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Abstract—The CRYSTALS-Dilithium digital signature scheme,
selected by NIST as a post-quantum cryptography (PQC)
standard under the name ML-DSA, employs a public key
compression technique intended for performance optimization.
Specifically, the module learning with error instance (A, t) is
compressed by omitting the low-order bits t0 of the vector
t. It was recently shown that knowledge of t0 enables more
effective side-channel attacks on Dilithium implementations.
Another recent work demonstrated a method for reconstructing
t0 from multiple signatures. In this paper, we build on this
method by applying profiled deep learning-assisted side-channel
analysis to partially recover the least significant bit of t0 from
power traces. As a result, the number of signatures required for
the reconstruction of t0 can be reduced by roughly half. We
demonstrate how the new t0 reconstruction method enhances
the efficiency of recovering the secret key component s1, and
thus facilitates digital signature forgery, on an ARM Cortex-M4
implementation of Dilithium.

Index Terms—Public-key cryptography, post-quantum cryp-
tography, Dilithium, ML-DSA, side-channel attack.

I. INTRODUCTION

The advent of quantum computing poses significant chal-
lenges to classical public-key cryptographic schemes. In re-
sponse, the National Institute of Standards and Technology
(NIST) initiated the standardization of post-quantum cryp-
tography (PQC) primitives in 2016. Following an eight-year
evaluation process, the Federal Information Processing Stan-
dards (FIPS) for CRYSTALS-Kyber, CRYSTALS-Dilithium,
and Sphinx+ have recently been approved under the names
FIPS 203 ML-KEM, FIPS 204 ML-DSA, and FIPS 205 SLH-
DSA, respectively [1].

The state-of-the-art in PQC is quickly progressing from
standardization to implementation and deployment. The In-
ternet Engineering Task Force (IETF) is currently integrat-
ing quantum-resistant cryptographic algorithms into security
protocols such as X.509, Transport Layer Security (TLS),
Internet Protocol Security (IPsec), and Secure Shell (SSH),
which are commonly used in the Internet, corporate networks,
and mobile networks. Similarly, the 3rd Generation Partnership
Project (3GPP) is in the process of integrating PQC algorithms
into 5G [2]. NIST expects that all high-priority systems
transition to quantum-resistant cryptography by 2035. While
quantum computers powerful enough to break current public-
key cryptographic schemes do not yet exist, the transition to
PQC is necessary due to the threat of adversaries collecting

encrypted data now with the intention of decrypting it later,
once the technology becomes available.

These developments highlight the need to assess the re-
sistance of standardized PQC algorithms to various types of
attacks, including physical attacks on their implementations.
Each identified implementation weakness presents an oppor-
tunity for developers to improve future versions, ultimately
resulting in more secure cryptographic systems.

The ARM Cortex-M4 is an important platform for evalua-
tions, as demonstrated by NIST’s emphasis on this architecture
during the performance assessment of PQC standardization
process candidates [3]. The ARM Cortex-M4 is widely used
in internet-of-things devices such as smart locks, smart ap-
pliances, wearables, vending machines, in-car entertainment
systems, etc. These devices are particularly susceptible to side-
channel and fault attacks due to their physical accessibility,
with attackers potentially being the devices’ users themselves.

This paper focuses on the evaluation of Dilithium’s imple-
mentations on ARM Cortex-M4. Dilithium digital signature
scheme is strongly existentially unforgeable under chosen
message attack (EUF-CMA-secure) in the classical and quan-
tum random oracle models [4]. In theory, this ensures that
adversaries cannot forge a signature for a new message or alter
an existing signature for a message they have already seen.
However, previous work has demonstrated that Dilithium’s
theoretical EUF-CMA-security can be bypassed via side-
channel attacks [5]–[11] or fault attacks [12], [13].
Our Contributions: We present a side-channel attack on
Dilithium that targets the recovery of the low-order bits t0
of the vector t. None of the previous attacks on Dilithium
specifically target t0. This is likely because t0 is not consid-
ered a secret contributing to the security of Dilithium. The
compression of t is applied to optimize performance, and
cryptanalytic methods, such as [14], can reconstruct t0 from
multiple signatures.

Although the knowledge of t0 does not enhance traditional
cryptanalysis, it facilitates more effective side-channel attacks
on Dilithium implementations, as demonstrated in [11]. To
minimize the number of signatures required for the recon-
struction of t0 by a cryptanalytic method, attackers may
attempt to recover portions of t0 through side-channel anal-
ysis. For example, in the case of Dilithium-2, reconstructing
the entire t0 using a method outlined in [14] requires two



million signatures. However, if the least significant bit (LSB)
of t0 is known, the number of signatures required for the
reconstruction of t0 can be reduced by approximately half.
This motivated us to explore the feasibility of recovering the
LSB of t0 through side-channel analysis.

We demonstrate that the LSB of t0 can be partially re-
covered from a small number of power traces using side-
channel information leaked during the secret key unpacking
in the signing algorithm. The attack employs a profiled deep
learning-assisted power analysis. It utilizes two novel ideas:

1) Detecting LSB errors: During the recovery of the LSB of
t0 by neural network ensembles trained at the profiling
stage, we detect potential errors in the predictions using
the following strategy. Instead of relying on the major-
ity voting aggregation method commonly employed in
ensemble learning, we apply the unanimous voting with
error detection. In this method, the ensemble makes a
decision on the LSB value only if all the neural networks
in the ensemble agree. Otherwise, the LSB remains
undecided, indicating a possible error.

2) Recovering s1 with partial knowledge of t0: We extend
the atatck method of Wang et al. [11] to recover the
vector s1 (a component of the secret key) from linear
equations based on t = As1+ s2 in which some coeffi-
cients of the vector t0 are unknown. This modification
is necessary to account for the presence of undecided
LSB values.

Paper Organization: In Section II, we describe how t0 can
be reconstructed from multiple signatures and why knowing
t0 aids in extracting s1 via side-channel analysis. Section III
presents the t0 LSB recovery method. Results of the attacks
are summarized in Section IV. Section V concludes the paper.

II. ROLE OF t0 IN SECRET KEY RECOVERY

A. Reconstructing t0 from multiple signatures

The method of Oliveira et al. [14] recovers t0 by using
the fact that, for each signature, the hint vector h leaks
some information about t0. Specifically, each coefficient of
h provides an inequality that bounds the range of possible
values for the coefficients of t0. By accumulating sufficiently
many such inequalities, the entire vector t0 can be recovered.
Both, hint coefficients equal to zero and one, contribute to this
process.

In [14], it shows that approximately two million signatures
are sufficient to recover t0 when both types of inequalities,
from zero and one hints, are considered. This is because
the inequalities reduce the range of possible values for each
coefficient of t0 to within 0.5. Since the coefficients are
integers, this results in a unique solution.

The recovery of t0 is an iterative, multi-round process,
where each round i ∈ {1, 2, . . . , 14} progressively narrows
down the range Ci of possible values for the coefficients of
t0. When Ci shrinks to 1, each coefficient of t0 becomes
uniquely defined within the range of 1, i.e. up to its LSB.
Consequently, if the LSBs of the coefficients of t0 are already

known, the algorithm of [14] can terminate as soon as Ci = 1.
From [14], achieving Ci = 1 requires approximately one
million signatures. Thus, knowing the LSBs reduces the total
number of signatures required to recover t0 by approximately
half.

Note that the method described in [14] only considers the
recovery of the first element of the t0 vector. To recover
the other elements of t0, the algorithm has to be run again.
However, the same signatures can be reused, so recovering the
entire t0 is possible with the same number of signatures as
required for recovering the first element of t0.

B. How knowledge of t0 helps recover the secret s1

The experiments of [11] show that, for Dilithium-2, the
average probability to recover a single coefficient of the vector
s1 during unpacking is 0.964. Thus, the estimated probability
to recover the full vector s1 is 0.9641024 ≈ 0.

The solution proposed in [11] is to first predict values of
all 2048 coefficients of the secret vector s1 and the error
vector s2 using neural networks, then to sort the predictions
in descending order according to the maximum probability
of their score vectors, and finally to accept as correct the
top half of the predictions in the sorted list. The remaining
half of the coefficients are recovered by solving a system of
linear equations based on t = As1+ s2. If t0 is known, 1024
coefficients recovered by side-channel analysis are sufficient
for these linear equations to have a unique solution.

In this paper, we extend this method to handle cases where
some of the coefficients of the vector t0 are unknown. This
restricts us to only using the equations of t = As1 + s2
where the coefficients of t0 are known. The same total number
of coefficients of s1 and s2 must still be recovered by side-
channel analysis to ensure that the linear system of equations
has a unique solution. However, the coefficients of s2 that
correspond to unknown parts of t0 are no longer of interest,
and therefore a larger fraction of the interesting unknown
coefficients of s1 and s2 must be recovered by side-channel
analysis. As the system of equations no longer depends on all
coefficients of s2, the entire s2 vector cannot be reconstructed
in this way. However, this is not an issue as, for forging
signatures, it is sufficient to fully reconstruct the s1 vector. The
details of the extended method are described in Section IV-C.

III. LSB RECOVERY BY SIDE-CHANNEL ANALYSIS

This section describes the deep learning-assisted power
analysis method which we use for recovering the LSB of t0.

A. Attack point

The presented side-channel attack targets the secret key
unpacking function executed during the first step of the
signing algorithm. Fig. 1 shows the C code of the procedure
polyt0_unpack() which unpacks t0 in the Dilithium
implementation of [15]. The function polyt0_unpack()
is invoked to unpack 1024 coefficients of t0 which are 13-bit
signed integers.



void polyt0_unpack(poly *r, uint8_t *a)
/* a is the input byte array of t0 in the secret key*/
/* r is the corresponding output array of polynomial coefficients of t0 */
unsigned int i;
1: for (i = 0; i < N/8; ++i) do /* N = 256, D = 13 in Dilithium-2 */
2: r->coeffs[8*i+0] = a[13*i+0];
3: r->coeffs[8*i+0] |= (uint32_t)a[13*i+1] << 8;
4: r->coeffs[8*i+0] &= 0x1FFF;

5: r->coeffs[8*i+1] = a[13*i+1] >> 5;
6: r->coeffs[8*i+1] |= (uint32_t)a[13*i+2] << 3;
7: r->coeffs[8*i+1] |= (uint32_t)a[13*i+3] << 11;
8: r->coeffs[8*i+1] &= 0x1FFF;

9: r->coeffs[8*i+2] = a[13*i+3] >> 2;
10: r->coeffs[8*i+2] |= (uint32_t)a[13*i+4] << 6;
11: r->coeffs[8*i+2] &= 0x1FFF;

12: r->coeffs[8*i+3] = a[13*i+4] >> 7;
13: r->coeffs[8*i+3] |= (uint32_t)a[13*i+5] << 1;
14: r->coeffs[8*i+3] |= (uint32_t)a[13*i+6] << 9;
15: r->coeffs[8*i+3] &= 0x1FFF;

16: r->coeffs[8*i+4] = a[13*i+6] >> 4;
17: r->coeffs[8*i+4] |= (uint32_t)a[13*i+7] << 4;
18: r->coeffs[8*i+4] |= (uint32_t)a[13*i+8] << 12;
19: r->coeffs[8*i+4] &= 0x1FFF;

20: r->coeffs[8*i+5] = a[13*i+8] >> 1;
21: r->coeffs[8*i+5] |= (uint32_t)a[13*i+9] << 7;
22: r->coeffs[8*i+5] &= 0x1FFF;

23: r->coeffs[8*i+6] = a[13*i+9] >> 6;
24: r->coeffs[8*i+6] |= (uint32_t)a[13*i+10] << 2;
25: r->coeffs[8*i+6] |= (uint32_t)a[13*i+11] << 10;
26: r->coeffs[8*i+6] &= 0x1FFF;

27: r->coeffs[8*i+7] = a[13*i+11] >> 3;
28: r->coeffs[8*i+7] |= (uint32_t)a[13*i+12] << 5;
29: r->coeffs[8*i+7] &= 0x1FFF;

30: r->coeffs[8*i+0] = (1 << (D-1)) - r->coeffs[8*i+0];
31: r->coeffs[8*i+1] = (1 << (D-1)) - r->coeffs[8*i+1];
32: r->coeffs[8*i+2] = (1 << (D-1)) - r->coeffs[8*i+2];
33: r->coeffs[8*i+3] = (1 << (D-1)) - r->coeffs[8*i+3];
34: r->coeffs[8*i+4] = (1 << (D-1)) - r->coeffs[8*i+4];
35: r->coeffs[8*i+5] = (1 << (D-1)) - r->coeffs[8*i+5];
36: r->coeffs[8*i+6] = (1 << (D-1)) - r->coeffs[8*i+6];
37: r->coeffs[8*i+7] = (1 << (D-1)) - r->coeffs[8*i+7];
38: end for

Fig. 1. The C code of the polyt0_unpack() procedure which unpacks
t0 in the Dilithium implementation of [15].

Fig. 2(a) shows a complete power trace recorded during
the execution of the Dilithium-2 signing algorithm in the
implementation [15]. We capture traces using the same equip-
ment as in [11]. The trace covers the entire execution of
polyt0_unpack() procedure. One can clearly see four
similarly-looking blocks, each corresponding to the unpacking
of 256 polynomial coefficients of the vector t0. Within each
block, there are 32 identical segments, each representing 13
bytes used to pack eight coefficients of t0 (see line 2-37 in
Fig. 1). Fig. 2(b) provides a closer view of a 550-point segment
representing the unpacking of eight consecutive coefficients of
t0. Such segments are provided as input to the neural networks
during training and inference.

B. Leakage analysis

We conduct leakage analysis by applying Welch’s t-test [16]
on a set of power traces, T, captured from a profiling device
executing the signing algorithm with a known secret key. The

Fig. 2. (a) A power trace of the polyt0_unpack() procedure in Dilithium-
2 (averaged over 30 samples); (b) 550-point segment representing the unpack-
ing of eight consecutive t0 coefficients; (c) T-test results for LSBs of the
coefficients in (b) for 10, 000 traces.

Welch’s t-test determines if there is a noticeable difference in
the means of two datasets, T0 and T1, by computing:

t =
µ0 − µ1√
σ2
0

|T0| +
σ2
1

|T1|

,

where µi and σi are the mean and the standard deviation of
the dataset Ti, for i ∈ {0, 1}.

Let t0[i] denote the ith coefficient of t0, for i ∈
{0, 1, . . . , 1023}. To analyze if the LSBs of t0[i] potentially
leaks side-channel information, we group the traces of T
according to the value of the LSB:

T0 = {T ∈ T | LSB(t0[i]) = 0},
T1 = {T ∈ T | LSB(t0[i]) = 1}.

(1)

Fig. 2(c) shows the t-test results for the first eight coeffi-
cients of t0. We can see that all eight coefficients have two
main peaks. The first one corresponds to converting elements
of the byte array to 13-bit unsigned integers (see line 2-29
in Fig. 1). The second peak corresponds to converting the
resulting unsigned integers to 13-bit signed integers (see line
30-37 in Fig. 1). The maximum t-test score for each coefficient
is listed in the first row of Table I.

We can also see from Fig. 2(c) that each coefficient of t0
within a group of eight consecutive coefficients exhibits dis-
tinct leakage patterns. This is due to differences in the unpack-
ing of individual coefficients by the polyt0_unpack()
procedure (see the pseudocode in Fig. 1). For this reason
we train a different neural network for each of the eight
coefficients.

C. Noise reduction

It is well-known that, in order to distinguish the variations
due to the data-dependent part of cryptographic operations
from noise, the signal-to-noise ratio (SNR) should be suffi-
ciently high [17]. It is also known that the SNR of an averaged
signal increases proportionally to the square root of the number
of samples which are averaged [18].



TABLE I
MEAN T-TEST SCORES FOR LSBS(t0[i]) GROUPED BY (i MOD 8), FOR
i ∈ 0, 1, . . . , 1023, FOR 10, 000 TRACES AVERAGED OVER M SAMPLES.

M
i mod 8 Avg.

0 1 2 3 4 5 6 7

1 23.1 31.8 23.1 33.0 37.5 27.8 41.6 32.3 31.3
10 33.1 45.7 32.5 60.4 39.0 34.5 55.4 34.7 42.0
20 33.6 45.2 37.1 65.6 40.3 35.9 59.0 35.8 44.1
30 34.3 45.3 40.1 67.9 41.8 36.6 59.7 35.9 45.2

To estimate how many samples are required to be averaged
to increase the SNR, we capture four sets of 10, 000 traces,
each computed as an average of M = 1, 10, 20, and
30 samples, respectively, for a fixed secret key selected at
random. Table I shows the t-test results for the LSBs of the
coefficients t0[i] grouped according to the index (i mod 8),
for all i ∈ {0, 1, . . . , 1023}.

As expected, the t-test score increases as M grows. How-
ever, the rate of increase slows significantly once M reaches
30. Since capturing 10, 000 traces averaged over 40 samples
takes more than a week, we chose to use M = 30 for our
experiments.

D. Profiling details

For profiling, we capture 4, 000 power traces from each
of the five profiling devices, with every trace averaged over
30 samples, during the execution of the signing algorithm for
known secret keys and messages selected at random. The 550-
point segments of type shown in Fig. 2(b), representing the
unpacking of eight consecutive coefficients of t0, are then
extracted and combined. This results in a training set, Ttr,
of size 20, 000× 32× 4 = 2, 560, 000 traces.

We use a multilayer perceptron (MLP) architecture with
three layers containing of 512, 256, and 256 neurons. Using
Ttr, we train eight types of neuron networks, Nj , to predict
the LSBs of t0[i], for all i ∈ {0, 1, . . . , 1023} and j =
(i mod 8). For each j ∈ {0, 1, . . . , 7}, 21 models are trained
on randomly selected subsets containing 70% of the traces
in Ttr. These models are then combined into an ensemble,
leveraging ensemble learning which has proven effective in
side-channel analysis [19]. In total, 21 × 8 = 168 neural
networks are trained.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the feasibility of recovering the
LSB of t0 for 10 different secret keys selected at random.
Power traces for all side-channel attacks are collected from
a device different from those used for profiling. As in neural
network training, each trace is averaged over 30 samples.

A. LSB recovery attack using majority voting

First, we analyze how many traces are required to achieve
a high accuracy in recovering LSBs. For each secret key,
we capture 1, 000 power traces from the device under attack
executing the signing algorithm on 1, 000 messages selected at

TABLE II
THE NUMBER OF INCORRECTLY RECOVERED LSBS OF t0[i], FOR

i ∈ {0, 1, . . . , 1023}, IN THE ATTACK USING N TRACES.

Secret
key

# Test traces
1 2 4 8 16 32 64 128 256 512 1000

1 70 72 66 68 65 63 64 67 68 67 66
2 72 69 63 73 70 72 74 75 71 72 71
3 58 51 45 43 40 42 44 42 45 49 50
4 66 64 68 60 60 58 56 60 58 59 61
5 56 50 49 51 51 51 51 53 53 51 49
6 61 64 61 63 62 61 65 63 63 65 65
7 65 65 62 59 60 57 55 56 58 56 57
8 70 65 67 68 66 65 62 63 62 62 61
9 59 47 52 44 42 42 40 41 40 43 42

10 69 70 66 63 61 63 62 64 64 62 60

Avg. 64.6 61.7 59.9 59.2 57.7 57.4 57.3 58.4 58.2 58.6 58.2

random. The 550-point segments representing the unpacking
of eight consecutive coefficients of t0 are then passed to the
ensemble of models Nimod 8 to get predictions on the LSBs of
t0[i], for all i ∈ {0, 1, . . . , 1023}. In this attack, the predictions
of the individual models within each ensemble are aggregated
using majority voting.

Table II shows the number of incorrectly recovered LSBs
in the attacks using N traces. In an N -trace attack, we first
combine the predictions of individual models by computing
the cumulative probability of the score vectors (representing
the probabilities of LSB values) for each trace, and then
aggregate the resulting model predictions within the ensemble
by majority voting. Recall that we are attempting to recover
values that remain constant regardless of the message being
signed. It is known that the success rate of profiled side-
channel attacks targeting constant values can be improved
by utilizing multiple traces [20]. However, as the number of
traces increases, the improvement may diminish and eventually
flatten due to correlated errors.

From Table II, we can see that using 32 traces for an attack
seems to be an optimal trade-off between the number of traces
and the success rate. For 64 traces, the average number of
errors is only 0.1 lower. Increasing the number of traces further
does not lead to better results.

Table III provides additional details of the attacks using
32 traces. We can see that, for the coefficients t0[i] with
indices (i mod 8) = 3, the LSBs are correctly predicted for all
but one secret key. This is because, during unpacking of t0,
only these LSBs are individually extracted from a byte of the
input array a and assigned to the corresponding coefficient
in the output array r (line 12 in Fig. 1). For other indices,
the LSB is processed along with adjacent bits. For example,
for (i mod 8) = 6, the last two bits of a byte from a are
processed together (line 23 in Fig. 1). The coefficients with
indices (i mod 8) = 0 are one of the most difficult case to
recover, likely because the value of a is directly assigned to
r without any shift to extract bits (line 2 in Fig. 1).



TABLE III
THE RESULTS OF LSB RECOVERY ATTACK USING 32 TRACES AND

MAJORITY VOTING.

Secret
key

Total #
wrong LSBs

# Wrong LSBs in coefficients t0[i mod 8]
0 1 2 3 4 5 6 7

1 63 23 4 9 0 5 4 0 18
2 72 20 7 6 0 2 4 1 32
3 42 9 1 4 0 2 2 2 22
4 58 19 4 8 1 1 0 5 20
5 51 16 4 4 0 3 4 4 16
6 61 17 6 4 0 3 6 1 24
7 57 13 7 7 0 4 5 1 20
8 65 17 5 6 0 3 5 3 26
9 42 11 3 9 0 2 1 1 15

10 63 21 5 9 0 2 7 2 17

Avg. 57.4 16.6 4.6 6.6 0.1 2.7 3.8 2.0 21.0

TABLE IV
THE RESULTS OF LSB RECOVERY ATTACK USING 32 TRACES AND

UNANIMOUS VOTING.

Secret
key

Total #
wrong LSBs

# Wrong LSBs in coefficients t0[i mod 8]
0 1 2 3 4 5 6 7

1 25 18 2 3 0 0 1 0 1
2 17 10 0 2 0 0 1 0 4
3 7 1 0 2 0 1 0 0 3
4 20 8 2 4 0 1 0 0 5
5 8 6 0 1 0 0 0 1 0
6 14 7 1 1 0 1 1 0 3
7 13 7 3 0 0 0 1 0 2
8 20 8 1 3 0 0 1 1 6
9 8 4 0 1 0 0 0 0 3

10 21 14 3 2 0 0 1 0 1

Avg. 15.3 8.3 1.2 1.9 0 0.3 0.6 0.2 2.8

B. LSB recovery attack using unanimous voting

We modify the strategy for combining the models’ predic-
tions within the ensemble to incorporate error detection. We
replace majority voting by unanimous voting which takes the
decision on the LSB value only if the predictions of all models
agree. If there is any disagreement among the models, the sign
“?” indicating a possible error in model’s predictions is given
as an outcome:

f(x1, . . . , xn) =

 0, if xi = 0,∀i ∈ {1, . . . , n},
1, if xi = 1,∀i ∈ {1, . . . , n},
?, otherwise,

where xi ∈ {0, 1} is the prediction of the ith model and n is
the number of models in ensemble, for n ≥ 2.

Table IV lists the results of LSB recovery attacks using the
new aggregation method for n = 21. In addition, Table V
shows the distribution of detected errors.

From these tables, we can see that, on average, unanimous
voting reduces the number of incorrect LSBs from 57.4 to
15.3 and results in 126.3 detected errors. Notably, the error
distribution is not uniform. We leverage this to extend the s1
recovery method of [11] as described next.

TABLE V
THE DISTRIBUTION OF DETECTED ERRORS IN LSB RECOVERY ATTACK

USING 32 TRACES AND UNANIMOUS VOTING.

Secret
key

# Detected
errors

# Detected errors in coefficients t0[i mod 8]
0 1 2 3 4 5 6 7

1 139 14 14 16 0 14 14 10 57
2 134 19 17 13 1 8 9 8 59
3 107 20 8 9 0 4 10 4 52
4 131 17 11 13 1 7 18 13 51
5 110 14 6 8 1 13 10 11 47
6 125 18 12 13 0 9 8 12 53
7 133 15 12 16 2 11 13 1 63
8 125 17 13 12 0 11 11 7 54
9 126 15 15 19 0 8 11 6 52
10 133 15 11 20 0 11 15 5 56

Avg. 126.3 16.4 11.9 13.9 0.5 9.6 11.9 7.7 54.4

Occurrence freq. 0.1 0.1 0.1 0 0.1 0.1 0.1 0.4

C. Secret s1 recovery attack

The side-channel attack method presented in [11] requires
the knowledge of the full t0 vector to recover the s1 vector.
However, as Tables IV and V show, it is not possible to extract
the LSBs of all 1024 coefficients of t0 by side-channel analysis
with high probability.1. Only for (i mod 8) = 3, all LSBs
of t0[i] are recovered without errors. The next best case is
(i mod 8) = 6, for which 80% of LSBs are recovered correctly.
Furthermore, there are many undecided LSBs.

To account for LSB values that cannot be recovered with
high probability, we extend the method of [11] as follows:

1) For all i ∈ {0, 1,. . . ,1023} such that (i mod 8) = 3 or 6:
• Recover the LSBs of t0[i] using the side-channel

analysis method described in Section IV-B.
• Reconstruct the full coefficient t0[i] from multiple

signatures using the cryptanalytic method of [14].
2) For all coefficients of s1 and s2, compute score vec-

tors representing the probabilities of coefficient values
{−2,−1, 0, 1, 2} using the side-channel analysis method
of [11].

3) Sort the predicted coefficients of s1 and s2 in the
descending order based on the maximum probability of
their score vectors. Let L be the resulted sorted list.

4) For all i ∈ {0, 1, . . . , 1023} such that either the LSBs
of t0[i] is marked as “?”, or (i mod 8) ̸= 3 or 6:

• Remove the coefficient s2[i] from L.
• Remove the ith equation from the system of linear

equations t = As1 + s2.
5) Substitute 1024 top elements of L in the reduced system

of linear equations and solve the equations to recover s1.
The side-channel attack described in [11] can recover a half

of 2048 coefficients of s1 and s2 from 1, 000 traces with a
probability close to one. Next, we assess the probability of

1We can extract all LSBs if the same device is used for both profiling and
attack, however, this is not a realistic scenario.



TABLE VI
EMPIRICAL PROBABILITY TO RECOVER 80.5% OF s1 AND s2 COEFFICIENTS FROM 960 TRACES.

Test 1 2 3 4 5 6 7 8 9 10 Avg.

Sucess rate 0.86 0.87 0.88 0.87 0.89 0.87 0.87 0.89 0.88 0.87 0.875

recovering a larger fraction of the coefficients of s1 and s2 by
side-channel analysis.

In the extended s1 recovery method, to get a unique
solution, we need to recover 80.5% of the coefficients of s1
and s2 by side-channel analysis since the reduced system of
equations consists of 248 equations with 1,272 unknowns on
average (in step 4, the total number of removed equations is
equal to 6×128 plus the number of detected errors in columns
of Table V with indices 3 and 6).

The results of 10 tests summarized in Table VI show that
80.5% of the coefficients of s1 and s2 can be recovered with
an average success rate of 0.875 from 960 traces. We carried
out these tests using the traces and neural networks from the
experiments of [11]. Undecided LSB positions are sampled
based on the distribution shown in the last row of Table V.
Clearly, in a real attack, the same set of traces can be reused
to recover both t0 and s1. Since we use 32 traces averaged
30 times in the t0 LSB recovery attack in Section IV-B, so
the total number of traces used in both attacks is the same,
32× 30 = 960.

Since the average probability of recovering all LSBs of t0[i]
for (i mod 8) = 3 and 6 is 0.8, and the average probability of
recovering 80.5% of the coefficients of s1 and s2 is 0.875, the
overall average probability of reconstructing the full s1 from
960 traces is 0.875× 0.8 = 0.7.

V. CONCLUSION

The main contribution of this paper is new deep learning-
assisted power analysis method for the partial reconstruction
of t0. This method enables the recovery of the s1 component
of Dilithium’s secret key with a 0.7 success probability using
fewer than 1, 000 power traces and approximately one million
signatures. This is a significant improvement over the prior
side-channel attack [11] relying on the t0 reconstruction
method which requires two million signatures [14]. The time
for capturing 1, 000 power traces is at least 1, 000 times shorter
than the time for generating one million signatures, thereby
proportionally reducing access time to the device under attack.
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