
Security Analysis of ASCON Cipher under
Persistent Faults

Madhurima Das1 and Bodhisatwa Mazumdar2

1 Department of Mathematics, Indian Institute of Technology Indore, India
madhurimadasisme@gmail.com,

2 Department of Computer Science and Engineering, Indian Institute of Technology
Indore, India,

bodhisatwa@iiti.ac.in

3

Abstract. This work investigates persistent fault analysis on ASCON
cipher that has been recently standardized by NIST USA for lightweight
cryptography applications. In persistent fault, the fault once injected
through RowHammer injection techniques, exists in the system during
the entire encryption phase. In this work, we propose a model to mount
persistent fault analysis (PFA) on ASCON cipher. In the finalization
round of the ASCON cipher, we identify that the fault-injected S-Box
operation in the permutation round, p12, is vulnerable to leaking infor-
mation about the secret key. The model can exist in two variants, a single
instance of fault-injected S-Box out of 64 parallel S-Box invocations, and
the same faulty S-Box iterated 64 times. The attack model demonstrates
that any Spongent construction operating with authenticated encryption
with associated data (AEAD) mode is vulnerable to persistent faults. In
this work, we demonstrate the scenario of a single fault wherein the fault,
once injected is persistent until the device is powered off. Using the pro-
posed method, we successfully retrieve the 128-bit key in ASCON. Our
experiments show that the minimum number and the maximum num-
ber of queries required are 63 plaintexts and 451 plaintexts, respectively.
Moreover, we observe that the number of queries required to mount the
attack depends on fault location in the S-box LUT as observed from the
plots reporting the minimum number of queries and average number of
queries for 100 key values.

1 Introduction

Cryptographic primitives are designed to be mathematically secure by establish-
ing a number of cryptographic properties. Despite such properties, implementa-
tions of such primitives may leak information about the secret key, which greatly
reduce the complexity of attacks. Attacks with such information leakage from
physical implementations are referred to as side-channel attacks. In this class of
attacks, fault attacks belong to a category of implementation attacks on embed-
ded systems. Pertaining to the class of active attacks, fault attacks injects errors

3 Disclaimer: A preliminary version of this work was presented as a work-in-progress
paper at SPACE 2024. This work is supported from c3i Hub project from IIT Kanpur
with Sanction number, IHUB-NTIHAC/2021/01/21.

2 Madhurima Das and Bodhisatwa Mazumdar

in the operation of target device, it has been demonstrated on block ciphers,
such as RSA, AES, LED, PRESENT, and PICCOLO. Fault analysis attacks are
more often mounted in two phases, fault injection (FI) and fault analysis. The
fault injection can be mounted through mechanisms, such as voltage glitching [1],
clock glitching [2], focused laser beams [3], and electromagnetic pulses [4] dur-
ing the execution of key-dependent operations in encryption algorithms. Remote
faults have been mounted on graphic processing units (GPU) and other high-end
processors using Rowhammer techniques and dynamic frequency voltage scaling
techniques [5–7].

Fault attacks were first reported by Boneh et al. [8] on RSA-CRT implemen-
tations. In 1997, Biham and Shamir proposed differential fault analysis (DFA),
demonstrating that DFA is applicable to any block cipher [9]. DFA being a
transient fault model, has been shown to recover the full key in DES and AES
ciphers. In transient fault, the fault appears for a very small time duration, typ-
ically within a clock cycle. The injected fault may corrupt few bits or bytes in
the intermediate state. Depending on the fault injection mechanism, the fault
distribution can be uniformly random or may have a statistically biased distribu-
tion. Algebraic fault analysis (AFA) exploit the algebraic structure of encryption
algorithm in a differential setting of fault-free and faulty execution modes [10].
Some other fault analysis methods exploit statistical biases could be exploited
in a differential case or with only faulty ciphertexts.

A large number of fault analysis methods were proposed in the transient
fault model. However, some attacks consider permanent fault model arising from
physical defects that damage the device permanently. In this model, almost all
invocations of the target encryption algorithm will comprise this fault. In 2018,
Zhang et al. [5] prposed another fault model that falls between transient and
permanent fault model called persistent fault was proposed. This fault once
injected in look-up table based implementation of a cryptographic primitive,
such as Sbox, persists in the device for multiple encryptions until the device
is rebooted. The persistent bit-flip fault in Sbox is injected using Rowhammer
technique. Unlike DFA, the adversary in PFA, does not require to synchronize
or time fault injection in multiple rounds during run time. In [5], once the
fault is injected, encryption is performed under a given plaintext, the adversary
captures the faulty ciphertext, and subsequently performs PFA to recover the
key. However, in many variants of PFA, a prior knowledge of fault location
and value is required. In the scenario of multiple faults, this analysis becomes
computationally intensive.

In this work, to improve such criticality, we consider a chosen plaintext based
PFA. As a case study to mount the proposed chosen plaintext based PFA, we
consider ASCON cipher family which has been chosen by NIST USA as the
lightweight cryptography standard in February 2023 [11,12]. The ASCON cipher
family belongs to the class of authenticated encryption schemes, which protect
the confidentiality and authentication of data by employing sponge construction.
The sponge construction employs a duplex mode of operation, which absorbs
the data and subsequently squeezes the data. As this construction does not

Security Analysis of ASCON Cipher under Persistent Faults 3

involve key scheduling, it performs well in terms of high-speed implementation
and memory-constrained environment. To the best of our knowledge, this work is
the first to address persistent fault analysis (PFA) on ASCON, which has recently
become a NIST standard for lightweight cryptography. The contributions of the
proposed work are as follows:

1. We propose Chosen Plaintext based Persistent Fault Analysis(CP-PFA) on
ASCON [13].

2. We model the PFA attack on the finalization stage in ASCON cipher. The
analysis demonstrates the 128-bit key recovery with 64 to 520 plaintext queries
or more.

3. In the proposed CP-PFA, we mounted the attack on two models of the sub-
stitution layer. In the first model, only one of the 64 has been injected with
a persistent fault. In the second model, multiple Sboxes in the substitution
layer are injected with the same persistent fault.

4. In each of the above models, we consider two models of the adversary. In the
strong adversary model, the adversary can inject fault at a targeted entry
within the Sbox LUT. In the weaker model, the adversary injects the fault
in the SBox LUT but does not have control over the entry location at which
the fault is injected.

The organization of the paper is as follows. Section 2 introduces the notation that
will be consistently used throughout the paper. We establish the background of
ASCON Cipher and Persistent Fault Attack in section 3. Section 4 consists of a
detailed discussion of the proposed attack. Section 5 concludes the paper.

2 Notations

The Table 1 lists the notations that are used throughout the paper.

3 Backround

In this section, we present the background for the proposed work.

3.1 ASCON Cipher

The ASCON cipher [11] belongs to a family of authenticated encryption algo-
rithms for resource-constrained devices and high-end CPUs.

ASCON cipher suite has 4 variables namely ASCON-128, ASCON-128a,
ASCON-80pq, ASCON-Hash, and ASCON-XOF. The first two differ in round
numbers in the permutation. ASCON-80pq, which is designed for the post-
quantum era, has increased key size. ASCON-HASH is hash function that builds
upon the extendable output function ASCON-XOF.

4 Madhurima Das and Bodhisatwa Mazumdar

Table 1: Notation Table
Symbol Description
K Secret key K of k ≤ 160 bits.
K0 First 64 bits of the key.
K1 Last 64 bits of the key. K = K0||K1.

N , T , T
′

Nonce N , fault free tag T , faulty tag T
′
all of 128 bits

Tj,0[i](T
′
j,0[i]) The ith bit of the first 64 bits of the fault-free (faulty) tag of the jth query,

0 ≤ j ≤ 128, 0 ≤ i ≤ 64.

Tj,1[i](T
′
j,1[i]) The ith bit of the last 64 bits of the fault-free (faulty) tag of the jth query,

0 ≤ j ≤ 128, 0 ≤ i ≤ 64. T = T0||T1(T
′
= T

′
0 ||T

′
1).

K0[i](K1[i]) The ith bit of K0(K1), i ∈ {0, 1, . . . , 63}
Pi 64 bit plaintext block after padding
Ci 64 bit ciphertext block
Ai 64 bit block of associated data after padding
⊥ Error or verification of authenticated ciphertext failed
S The 320-bit state S of the sponge function
Sr, Sc The r-bit outer and c-bit inner part of the state S
p Permutations
pC , pS , pL Constant-addition, substitution and linear layer of p
pa, pb Permutations consisting of a, b rounds, respectively
x⊕ y XOR of bitstrings x and y
x0, . . . , x4 The five 64-bit words of the state S
xj,i, . . . , x4,i Bit i, 0 ≤ i < 64, of the word xj , 0 ≤ j ≤ 4,

with xj,0 the rightmost bit (LSB) of word xj

x⊕ y Bitwise XOR of 64-bit words, x and y
x⊙ y Bitwise AND of 64-bit words, x and y
x≫ i Right-rotation (circular shift) by i bits of 64-bit word x

SBj,i(xm,i) The mth bit of the output of the ith S-Box among

64 S-Boxes in the jth query. 0 ≤ j ≤ 128, 0 ≤ i ≤ 64, 0 ≤ m ≤ 4.∑
i xi Linear function for state word xi.∑−1
i xi Inverse of linear function for state word xi.

||,||63i=0 Concatenation, concatenating 64 bits.

Security Analysis of ASCON Cipher under Persistent Faults 5

Architecture of ASCON-128 The ASCON 128 cipher is an authenticated
encryption with associated data (AEAD) algorithm, utilizing the MonkeyDuplex
construction. It operates on a state of 320 bits. This state S is split into an
outer part, Sr of r = 64 bits, and an inner part Sc of c = 256 bits, calculated
as c = 320 − r. The 320-bit state S in ASCON is split into five 64-bit words
xi, S = Sr ∥Sc = x0∥x1 ∥x2∥x3∥x4. The initial 320-bit state of ASCON 128 is
composed using the secret key K of k bits, nonce N of 128 bits, and IV of 64
bits.

IVk,r,a,b ← k∥r∥a∥b∥0160−k = 0x80400c0600000000, S ← IVk,r,a,b∥K∥N (1)

ASCON-128 is built around two 320-bit permutations denoted by pa and pb

which primarily differ in their number of rounds, a = 12 and b = 6 as shown
in Fig. 1. These permutations are composed of pC , addition of constants layer;

Fig. 1: Encryption Of ASCON-128

pS , substitution layer; pL, linear diffusion layer. The pc adds a constant cr to
x2 of the state S in each round of pa and pb, as x2 ← x2 ⊕ cr. The specific
constants used in each round of the permutation are mentioned in [11]. In pS ,
the state S is updated with 64 parallel instances of the 5-bit S-box SB(x) to
each bit-slice of the five registers, x0, x1, x2, x3, x4. This operation is carried out
using a bit-sliced approach, executing operations across entire 64-bit words. The
lookup table of the S-Box is given in Table 2. The pL layer diffuses each 64-bit
register word x0, x1, x2, x3, x4 with the linear functions for respective words,∑

i xi. The linear functions are defined as,∑
0

(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28),
∑

1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)∑
2

(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6),
∑

3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)∑
4

(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

Table 2: Lookup Table for S-Box
x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

6 Madhurima Das and Bodhisatwa Mazumdar

The encryption consists of four steps: Initialization, processing the associated
data, processing the plaintext, and finalization. In the initialization phase, op-
eration pa is applied to the initial state, followed by a XOR with the secret key
K.

S ← pa(S)⊕
(
0320−k∥K

)
(2)

The associated data A is processed in blocks of 64 bits. It appends a one-bit 1
and the smallest number of zeros required to make A a multiple of r bits, then
split it into s number of blocks of r bits, A1∥ . . . ∥As. Each block is XORed to
Sr. Subsequently, p

b operation is applied to S.

S ← pb ((Sr ⊕Ai) ∥Sc) , 1 ≤ i ≤ s (3)

A one-bit domain separation constant is then XORed with Sc. The plaintext P
is processed into blocks of 64 bits. It appends a single 1 and the smallest number
of 0s to the plaintext P so that the length of the plaintext is a multiple of r
bits. The resulting plaintext is split into t blocks, each of 64 bits, P1∥ . . . ∥Pt.
In encryption, a padded plaintext block Pi, where i ∈ {1, 2, . . . , t}, is XORed to
the internal state Sr to generate the ciphertext block Ci. For every block except
the endmost, the whole internal state S is transformed by permutation pb with
b rounds. The last ciphertext block Ct is then truncated to the length of the
unpadded last plaintext block fragment, and the total length of the ciphertext
C is exactly the same as for the original plaintext P . In the stage of finalization,
the secret key K is XORed to the internal state Sc, and the state undergoes
permutation pa operation with a rounds.

S ← pa
(
S ⊕

(
0r∥K∥0c−k

))
T ← ⌈S⌉128 ⊕ ⌈K⌉128

The tag T is formed by XORing the last 128 bits of the state and the 128 bits
of the key K. The encryption algorithm outputs the tag T and the ciphertext,
i.e., Ek,r,a,b(K,N,A, P) = (C, T). The decryption and verification algorithm,
Dk,r,a,b(K,N,A,C, T) ∈ {P,⊥}. is similar to Ek,r,a,b(K,N,A, P) = (C, T) with
the plaintext blocks as input and ciphertext blocks are the output.

3.2 Persistent Fault Attack

Fault attack is an active attack which involves two distinct phases. In the first
phase, the attacker disrupts the operation of the target device. This process is
known as fault injection. In the second phase, the attacker analyzes the result-
ing faulty ciphertexts to extract the cryptographic key. This process is called
fault analysis. In Persistent Fault Analysis (PFA), the fault will persist until the
device reboots. Such a fault can be injected in an algorithmic constant stored
in memory, such as an entry in S-Box LUT. Until the memory is refreshed, the
fault remains present for subsequent encryptions.

The fault is injected in round computation and it persists across multiple
computations. In the context of block ciphers, which are the primary target of
this attack, these computations pertain to the round function. An encryption
algorithm involves several invocations of the round functions. The injected fault

Security Analysis of ASCON Cipher under Persistent Faults 7

remains over several encryptions (and thus multiple round function calls), but
the faulty value may not always be accessed. For instance, if the fault occurs
in an S-box element, the round computation is affected only if the faulty S-box
element is accessed. Otherwise, the injected fault does not influence that round
computation. If the faulty value is not accessed during encryption, the resulting
ciphertext will be correct, otherwise, it will be incorrect. The attacker analyzes
the correct and incorrect ciphertexts to retrieve information about the key [5,14].
The attacker aims to minimize the number of plaintext queries while mounting
PFA [13]. The complete Persistent Fault Attack comprises three stages:

1. Fault Injection Stage: The persistent fault is introduced before the first
encryption.

2. Encryption Stage: The adversary waits for the victim to initiate the en-
cryption process. The adversary then observes the produced ciphertexts,
some of which are correct while others are incorrect due to the persistent
fault.

3. Fault Analysis Stage: The adversary analyzes the correct and faulty ci-
phertexts to recover the secret key.

PFA techniques are employed to retrieve deeper round keys in SPN ciphers,
where the final round key by itself is insufficient to deduce the entire master
key [15].

4 Proposed Work

In this attack, two distinct fault models are considered. In both the models, a
persistent fault is injected at a single location within the S-Box lookup table
(LUT). The first model involves injecting the fault in only one of the 64 S-Boxes
within pS during the final round of the finalization phase in ASCON. The second
model applies the fault across all 64 S-Boxes in pS during the p12 permutation
in the finalization phase.

4.1 Inverse of ASCON-128’s LINEAR LAYER

Theorem (Rivest [16])
If n is a power of 2, v is an n-bit word, and r1, r2,. . ., rk are distinct fixed integers
modulo n, then the function R(v) is invertible if and only if k is odd, where R(v)
is R(v) = R(v; r1, r2, .., rk) = (vn <<< r1)⊕ (vn <<< r2)⊕ ...⊕ (vn <<< rk).

The linear layer consists of XOR of right rotations of the 64-bit words, x0,
x1, x2, x3, and x4. As k = 3 for all five transformations, the linear layer of
ASCON-128 is invertible. The rotations for the inverse of the linear layer are
given in Table 3.

4.2 Fault Model

The adversary can inject the persistent fault by flipping bits in the S-Box LUT
implementation through RowHammer injection techniques. The fault may vary
depending on the adversarial setting. For instance, the 0x01 entry of fault-free

8 Madhurima Das and Bodhisatwa Mazumdar

Table 3: Rotations for Inverse Linear Layer
Permutation Rotations Size

Σ−1
0

0 3 6 9 11 12 14 15 17 18 19 21 22 24 25 27 30 33 36 38 39 41
42 44 45 47 50 53 57 60 63

31

Σ−1
1

0 1 2 3 4 8 11 13 14 16 19 21 23 24 25 27 28 29 30 35 39 43
44 45 47 48 51 53 54 55 57 60 61

33

Σ−1
2

0 2 4 6 7 10 11 13 14 15 17 18 20 23 26 27 28 32 34 35 36 37
40 42 46 47 52 58 59 60 61 62 63

33

Σ−1
3

1 2 4 6 7 9 12 17 18 21 22 23 24 26 27 28 29 31 32 33 35 36
37 40 42 44 47 48 49 53 58 61 63

33

Σ−1
4

0 1 2 3 4 5 9 10 11 13 16 20 21 22 24 25 28 29 30 31 35 36
40 41 44 45 46 47 48 50 53 55 60 61 63

35

ASCON S-Box maps to 0x0b, the bit must be flipped so that the 0x01 entry
in the faulty S-Box maps to 0x08 as shown in Fig. 2. The lookup tables for
both the fault-free S-Box, S(x), and faulty S-Box, S′(x) are depicted in Fig. 3.
The injected fault satisfies the condition S(x) ⊕ S

′
(x) = 0x03. The flipping of

last two S-Box output bits corrupts the state words x3 and x4, which aids our
PFA method. The induced fault while satisfying this condition ensures that

Fig. 2: Fault injection at 0x01 such that S(x)⊕ S
′
(x) = 0x03.

Fig. 3: The lookup tables for the fault-free and faulty S-Box.

the faulty tag is generated by XOR operation of the last 128 bits of the state
(which correspond to the state words, x3 and x4) with the 128 bits of the key
K. So, the induced fault constraints the fault-free and faulty S-Box differential,
S(x)⊕ S′(x) ∈ {0x03, 0x07, 0x0b, 0x0f, 0x13, 0x17, 0x1b, 0x1f}.

Our key recovery result comes under a strong caveat. In this work, our pro-
posed CP-PFA assumes significant nonce-misuse, a feature for which ASCON
designers have not proposed any security claim. Due to usage of 128-bit key

Security Analysis of ASCON Cipher under Persistent Faults 9

in initialization and finalization phase, it is not clear how a state recovery can
result in a future key recovery or forgery attack.

4.3 Proposed CP-PFA on ASCON

In the proposed chosen plaintext based PFA when the attacker is granted access
to the encryption oracle, it chooses a random plaintext P1 of 64 bits, and creates
a set of 64 plaintexts P1,i, where i ∈ {0, 1, 2, . . . , 63}. Each P1,i differs from P1 in
the ith bit. This will ensure that every possible five bit word appears as input to
all the 64 SBoxes in pS in round 12 of permutation in the finalization phase. If
these 64 queries do not retrieve the key then the number of queries is increased
in a similar fashion. Plaintext sets, P2 and P3 can be randomly formed, each set
creating 64 plaintexts. In total, there are 192 plaintexts, Pj , j ∈ {1, 2, . . . , 192}
are input to the ASCON encryption. The partition of plaintext set, Pj is as
follows.

Pj =


P1,j , if j < 65

P2,(j−65), if j < 129

P3,(j−129), otherwise

However, depending on the key value, there exist fault locations in S-Box for
which the number of queries required is more than 192. With access to the AS-
CON encryption, the attacker inputs the plaintext and obtains the corresponding
tag values, Tj = Tj,0||Tj,1, j ∈ {1, 2, . . . , 192}. After capturing the set of fault-
free tag values, the adversary injects the persistent bit-flip fault in the S-Box
LUT implementation in substitution layer, pS of p12 operation in the finalization
phase.

In Fig. 4, consider the state word x4 obtained after p12 in finalization phase
marked as tgin1. In jth query, j ∈ {1, 2, . . . , 192}, applying the inverse linear
layer to x4 yields SBj,i(x4,i) where i ∈ {0, . . . , 63} in the round 12 of permutation

in the finalization step, i.e,
∑−1

4 tgin1 = ||63i=0SBj,i(x4,i) where j denotes query
number. From Fig. 4, we observe tgin1 = Tj,1 ⊕K1 for the jth query and hence
we get,

Fig. 4: ASCON encryption with the magnified last round of p12 in finalization
phase.

10 Madhurima Das and Bodhisatwa Mazumdar

−1∑
4

tgin1 =

−1∑
4

(Tj,1 ⊕K1)⇒ ||63i=0SBj,i(x4,i) =

−1∑
4

(Tj,1 ⊕K1)

⇒ SBj,i(x4,i) =

−1∑
4

Tj,1[i]⊕
−1∑
4

K1[i], ∀i ∈ {0, . . . , 63}

⇒
−1∑
4

K1[i] =

−1∑
4

Tj,1[i]⊕ SBj,i(x4,i), ∀i ∈ {0, . . . , 63} (4)

Similarly, applying the inverse linear operation to state word x3 obtained
after the 12th round permutation in the finalization phase (denoted as tgin0 in

Fig. 4), yields SBj,i(x3,i) where i ∈ {0, . . . , 63} , i.e,
∑−1

3 tgin0 = ||63i=0SBj,i(x3,i),
where j denotes the query number. Hence,

−1∑
3

tgin0 =

−1∑
3

(Tj,0 ⊕K0)⇒ ||63i=0SBj,i(x3,i) =

−1∑
3

(Tj,0 ⊕K0)

⇒ SBj,i(x3,i) =

−1∑
3

Tj,0[i]⊕
−1∑
3

K0[i], ∀i ∈ {0, . . . , 63}

⇒
−1∑
3

K0[i] =

−1∑
3

Tj,0[i]⊕ SBj,i(x3,i), ∀i ∈ {0, . . . , 63} (5)

Given that the tag Tj is captured,
∑−1

3 K0[i] and
∑−1

4 K1[i] can be com-
puted if SBj,i(x3,i) and SBj,i(x4,i) are retrieved, respectively, for each i ∈
{0, 1, 2, . . . , 63}. These values correspond to the third and fourth bits of the

S-Box output for all the 64 S-Boxes in pS . After
∑−1

3 K0[i] and
∑−1

4 K1[i] have
been computed for each i ∈ {0, 1, 2, . . . , 63}, the linear operation is applied to∑−1

3 K0 and
∑−1

4 K1, i.e.,
∑

3(
∑−1

3 K0) and
∑

4(
∑−1

4 K1), which yields K0 and
K1, respectively.
To retrieve the keys K0 and K1, faults are injected into the S-Box LUT immedi-
ately before round 12 in the finalization phase. In the last round of p12 of finaliza-
tion phase, the faulty S-Box is invoked in pS as shown in Fig. 5. As a result, the
adversary flips the last two bits of the S-Box output. In this single fault model,
whenever the faulty S-Box is invoked, the output value, SB

′

j,i(x3,i) || SB
′

j,i(x4,i)
is constrained to one of the four possible combinations, 00, 01, 10, or 11. The
set of plaintexts, Pj , j ∈ {1, 2, . . . , 192} is input to the encryption function com-
prising the faulty S-Box during p12 in the finalization phase. This process yields
the respective faulty tag, T

′

j = T
′

j,0 || T
′

j,1. Fig. 5 illustrates that out of the 64

S-Boxes in the pS step of the p12 permutation during the finalization step of
the encryption query, when the faulty S-Box LUT implementation is invoked
at the ith S-Box, the relation

∑−1
3 tgin

′

0 = ||63i=0SB
′

j,i(x3,i) is obtained, where
j represents the query number. Consequently, the following relation for K0 is
established.

Security Analysis of ASCON Cipher under Persistent Faults 11

−1∑
3

tgin
′

0 =

−1∑
3

(T
′

j,0 ⊕K0)⇒ ||63i=0SB
′

j,i(x3,i) =

−1∑
3

(T
′

j,0 ⊕K0)

⇒ SB
′

j,i(x3,i) =

−1∑
3

T
′

j,0[i]⊕
−1∑
3

K0[i] ,∀i ∈ {0, . . . , 63}

⇒
−1∑
3

K0[i] =

−1∑
3

T
′

j,0[i]⊕ SB
′

j,i(x3,i) ,∀i ∈ {0, . . . , 63} (6)

Similarly, the following relation for K1 is established:

−1∑
4

tgin
′

1 =

−1∑
4

(T
′

j,1 ⊕K1)⇒ ||63i=0SB
′

j,i(x4,i) =

−1∑
4

(T
′

j,1 ⊕K1)

⇒ SB
′

j,i(x4,i) =
−1∑
4

T
′

j,1[i]⊕
−1∑
4

K1[i] ,∀i ∈ {0, . . . , 63}

⇒
−1∑
4

K1[i] =

−1∑
4

T
′

j,1[i]⊕ SB
′

j,i(x4,i) ,∀i ∈ {0, . . . , 63} (7)

The set of plaintexts considered by randomly selecting three plaintexts, and then
creating 64 sets of plaintexts from each of them as discussed earlier, ensures
that each possible entry of the faulty S-Box can be invoked in the pS step of
round p12 of permutation in the the finalization phase. So the fault value in
the S-Box ensures that at least one of Tj,0(Tj,1) will differ from T

′

j,0(T
′

j,1), j ∈
{1, 2, . . . , 192}.

4.4 Fault Model I

This fault model considers 64 parallel implementations of S-Box LUTs in the pS
step of round p12 in the finalization phase. Only one of the 64 S-Boxes is injected
with persistent fault at a specific entry in the S-Box LUT.

Fig. 5: Faulty S-Box LUT implementation invoked at the ith S-Box in the last
round of finalization stage during encryption.

12 Madhurima Das and Bodhisatwa Mazumdar

To obtain the ith bit of
∑−1

3 K0 and
∑−1

4 K1, i ∈ {0, 1, 2, . . . , 63}, persistent
fault is injected in the ith S-Box out of the 64 parallel S-Boxes. Thereafter, we
analyze the faulty tag values, T ′j = T ′j,0||T ′j,1 that differ from the fault-free tag
values, Tj = Tj,0||Tj,1, j ∈ {1, 2, . . . , 192}. Upon identifying such j values for
both T0 and T1, it can be inferred that for that jth query, the entry in the ith

S-Box corresponds to the LUT entry that produces the faulty output.
Claim: In the given model, the following equivalence holds:

(i) Tj,0 ̸= T ′j,0 ⇔ SBj,i(x3,i) ̸= SB′j,i(x3,i) (ii) Tj,1 ̸= T ′j,1 ⇔ SBj,i(x4,i) ̸=
SB′j,i(x4,i).

Proof: In this model Tj,0 ̸= T ′j,0 implies Tj,0[i] ̸= T
′

j,0[i] as only the ith S-Box
out of all the 64 S-Boxes is faulty. Let us assume

SBj,i(x3,i) = SB′j,i(x3,i)

Applying linear function
∑

3 on both sides we get,

SBj,i(x3,i)⊕ SBj,(i−10)mod64(x3,(i−10)mod64)⊕ SBj,(i−17)mod64(x3,(i−17)mod64)

= SB
′

j,i(x3,i)⊕ SBj,(i−10)mod64(x3,(i−10)mod64)⊕ SBj,(i−17)mod64(x3,(i−17)mod64)

XORing K0 on both sides,

SBj,i(x3,i)⊕ SBj,(i−10)mod64(x3,(i−10)mod64)⊕ SBj,(i−17)mod64(x3,(i−17)mod64)⊕K0[i]

= SB
′

j,i(x3,i)⊕ SBj,(i−10)mod64(x3,(i−10)mod64)⊕ SBj,(i−17)mod64(x3,(i−17)mod64)⊕K0[i]

⇔ Tj,0[i] = T
′

j,0

So, it is proved that SBj,i(x3,i) = SB′j,i(x3,i) ⇔ Tj,0 = T ′j,0. It follows
SBj,i(x3,i) ̸= SB′j,i(x3,i) ⇔ Tj,0 ̸= T ′j,0. Hence proved. A similar approach can
establish Claim (ii). Depending on the control of the adversary in injecting per-
sistent fault in the S-Box LUT, we consider the following two cases.

Case I This analysis considers a strong adversary fault model, where the adver-
sary can inject fault at a specific entry within the S-Box LUT. Since the location
of the fault injection is controlled by the adversary, the outputs SB

′

j,i(x4,i) and

SB
′

j,i(x3,i), corresponding to the last two bits of the faulty S-Box, are known.

Given that SB
′

j,i(x4,i) and SB
′

j,i(x3,i) are known, equation 6 and equation 7 are

used to retrieve
∑−1

4 K1[i] and
∑−1

3 K0[i] for each i ∈ {0, 1, 2, . . . , 63}. Once∑−1
3 K0 and

∑−1
4 K1 have been computed, the linear layer can be applied to

these values, i.e.,
∑

3(
∑−1

3 K0) and
∑

4(
∑−1

4 K1) which give K0 and K1, re-
spectively. The steps are summarized in Algorithm 1.

Case II In this scenario, a weaker model is considered, where the adversary in-
jects a fault into the S-Box LUT but does not have control over the specific entry
location where the fault is introduced. The output values, SB′j,i(x3,i)||SB′j,i(x4,i),
are limited to one of four possible combinations: 0||0, 0||1, 1||0, or 1||1, regardless

Security Analysis of ASCON Cipher under Persistent Faults 13

Algorithm 1: Recovering 128 bits of Key by injecting persistent fault in
only one location of S-Box LUT and it is called for only once among all
the 64 S-Boxes in the Substitution layer in last round of p12 in finalization
when the fault location is known.

1: Inputs: Pj , where j ∈ {1, 2, . . . , 192}
2: Output: 128-bits of Key, K = K0||K1.
3: for j = 0 to 191 do
4: Encryption queries using Pj and get the tags, (Tj , Cj)← Ek,r,a,b(K,N,A, Pj).
5: end for
6: Inject persistent fault in one location of S-Box LUT by flipping the last two bits of the

original S-Box output for that location.
7: for bit = 0 to 63 do
8: for j = 0 to 191 do
9: In finalization in the last round the pS calls the faulty S-Box LUT for the bitth S-Box

among all the 64 S-Boxes, i.e

SBj,bit(x3,bit)||SBj,bit(x4,bit) ̸= SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit)

10: Make encryption queries using the same Pj and get the corresponding faulty

T
′
j = T

′
j,0||T

,
j,1, ie. (T

′
j , Cj)← E

′
k,r,a,b(K,N,A, Pj)

11: if T ′
j,0 ̸= Tj,0 then

12: j0,bit = j. //capturing the value of j
13: end if
14: if T ′

j,1 ̸= Tj,1 then

15: j1,bit = j. //capturing the value of j
16: end if
17: Compute

∑−1
3 T

′
j0,bit,0

and
∑−1

4 T
′
j1,bit,1

.

18: Compute
∑−1

3 K0[bit] =
∑−1

3 T
′
j0,bit,0

[bit]⊕ SB
′
j0,bit,bit

(x3,bit).

19: Compute
∑−1

4 K1[bit] =
∑−1

4 T
′
j1,bit,1

[bit]⊕ SB
′
j1,bit,bit

(x4,bit).

20: end for
21: end for
22: for bit = 0 to 63 do
23:

∑−1
3 K0 =

∑−1
3 K0 ⊕ ((

∑−1
3 K0[bit]⊙ 1) << (64− (bit + 1)))

24:
∑−1

4 K1 =
∑−1

4 K1 ⊕ ((
∑−1

4 K1[bit]⊙ 1) << (64− (bit + 1)))
25: end for
26: Compute

∑
3(

∑−1
3 K0) and

∑
4(

∑−1
4 K1)

27: Return K0 and K1 and hence K = K0||K1

of the LUT entry location where fault is injected. Each of these four combina-
tions is processed following the approach outlined in Case I, using Equation 6
and Equation 7, i.e., each possible combination is an instance of Case I which re-
duces the key search space to four key values. Once the four probable key values
are obtained, the encryption algorithm is queried using each key value with the
plaintexts, Pj , where j ∈ {1, 2, . . . , 192}, and the corresponding tag values are
received. The correct key is identified as the one for which all the newly received
tag values match the fault-free tag values generated previously. The steps of this
case are mentioned in Algorithm 2.

4.5 Fault Model II

In this model, multiple S-boxes in the substitution layer are injected with the
same persistent fault. This fault model considers one S-Box LUT implementa-
tion, invoked 64 times in the substitution layer in p12 in finalization. So, when
the fault is injected in the S-Box LUT in a specific entry that faulty S-Box is
invoked for all the 64 S-Boxes. As a result, unlike Fault Model I, in Fault Model

14 Madhurima Das and Bodhisatwa Mazumdar

Algorithm 2: Recovering 128 bits of Key by injecting persistent fault in
only one location of S-Box LUT and it is called for only once among all
the 64 S-Boxes in the Substitution layer in last round of p12 in finalization
when the fault location is unknown.

1: Inputs: Pj , where j ∈ {1, 2, . . . , 192}.
2: Output: 128-bits of Key, K = K0||K1.
3: Initialize Keytemp00=Keytemp00,0||Keytemp00,1, Keytemp01=Keytemp01,0||Keytemp01,1,

Keytemp10=Keytemp10,0||Keytemp10,1, Keytemp11=Keytemp11,0||Keytemp11,1

4: Follow Algorithm 1 to get Keytemp00 if SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit) = 0||0.

5: Follow Algorithm 1 to get Keytemp01 if SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit) = 0||1.

6: Follow Algorithm 1 to get Keytemp10 if SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit) = 1||0.

7: Follow Algorithm 1 to get Keytemp11 if SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit) = 1||1.

8: for j = 0 to 191 do
9: Make encryption queries using the plaintexts and get the corresponding tags.
10: (T 00

j , C00
j)← Ek,r,a,b(Ktemp00, N,A, Pj)

11: (T 01
j , C01

j)← Ek,r,a,b(Ktemp01, N,A, Pj)

12: (T 10
j , C10

j)← Ek,r,a,b(Ktemp10, N,A, Pj)

13: (T 11
j , C11

j)← Ek,r,a,b(Ktemp11, N,A, Pj)

14: end for
15: for j = 0 to 191 do
16: if Tj = T 00

j then

17: count00++
18: end if
19: if Tj = T 01

j then

20: count01++
21: end if
22: if Tj = T 10

j then

23: count10++
24: end if
25: if Tj = T 11

j then

26: count11++
27: end if
28: end for
29: if count00=192 then
30: K=Keytemp00

31: end if
32: if count01=192 then
33: K=Keytemp01

34: end if
35: if count10=192 then
36: K=Keytemp10

37: end if
38: if count11=192 then
39: K=Keytemp11

40: end if
41: Return K = K0||K1

II, more than one S-Box out of all the 64 S-Boxes can be faulty. From Fig. 4, for
any jth query, we have the following equations ∀i ∈ {1, 2, . . . , 64},

Tj,1[i] = K1 ⊕ SBj,i(x4,i)⊕ SBj,i(x4,(i−7)mod64)⊕ SBj,i(x4,(i−41)mod64), (8)

Tj,0[i] = K0 ⊕ SBj,i(x0,i)⊕ SBj,i(x0,(i−10)mod64)⊕ SBj,i(x0,(i−17)mod64) (9)

Security Analysis of ASCON Cipher under Persistent Faults 15

From Fig. 5, for any jth query, we have the following equations ∀i ∈ {1, 2, . . . , 64},

T
′

j,1[i] = K1 ⊕ SB
′

j,i(x4,i)⊕ SB
′

j,i(x4,(i−7)mod64)⊕ SB
′

j,i(x4,(i−41)mod64), (10)

T ,
j,0[i] = K0 ⊕ SB

′

j,i(x0,i)⊕ SB
′

j,i(x0,(i−10)mod64)⊕ SB
′

j,i(x0,(i−17)mod64)(11)

Computing XOR of equation 8 and equation 10 for any jth query and for any
i ∈ {1, 2, . . . , 64}, if Tj,1[i] ̸= T

′

j,1[i] then we have,

1 = (SBj,i(x4,i)⊕ SB
′

j,i(x4,i))⊕ (SBj,i(x4,(i−7) mod 64)⊕ SB
′

j,i(x4,(i−7) mod 64))

⊕(SBj,i(x4,(i−41) mod 64)⊕ SB
′

j,i(x4,(i−41) mod 64)) (12)

Similarly, computing XOR of equation 9 and equation 11 for any jth query and
for any i ∈ {1, 2, . . . , 64}, if Tj,0[i] ̸= T

′

j,0[i] then we have,

1 = (SBj,i(x3,i)⊕ SB
′

j,i(x3,i))⊕ (SBj,i(x3,(i−10) mod 64)⊕ SB
′

j,i(x3,(i−10) mod 64))

⊕(SBj,i(x3,(i−17) mod 64)⊕ SB
′

j,i(x3,(i−17) mod 64)) (13)

From equation 12 we have two cases,

(i) SBj,i(x4,i) ̸= SB
′

j,i(x4,i) or SBj,i(x4,(i−7) mod 64 ̸= SB
′

j,i(x4,(i−7) mod 64 or

SBj,i(x4,(i−41) mod 64) ̸= SB
′

j,i(x4,(i−41) mod 64)

(ii) SBj,i(x4,i) ̸= SB
′

j,i(x4,i) and SBj,i(x4,(i−7) mod 64 ̸= SB
′

j,i(x4,(i−7) mod 64

and SBj,i(x4,(i−41) mod 64) ̸= SB
′

j,i(x4,(i−41) mod 64)

Similarly, from equation 13 we have two cases,

(i) SBj,i(x3,i) ̸= SB
′

j,i(x3,i) or SBj,i(x3,(i−10) mod 64 ̸= SB
′

j,i(x3,(i−10) mod 64

or SBj,i(x3,(i−17) mod 64) ̸= SB
′

j,i(x3,(i−17) mod 64)

(ii) SBj,i(x3,i) ̸= SB
′

j,i(x3,i) and SBj,i(x3,(i−10) mod 64 ̸= SB
′

j,i(x3,(i−10) mod 64

and SBj,i(x3,(i−17) mod 64) ̸= SB
′

j,i(x3,(i−17) mod 64)

Thus more than one S-Box out of 64 S-Boxes in the substitution layer in p12 in
finalization stage can be affected by the fault injected in the LUT of SBox.

To recover
∑−1

4 K1 and
∑−1

3 K0, the analysis focuses on comparing the
faulty tag values, T ′j = T ′j,0||T ′j,1 with the corresponding fault-free tag values,
Tj = Tj,0||Tj,1, where j ∈ {1, 2, . . . , 192}. By identifying the discrepancies be-
tween these tags, it is inferred that for the jth query, at least one of the 64
S-Boxes in the pS of the finalization phase in round 12 has been affected by the
fault. Subsequently, for each value of i, where i ∈ {1, 2, . . . , 64}, the indices for

which
∑−1

3 T ′0[i] ̸=
∑−1

3 T0[i] and
∑−1

4 T ′1[i] ̸=
∑−1

4 T1[i] satisfy, are determined.
Using these identified indices, and from equation 6 and equation 7, the values
of

∑−1
3 K0[i] and

∑−1
4 K1[i] are recovered for the respective values of i. We

continue this process until we get
∑−1

3 K0[i] and
∑−1

4 K1[i], ∀i ∈ {1, 2, . . . , 64}.
Thereafter we compute

∑
3(
∑−1

3 K0) and
∑

3(
∑−1

3 K0) and thereby retrieve the
entire key, K = K0||K1. There are two adversary cases. First, when the adver-
sary is strong and the location of the fault injection is known, and second when

16 Madhurima Das and Bodhisatwa Mazumdar

the fault location is not known. For each identified value of i, if the fault location
is known, it corresponds to Case I of Fault Model I. On the contrary, if the fault
location is not known to the adversary, it corresponds to the Case II of Fault
Model I. Thus we retrieve the the key K = K0||K1. The steps are summarized
in Algorithm 3 and Algorithm 4.

Algorithm 3: Recovering 128 bits of Key by injecting persistent fault in
only one location of S-Box LUT and it is called for all the 64 S-Boxes in
the Substitution layer in last round of p12 in finalization when the fault
location is known.

1: Inputs: Pj , where j ∈ {1, 2, . . . , 192}
2: Output: 128-bits of Key, K = K0||K1.
3: for j = 0 to 191 do
4: Make encryption queries using the plaintexts and get the corresponding tags Tj = Tj,0||Tj,1,

i.e. (Tj , Cj)← Ek,r,a,b(K,N,A, Pj)
5: end for
6: Inject fault in one location of S-Box LUT by flipping the last two bits of the original S-Box

output for that location.
7: for j = 0 to 191 do
8: In finalization in last round, pS calls the faulty S-Box LUT for the bitth S-Box among all

the 64 S-Boxes, i.e SBj,bit(x3,bit)||SBj,bit(x4,bit) ̸= SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit)

9: Make encryption queries using the same Pj and get the corresponding faulty

T
′
j = T

′
j,0||T

,
j,1, i.e. (T

′
j , Cj)← E

′
k,r,a,b(K,N,A, Pj)

10: end for
11: for j = 0 to 191 do

12: if T
′
j,0 ̸= Tj,0 then

13: for bit = 0 to 63 do
14: if

∑−1
3 T

′
j,0[bit] ̸=

∑−1
3 Tj,0[bit] then

15: Compute
∑−1

3 K0[bit] =
∑−1

3 T
′
j,0[bit]⊕ SB

′
j,bit(x3,bit).

16: Compute
∑−1

4 K1[bit] =
∑−1

4 T
′
j,1[bit]⊕ SB

′
j,bit(x4,bit).

17: end if
18: end for
19: end if
20: end for
21: for bit = 0 to 63 do
22:

∑−1
3 K0 =

∑−1
3 K0 ⊕ ((

∑−1
3 K0[bit]⊙ 1) << (64− (bit + 1)))

23:
∑−1

4 K1 =
∑−1

4 K1 ⊕ ((
∑−1

4 K1[bit]⊙ 1) << (64− (bit + 1)))
24: end for
25: Compute

∑
3(

∑−1
3 K0) and

∑
4(

∑−1
4 K1)

26: Return K0 and K1 and hence K = K0||K1

5 Experimental Results
In the experimental results, we report the number of plaintext queries required
to recover K0 || K1 after injecting persistent faults into the S-Box under differ-
ent fault models. The experiments were conducted on a system with 12th Gen
Intel Core i5-12500H processor operating at 2.50 GHz, and 16.0 GB of RAM
(15.6 GB usable). The simulations for the proposed CP-PFA algorithms were
conducted using a custom implementation of the ASCON-128 cipher written in
C programming language. The implementation comprise modules for persistent
fault injection at the S-Box level, fault analysis, and the key recovery.

Security Analysis of ASCON Cipher under Persistent Faults 17

Algorithm 4: Recovering 128 bits of Key by injecting persistent fault in
only one location of S-Box LUT, and it is invoked for all the 64 S-Boxes
in the Substitution layer in last round of p12 in finalization when the fault
location is unknown.

1: Inputs: P [i] , where i ∈ {1, 2, . . . , 192}
2: Output: 128-bits of Key.
3: Initialize Keytemp00=Keytemp00,0||Keytemp00,1, Keytemp01=Keytemp01,0||Keytemp01,1,

Keytemp10=Keytemp10,0||Keytemp10,1, Keytemp11=Keytemp11,0||Keytemp11,1

4: Follow Algorithm 3 to receive Keytemp00 assuming SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit) = 0||0.

5: Follow Algorithm 3 to receive Keytemp01 assuming SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit) = 0||1.

6: Follow Algorithm 3 to receive Keytemp10 assuming SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit) = 1||0.

7: Follow Algorithm 3 to receive Keytemp11 assuming SB
′
j,bit(x3,bit)||SB

′
j,bit(x4,bit) = 1||1.

8: Follow Algorithm 2 from STEP 8
9: Return K0 and K1 and hence K = K0||K1

The experiment started with a randomly selected 64-bit plaintext, P1, from
which a set of 64 additional plaintexts, P1,i, i ∈ {0, 1, 2, . . . , 63}, was generated.
However, using only these 65 plaintexts was not sufficient to retrieve the entire
key. As a result, we progressively increased the number of queries while following
the same process to get the complete 128-bit key. The plots provided in Fig. 6 to
Fig. 7 denote the number of queries required to retrieve the corresponding keys
for all 32 possible fault locations in the S-Box LUT. We find that the number
of queries required is the same for Algorithm 1 and Algorithm 2. Similarly, the
number of queries required is the same for Algorithm 3 and Algorithm 4. All
the experiments are performed for 100 random key values. However, each plot in
Fig. 6 to Fig. 7 has five random keys and the corresponding number of queries to
recover each of them. Algorithm 4 is used to generate the data for the plots. From
the plots, we can see that there is no specific pattern for the number of queries.
The key values of K0 || K1 that require less than 65 queries to get recover for a
one fault location can be considered to be the weak keys. Fig. 8 has five random
key vales and the corresponding number of queries to recover each of them when
the fault model follows Algorithm 2. Fig. 7 shows that the maximum number of
queries required to retrieve a key value is 451 and from Fig. 6 we get the least
number of queries required which in this case is 63. From Fig. 9, which shows
the average number of queries to mount PFA over 100 key samples for each
fault location, we observe that fault location 0x1f can be the most vulnerable
location for injecting the fault in general. Fig. 10 denotes the minimum number
of queries against each fault location for 100 randomly chosen key values. From
Fig. 10, we observe that fault location 0x01 when injected with the persistent
fault, has the maximum count of keys that requires minimum number of queries
to recover the key. Thus S-Box LUT location, 0x01 has increased vulnerability
as compared to other locations.

6 Conclusion

The comprehensive analysis conducted on the ASCON-128 authenticated en-
cryption scheme has revealed significant vulnerabilities, particularly in the con-

18 Madhurima Das and Bodhisatwa Mazumdar

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0 5 10 15 20 25 30 35

K0=0x5e0011c844b431d2, K1=0x46c0694f3b09415a
K0=0x04de1c1c41761edc, K1=0x323c799152a05ffc

K0=0x7196744b4d9b6d0b, K1=0x5d8e6cc175666f6b
K0=0x616957780ca474ca, K1=0x7c4c61184f30441e
K0=0x299d6677795a7013, K1=0x1ab057af6e9f72b7

#
Q

ue
rie

s

Fault location in S-box LUT

Fig. 6: Number of queries for a fault location at one of 32 locations of S-box LUT
following Algorithm 4.

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35

K0=0x5a3307cd05ce5c07, K1=0x7a9a455b131a7b84
K0=0x7a430f4131092c1d, K1=0x5189357c046e00e9
K0=0x02783ff90b577e4c, K1=0x44327c634393366d

K0=0x7d911e3a1a7109ea, K1=0x530e252509cb60cb
K0=0x4be27d8906436fb5, K1=0x526b0f5a22cd5d60

#
Q

ue
rie

s

Fault location in S-box LUT

Fig. 7: Number of queries for a fault location at one of 32 locations of S-box LUT
following Algorithm 4.

text of fault attacks. From the architecture it can be observed that the ASCON-
128 design mixes key bits into the state via the S-box in each round, making it
challenging for attackers to track differences between related inputs.

The experimental analysis focused on the behavior of the S-Box under fault
injection attacks. By employing Persistence Fault Analysis, faults were strategi-
cally introduced into the S-Box during the finalization stage of the encryption
process. This involved inducing flipping the last two bits in the S-Box entry in
LUT in the last round, altering the output in a way that allowed the extraction
of key bits.

Security Analysis of ASCON Cipher under Persistent Faults 19

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

K0=0x33a351743db83177, K1=0x4f8660a425d77d4a
K0=0x0fbf2420012d632c, K1=0x3aad40db38af60ce
K0=0x6d8c5c30251a518c, K1=0x259910790134279f
K0=0x64760fdd51554594, K1=0x73cf696964270bfc

K0=0x0c3e246250aa6f66, K1=0x636c25da157b2a8a
#

Q
ue

rie
s

Fault location in S-box LUT

Fig. 8: Number of queries for a fault location at one of 32 locations of S-box LUT
following Algorithm 2.

 130

 135

 140

 145

 150

 0 5 10 15 20 25 30

#Avg Queries

#
Q

ue
rie

s

Fault location in S-box LUT

Fig. 9: Average number of queries to mount PFA over 100 random key samples
for each fault location.

In the experimental setup, plaintexts were carefully selected and modified to
ensure that every possible entry of the S-Box could be tested under fault condi-
tions. A set of plaintexts ranging from 60-451 was used to query the encryption
oracle and the resulting tag values were analyzed. By comparing the faulty and
non-faulty tag values, the specific positions of the faults were identified, allowing
for the recovery of the key bits. This approach enabled the successful extraction
of the complete 128-bit key, demonstrating the feasibility and effectiveness of
the fault attack. These vulnerabilities show the critical need for robust security
measures in lightweight cryptographic solutions like ASCON-128. These attacks
can be mounted on ASCON 128a and ASCON 80pq to extract the last 128 bits
of the key as the only difference is in round number and key size respectively.
Moreover, we believe that this work can be extended to the case of multiple

20 Madhurima Das and Bodhisatwa Mazumdar

Fig. 10: Minimum number of queries required to mount PFA over 100 random
key samples and the corresponding fault location in the S-Box LUT.

persistent faults in unknown locations of S-Box LUT, such as Statistical Per-
sistent Fault Analysis (SPFA) and Practical Multiple Persistent Faults Analysis
(PMPFA).

References

1. N. Selmane, S. Guilley, and J.-L. Danger, “Practical setup time violation attacks
on aes,” in 2008 Seventh European Dependable Computing Conference, 2008, pp.
91–96.

2. M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria, “When
clocks fail: on critical paths and clock faults,” in Proceedings of the 9th IFIP
WG 8.8/11.2 International Conference on Smart Card Research and Advanced
Application, ser. CARDIS’10. Berlin, Heidelberg: Springer-Verlag, 2010, p.
182–193. [Online]. Available: https://doi.org/10.1007/978-3-642-12510-2 13

3. S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in Cryp-
tographic Hardware and Embedded Systems - CHES 2002, B. S. Kaliski, ç. K. Koç,
and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 2–12.

4. A. Beckers, M. Kinugawa, Y. Hayashi, D. Fujimoto, J. Balasch, B. Gierlichs,
and I. Verbauwhede, “Design considerations for EM pulse fault injection,”
in Smart Card Research and Advanced Applications - 18th International
Conference, CARDIS 2019, Prague, Czech Republic, November 11-13, 2019,
Revised Selected Papers, ser. Lecture Notes in Computer Science, S. Beläıd and
T. Güneysu, Eds., vol. 11833. Springer, 2019, pp. 176–192. [Online]. Available:
https://doi.org/10.1007/978-3-030-42068-0\ 11

5. F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi, and K. Ren,
“Persistent fault analysis on block ciphers,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 150–172, 2018.

6. K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens,
“Plundervolt: Software-based fault injection attacks against intel sgx,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 1466–1482.

7. M. Sabbagh, Y. Fei, and D. Kaeli, “A novel gpu overdrive fault attack,” in 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

Security Analysis of ASCON Cipher under Persistent Faults 21

8. D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking cryp-
tographic protocols for faults,” in International conference on the theory and ap-
plications of cryptographic techniques. Springer, 1997, pp. 37–51.

9. E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,”
in Annual international cryptology conference. Springer, 1997, pp. 513–525.

10. N. T. Courtois, K. Jackson, and D. Ware, “Fault-algebraic attacks on inner rounds
of des,” in E-Smart’10 Proceedings: The Future of Digital Security Technologies.
Strategies Telecom and Multimedia, 2010.

11. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1. 2:
Lightweight authenticated encryption and hashing,” Journal of Cryptology, vol. 34,
pp. 1–42, 2021.

12. M. S. Turan, M. S. Turan, K. McKay, D. Chang, L. E. Bassham, J. Kang, N. D.
Waller, J. M. Kelsey, and D. Hong, Status report on the final round of the NIST
lightweight cryptography standardization process. US Department of Commerce,
National Institute of Standards and Technology, 2023.

13. F. Zhang, R. Huang, T. Feng, X. Gong, Y. Tao, K. Ren, X. Zhao, and S. Guo, “Ef-
ficient persistent fault analysis with small number of chosen plaintexts,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 519–542,
2023.

14. F. Zhang, Y. Zhang, H. Jiang, X. Zhu, S. Bhasin, X. Zhao, Z. Liu, D. Gu, and
K. Ren, “Persistent fault attack in practice,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 172–195, 2020.

15. P. Joshi and B. Mazumdar, “Deep round key recovery attacks and countermeasure
in persistent fault model: a case study on gift and klein,” Journal of Cryptographic
Engineering, pp. 1–23, 2024.

16. R. L. Rivest, “The invertibility of the xor of rotations of a binary word,” Interna-
tional Journal of Computer Mathematics, vol. 88, no. 2, pp. 281–284, 2011.

