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Abstract

In this paper, we investigate the security of lightweight block ciphers, focus-
ing on those that utilize the ADD-Rotate-XOR (ARX) and AND-Rotate-XOR
(AND-RX) design paradigms. More specifically, we examine their resilience
against boomerang-style attacks. First, we propose an automated search
strategy that leverages the boomerang connectivity table (BCT) for AND op-
erations (∧BCT ) to conduct a complete search for boomerang and rectangle
distinguishers for AND-RX ciphers. The proposed search strategy automati-
cally considers all possible ∧BCT switches in the middle of the boomerang
to optimise distinguishing probability. The correctness of the search strat-
egy was verified experimentally. We were able to find the best boomerang
and rectangle distinguishers to date in the single-key model for lightweight
block ciphers KATAN32/48/64 and SIMON32/48. Next, we investigated
BCT properties of ARX ciphers and discovered that a truncated boomerang
switch could be formulated for the lightweight ARX cipher, CHAM. We
were able to find the best single-key and related-key rectangle distinguishers
to date for CHAM. Our findings provide more accurate security margins of
these lightweight ciphers against boomerang-style attacks.1
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6 (pg. 28) and the ABCT switch pattern in the 41-round related-key rectangle distin-
guisher (pg. 31).
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1. Introduction

The Internet of Things (IoT) has become integral to modern life, sig-
nificantly enhancing efficiency and productivity across various sectors such
as agriculture [1] and healthcare [2]. IoT systems comprise interconnected
devices and sensors, most of which have limited computational capabilities,
that transfer vast amounts of data over the network. Therefore, lightweight
encryption algorithms are essential to secure communication between these
devices [3]. The National Institute of Standards and Technology (NIST)
recently completed its lightweight encryption standardization efforts and an-
nounced the decision to standardize the Ascon family [4].

Various cryptanalysis techniques were employed to evaluate the security
of the lightweight encryption candidates throughout the NIST standardiza-
tion efforts, including differential cryptanalysis. An attacker aims to find
differential trails (the propagation of a plaintext difference to a ciphertext
difference) that occur with high probability. These trails can then be used
as statistical distinguishers in key recovery attacks. The boomerang attack
[5] is an extension of the classical differential attack. Rather than finding a
long differential trail, two shorter trails can be concatenated to form a longer
distinguisher. Further refinements to the boomerang framework were later
proposed that included the amplified boomerang and rectangle attacks [6].
In rectangle attacks, one can consider multiple valid transitions between the
concatenated trails to further improve the distinguishing probability. How-
ever, the transition from one trail to another in both the boomerang and
rectangle attacks is probabilistic. The aforementioned transition can be for-
mally analysed using the sandwich framework [7] that divides a cipher into
three parts, E = E1 ◦Em ◦E0, where the dependency between E0 and E1 is
addressed by analyzing the probability of Em.

Cid et al. [8] later introduced a new tool called the Boomerang Connectiv-
ity Table (BCT) that allows to systematically evaluate Em. They showed how
BCT can be used when Em covers one round of a substitution-permutation
network (SPN) and also briefly described how BCT can be calculated for
modular addition. The BCT framework was later refined to cover multi-
ple rounds of SPN [9, 10] and Feistel constructions [11]. These findings
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were used in some of the best boomerang and rectangle attacks on AES [9],
SKINNY [12], CRAFT [12], WARP [13, 14] and CLEFIA [15]. Most
of the research work on BCT has focused on block ciphers with S-boxes as
their primary source of nonlinearity. More recently, there has been research
looking into the use of the BCT framework to perform boomerang attacks on
ADD-Rotate-XOR (ARX) ciphers such as SPECK and LEA [16] as well as
AND-RX ciphers like SIMON and KATAN [17].

Our Contributions. Our work further investigates the application of BCT
on both ARX and AND-RX ciphers. We first utilise the AND (∧) BCT or
simply ∧BCT in an SMT-based automated approach for deriving complete
boomerang and rectangle distinguishers without having to individually com-
pute E0, Em, and E1 trails. For simplicity’s sake, we refer to the search as an
automated boomerang search, which also encompasses the rectangle search.
The automated boomerang search was applied to KATAN and SIMON in
the single-key setting. For the KATAN family of ciphers, we found the best2

single-key rectangle distinguishers with up to 86, 83 and 62 rounds for the
32, 48 and 64-bit variants respectively. The correctness of the proposed auto-
mated boomerang search was experimentally verified on KATAN32. For the
SIMON family of ciphers, we found the best single-key rectangle distinguish-
ers with up to 13 and 16 rounds for the 32 and 48-bit variants respectively.
Next, we investigated the BCT for modular addition (which we will refer to
as ABCT) and applied it to find the best boomerang and rectangle distin-
guishers for CHAM64. Rather than an automated search, we rely on the
properties of a truncated boomerang switch to find the best single-key rect-
angle distinguisher with up to 39 rounds and the best related-key boomerang
distinguisher with up to 46 rounds. Our findings are summarised in Tables
1, 2 and 3.

Code Repository. All codes related to this paper are publicly available at
github.com/boomerangas/ARX PAPER.

Paper Outline. Section 2 introduces the boomerang attack and its switch-
ing effect before describing the target ciphers. Next, we describe the boome-
rang connectivity tables for AND and modular addition operations in Sec-

2The best distinguisher in our context is determined based on the number of rounds.
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Table 1: Summary of Boomerang-style Distinguishers for KATAN in the Single-key Set-
ting

Cipher Word Size Rounds α δ w w′ r0 rm r1

KATAN

32

83 (0000,8081) (0080,1081) 100 74.24 35 48 [18]
83 (0000,8801) (0010,0210) 48 28.65 39 4 40

Ours
84 (8000,4400) (0020,0420) 44 27.35 40 4 40
85 (1004,2080) (0080,1080) 44 27.91 41 4 40
86 (1004,2080) (0080,1081) 44 30.06 41 4 41

48

60 (0000,0090,4000) 0004,0200,0000) 38 21.52 35 25 [18]
60 (0000,0402,0000) (0002,0100,0000) 38 17.51 29 3 28

Ours
81 (0000,0090,4000) (2000,0000,0048) 60 39.39 39 3 39
82 (0000,0090,4000) (1008,0000,0004) 64 38.37 40 3 39
83 (0000,0090,4000) (0090,4000,000D) 66 41.27 40 3 40

64

56 (0000,0000,0400,2001) (0020,1100,8000,0000) 88 67.54 30 26 [18]
56 (0000,0010,0080,0400) (0020,3100,8000,0000) 56 51.92 27 3 26

Ours
60 (2012,0844,0200,0000) (0203,1008,0000,0044) 64 54.39 29 3 28
61 (8048,2010,0800,0000) (0080,4402,0000,0051) 66 55.87 29 3 29
62 (0000,0020,0500,2001) (2011,0080,0000,0040) 68 62.25 30 3 29

Note: w and w′ denote boomerang and rectangle weights respectively while r denotes
the number of rounds for each part of the distinguisher. Probability is calculated as
2−w.

Table 2: Summary of Boomerang-style Distinguishers for SIMON in the Single-key Setting

Cipher Word Size Rounds α δ w w′ r0 rm r1

SIMON

32 13
(0000,0040) (4000,0000) 36 (non-boomerang) 30.22 13 [19]

(0010,0044) (1100,0400) 44 28.54 6 1 6 Ours

48
15

(0101,0004,4040) (4440,4010,0000) 50 (non-boomerang) 43.01 15 [19]

(0000,4000,4111) (0006,4000,0100) 60 41.87 7 1 7
Ours

16 (0400,0019,1000) (2000,8280,0000) 86 46.45 7 1 8

Note: w and w′ denote boomerang and rectangle weights respectively while r denotes
the number of rounds for each part of the distinguisher. Probability is calculated as
2−w.

tion 3 and Section 4 respectively. The proposed automated boomerang search
is discussed in Section 5. Results for AND-RX ciphersKATAN and SIMON,
and ARX cipher CHAM are detailed in Section 6, Section 7 and Section 8
respectively. We conclude the paper in Section 9.

2. Preliminaries

2.1. Boomerang-style Attacks

The boomerang attack is a variant of differential cryptanalysis. The gen-
eral motivation behind the boomerang attack is to construct longer distin-
guishers more effectively by combining two shorter differential trails, each of
which can be searched independently. Wagner first introduced this attack
and applied it to COCONUT98 [5].
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Table 3: Summary of Boomerang-style Distinguishers for CHAM64

Setting Rounds Split Input Diff. Output Diff. r w′

SK

36
E0 (8200,0100,0001,8000) (0400,0004,****,****) 17

47.13
E1 (8200,****,****,8000) (0004,0502,0088,0000) 18

37
E0 (8200,0100,0001,8000) (0004,0502,****,****) 18

52.57
E1 (9000,****,****,4000) (0100,0281,0002,0000) 18

38
E0 (8004,4082,8200,0100) (0400,0004,****,****) 19

53.76
E1 (8200,****,****,8000) (0004,0502,0088,0000) 18

39
E0 (8004,4082,8200,0100) (0400,0004,****,****) 19

59.27
E1 (8200,****,****,8000) (0502,0088,0000,000A) 19

RK

41
E0 (8080,4040,4040,000) (4200,0000,****,****) 20

49.28
E1 (8400,****,****,0000) (0000,0400,0105,8080) 20

42
E0 (8080,4040,4040,0000) (4200,0000,****,****) 20

53.28
E1 (8400,****,****,0000) (0400,0105,8080,0100) 21

43
E0 (8080,4040,4040,0000) (0000,0000,****,****) 21

52.24
E1 (****,****,****,****) (0105,8080,0300,0B82) 21

44
E0 (8080,4040,4040,0000) (0000,0000,****,****) 21

59.88
E1 (****,****,****,****) (8080,0300,0B82,030B) 22

46

E0 (8080,4040,4040,0000) (4200,0000,0000,0084) 20

62.78Em (4200,0000,0000,0084) (0000,0000,0000,8401) 7

E1 (0000,0000,0000,8401) (0400,0105,8080,0100) 19

I Except for the 46-round boomerang distinguisher, all experiments listed
in this table involve the use of a 1-round boomerang switch (rm = 1).

II For Setting, SK and RK denote the single-key setting and related-key
setting respectively.

IIIThe key difference for RK is ∆E0
=(0000,0000,0000,0000,0000,4000,4000,0000)

and ∆E1 = (0080, 0000, 0000, 8000, 0000, 0000, 0000, 0000)
IVRectangle probability is calculated as 2−w′

.
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Figure 1: The structure of a boomerang (sandwich) attack.

The boomerang framework requires a quartet of chosen plaintexts, namely
P1, P2, P3, and P4, along with their corresponding ciphertexts C1, C2, C3, and
C4. The encryption operation is denoted as E(·). The primary objective of
the boomerang attack is to decompose the cipher into two parts, E = E1◦E0,
where E0 represents the first half of the cipher and E1 represents the last half.
This process involves four specific differential trails: α → β for E0; γ → δ
for E1; δ → γ for E−1

1 ; and β → α for E−1
0 . Initially, a chosen plaintext pair

P1 and P2 is encrypted in the forward direction (E1 ◦E0). The resulting pair
of ciphertexts C1 and C2 are then utilized to derive C3 and C4 based on the
output difference, δ. These derived ciphertexts are decrypted (E−1

0 ◦ E−1
1 )

to obtain P3 and P4. A successful boomerang quartet is achieved when the
condition P1⊕P2 = P3⊕P4 = α is satisfied, indicating that the initial input
difference “returns” intact after traversing the entire cipher, analogous to
how a boomerang returns to its thrower.

The key objective of a boomerang attack is to identify a boomerang dis-
tinguisher that holds (or returns) with a high probability, enabling efficient
key recovery similar to a classical differential attack. One main difference is
that the boomerang attack employs quartets of chosen plaintexts for encryp-
tion rather than pairs. The probability p of a right quartet is determined by
the probabilities p0 and p1 of the differential trails α → β for E0 and γ → δ
for E1, respectively, as expressed by p = p20p

2
1.
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To facilitate the analysis of how likely a boomerang distinguisher holds,
an improvement to the boomerang framework called the sandwich attack
was proposed [7]. This framework is depicted in Figure 1, where there is a
transition round between E0 and E1 called the boomerang switch Em. The
distinguisher now has three distinct components, E = E1 ◦ Em ◦ E0, where
the effect of the boomerang switch is represented by β → γ and its associated
probability is represented by r. Consequently, the overall probability of the
boomerang distinguisher can be expressed as p = p20p

2
1r. The following section

discusses the boomerang switch in detail.

2.2. The Boomerang Switch and Boomerang Connectivity Tables

Figure 2: The 1-round boomerang switch for S-box ciphers.

In 2011, Murphy showed that independently chosen E0 and E1 trails may
turn out to be incompatible and the boomerang never “returns” [20]. Cid
et al. [8] provided a solution to the problem in the form of a new tool called
the Boomerang Connectivity Table (BCT) that aids cryptanalysts in con-
structing valid boomerang distinguishers. They examined the boomerang
switching behaviour of a partial round consisting only of one S-box layer
that connects the upper and lower segments of the boomerang as illustrated
in Figure 2. The formal definition of the BCT for substitution-permutation
networks (SPN) is given by:

Definition 1. ((SPN) BCT [8]). Let S : Fn
2 → Fn

2 be an invertible func-
tion, and β, γ ∈ Fn

2 . The Boomerang Connectivity Table (BCT) of S can be
described by a 2n × 2n table, in which the entry for (β, γ) is computed by:

BCT (β, γ) = #{x ∈ Fn
2 |S−1(S(x)⊕ γ)⊕ S−1(S(x⊕ β)⊕ γ) = β}.
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Figure 3: Illustration of the valid boomerang switch based on modular addition.

In the same paper, the authors also define the BCT for ADD ((β, β′, γ) ∈
Fn
2 |β⊞β′ = γ). Let ((x1, x

′
1), (x2, x

′
2), (x3, x

′
3), (x4, x

′
4)) be a quartet of ADD

inputs, where x1⊕x2 = x3⊕x4 = β, x′
1⊕x′

2 = x′
3⊕x′

4 = β′. This structure
is illustrated in Figure 3. The output quartet is denoted by (y1, y2, y3, y3),
where y1 ⊕ y3 = y2 ⊕ y4 = γ. The BCT for ADD is then defined as:

ABCT (β, β′, γ) = #{(x, x′) ∈ Fn
2 |((x⊞ x′)⊕ γ ⊟ x′)⊕

(((x⊕ β)⊞ (x′ ⊕ β′)⊕ γ)⊟ (s′ ⊕ β′)) = β}.

They found that the ABCT has a similar ladder switch property as BCT but
does not have the equivalent of an S-box switch. Instead, it has what the
authors refer to as the most significant bit (MSB) switch. The authors note
that one of the addends has to be fixed to make ADD operation invertible,
i.e., x′

1 = x′
3 and x′

2 = x′
4.

Boukerrou et al. [11] later introduced the Feistel counterpart of the BCT
known as the Feistel Boomerang Connectivity Table (FBCT). Since we do
not need to consider bijective S-boxes for Feistel structures, FBCT can be
used for any S-box from Fn

2 to Fm
2 even when n ̸= m. The formal definition

of FBCT is given by:

Definition 2. (FBCT [11]). Let S : Fn
2 → Fn

2 and α, γ ∈ Fn
2 . The Feistel

Boomerang Connectivity Table (FBCT) of S can be described by a 2n × 2n

table, in which the entry for (β, γ) is computed by:

FBCT (β, γ) = #{x ∈ Fn
2 |S(x)⊕ S(x⊕ β)⊕

(S(x⊕ γ)⊕ (S(x⊕ β ⊕ γ) = 0}.
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To evaluate the boomerang switch over more than one round, Wang and
Peyrin [10] introduced the concept of the Boomerang Difference Table (BDT),
a variant of the BCT that fixes additionally the S-box output difference of the
upper trail. The same idea was concurrently investigated by Song et al. [9]
as the upper BCT (UBCT) along with its counterpart, the lower BCT (LBCT)
that can be used for the lower trail. We omit their definitions in this paper
as we will not use these difference tables. In the remainder of the paper, we
will refer to bitwise AND as ∧, and addition and subtraction modulo 2n as
ADD and SUB respectively.

2.3. KATAN Specification

The KATAN family cipher is a hardware-oriented block cipher that was
first proposed in CHES 2009 [21]. The KATAN cipher adopts an AND-RX
structure that contributes to its high-performance characteristics in hard-
ware environments. It has 254 rounds and three variants – KATAN32,
KATAN48, and KATAN64, each designed to operate on 32-bit, 48-bit, and
64-bit blocks respectively. All variants have an 80-bit key that will be ex-
panded by a key scheduling algorithm into 508 subkey bits. Suppose a key
k is 80-bit and ki represents the i-th bit in k. We then calculate subkey bits
as:

ski =

{
ki for i = 0 . . . 79

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 Otherwise
(1)

KATAN’s round function divides the plaintext into two parts and loads
them into two registers L1 and L2, The registers are then updated as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb

L1[i] = L1[i− 1](i ≤ i ≤ |L1|), L1[0] = fb(L2),

L2[i] = L2[i− 1](i ≤ i ≤ |L2|), L2[0] = fa(L1),

(2)

where ⊕ and · are bitwise XOR and AND operations respectively, L[x] denotes
the x-th bit of L, IR is the round constant value defined in the specification,
and ka and kb are two subkey bits. For round i, ka and kb correspond to
sk2(i−1) and sk2(i−1)+1. The parameters of KATAN family are shown in
Table 4. In this table, |L1| and |L2| denotes the lengths of registers L1 and
L2, respectively.

The values of IR indicate whether irregular updates are used in the cur-
rent round. If the value is 1, the irregular update rule will be applied during
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Table 4: Parameters of the KATAN family

algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3

KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6

KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

this round. If the value is 0, the irregular update rule will not be used.
In KATAN48, functions fa and fb are used twice in a single round. The
same subkeys are applied twice. Similarly for KATAN64, each round uses
functions fa and fb three times with the same subkey bits.

2.4. SIMON Specification

The SIMON family of ciphers has a Feistel-like structure with AND as
its nonlinear component [22]. Table 5 lists the specifications of all its variants
SIMON-2n/mn where n is the word size and m is the number of key words.
SIMON’s block size is 2n while its key length is mn. Since the key size is
unrelated to our analysis, we will omit them in the naming convention used
in the rest of the sections.

Table 5: SIMON specifications

Block Size(2n) 32 48 64 96 128

Key Size(mn) 64 72 96 96 128 96 144 128 192 256

Word Size(n) 16 24 32 48 64

Key words(m) 4 3 4 3 4 2 3 2 3 4

Const Seq z0 z0 z1 z2 z3 z2 z3 z2 z3 z4

Rounds T 32 36 36 42 44 52 54 68 69 72

SIMON’s round function is mathematically defined as:

Ln = Rn−1 ⊕ f(Ln−1)⊕ kn

Rn = Ln−1,
(3)

where L and R represent the left and right inputs of the Feistel structure
respectively, kn represents the round key of the n-th round, and f(x) =
(ROTL1(x) ∧ ROTL8(x)) ⊕ ROTL2(x). The ROTLm function performs a
circular left shift of m bits on its input. SIMON has a linear key schedule.

2.5. CHAM Specification

CHAM is a family of block ciphers that has a 4-branch generalized Feistel
structure. Each specific cipher is noted as CHAM-n/k, where n represents
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the block size in bits and k is the key size in bits. Given plaintext P ∈ {0, 1}n,
ciphertext C ∈ {0, 1}n, and the key K ∈ {0, 1}k, the process of obtaining C
involves applying r iterations of the round function on P with subkeys derived
from K. The round function varies slightly based on the round number i.
When i mod 2 = 1, the round function is given by:

Xi = Xi[0] ||Xi[1] ||Xi[2] ||Xi[3]

Xi[3] = ROTL8((Xi−1[0]⊕ (i− 1))

⊞ (ROTL1(Xi−1[1])⊕RK[(i− 1) mod 2k/w]))

Xi[j] = Xi−1[j + 1].

When i mod 2 = 0, the round function is given by:

Xi = Xi[0] ||Xi[1] ||Xi[2] ||Xi[3]

Xi[3] = ROTL1((Xi−1[0]⊕ (i− 1))

⊞ (ROTL8(Xi−1[1])⊕RK[(i− 1) mod 2k/w]))

Xi[j] = Xi−1[j + 1],

where X ⊞ Y denotes the addition of x and y modulo 2w. For more details
about the cipher, including its key scheduling algorithm, please refer to the
cipher’s original specifications [23].

Table 6: The parameters of CHAM ciphers

Cipher n k r w k
w

CHAM-64/128 64 128 80 16 8

CHAM-128/128 128 128 80 32 4

CHAM-128/256 128 256 96 32 8

3. Boomerang Connectivity for AND-based Ciphers

3.1. Definition of ∧BCT
In this section, we discuss the ∧BCT, the bitwise AND (∧) counterpart

of the BCT. Lightweight block ciphers such as KATAN and SIMON rely on
the AND operator as their nonlinear component. Unlike ciphers with S-boxes
where the differential probability depends on the number of active S-boxes,
we calculate the differential probability for AND-based ciphers based on the
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number of active difference bits. The condition for activating one difference
bit in AND-based ciphers is defined as follows:

∆x ∨∆y = 1, (4)

where ∆x and ∆y represent one-bit input differences to the AND operation.
It is important to note that modular addition and S-boxes, which are typical
choices for nonlinear components in many other block ciphers, are invertible.
In contrast, the AND operator lacks invertibility, which implies that AND-
based cryptographic primitives often have Feistel-like structures. Analyzing
AND-based ciphers using boomerang attacks requires constructing a unique
BCT tailored to the structure of the target cipher.

Next, we introduce our representation of an AND-based boomerang switch
over a Feistel-like round. This representation will be used in our automatic
boomerang search. The boomerang switch is shown in Figure 4 and is in-
spired by the FBCT[11]. We later show that the boomerang connectivity
based on this structure can be generalised to different AND-based ciphers
such as SIMON and KATAN. For easier definition of the ∧BCT, we define
a function A that takes a single (multi-bit) input difference, such as half of
the plaintext, and returns the bits involved in an AND operation. The spe-
cific description of A will vary depending on the target cipher. For instance,
in the case of the block cipher KATAN (see Section 6), A would return bits
tapped from its registers.

12



Figure 4: Boomerang switch over a Feistel-like round with an AND operation.

To ensure the validity of the boomerang switch, the difference between
(L3, L4), and (R3, R4) must be equal to (L1, L2), and (R1, R2), respectively,
as depicted in Figure 4. First, the difference βL for L3 and L4 based on
Figure 4 is calculated as:

L3 ⊕ L4 = (L3 ⊕ L1)⊕ (L1 ⊕ L2)⊕ (L2 ⊕ L4)

= γR ⊕ βL ⊕ γR = βL.
(5)

In any scenario, the difference between L3 and L4 is always equal to the
difference between L1 and L2. Equation 6 shows that the difference between
R3 and R4 is only related to L1, βL and γR:

R3 ⊕R4 = (∧F (A(L1))⊕R1 ⊕ γL ⊕ ∧F (A(L1 ⊕ γR)))

⊕(∧F (A(L1 ⊕ βL ⊕ γR))⊕R1 ⊕ βR ⊕
∧F (A(L1 ⊕ βL))⊕ γL) (6)

= ∧F (A(L1))⊕ ∧F (A(L1 ⊕ γR))⊕
∧F (A(L1 ⊕ βL))⊕ ∧F (A(L1 ⊕ βL ⊕ γR))⊕ βR.

Note that ∧F represents a function that performs a bitwise AND on the two
values returned by A. To ensure that the difference R3 ⊕ R4 is consistent
with R1 ⊕R2, the following condition must be met:

∧F (A(L1))⊕ ∧F (A(L1 ⊕ γR))⊕ ∧F (A(L1 ⊕ βL))⊕
∧F (A(L1 ⊕ βL ⊕ γR)) = 0. (7)
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With these requirements and notations in place, we now define ∧BCT:

Definition 3. (1-bit ∧BCT ). Let a and b be two 1-bit outputs from the
function A that takes L1 as an input. Let the bit indexes of a and b in L1 be
m and n, respectively. We denote βx

L and γy
R as the bits of βL and γR located

at indexes x and y, respectively. Then, Equation 7 can be rewritten as:

(a ∧ b)⊕ ((a⊕ γm) ∧ (b⊕ γn))⊕ ((a⊕ βm)∧
(b⊕ βn))⊕ ((a⊕ βm ⊕ γm) ∧ (b⊕ βn ⊕ γn)) = 0. (8)

Then, a 1-bit ∧BCT is given by:

∧BCT (βm, βn, γm, γn) = #{a, b ∈ {0, 1}|a ∧ b⊕
(a⊕ βm) ∧ (b⊕ βn)⊕
(a⊕ γm) ∧ (b⊕ γn) (9)

⊕(a⊕ βm ⊕ γm)

∧(b⊕ βn ⊕ γn) = 0}.

The probability of the boomerang switch for a 1-bit AND is expressed as:

P∧BCT (β
m, βn, γm, γn) =

∧BCT (βm, βn, γm, γn)

4
. (10)

The switching effect for each bit is evaluated independently. Therefore, the
overall switching probability Pswitch for AND operations with i-bit operands
is the product of the switching probabilities of each bit:

Pswitch =
i−1∏
j=0

P∧BCTj
, (11)

where P∧BCTj
is the switching probability for the j-th bit of the AND oper-

ation.
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Property 1. (Constraints for a 1-bit valid boomerang switch). Taking into
account the computational properties of GF (2) and Equation 8, the constraint
for valid 1-bit boomerang switches in AND-based ciphers can be simplified to:

(a ∧ b)⊕ ((a⊕ γm) ∧ (b⊕ γn))⊕ ((a⊕ βm)∧
(b⊕ βn))⊕ ((a⊕ βm ⊕ γm) ∧ (b⊕ βn ⊕ γn))

=(a ∧ b)⊕ ((a ∧ b⊕ a ∧ γn ⊕ γm ∧ b⊕ γm ∧ γn))⊕
((a ∧ b⊕ a ∧ βn ⊕ βm ∧ b⊕ βm ∧ βn))⊕
((a ∧ b⊕ a ∧ βn ⊕ a ∧ γn ⊕ βm ∧ b⊕ βm ∧ βn ⊕ βm ∧ γn⊕
γm ∧ b⊕ γm ∧ βn ⊕ γm ∧ γn))

=(a ∧ b)⊕ (a ∧ b)⊕ (a ∧ γn)⊕ (γm ∧ b)⊕ (γm ∧ γn)⊕
(a ∧ b)⊕ (a ∧ βn)⊕ (βm ∧ b)⊕ (βm ∧ βn)⊕ (a ∧ b)⊕
(a ∧ βn)⊕ (a ∧ γn)⊕ (βm ∧ b)⊕ (βm ∧ βn)⊕ (βm ∧ γn)⊕
(γm ∧ b)⊕ (γm ∧ βn)⊕ (γm ∧ γn)

=(βm ∧ γn)⊕ (γm ∧ βn) = 0

Based on the constraints of a valid 1-bit boomerang switch in Property 1,
a 1-bit valid boomerang switch must fulfil the following equality:

βm ∧ γn = βn ∧ γm (12)

This simplified representation is used in the automated boomerang search
model described in Section 5 to determine the validity of boomerang switches,
rather than relying on the complete boomerang table.

3.2. Properties of ∧BCT

Table 7: The 1-bit ∧BCT

βm||βn

γm||γn

00 01 10 11

00 4 4 4 4

01 4 4 0 0

10 4 0 4 0

11 4 0 0 4

In this section, we look into the various properties of the ∧BCT. Table 7
illustrates how the 1-bit ∧BCT maps two independent input difference bits
into a single output difference bit. From this table, we can observe that the
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switching probability is either deterministic or impossible. The following are
properties of the ∧BCT:

Ladder switch: The entries in the first row and first column of ∧BCT is
equal to 4 (the boomerang switch holds with probability 1). This property
is similarly observed in other BCT variants and has been described in [24].

Feistel switch: When considering any pairs of differences with βm = βn =
γm = γn, the corresponding entry in the boomerang switch table also has a
value of 4, which implies that the switch is deterministic.

4. Boomerang Connectivity for Modular Addition

4.1. Definition of ABCT

In this section, we introduce the generalized form of the BCT for ADD
(ABCT). We will recap its properties used to find rectangle distinguishers for
CHAM.

Definition 4. ((Generalized) ABCT). Let α, α′, β, β′ ∈ Fn
2 . The generalized

Boomerang Connectivity Table for addition modulo 2n involving two n-bit
addends can be described by a four-dimensional table, in which the entry for
(α, α′, β, β′) is computed as:

ABCT⊞(α, α
′, β, β′) = #{(x, x′) ∈ Fn

2 |((x⊞ x′)⊕ β)

⊟(x′ ⊕ β′))⊕ ((((x⊕ α)⊞

(x′ ⊕ α′))⊕ β) ⊟ (x′ ⊕ α′

⊕β′)) = α}.

The ABCT originally described by Cid et al. [8] can be derived from this
definition by having β′ = 0, which fixes one of the addends on opposing faces
of the boomerang. When it comes to actual ARX ciphers, all differences
involved in an ADD (or SUB) operation may not be zero. As such, the
generalized ABCT can more accurately describe the boomerang switch over
one round for ARX ciphers. Moving forward in the rest of the paper, we
will refer to this generalized version simply as ABCT. This definition of the
ABCT was used by Wang et al. [16] in their automated boomerang search
tool applied to SPECK and LEA.
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4.2. Properties of ABCT

In all of the following scenarios, the boomerang switch occurs with prob-
ability 1.

Ladder switch: Occurs when either both addend differences specified by
the upper trail (α,α′) or the output differences specified by the lower trail
(β,β′) are zero.

Most significant bit (MSB) switch: Occurs when the only active (dif-
ference) bit in either β or β′ is the MSB while the other has a zero difference
(β, β′) =(0b100...0,0b000...0) or the MSB is the only active bit in both
(β, β′) =(0b100...0,0b100...0). The MSB switch also occurs when the
only active bit is the MSB in either α or α′ while the other has a zero differ-
ence, or when the MSB is active in both.

5. An Automated Search for Boomerang-style Distinguishers for
AND-RX Ciphers

5.1. Search Strategy

In this section, we propose an automated search for boomerang and
rectangle distinguishers for AND-RX ciphers based on SMT solvers. More
specifically, we extend the functionalities of CryptoSMT [25] to automati-
cally search for boomerang distinguishers and compute their corresponding
probabilities. One main advantage of the proposed tool is its ability to con-
struct rectangle distinguishers by considering all possible trails in E0 that
start with a difference α and all possible trails in E1 that end with δ, as long
as their switch in Em is valid according to ∧BCT. We apply the automatic
search to KATAN and SIMON, assuming round independence within each
cipher.

The search strategy comprises two main steps. First, we search for the
best single boomerang characteristic starting from an input difference α to
an output difference δ with a valid switch from β to γ. The overall weight of
the initial boomerang trail is denoted as w. Next, we fix α and δ and continue
to search for all possible trails. The SMT model will sum all probabilities
2−w of the valid trails, then return the final rectangle probability, 2−w′

. In
the previous notation, w refers to the weight of a trail or distinguisher. The
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relationship between the weight of a single boomerang trail (w), the weight
of a rectangle (w′), and the actual weight (W ) is:

2−w < 2−w′ ≈ 2−W . (13)

Upon completing the rectangle search, the probability is computed using the
following formula:

Prect =
n∑

i=1

(2−wi · SOLi), (14)

where SOLi denotes the number of boomerang trails with weight wi while n
represents the number of unique boomerang trails found.

Figure 5: Probabilistic trends in the rectangle search.

The proposed approach leverages the differential effect by clustering all
valid boomerangs trails that start from α and end with δ. In practical scenar-
ios, we cannot exhaustively search for all possible boomerangs to construct
a rectangle distinguisher due to time constraints. Therefore, we introduce a
threshold variable that assists in deciding when to stop the search. Figure 5
illustrates the variation in distinguishing probability during the rectangle
search. The solid line represents the total probability of the rectangle dis-
tinguisher after including trails of a specific weight while the dotted line
represents the total probability of all trails with a given weight. As the
individual boomerang trail weights increase, the rectangle probability will
eventually converge to a certain value.
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When constructing a rectangle distinguisher, we search for boomerang
trails starting from a lower weight and iteratively increase the weight once
no more boomerang trails can be found. We set a threshold to limit the num-
ber of attempts to find new boomerang trails. For instance, if the threshold is
set to 5 and the current weight of the rectangle distinguisher is w′ = 13.3224,
the search stops if the integer value of ⌊w′⌋ remains unchanged after five new
boomerang trails have been included in the rectangle distinguisher. Since
solving SAT/SMT problems is NP-complete, running for a longer duration
can yield better results. Utilizing the threshold variable allows us to effec-
tively determine when to stop the rectangle search.

5.2. Verification of Correctness

Verification of a boomerang or rectangle distinguisher’s actual distin-
guishing probability presents a notable challenge. For instance, a cipher
with a 32-bit block size requires exhaustive testing of 231 ciphertext pairs to
verify a boomerang distinguisher, consuming a substantial amount of time.
The entire process involves the encryption of each plaintext pair correspond-
ing to the input difference (P1 ⊕ P2 = α) of the boomerang (or rectangle) in
one direction, computing their corresponding ciphertext pairs based on the
output difference (C3 = C1 ⊕ δ, C4 = C2 ⊕ δ), then decrypting them to check
if P3 ⊕ P4 = α. To make this process more efficient, we devised a CUDA
program to verify boomerang distinguishers for 32-bit block ciphers. Rather
than taking 42 hours to complete on an Intel i7-9750H CPU, verification now
requires a mere 20 minutes on an Nvidia GTX 1660TI graphics card.

Our experiments on 32-bit KATAN and SIMON show that the theoret-
ically derived rectangle distinguishers found using the proposed SMT search
generally correspond to actual ones in practice. As the theoretical boome-
rang probability is an average over all keys under the assumption that all key
bits are independent, there are a few instances whereby the probabilities are
either higher or lower than estimated by the SMT model. All experimental
results are discussed in Section 6 and Section 7.

6. Application to KATAN

6.1. Boomerang Properties of the KATAN Family

There are four AND operators in KATAN’s round function, each inde-
pendent of one another. Since one of the AND operators involves a fixed
IR bit, input differences will propagate deterministically. We only need to
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consider the remaining three AND operators as the focus of our analysis.
We will construct ∧BCT constraints for the L1 and L2 registers based on
Equation 12.

Recall that (m,n) are indexes of bits involved in an AND operation. Tak-
ing KATAN32 as an example, we have (m,n) = (8, 5) for L1 while for L2 the
indexes involved in two AND operations are denoted as (m′, n′) = (12, 10)
and (m′′, n′′) = (8, 3) respectively. We can derive the boomerang switching
constraints for L1 directly from Equation 12 as:

L1 : β
m ∧ γn+1 = βn ∧ γm+1, (15)

where β and γ are the input and output differences of the boomerang switch
respectively. Note that the bit indexes for γ are shifted by 1 bit due to the
clocking of the shift registers. Since the results of the two AND operations
in L2 will be XOR-ed, we can construct the following ∧BCT constraints:

L2 : (β
m′ ∧ γn′+1)⊕ (βm′′ ∧ γn′′+1) = (βn′ ∧ γm′+1)⊕ (βn′′ ∧ γm′′+1),

(βm′ ∧ γn′+1)⊕ (βn′ ∧ γm′+1) = (βm′′ ∧ γn′′+1)⊕ (βn′′ ∧ γm′′+1).
(16)

Based on Table 4, the indexes involved in the ∧BCT constraints are (m,n,m′,
n′,m′′, n′′) = (x3, x4, y3, y4, y5, y6).

For all variants of KATAN, only certain input bits are involved in each
encryption round while the rest are merely shifted by 1 bit. As such, we can
derive a trivial multi-round boomerang switch for KATAN. We analyzed the
three variants of KATAN and derived a formula for computing the maximum
number of independent rounds for the aforementioned multi-round switch.

Property 2. Let Z represent the number of times KATAN’s round function
is applied (or the number of times the registers are clocked) in one encryption
round and y6 is the register bit index taken from the KATAN parameter table
(Table 4). The maximum number of independent rounds is then given by

rm = ⌊y6 + 1

Z
⌋. (17)

Proof. The length of the multi-round switch depends on the minimum num-
ber of rounds required for the output of one nonlinear operation to serve as
the input for another nonlinear operation. Rounds in which the nonlinear
outputs are simply shifted are referred to as independent rounds. There are
two nonlinear output bits computed each round, one for each register. When
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the registers are clocked, these nonlinear output bits are shifted into the least
significant bit of the other register, i.e. from L1 to L2 and vice versa. The
first two bits involved in AND operations have indexes x5 and y6 in L1 and L2

respectively. It also happens that x5 = y6 for all KATAN variants. Since x5

is involved in an AND operation with the IR bit, its difference will propagate
deterministically. Hence, the number of independent rounds is based on y6.
We will need to clock the registers at least y6 + 1 times before the nonlin-
ear bit coming from L1 will be involved in another AND operation. Taking
KATAN32 as an example where y6 = 3, the registers need to be clocked at
least 4 times:

1. L2[0] = fa(L1)
2. L2[1] = L2[0]
3. L2[2] = L2[1]
4. L2[3] = L2[2]

The same property can be observed for KATAN48 and KATAN64 where
y6 = 6 and y6 = 9 respectively. Since the different KATAN variants clock
their registers Z times per encryption round, the maximum number of inde-
pendent rounds is ⌊y6+1

Z
⌋.

For KATAN32, Z = 1; for KATAN48, Z = 2; for KATAN64, Z =
3. Using this formula, the maximum number of independent rounds for
the KATAN family of ciphers is 4 rounds for KATAN32, 3 rounds for
KATAN48, and 3 rounds for KATAN64. These independent rounds will be
encoded into the proposed automated boomerang search.
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6.2. Single-key Rectangle Distinguishers for KATAN32

Based on Equation 15 and Equation 16, we can use the following con-
straints to construct a 4-round boomerang switch for KATAN32:

L1 =


βm ∧ γn+1 = βn ∧ γm+1, (L1.1)

βm−1 ∧ γn = βn−1 ∧ γm, (L1.2)

βm−2 ∧ γn−1 = βn−2 ∧ γm−1, (L1.3)

βm−3 ∧ γn−2 = βn−3 ∧ γm−2, (L1.4)

L2 =


(βm′ ∧ γn′+1)⊕ (βn′ ∧ γm′+1) = (βm′′ ∧ γn′′+1)⊕ (βn′′ ∧ γm′′+1), (L2.1)

(βm′−1 ∧ γn′
)⊕ (βn′−1 ∧ γm′

) = (βm′′−1 ∧ γn′′
)⊕ (βn′′−1 ∧ γm′′

), (L2.2)

(βm′−2 ∧ γn′−1)⊕ (βn′−2 ∧ γm′−1) = (βm′′−2 ∧ γn′′−1)⊕ (βn′′−2 ∧ γm′′−1), (L2.3)

(βm′−3 ∧ γn′−2)⊕ (βn′−3 ∧ γm′−2) = (βm′′−3 ∧ γn′′−2)⊕ (βn′′−3 ∧ γm′′−2), (L2.4)

where β is the input difference to the first round of the boomerang switch,
and γ is the output difference after the fourth round. The L1.1 constraint
is taken directly from Equation 15. The bits involved in L1.2 to L1.4 are
those that will be shifted into position (m,n) after clocking the L1 register
each round. Similarly, the L2.1 constraint is taken directly from Equation 16
while the rest (L2.2 to L2.4) involve bits that will be shifted into positions
(m′, n′) and (m′′, n′′) after clocking the L2 register each round.

We implement these constraints to search for boomerang and rectangle
distinguishers forKATAN32 in the single-key setting with a search threshold
of 5 (the same threshold value is used for all KATAN variants), the results
of which are as follows:

Improved 83-round Rectangle Distinguisher for KATAN32: The
longest single-key rectangle distinguisher currently published in the literature
is 83 rounds with a probability of 2−21.78 [18]. However, this rectangle dis-
tinguisher was based on the previous (and now proven to be inaccurate [20])
assumption that two independent E0 and E1 would be compatible. We re-
compute the probability of this rectangle distinguisher (α = (0000,8081),
δ = (0080,1081)) using the proposed search strategy in Section 5. With
the incorporation of the boomerang switch, our SMT model returned a boo-
merang probability of 2−100 and a rectangle probability of 2−74.24, indicating
that this trail is not a valid distinguisher.
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We then searched for an improved 83-round rectangle distinguisher. Using
the proposed search strategy, we found an 83-round rectangle discriminator
with a probability of 2−48 and a rectangle probability of 2−28.65, the GPU
checker gives a probability of 2−26.7. The round distribution of the distin-
guisher (E0, Em, E1) was (r0, rm, r1) = (39, 4, 40). The input and output
differences are α = (0000,8801) and δ = (0010,0210), respectively.

86-round Rectangle Distinguisher for KATAN32: Our next goal was
to find the longest possible single-key rectangle distinguisher for KATAN32.
We were able to find an 86-round boomerang distinguisher that holds with
a probability of 2−44 where (r0, rm, r1) = (42, 4, 42). Based on its input and
output differences of α = (1006,8880) and δ = (00D0,1081), we computed
its rectangle probability as 2−30.06, the GPU checker returned a probability
of 2−28.06. We also found the best 84 and 85-round rectangle distinguishers
as summarised in Table 1.

6.3. Single-key Rectangle Distinguishers for KATAN48

We first derive the constraints for constructing a 3-round boomerang
switch forKATAN48, similar to how we did forKATAN32. SinceKATAN48
clocks each register twice each round, L1 and L2 will each have 6 sets of
constraints to represent the 3-round switch. The following are constraints
derived based on Equation 15 and Equation 16 using indexes taken from
Table 4, where (m,n,m′, n′,m′′, n′′) = (15, 7, 21, 13, 15, 6):

L1 =



β15 ∧ γ8 = β7 ∧ γ16, β14 ∧ γ7 = β6 ∧ γ15

β13 ∧ γ6 = β5 ∧ γ14, β12 ∧ γ5 = β4 ∧ γ13

β11 ∧ γ4 = β3 ∧ γ12, β10 ∧ γ3 = β2 ∧ γ11
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L2 =



(β21 ∧ γ14)⊕ (β13 ∧ γ22) = (β15 ∧ γ7)⊕ (β6 ∧ γ16)

(β20 ∧ γ13)⊕ (β12 ∧ γ21) = (β14 ∧ γ6)⊕ (β5 ∧ γ15)

(β19 ∧ γ12)⊕ (β11 ∧ γ20) = (β13 ∧ γ5)⊕ (β4 ∧ γ14)

(β18 ∧ γ11)⊕ (β10 ∧ γ19) = (β12 ∧ γ4)⊕ (β3 ∧ γ13)

(β17 ∧ γ10)⊕ (β9 ∧ γ18) = (β11 ∧ γ3)⊕ (β2 ∧ γ12)

(β16 ∧ γ9)⊕ (β8 ∧ γ17) = (β10 ∧ γ2)⊕ (β1 ∧ γ11)

Improved 60-round Rectangle Distinguisher for KATAN48: In cur-
rent literature, the longest single-key boomerang distinguisher identified for
KATAN48 has 60 rounds with differences α = (0000,0090,4000) and δ =
(0004,0200,0000), and a claimed rectangle probability of 2−23.36 [18]. We
re-evaluated the rectangle probability using our search tool and found it to
be higher than originally estimated (2−21.52).

Next, we searched for an improved 60-round rectangle distinguisher. We
first found a boomerang distinguisher with input and output differences
of α = (0000,0402,0000) and δ = (0002,0100,0000), respectively that
holds with a probability of 2−38. The round distribution was (r0, rm, r1) =
(29, 3, 28). Based on these settings the corresponding rectangle probability
was determined to be 2−17.51.

83-round Rectangle Distinguisher for KATAN48: The longest dis-
tinguisher for KATAN48 that we could find has 83 rounds, with a round
distribution of (r0, rm, r1) = (40, 3, 40). The input and output differences are
α = (0000,0090,4000) and δ = (0090,4000,000D). The boomerang and
rectangle probabilities for the distinguisher were 2−66 and 2−41.27 respectively.
We also found the best 81 and 82-round single-key rectangle distinguishers
to date, both of which are depicted in Table 1.

6.4. Single-key Rectangle Distinguishers for KATAN64

Since KATAN64 clocks each register three times each round, L1 and
L2 will each have 9 sets of constraints to represent the 3-round switch. The
following are constraints derived based on Equation 15 and Equation 16 using
indexes taken from Table 4, where (m,n,m′, n′,m′′, n′′) = (20, 11, 33, 21, 14, 9):
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L1 =



β20 ∧ γ12 = β11 ∧ γ21, β19 ∧ γ11 = β10 ∧ γ20,

β18 ∧ γ10 = β9 ∧ γ19

β17 ∧ γ9 = β8 ∧ γ18, β16 ∧ γ8 = β7 ∧ γ17,

β15 ∧ γ7 = β6 ∧ γ16

β14 ∧ γ6 = β5 ∧ γ15, β13 ∧ γ5 = β4 ∧ γ14,

β12 ∧ γ4 = β3 ∧ γ13

L2 =



(β33 ∧ γ22)⊕ (β21 ∧ γ34) = (β15 ∧ γ10)⊕ (β9 ∧ γ15)

(β32 ∧ γ21)⊕ (β20 ∧ γ33) = (β14 ∧ γ9)⊕ (β8 ∧ γ14)

(β31 ∧ γ20)⊕ (β19 ∧ γ32) = (β13 ∧ γ8)⊕ (β7 ∧ γ13)

(β30 ∧ γ19)⊕ (β18 ∧ γ31) = (β12 ∧ γ7)⊕ (β6 ∧ γ12)

(β29 ∧ γ18)⊕ (β17 ∧ γ30) = (β11 ∧ γ6)⊕ (β5 ∧ γ11)

(β28 ∧ γ17)⊕ (β16 ∧ γ29) = (β10 ∧ γ5)⊕ (β4 ∧ γ10)

(β27 ∧ γ16)⊕ (β15 ∧ γ28) = (β9 ∧ γ4)⊕ (β3 ∧ γ9)

(β26 ∧ γ15)⊕ (β14 ∧ γ27) = (β8 ∧ γ3)⊕ (β2 ∧ γ8)

(β25 ∧ γ14)⊕ (β13 ∧ γ26) = (β7 ∧ γ2)⊕ (β1 ∧ γ7)

Improved 56-round Rectangle Distinguisher for KATAN64: In cur-
rent literature, the longest single-key rectangle distinguisher for KATAN64
had 56 rounds, with a probability of 2−44.26. Its input and output differ-
ences were α = (0000,0000,0400,2001) and δ = (0020,1100,8000,0000)
respectively [18]. Upon verification, we found that the boomerang and rect-
angle probabilities for this distinguisher were instead 2−88 and 2−67.54 respec-
tively. We instead found a different boomerang distinguisher with differences
α = (0000,0010,0080,0400) and δ = (0020,3100,8000,0000). The boo-
merang probability was 2−56 which was improved to 2−51.92 when consider-
ing the rectangle framework. The number of rounds for (E0, Em, E1) were
(r0, rm, r1) = (27, 3, 26).
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62-round Rectangle Distinguisher for KATAN64: Our search for the
longest distinguisher uncovered a 62-round boomerang that holds with proba-
bility 2−68. Its input and output differences were α = (0000,0020,0500,2001)
and δ = (2011,0080,0000,0040) respectively, with (r0, rm, r1) = (30, 3, 29).
When considering all other boomerang trails and switches, the resulting rect-
angle probability was 2−62.25. Table 1 summarizes our findings, including 60
and 61-round rectangles for KATAN64.

7. Application to SIMON

7.1. Prior Differential Attacks on SIMON

To the best of our knowledge, no boomerang attacks on SIMON have
been previously reported in the single-key setting while findings in the related-
key setting have been recently published by Bonnetain and Lallemand [17].
The most best single-key (non-boomerang) differential attack on SIMON32
was based on a 13-round differential with a probability of 2−30.22. The in-
put and output differences of this differential were α = (0000,0040) and
δ = (4000,0000) respectively. For SIMON48, the best single-key (non-
boomerang) differential attack utilized a 15-round differential with a prob-
ability of 2−43.01. The input and output differences of this differential were
α = (0101,0004,4040) and δ = (4440,4010,0000) respectively.

Finally, the best single-key (non-boomerang) differential attack on SI-
MON64 relied on a 21-round differential that had a probability of 2−61.01.
The input and output differences for this differential were α = (0000, 0100, 0000, 0440)
and δ = (0000, 0440, 0000, 0100) [19].

Table 8: Bit indexes involved in the AND operation for SIMON32

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = ROTL1(x) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

n = ROTL8(x) 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

7.2. Single-key Boomerang Distinguishers for SIMON

For SIMON-n, there are a total of n
2
single-bit AND operations. In

Table 8, we denote x as the original indexes of bits involved in the AND
operation while the second and third rows of each column represent the
same bit indexes after bitwise rotations have been applied. Consequently,
there are 16 switch constraints, each following the general form:

βm ∧ γn = βn ∧ γm, (18)
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where m and n are bit indexes shown in Table 8. These constraints were in-
corporated in our automated search for rectangle distinguishers with a search
threshold of 10. The results of the boomerang search are as follows:

13-round Rectangle Distinguisher for SIMON32: In the single-key
setting, we successfully identified a boomerang trail with a probability of
2−44, where (r0, rm, r1) = (6, 1, 6). Based on its input and output differences
of α = (0010,0044) and δ = (1100,0400) respectively, its corresponding
rectangle probability was 2−28.54. The GPU checker returned the probability
as 2−28.04.

15-round Rectangle Distinguisher for SIMON48: While searching for
the longest rectangle distinguisher for SIMON48, we found a 15-round rect-
angle distinguisher that has a probability of 2−41.87, with α = (0000, 4000, 4111)
and δ = (0006, 4000, 0100). The 15 rounds were divided into (r0, rm, r1) =
(7, 1, 7).

16-round Rectangle Distinguisher for SIMON48: The maximum num-
ber of rounds for a valid single-key rectangle distinguisher for SIMON48
was 16. It has a probability of 2−46.45 with input and output differences
α = (0400,0019,1000)andδ = (2000,8280,0000) respectively. The 16
rounds were divided into (r0, rm, r1) = (7, 1, 8). A summary of all SIMON
boomerang and rectangle distinguishers found using the proposed tool is
listed in Table 2.

8. Application to CHAM

8.1. Single-key Rectangle Distinguishers for CHAM

In this section, we first revisit the best boomerang distinguisher found so
far – the one proposed by the designers of CHAM. We then introduce new
rectangle distinguishers for CHAM based on a 1-round boomerang switch.
In each round, only two out of four words are involved in the ADD operation.
Therefore, by restricting Em to just one round, bits that are not involved
in the ADD operation can take on any value during the boomerang switch.
This can be viewed as a truncated boomerang switch that allows us to cluster
more boomerang trails to maximize distinguishing probability. The boome-
rang switches were analyzed using ABCT and verified experimentally. For
differential search tasks, we use CryptoSMT [25].
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Figure 6: Evaluation of CHAM’s boomerang switch

In the following descriptions, ROTRm and ROTLm functions perform
m-bit circular right and left shifts of their inputs respectively. Only two of
CHAM’s four branches are involved in ADD and SUB operations in the for-
ward (encryption) and backward (decryption) directions respectively. Since
the ABCT is constructed based on values directly involved in ADD or SUB
operations, we will need to pre-rotate some of the branches as shown in Fig-
ure 6. In the encryption direction, Xi−1[1] needs to undergo a right rotation
while in the decryption direction, Xi[0] and Xi[3] need to undergo a left and
right rotation respectively before they are used as inputs to the ABCT.

36-round rectangle distinguisher: So far, the longest boomerang distin-
guisher was the one proposed by the designers of CHAM. They combined a
17-round E0 trail (8200,0100,0001,8000) → (0400,0004,0502,0088) with
an 18-round E1 trail (8200,0100,0001,8000) → (0004,0502,0088,0000)
to form a 35-round boomerang [23]. No switching round was included in
their analysis. While verifying the validity of the trails, we found that the
proposed 18-round E1 trail started from an odd-numbered round. Since E0

itself has an odd number of rounds, E1 should start on an even-numbered
round which has a different set of rotation values. To fix this error, we bridge
the gap between E0 and E1 by adding 1 round of Em. This then allows the
use of the trails found by the designers. By considering the differential ef-
fect, E0 and E1 have improved differential probabilities of 2−15 → 2−14.35

and 2−16 → 2−15.13 respectively. The switching effect occurs with probability
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ABCT (0400, ROTL8(0004), ROTR1(8000), ROTL8(8200))/2
32 ≈ 231.71−32 =

2−0.29. Experimentally, we verified Em to have probability 2−0.29 (More
specifically, 2−0.29 ± 2−10.02 based on 220 trials and 99% confidence inter-
val). The resulting 36-round boomerang distinguisher holds with probability
2(−14.35×2)+(−15.13×2)−0.29 = 2−59.25.

To obtain further improvements, we can consider all E0 trails that end
with (0400,0004,****,****) and all E1 trails that begin with (8200,****,
****,8000), where * denotes free nibbles that can assume any value. The
nibbles with fixed differences are the ones involved in the ADD and SUB
operations. We denote these as active words or nibbles. By considering all
valid switches that have this difference propagation, we now have a rectan-
gle distinguisher. This leads to E0 and E1 having differential probabilities of
2−9.22 and 2−14.2 respectively. The improved 36-round rectangle distinguisher
holds with probability 2(−9.22×2)+(−14.2×2)−0.29 = 2−47.13.

37-round rectangle distinguisher: Using the same strategy, we first con-
struct a cluster of 18-round E0 trails (8200,0100, 0001,8000) → (0004,0502,
****,****) and a new cluster of 18-round E1 trails (9000,****, ****,4000) →
(0100,0281,0002,0000) that begin at an even-numbered round. E0 and
E1 have differential probabilities of 2−11.42 and 2−14.61 respectively. The
switching probability of Em is ABCT (0004, ROTL1(0502), ROTR8(4000),
ROTL1(9000))/2

32 ≈ 231.49−32 = 2−0.51. Experimentally, this was verified to
be 2−0.51 ± 2−9.77 using 220 trials. The 37-round rectangle distinguisher has
a probability of 2(−11.42×2)+(−14.61×2)−0.51 = 2−52.57.

38-round rectangle distinguisher: We first construct a cluster of 19-
round E0 trails (8004,4082,8200,0100) → (0400 0004,****,****) with
a differential probability of 2−12.54 and reuse the cluster of 18-round E1

trails from the 36-round rectangle distinguisher. Em has a switching prob-
ability of 2−0.28, verified using both the ABCT and experimentally. The
distinguishing probability of the final 38-round rectangle distinguisher is
2(−12.54×2)+(−14.2×2)−0.28 = 2−53.76.

39-round rectangle distinguisher: We reuse the 19-round E0 cluster from
the 38-round distinguisher and search for a 19-round E1 cluster of trails start-
ing from an odd-numbered round that conforms to (8200,****,****,8000) →
(0502,0088,0000,000A) . This cluster has a differential probability of 2−16.95

while the switching probability for Em is 2−0.29. The overall 39-round rect-
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angle has a distinguishing probability of 2(−12.54×2)+(−16.95×2)−0.29 = 2−59.27.

Although it is also possible to construct boomerang distinguishers using a
multi-round deterministic boomerang switch, it would impose strong restric-
tions on the possible output and input differences of E0 and E1 respectively.
We will not be able to take advantage of the truncated boomerang switch
to build larger E0 and E1 trail clusters that have higher probabilities. For
example, we found that a 4-round deterministic switch would limit β and
γ differences to only one active word each, which then leads to shorter E0

and E1 trails. This restriction also leads to sub-optimal E0 and E1 trails
that would further lower the overall rectangle probability. With that said,
we provide an example of how a deterministic boomerang switch can still be
used to formulate a distinguisher as follows:

An alternative 36-round rectangle distinguisher: Consider a 1-round
deterministic switch where β = (****,****,****,****) and γ = (0000,****,
****,0000). For E0, we build a cluster of 20-round trails that conforms
to (8004,4082,8200 ,0100) → (****,****,****,****) . The resulting
cluster has a differential probability of 2−13.62. For E1, we find all 15-
round trails (starting from an even-numbered round) that correspond to
γ → (0000,0005,8502,0004) and obtain a cluster of trails with a differ-
ential probability of 2−16.28. The overall 36-round rectangle distinguisher
holds with probability 2−59.8.

8.2. Related-key Boomerang Distinguishers for CHAM

As the designers of CHAM have noted, there is no observable differen-
tial effect or trail clustering for related-key differential trails. Therefore, their
original 41-round boomerang distinguisher has a probability of 2−62, under
the ideal assumption that the boomerang switch is valid and deterministic.
We will now show how to adopt the strategy described in Subsection 8.1 to
find improved related-key rectangle distinguishers for CHAM. Details for
the distinguishers are summarized in Table 9.

41-round rectangle distinguisher: We use a 1-round boomerang switch.
E0 and E1 of 20 rounds have probabilities of 2−11.15 and 2−13.39 respectively.
To calculate the probability for Em using the ABCT, we must consider the
21st round key differences coming from both the upper and lower trail, which
in this particular instance are both 0. The probability that the boomerang
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41 Rounds

r0=20, rm=1, r1=20, p = 2−11.15, r = 2−0.2, q = 2−13.39

∆KE0=(0000,0000,0000,0000,0000,4000,4000,0000)

∆KE1=(0080,0000,0000,8000,0000,0000,0000,0000)

E0 (8080,4040,4040,0000)→(4200,0000,****,****)

Em (4200,0000,****,****)→(8400,****,****,0000)

E1 (8400,****,****,0000)→(0000,0400,0105,8080)

42 Rounds

r0=20, rm=1, r1=21, p = 2−11.15, r = 2−0.2, q = 2−15.39

E1 (8400,****,****,0000)→(0400,0105,8080,0100)

43 Rounds

r0=21, rm=1, r1=21, p = 2−10.37, r = 1, q = 2−15.75

E0 (8080,4040,4040,0000)→(0000,0000,****,****)

Em (0000,0000,****,****)→(****,****,****,****)

E1 (****,****,****,****)→(0105,8080,0300,0B82)

44 Rounds

r0=21, rm=1, r1=22, p = 2−10.37, r = 1, q = 2−19.57

E1 (****,****,****,****)→(8080,0300,0B82,030B)

Table 9: Related-key rectangle distinguishers for CHAM. The 42-round rectangle uses E0

and Em from the 41-round rectangle while the 44-round rectangle uses E0 and Em from
the 43-round rectangle.

switch occurs is calculated as ABCT (4200, ROTL1(0000), ROTR8(8400),
ROTL1(0000)/2

32 = 2−0.2. The overall 41-round related-key rectangle dis-
tinguisher has a probability of 2−49.28.
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42-round rectangle distinguisher: We append one additional round
to E1 while all other parameters remain. 21 rounds of E1 holds with probabil-
ity 2−15.39. The 42-round related-key rectangle distinguisher has a probability
of 2−53.28.

43-round rectangle distinguisher: The 43-round rectangle distin-
guisher has the form (r0, rm, r1) = (21, 1, 21). E0 has a differential prob-
ability of 2−10.37. Since the first two output difference nibbles of E0 are 0,
the ADD operation is not active in Em, which makes the boomerang switch
deterministic regardless of the input difference of E1. We can then remove
all restrictions on the input difference of E1 and build a cluster of 21-round
trails with a differential probability of 2−15.75. The final 43-round related-key
rectangle distinguisher has a probability of 2−52.24.

44-round rectangle distinguisher: We append one additional round
to E1 while all other parameters remain. 22 rounds of E1 has a probability of
2−19.57. The 44-round related-key rectangle has a distinguishing probability
of 2−59.88.

Next, we attempt to construct a rectangle distinguisher using a multi-
round switch. Due to the complexity of evaluating multiple rounds of Em

using ABCT when key differences are involved, we will rely on an experimen-
tally derived switching probability. For a relatively few Em rounds (< 10),
the switching probability is high enough to be reliably estimated3. First, we
search for the best E0 and E1 trail then check if the boomerang switch in
Em is valid (or has sufficiently high probability). Then, by fixing the input
and output differences of E0 and E1, we find all other β and γ combinations
where the boomerang switch is valid. This forms a rectangle distinguisher
with higher probability than the initial one. Using this strategy, we were
able to construct a 46-round related-key rectangle distinguisher:

46-round rectangle distinguisher: We start with a 20-round E0 related-
key trail (8080,4040,4040,0000) → (4200,0000, 0000,0084) with a differ-
ential probability of 2−15. After 7 rounds of Em, we append a 19-round E1

3We found that the boomerang switches were either invalid or have switching proba-
bilities larger than 2−20 when Em has fewer than 10 rounds.
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related-key trail (0000,0000,0000,8401) → (0400,0105,8080,0100) that
holds with probability 2−12. Em was found to have a switching probability of
2−9.49. Note that for E0 and E1, there is no significant differential effect and
cannot be individually improved by clustering additional trails. The overall
46-round related-key boomerang distinguisher holds with probability 2−63.49.

We then find other E0 and E1 trails where β and γ describe a valid
differential switch. Note that the α = 8080,4040,4040,0000 and δ =
0400,0105,8080,0100 remain unchanged. We sort the additional trails
based on their probabilities and consider all possible combinations. After
considering more than 1500 combinations (after which improvements to the
rectangle probability were negligible), the overall rectangle probability was
improved to 2−62.78.

9. Conclusion

In this paper, we evaluated the security of lightweight block ciphers that
employ the ARX and AND-RX constructions against boomerang-style at-
tacks. We first introduced an automated search strategy that leverages the
boomerang connectivity table for AND (∧BCT) to find boomerang and rect-
angle distinguishers for AND-RX ciphers. We verified the correctness of
our automated boomerang and rectangle search on the 32-bit variants of
KATAN and SIMON. For the AND-RX cipher KATAN, we found single-
key rectangle distinguishers of up to 86, 83 and 62 rounds for the 32, 48
and 64-bit variants respectively. We also found single-key rectangle distin-
guishers for another AND-RX cipher, SIMON of up to 13 and 16 rounds
for the 32 and 48-bit variants respectively. Next, we examined the ARX
cipher, CHAM and found that we could formulate a truncated boomerang
switch based on the properties of the boomerang connectivity table for ADD
(ABCT). This allowed us to find single-key and related-key rectangle distin-
guishers for CHAM of up to 39 and 46 rounds respectively. All boomerang
and rectangle distinguishers are currently the best (longest) distinguishers to
date in their respective settings. Our findings are summarized in Tables 1, 2
and 3.
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