and Data Dissemination

• Input: Each party Pi holds a polynomial f
(1)
i (x) of degree at most d over F.

• The protocol:

1. The parties invoke the graded dispersal protocol (Protocol 3.2), where each party Pi inputs

f
(1)
i (x). Let (f

(2)
i (x), bi) be the output.

2. The parties run the binary Byzantine agreement protocol (e.g., [BGP92]), where the input
of each Pi is the bit bi. Let b be the output of the Byzantine agreement.

3. If b = 1, then the parties invoke the data dissemination protocol (Protocol 3.8) where each

party Pi inputs f
(2)
i (x). Let f

(3)
i (x) be the output of Pi.

If b = 0, then Pi sets f
(3)
i (x) = ⊥.

• Output: Each Pi outputs f
(3)
i (x).

We recall that the binary Byzantine agreement of [BGP92] requires O(n2) communication and Θ(n)
rounds for agreeing on a single bit. We get:

Theorem 3.15. When instantiated with a binary Byzantine agreement protocol with O(n2) communi-
cation and Θ(n) rounds ([BGP92]), protocol 3.14 is a Byzantine Agreement protocol tolerating t < n/3
malicious parties (as per Definition 3.13). The protocol uses O(nL+n2 log n) communication and Θ(n)
rounds where each party starts with an input of size L.

12

Proof. We first show validity, then agreement.

Validity. If all honest parties have the same input f(x), then from the graded agreement property
of graded dispersal (Definition 3.1), we get that all honest parties output (f(x), 2). All honest parties
then input 1 to the Binary Byzantine agreement, and then all honest parties receive 1 as output. The
parties then invoke the data-dissemination protocol, and since there are more than t+1 honest parties
with the input f(x), all honest parties receive f(x) as output and output it.

Agreement. The output of the parties is determined by the output of the binary byzantine agree-
ment, b, which is the same for all parties. There are two cases to consider:

• If b = 0, then all honest parties output ⊥, and agreement holds.

• If b = 1, then there must exists an honest party Pj with an input bj = 1 to the Binary Byzantine
Agreement. By the properties of weak-dispersal (Definition 3.1), this implies that at least t+ 1
honest parties have the same output f(x) from the weak-dispersal protocol, i.e., the input of each
honest party to the data-dissemination protocol (Protocol 3.8) is either ⊥ or f(x), and there are
at least t+ 1 honest parties with input f(x). The data-dissemination protocol then guarantees
that all parties output f(x). The parties output that value in our Byzantine Agreement protocol,
and we again have an agreement.

Strong consistency. The only case that is interesting is when b = 1. The graded dispersal guarantees
that output was also an input of some honest party.

3.5 Application III: Broadcast

Definition 3.16 (Broadcast). A protocol for parties P1, . . . , Pn where a distinguished sender P ∗ holds
an initial input M , is a broadcast protocol tolerating t malicious parties if the following conditions hold
for any adversary controlling at most t parties:

• Agreement: All honest parties output the same value.

• Validity: If the sender is honest, then all honest parties output M .

Protocol 3.17: Broadcast from Graded-Dispersal, Data Dissemination, and Binary Agree-
ment

• Input: The sender holds a polynomial f(x) of degree at most d over F.
• The protocol:

1. The sender: The sender sends f(x) to all parties.

2. Each party Pi: Let f
(1)
i (x) be the received polynomial. The parties invoke graded-

dispersal protocol (Protocol 3.2), where each party Pi inputs f
(1)
i (x). Let (f

(2)
i (x), gi)

be the output.

3. Each party Pi: Run Binary byzantine agreement where each party Pi inputs 1 iff gi = 2.
Let b be the output.

4. Each party Pi: If b = 1, then the parties run the data-dissemination protocol (Pro-

tocol 3.8), where each party Pi inputs f
(2)
i (x). Let f

(3)
i (x) be the output of the data

dissemination protocol.

• Output: If b = 1, then output f
(3)
i (x). If b = 0 then output ⊥.

Theorem 3.18. Protocol 3.17 is a broadcast protocol tolerating t < n/3 malicious parties (as per
Definition 3.16). The protocol uses Θ(n) rounds and O(nL+n2 log n) communication for broadcasting
a message of size L.

13

Proof. We show agreement and validity.

Agreement. By the binary byzantine agreement, all parties receive the same bit b. If b = 0, then
all honest parties output ⊥ and agreement holds; If b = 1, then it must be that some honest party
received grade 2 in the graded dispersal. As follows from the guarantees of graded dispersal, this
implies that there are at least t + 1 honest parties with the same output f(x). Those honest parties
input f(x) to the data dissemination, and the output of all honest parties is then f(x). Agreement
again holds.

Validity. If the sender is honest and starts with input f(x) of degree-d over F, then from the
guarantees of graded-dispersal, all honest parties output (f(x), 2). As such, all honest parties input 1
to the binary byzantine agremeent, and must agree on b = 1. Therefore, all run the data-dissemination
protocol, and all output f(x).

Making the protocol balanced. In the broadcast protocol as described in Protocol 3.17, the
communication complexity of the sender is n(d+1) log n bits, whereas the communication complexity
of every other party is just O(n log n) bits. As before, to reduce the communication complexity for
the sender, the sender can first send to each party Pi its point f(i). The parties then forward the
received point to all others and use Reed Solomon decoding to reconstruct the polynomial f(x).

4 Reliable Broadcast in Asynchrony

We now move to asynchronous communication. Here, when an honest party sends a message it is
guaranteed to be delivered, but the adversary can introduce arbitrarily delays.

4.1 Dispersal

Definition 4.1 (Dispersal). A protocol for parties P1, . . . , Pn where the input of each party Pi is some
vi ∈ F, is an asynchronous dispersal protocol tolerating t corrupted parties if the following properties
hold:

• Termination: If one honest party terminates, then all honest parties terminate.

• Weak agreement: If one honest party terminates with output f(x), then at least t + 1 other
honest parties output also f(x). Furthermore, all honest parties that terminate with a non-⊥
output, terminate with the same polynomial f(x).

• Weak Validity: If all honest parties start with the same polynomial f(x) of degree at most d,
then termination and weak agreement hold with respect to f(x).

Our asynchronous dispersal protocol is fairly identical to the synchronous counterpart. However,
when executed under asynchrony, a key distinction is in the construction of the dynamic sets, A1

i ,A
2
i .

As the adversary may introduce arbitrary delays, the OK2 messages may not be delivered after the
OK1 messages. The parties construct the A1

i and A2
i sets and update them in an online fashion upon

receiving any message (OK1 or OK2).

Protocol 4.2: Dispersal

Input: Each party Pi holds fi(x) of degree at most d over F.
The protocol:

1. Initialization: Each party initializes Si = ∅,A1
i = A2

i = ∅, and fi(x) = ⊥.

2. Exchange:

(a) Pi sends (Exchange, fi(i), fi(j)) to each Pj .

3. Dynamic set A1
i :

(a) Upon receiving (Exchange, uj , vj) from Pj , if fi(j) = uj and fi(i) = vj then add j to A1
i .

14

(b) Upon |A1
i | ≥ n− t, send OK1 to all.

4. Dynamic set A2
i :

(a) Upon receiving message OK1 from Pj for which j ∈ A1
i , then add j to A2

i .

(b) Upon |A2
i | ≥ n− t, send OK2 to all.

5. Sending Done:

(a) If Pi sent OK2, and upon receiving 2t+ 1 OK2 messages, send Done message to everyone.

(b) Upon receiving t+ 1 Done messages from distinct parties, send Done to everyone.

(c) Upon receiving 2t+ 1 Done messages, if Pi sent OK2 message, then terminate and output
fi(x). If Pi did not send OK2 message, then terminate and output ⊥.

Theorem 4.3. Protocol 4.2 is an asynchronous dispersal protocol tolerating t < n/3 malicious parties
(as per Definition 4.1). The protocol takes 4 rounds and a total communication of O(nL + n2 log n)
bits where each party starts with an input of size L.

Proof. We show each one of the properties separately.

Termination. An honest party terminates only after it receives 2t+ 1 Done messages. This implies
that it received at least t + 1 messages Done from honest parties (and in particular, it also sent the
Done message). Eventually, all honest parties will receive those t+ 1 Done messages and, in response,
will also send a Done message. We obtain that eventually, all honest parties send Done message, and
therefore each honest party will eventually receive 2t+1 Done messages, regardless of the messages of
the adversary. Therefore, all honest parties must terminate.

Weak agreement. An honest party that terminates with an output f∗(x) ̸= ⊥ must have sent an
OK2 message. Moreover, since it terminated, it must have received at least 2t+1 Done messages, i.e.,
it received Done messages from at least t+1 honest parties. An honest party sends a Done message if
it either received 2t+1 OK2 messages or received t+1 Done messages. The latter implies that at least
one honest party sent a Done message due to receiving 2t+1 OK2 messages, and at least t+1 honest
parties sent OK2 message. As follows from Claim 3.4, there are at most two sets of parties (with the
same polynomial) that could have sent OK1. We have two cases to consider:

• As follows from Claim 3.6, if there is no large set of t + 1 parties with the same polynomial,
then no party receives 2t+ 1 OK2. This implies that no honest party would have sent the Done
message, and no party terminates.

• If there is a large set of t+1 parties with the same polynomial f∗(x), then no other party sends
OK2.

This implies that if some honest party terminates, then we must have a large set of t + 1 parties
with the same polynomial f∗(x). This implies that at least t + 1 honest parties terminate with that
polynomial f∗(x). Any other honest party that terminates with non-⊥ must also output f∗(x).

Weak Validity. If all honest parties start with the same polynomial f∗(x), then eventually, all
honest parties will appear in the agreed sets of one another. As such, eventually, all honest parties
will send the OK2 message, send Done messages, and terminate. Parties might terminate earlier; as
mentioned, if one honest party terminates, it outputs its polynomial, and we are also guaranteed that
at least t + 1 other honest parties terminate with their input polynomials. Therefore, weak validity
holds.

4.2 Asynchronous Data Dissemination

Definition 4.4 (Asynchronous Data Dissemination). A protocol for parties P1, . . . , Pn where each
Pi has input fi(x) (of degree d over F, might be ⊥) is an asynchronous data dissemination protocol
tolerating t malicious parties if it satisfies the following property:

15

• Agreement and termination: If there exists a polynomial f(x) such that at least t+1 honest
parties start with the input f(x), and all other honest parties start with input ⊥, then all honest
parties terminate and output f(x).

Protocol 4.5: Asynchronous Data Dissemination

Input: Each party Pi holds fi(x) as input, of degree at most d. Some Pi might have input ⊥.
The protocol:

1. Initialize a multi-setMi = ∅ and Si = ∅. If fi(x) ̸= ⊥, send to each Pj its point (YourPoint, fi(j)).

2. Upon receiving (YourPoint, uj) from Pj , add uj to Mi.

3. Upon some ui appearing t+ 1 times in Mi, send (MyPoint, ui) to all parties.

4. Upon receiving (MyPoint, uj) from Pj , add (j, uj) to Si. Upon |Si| ≥ d + t + 1 execute the
following:

(a) Run RSDec(Si) and try to decode a polynomial fi(x) of degree at most d that agrees with
Si on at at least d+ t+ 1 values.

(b) If no such polynomial exists, then wait to receive more points in Si and retry.

(c) If such a polynomial fi(x) is computed, set fi(x) to be the resultant value

5. Upon unique decoding of fi(x), terminate and output fi(x).

Theorem 4.6. Protocol 4.5 is an asynchronous data-dissemination protocol tolerating t < n/3 ma-
licious parties. The protocol takes 2 rounds and O(nL + n2 log n) communication, where each party
starts with an input of size L.

Proof. Assuming that t + 1 honest parties hold the input f(x) and the others hold ⊥, we get that
each honest party Pj eventually receives f(j) at least t + 1 times and therefore sends to everyone
the message (MyInput, f(j)). As a result, all honest parties eventually send that message. Therefore,
all honest parties will eventually succeed in their Reed Solomon decoding and terminate with the
polynomial f(x).

4.3 Reliable Broadcast

Definition 4.7 (Reliable Broadcast). A protocol for parties P1, . . . , Pn where a distinguished party
P ∗ has an input f(x) of degree at most d over F is a reliable broadcast tolerating t malicious parties if
the following properties hold:

• Validity: If the sender P ∗ is honest then all honest parties terminate and output f(x).

• Agreement: If two honest parties terminate, their output is the same.

• Termination: If an honest party terminates, then all honest parties will eventually terminate.

Protocol 4.8: Reliable Broadcast

Input: The sender holds a polynomial f(x) of degree at most d.
The protocol:

1. The sender: Send f(x) to each party Pi.

2. Each party Pi: Upon receiving f
(1)
i (x) from the sender, participate in Dispersal (Protocol 4.2)

with input f
(1)
i (x).

3. Each party Pi: Upon receiving an output f
(2)
i (x) from the dispersal protocol, participate in

asynchronous data dissemination protocol (Protocol 4.5) with input f
(2)
i (x).

16

4. Upon receiving an output f
(3)
i (x) from the data dissemination protocol, terminate and output

f
(3)
i (x).

Theorem 4.9. Protocol 4.8 is a reliable broadcast protocol tolerating t < n/3 malicious parties (as
per Definition 4.7). The protocol takes 6 rounds and O(nL+ n2 log n) bits for reliably broadcasting a
message of size L.

Proof. We show each one of the properties separately.

validity. If the sender is honest and starts with the input f(x), then eventually all honest parties start
the Dispersal protocol with the input f(x). From the weak-validity property of the dispersal protocol
(see Definition 4.1), all honest parties terminate with an output which is in {⊥, f(x)}, and at least t+1
honest parties terminate with f(x). All honest parties then eventually continue to the asynchronous
data dissemination. According to that protocol, if at least t + 1 honest parties start with the same
input f(x), and all other honest parties start with ⊥, then all honest parties must terminate, and with
output f(x). Therefore, all honest parties eventually terminate the reliable broadcast protocol, with
an output f(x).

Agreement and termination. Assume that some honest party terminates. This implies that
both the dispersal and the data dissemination protocols must terminate (an honest party does not
participate in the data dissemination before terminating the dispersal). If the dispersal protocol
terminates, then from its security properties, we must have that at least t+1 honest parties terminate
with the same polynomial f(x), and all the other honest parties terminate with an output ⊥. The
parties then input those inputs to the data-dissemination protocol, which guarantees that under this
exact input – all honest parties terminate with the same output f(x). We conclude that all honest
parties terminate with the same output f(x).

Reducing one-round. As in the case of synchrony, we can reduce one round of interaction by
sending the first round of the data-dissemination protocol together with the last round of the data-
dispersal protocol. Specifically, each party that sends Done message to Pj (the last round of the
weak dispersal) sends, together with it, the point fi(j) to party Pj (the first message of the data
dissemination).

Making the protocol balanced. In the reliable broadcast protocol as described in Protocol 4.8, the
communication complexity of the sender is n(d+1) log n bits, whereas the communication complexity
of every other party is just O(n log n) bits. As in the case of synchrony, to balance the communication
complexity of the sender, the sender can first send to each party Pi its point f(i). The parties then send
it to all other parties and execute Reed Solomon decoding repeatedly to reconstruct the polynomial
f(x). Specifically, each party waits to receive at least d + t + 1 points and executes Reed Solomon
decoding to recover a polynomial that agrees with at least d+ t+ 1 points.

References

[AA22] Ittai Abraham and Gilad Asharov. Gradecast in synchrony and reliable broadcast in
asynchrony with optimal resilience, efficiency, and unconditional security. In PODC ’22:
ACM Symposium on Principles of Distributed Computing, 2022, pages 392–398. ACM,
2022.

[AAPP22] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Asymptotically free
broadcast in constant expected time via packed VSS. In Theory of Cryptography - 20th
International Conference, TCC 2022, volume 13747 of Lecture Notes in Computer Science,
pages 384–414. Springer, 2022.

17

[AC24] Gilad Asharov and Anirudh Chandramouli. Perfect (parallel) broadcast in constant ex-
pected rounds via statistical VSS. In Advances in Cryptology - EUROCRYPT 2024, volume
14655 of Lecture Notes in Computer Science, pages 310–339. Springer, 2024.

[ACD+23] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren,
and Elaine Shi. Communication complexity of byzantine agreement, revisited. Distributed
Comput., 36(1):3–28, 2023.

[ADD+22] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Balanced byzantine reliable broadcast with near-optimal communication
and improved computation. In PODC ’22: ACM Symposium on Principles of Distributed
Computing, pages 399–417. ACM, 2022.

[AJM+21] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. In PODC ’21:
ACM Symposium on Principles of Distributed Computing, 2021, pages 363–373. ACM,
2021.

[ALP22] Ittai Abraham and Andrew Lewis-Pye. Phase-king through the lens of grade-
cast: A simple unauthenticated synchronous byzantine agreement protocol. Decen-
tralized Thoughts, Blog Post, 2022. https://decentralizedthoughts.github.io/

2022-06-09-phase-king-via-gradecast/.

[BDH10] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Brief announcement: Simple gradecast
based algorithms. In Distributed Computing, 24th International Symposium, DISC 2010.,
volume 6343 of Lecture Notes in Computer Science, pages 194–197. Springer, 2010.

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In Proc. of the Annual Symposium on Principles of Dis-
tributed Computing (PODC), 1983.

[BGP92] Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus. In
Computer science. 1992.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–
143, 1987.

[Che21] Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. InDISC 2021, volume
209 of LIPIcs, pages 17:1–17:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[CT05] Christian Cachin and Stefano Tessaro. Asynchronous veri.able information dispersal. In
24th IEEE Symposium on Reliable Distributed Systems (SRDS 2005), 2005, pages 191–202.
IEEE Computer Society, 2005.

[DR82] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agree-
ment. In ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
1982, pages 132–140. ACM, 1982.

[DXR21] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its appli-
cations. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2705–2721. ACM, 2021.

[DXR22] Sourav Das, Zhuolun Xiang, and Ling Ren. Balanced quadratic reliable broadcast and im-
proved asynchronous verifiable information dispersal. IACR Cryptol. ePrint Arch., page 52,
2022.

18

https://decentralizedthoughts.github.io/2022-06-09-phase-king-via-gradecast/
https://decentralizedthoughts.github.io/2022-06-09-phase-king-via-gradecast/

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 1982.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing, pages 148–161. ACM,
1988.

[GP21] Chaya Ganesh and Arpita Patra. Optimal extension protocols for byzantine broadcast and
agreement. Distributed Comput., 34(1):59–77, 2021.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Annual International Cryptology Conference, 2006.

[KK09] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. J. Comput. Syst. Sci., 75(2):91–112, 2009.

[LDK20] Andrew D. Loveless, Ronald G. Dreslinski, and Baris Kasikci. Optimal and error-free
multi-valued byzantine consensus through parallel execution. IACR Cryptol. ePrint Arch.,
page 322, 2020.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[LV11] Guanfeng Liang and Nitin H. Vaidya. Error-free multi-valued consensus with byzantine
failures. In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed
Computing, PODC 2011, pages 11–20. ACM, 2011.

[NRS+20] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved exten-
sion protocols for byzantine broadcast and agreement. In 34th International Symposium
on Distributed Computing, DISC 2020, volume 179 of LIPIcs, pages 28:1–28:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Pat11] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal
communication complexity. In Principles of Distributed Systems - 15th International Con-
ference, OPODIS 2011, volume 7109 of Lecture Notes in Computer Science, pages 34–49.
Springer, 2011.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[Rab83] M. O. Rabin. Randomized byzantine generals. In 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science, 1983.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer,
1979.

[ZLC23] Jianjun Zhu, Fan Li, and Jinyuan Chen. Communication-efficient and error-free gradecast
with optimal resilience. In 2023 IEEE International Symposium on Information Theory
(ISIT), pages 108–113, 2023.

19

	Introduction
	Our Contributions

	Technical Overview
	Synchrony
	Asynchrony
	Related Work

	Synchrony
	Building Block I: Graded Dispersal
	Building Block II: Data Dissemination
	Application I: Gradecast
	Application II: Multi-Valued Byzantine Agreement
	Application III: Broadcast

	Reliable Broadcast in Asynchrony
	Dispersal
	Asynchronous Data Dissemination
	Reliable Broadcast

