
BBB Secure Arbitrary Length Tweak TBC from
n-bit Block Ciphers

Arghya Bhattacharjee1, Ritam Bhaumik2,3 and Nilanjan Datta4, Avijit
Dutta4, Shibam Ghosh5 and Sougata Mandal4,6

1 University of Luxembourg, Luxembourg
2 EPFL, Lausanne, Switzerland

3 Technology Innovation Institute, Abu Dhabi, United Arab Emirates
4 Institute for Advancing Intelligence, TCG-CREST, Kolkata, India

5 INRIA, Paris, France
6 Ramakrishna Mission Vivekananda Educational and Research Institute, India

bhattacharjeearghya29@gmail.com,bhaumik.ritam@gmail.com,nilanjan.datta@tcgcrest.
org,avirocks.dutta13@gmail.com,shibam.ghosh@inria.fr,sougatamandal2014@gmail.com

Abstract. At FSE’15, Mennink introduced the concept of designing beyond-the-
birthday bound secure tweakable block cipher from an ideal block cipher. They
proposed two tweakable block ciphers F̃ [1] and F̃ [2] that accepts n-bit tweak using
a block cipher of n-bit key and n-bit data. Mennink proved that the constructions
achieve security up to 22n/3 and 2n queries, respectively, assuming the underlying
block cipher is ideal. Later, at ASIACRYPT’16, Wang et al. proposed a class of
32 new tweakable block ciphers derived from n-bit ideal block ciphers that achieve
optimal security, i.e., security up to 2n queries. The proposed designs by both
Mennink and Wang et al. admit only n-bit tweaks. In FSE’23, Shen and Standaert
proposed a tweakable block cipher G̃2 that accepts 2n-bit tweaks and achieves security
up to 2n queries. Their construction uses three block cipher calls, which was shown
to be optimal for beyond-birthday-bound secure tweakable block ciphers accepting
2n-bit tweaks. In this paper, we extend this line of research and consider designing
tweakable block cipher supporting 3n-bit tweaks from ideal block cipher. First, we
show that there is a generic birthday-bound distinguishing attack on any such design
with three block cipher calls if any of the block cipher keys are tweak-independent.
We then propose a tweakable block cipher G̃3∗, which leverages three block cipher
calls with each key being dependent on tweak. We demonstrate that G̃3∗ achieve
security up to 22n/3 queries. Furthermore, we extend this result and propose an
optimally secure construction, dubbed G̃3, that uses four ideal block cipher calls with
only one tweak-dependent key. Finally, we generalize this and propose an optimally
secure tweakable block cipher G̃r that processes rn-bit tweaks using (r + 1) block
cipher invocations with only one tweak-dependent block cipher key. Our experimental
evaluation asserts that ZMAC instantiated with G̃3 and G̃4 (i.e., G̃r with r = 4)
performs better than all the existing ideal cipher based TBC candidates.
Keywords: Tweakable Block Cipher · Ideal Cipher Model · H-Coefficient Technique
· Beyond Birthday Bound · Sum Capture Lemma

1 Introduction
A block cipher is a family of permutations that is indexed by a secret key. Over time,
block ciphers have gained widespread acceptance as a fundamental cryptographic object.
However, their applicability is somewhat constrained due to the specific utilization of block
ciphers within various modes of operation. Tweakable block cipher (TBC), as an additional

mailto:bhattacharjeearghya29@gmail.com, bhaumik.ritam@gmail.com, nilanjan.datta@tcgcrest.org, avirocks.dutta13@gmail.com, shibam.ghosh@inria.fr, sougatamandal2014@gmail.com
mailto:bhattacharjeearghya29@gmail.com, bhaumik.ritam@gmail.com, nilanjan.datta@tcgcrest.org, avirocks.dutta13@gmail.com, shibam.ghosh@inria.fr, sougatamandal2014@gmail.com

2 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

fundamental cryptographic building block, serves to introduce variability within the cipher’s
structure. It is defined as a family of permutations Ẽ : K × T × {0, 1}n → {0, 1}n indexed
by secret key k ∈ K and public tweak t ∈ T . The prototype of a TBC first appeared
in Schroeppel’s Hasty Pudding Cipher [Sch], a submission to the NIST competition for
Advanced Encryption Standard [NIS00]. In this design, an additional input, called “spice”,
was introduced alongside the key and the plaintext in a block cipher. The purpose
of this extra input was to randomize the selection of the permutation family, meaning
that different values of the spice correspond to different and independent permutation
families. This design concept was later formalized as a TBC by Liskov, Rivest and
Wagner [LRW02,LRW11].

Tweakable block ciphers have several diverse applications, notably in designing of
authenticated encryption schemes like Deoxys [JNPS21], Romulus [IKMP20], and several
other candidates of NIST and CAESAR competetions [GLS+, JNPa,JNPb,Wan,HKR15,
JNPS21]. Apart from designing AE schemes, TBCs have found diverse application in
designing wide block encryption modes [BLN18, NI22], message authentication codes
[CS08a,Nai15,CLS17, IMPS17a,Nai19,CIL+20], and hash functions [FLS+,GIK+,Hir22].

The first provably secure design of TBC was proposed by Liskov et al. [LRW02] in
LRW1 and LRW2 constructions. A close contender of LRW2 construction, called XEX was
proposed by Rogaway [Rog04], which was later extended by Chakraborty and Sarkar [CS06]
and Minematsu [Min06] with reduced key space. The security of all these constructions
are limited up to the birthday bound of the input size of the block cipher, assuming
that the underlying block cipher is secure in strong pseudorandom permutation sense. A
series of later works [LST12, LS13, JN20, DDDM23, JKNS23, ZQG23] have showed that
cascading independent instances of LRW1 or LRW2 constructions achieves beyond the
birthday bound security of the input size of the block cipher.

1.1 Tweakable Block Ciphers from Ideal Block Ciphers
In [Men15a,Men15b], Mennink initiated the study of designing tweakable block ciphers from
ideal block ciphers. He demonstrated that any tweakable block cipher for n-bit tweak with
a single primitive call and arbitrary linear pre- and post-processing functions cannot achieve
more than birthday bound security. He then proposed the F̃ [1] and F̃ [2] constructions,
both built from an n-bit block cipher with an n-bit key. The F̃ [1] construction consists of
one multiplication and a single block cipher call with a tweak-dependent key, achieving
security up to 2n/3 queries. On the other hand, F̃ [2] makes two block cipher calls, with one
of them involving a tweak-dependent key, achieving optimal security1 under the assumption
that the block cipher behaves like an ideal cipher.

Em ⊕

k ⊗ t

k ⊕ t

c⊕

k ⊗ t

Et y

2k ⊕ t

Em ⊕

y

k ⊕ t

c⊕

y

Figure 1: Construction F̃ [1] (left) and F̃ [2] (right) by Mennink

In [WGZ+16], Wang et al. proposed 32 additional block cipher based tweakable block
1A TBC with n-bit data and n-bit key is optimally secure if it is secure up to 2n queries. Note that an

exhaustive key search requires 2n queries in this case.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 3

Em ⊕

H2
k(t)

H1
k(t)

c⊕

H3
k(t)

Em ⊕

H2
k(t)

H1
k(t)

⊕

H2
k(t)

E⊕

G2
k(t)

G1
k(t)

c⊕

G3
k(t)

Figure 2: Construction XHX (left) and XHX2 (right)

ciphers and showed each one of them achieves optimal security based on the assumption
that the underlying block cipher is an n-bit ideal cipher with n-bit key. Note that, all
these constructions admit tweak of length n bits.

To incorporate variable length tweak, Jha et al. [JLM+17] proposed XHX construction
that employs a block cipher and a keyed hash function to process arbitrary length tweak.
XHX was proven to be secured up to 2(n+κ)/2 queries under the assumption that the
underlying block cipher is an n-bit ideal cipher with κ-bit key. Later in [LL18], Lee et
al. have extended XHX to XHX2 and proved its security up to min{22(n+κ)/3, 2n+κ/2}.
Recently, Shen and Standaert [SS23] studied how to design tweakable block ciphers that
admits 2n-bit tweak from an n-bit ideal block cipher with n-bit key. It was shown that
one cannot get more than n/2-bit security by making only two block cipher calls with
2n-bit tweak. They have shown that by making three block cipher calls, one can realize an
optimally secure tweakable block cipher (G̃2) that admits 2n bit tweak. Moreover, they
have conjectured that to construct an n-bit secure TBC with rn-bit tweaks, where r > 2,
one may require at least (r + 1) block cipher calls. We pursue this line of research, aiming
to design tweakable block ciphers that support large tweaks. However, before delving into
this approach, let us first explore whether TBCs with large tweaks have any practical
motivation.

Et1 ⊕ k

k

y1 Et2

k

y2 Em ⊕

y1

k ⊕ y2 ⊕ t1

c⊕

y1

Figure 3: Construction G̃2 by Shen et al.

1.2 Importance of Digesting Long Tweak
Having a flexible tweak length is an interesting design goal for a TBC. Some dedicated
TBCs like SKINNY [BJK+16], QARMAv2 [ABD+23] and Deoxys-TBC [JNPS21] allow
2n-bit tweaks for n-bit blocks and n-bit keys. In fact some of their recent variants allow
larger tweak lengths. For example, SKINNYe-64-256 [NSS20] and SKINNYee [NSS22] allows
tweak length up to 3n-bits and (5n + 3)-bits, respectively. Similarly, Deoxys-TBC-512 and
Deoxys-TBC-640 [CJPS22] allow tweaks of length up to 3n-bit and 4n-bit, respectively. In

4 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

general, the tweak of a TBC can be used to contain additional information associated with
a plaintext block [MI15,ABD+23]. Hence, it is desirable to make the tweak longer than the
block length for more flexible designs. Recent trends show that a TBC with a large tweak is
helpful as a building block for various modes of operation. For example MACs [IMPS17b]
based on large tweak TBC provides higher efficiency. Similarly, authenticated encryption
schemes [NSS20, NSS22, CJPS22] based on large tweak TBC provides a higher security
bound. Large tweak TBCs are also useful in designing various leakage resilience almost
rate-1 authenticated encryption schemes, For example, Triplex [SPS+22] uses 2n-bit tweaks
and achieves n-bit security with rate 2/3. Multiplex [PSS23] achieves n-bit security and
uses dn-bit tweaks to achieve rate d/(d + 1). Tweplex [DDLM23] uses dn/2-bit tweaks
to achieve birthday bound security with a rate d/(d + 1). Large tweak TBC is also
helpful in designing various tweakable enciphering schemes [HR03,Hal04,HR04,WFW05,
MM07,CS08b,Sar09,Dwo10,Sar11,BN15,DN18,CEL+21,CDK23], where a large tweak
can support more modular designs.

1.3 Our Contributions
This paper focuses on designing block cipher based tweakable block cipher that supports
large tweaks with a strong security guarrantee. Specifically, we aim to extend the work of
Shen et al. to construct n-bit TBCs that accept n-bit key and rn-bits tweak for r ≥ 3.
Our contributions are fourfold, as outlined below:

1. We investigate the minimum number of block cipher calls required to construct a
TBC that ensures beyond-birthday-bound security while processing 3n-bit tweaks
with n-bit key and n-bit data. We demonstrate that constructions using three block
cipher calls cannot achieve the desired security bound unless all three block cipher
keys are tweak-dependent. We prove this by exhaustively characterizing all possible
TBC constructions with 0, 1, or 2 tweak-dependent keys and showing birthday-bound
(or constant) attacks against each of them. Details can be found in Sect. 3.

2. Motivated by this result, we observed that it is possible to construct a beyond-
birthday-bound secure TBC that accepts 3n bit tweaks, if all the three block cipher
keys are tweak-dependent. In other words, we propose G̃3∗, a block cipher based
TBC that processes 3n-bit tweaks using three block cipher calls such that each of
their keys are tweak dependent. We have shown in Sect. 4 that G̃3∗ is secured up to
22n/3 queries in the ideal cipher model.

3. We prove that at least one tweak-dependent key is a necessary and sufficient condition
for constructing an n-bit secure TBC using four block cipher calls that admits 3n
bit tweak. We support this assertion by showing a generic birthday-bound attack in
Sect. 5.1 against all possible four block cipher call constructions where all the block
cipher keys are tweak-independent. We then propose G̃3 in Sect. 5.2 that processes
3n-bit tweaks using four block cipher calls, with only one tweak-dependent block
cipher key and prove its security up to 2n queries in the ideal cipher model.

4. Finally, we extend the idea of G̃3 in Sect. 6 to yield a generic construction G̃r
(r > 3) that processes rn-bit tweaks using (r + 1) block cipher calls with only one
tweak-dependent block cipher key and prove its security up to 2n queries in the ideal
cipher model.

We compare our proposals with the state-of-the-art tweakable block cipher schemes in
Table 1. This comparison includes key size, tweak size, number of primitive calls, and
respective security bounds.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 5

Table 1: Comparison of G̃3∗, G̃3 and G̃r with existing TBCs in the ideal cipher model.
The tweak size refers to the size of tweak supported by the design. For XHX and XHX2,
the key size is κ bits. For the remaining constructions, the key size is n bits.

Construction #BC #Hash Tweak size Security (in bits)

XHX 1 2 arbitrary (n + κ)/2 [JLM+17]

XHX2 2 4 arbitrary min{2(n + κ)/3, n + κ/2} [LL18]

F̃ [1] 1 0 n 2n/3 [Men15a]

F̃ [2] 2 0 n n [Men15a]

Ẽ1, . . . , Ẽ32 2 0 n n [WGZ+16]

G̃2 3 0 2n n [SS23]

G̃3∗ 3 0 3n 2n/3 [Sec. 4]

G̃3 4 0 3n n [Sec. 5.2]

G̃r r + 1 0 rn n [Sec. 6]

1.4 Performance Evaluation
This paper provides a complete characterization of the design landscape of large tweak
tweakable block ciphers from ideal block ciphers without using hash functions. Along
with the theoretic merit of our study, our proposals are particularly suited for TBC-
based constructions that supports large tweaks. For example, our designs can be used
to instantiate ZMAC, Deoxys-AE1, Deoxys-AE2, Multiplex, Tweplex that allow or require
processing large tweaks. To demonstrate the efficiency of our proposed constructions,
we implement them using AES-128 [DR02] and use them as primitives in the ZMAC
construction. We report the number of cycles per byte required to process a given
message by ZMAC. The software implementation details and benchmarking setup are
presented in Section 7, and the source code is publicly available at https://github.com/
ShibamCrS/BBB_SecureLargeTweakTBC.git. The results are presented in Table 2. A
graphical presentation of the data is provided in Fig 4.
The performance result depicts that ZMAC instantiated with G̃3 and G̃42 performs better
than XHX with polynomial-based universal hashing of 3n-bit and 4n-bit tweaks, respectively
(see Table. 2 and Figure. 4). In addition, the performance results are also in line with
the fact that we obtain performance improvement with large tweak sizes (see XHX with
16, 32, 48 and 64 B tweaks). Another important observation from the performance result
of G̃3∗ suggests that it is important to minimize tweak-dependent keys of the underlying
block ciphers even if the number of block cipher invocations is more. This is because each
tweak-dependent key requires a fresh key-scheduling which is costly, particularly for long
messages. As F̃ [2] and Ẽ1, . . . , Ẽ32 share the same design principle of having one tweak
dependent key, we have chosen not to use later constructions in our experiment.
Remark 1. We would like to point out that despite having a lesser number of block-cipher
invocation, G̃3∗ performs worse than G̃3. This is due to the use of all tweak-dependent keys
that requires a fresh key-scheduling while processing each block. Thus, the significance of
G̃3∗ from the application point of view might seem to be limited. However, the existence
of G̃3∗ shows the possibility of designing beyond birthday bound secure TBC with 3n-

2Note that G̃4 is the instantiation of G̃r with r = 4.

https://github.com/ShibamCrS/BBB_SecureLargeTweakTBC.git
https://github.com/ShibamCrS/BBB_SecureLargeTweakTBC.git

6 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

Table 2: Software performance of ZMAC with different TBCs for various message lengths.
All the TBCs used here are built from AES-128. In XHX we use PolyHash as the underlying
hash function. The values are express cycles per byte (cpb).

TBC Tweak size 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB

XHX 16B 7.60 7.01 6.72 6.56 6.51 6.48 6.46

XHX 32B 6.93 6.05 5.67 5.45 5.36 5.30 5.26

XHX 48B 6.58 5.68 5.23 5.00 4.89 4.83 4.80

XHX 64B 6.84 5.73 5.18 4.86 4.70 4.63 4.59

F̃ [1] 16B 6.32 5.83 5.58 5.46 5.41 5.38 5.36

F̃ [2] 16B 6.12 5.65 5.42 5.30 5.25 5.21 5.20

G̃2 32B 4.61 4.04 3.81 3.66 3.60 3.57 3.55

G̃3∗ 48B 10.30 8.90 8.20 7.83 7.66 7.57 7.53

G̃3 48B 3.72 3.23 2.99 2.87 2.81 2.77 2.75

G̃4 64B 3.38 2.86 2.61 2.46 2.39 2.35 2.33

bit tweak using three block cipher calls. This is in contrast to the work of Shen and
Standaert [SS23] that shows an impossibility result in designing beyond birthday bound
secure TBC processing n-bit and 2n-bit tweaks using one and two block cipher calls.

2 Preliminaries
Notation: For a finite set X , we write X

$←− X to denote that X is uniformly sampled from
X . We write (X1, X2, . . . , Xq) $←− X to denote that each Xi is sampled uniformly at random
from X . For a set X , we write X ∪←− X to denote that X ← X∪{X}. For a fixed n, we write
the set of all n-bit binary strings as {0, 1}n, and {0, 1}∗ denote the set of all binary strings
of arbitrary length. ε is used to denote the empty string. |x| denotes the length of the bit
string x. msbc(Z) and lsbc(Z) return the c most and least significant bits of a bit string Z,
respectively. x[i, j] denotes the substring from i-th bit to j-th bit of x. The concatenation
of two strings x and y is denoted as x∥y. We also often write it as (x, y). For two elements
x, y ∈ {0, 1}n, x.y denotes the usual field multiplication in GF(2n). We say a function
f : {0, 1}dn → {0, 1}d′n is a linear if for every x, y ∈ {0, 1}dn, f(x⊕y) = f(x)⊕f(y), and for
any constant c ∈ {0, 1}dn, f(c·x) = c·f(x), where · is the usual field multiplication. We say a
function g : {0, 1}dn → {0, 1}d′n is affine if there is a linear function f : {0, 1}dn → {0, 1}d′n

and an element b ∈ {0, 1}d′n such that g(x) = f(x)⊕ b for all x ∈ {0, 1}dn. We write (a)q

to denote the number of ways q distinct objects have been chosen from a set of a elements,
which is a(a−1)(a−2) . . . (a− q + 1). For a natural number q, (x1, x2, . . . , xq) ∈ ({0, 1}n)q

denotes a tuple of q elements, where each element is an n-bit binary string. We write
({0, 1}n)q := {(x1, x2, . . . , xq) ∈ ({0, 1}n)q : ∀i ̸= j, xi ̸= xj} to denote the set of tuples of
q distinct n-bit binary strings. Thus, we have |({0, 1}n)q| = (2n)q.

Block Cipher: A block cipher is a function E : K × {0, 1}n → {0, 1}n such that for each
k ∈ K, E(k, ·) is a permutation over {0, 1}n. A block cipher is said to be (q, t, ϵ)-secure
pseudo random permutation if for any polynomial time adversary A with running time
at most t that makes at most q queries to either the block cipher Ek for a randomly

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 7

Figure 4: Software performance of ZMAC with different TBCs for various message lengths.
XHX-τ denotes XHX with τ -bit tweak

chosen secret key k or an n-bit random permutation P, cannot distinguish the output
distribution of the two random systems but with probability at most ϵ. Formally, we define
the distinguishing advantage of the adversary A in distinguishing Ek from P as follows:

Advprp
E (A) := Pr[k $←− K : AEk(·) = 1]− Pr[P $←− Perm(n) : AP(·) = 1].

We call a block cipher (q, t, ϵ)-secure strong pseudo random permutation if for any polyno-
mial time adversary A with running time at most t that makes at most q queries to either
the block cipher Ek and its inverse E−1

k for a randomly chosen secret key k or an n-bit
random permutation P and its inverse P−1, cannot distinguish the output distribution
of the two random systems but with probability at most ϵ. In other words, we define
the strong pseudo random permutation advantage of the adversary A in distinguishing
(Ek, E−1

k) from (P, P−1) as follows:

Advsprp
E (A) := Pr[k $←− K : AEk(·),E−1

k
(·) = 1]− Pr[P $←− Perm(n) : AP(·),P−1(·) = 1].

TSPRP Security in the Ideal-Cipher Model: A tweakable block cipher Ẽ : K × T ×
{0, 1}n → {0, 1}n is a function such that for each key k ∈ K and each tweak t ∈ T , Ẽ(k, t, ·)
is a permutation over {0, 1}n. We define the tweakable strong pseudorandom security
of Ẽ under the ideal-cipher model. We assume that Ẽ makes internal calls to a publicly
evaluated block cipher E with more than one key. Typically, Ẽ would be keyed with some
key k and derive block cipher keys k1, k2, . . . , km as a function of k and other inputs (Ẽ
can make internal calls to multiple block ciphers when all of them are independently and
uniformly distributed over the set BC(K, {0, 1}n)). For simplicity, we write ẼE

k to denote Ẽ
with a uniformly sampled block cipher E $←− BC(K, {0, 1}n), which is keyed by a randomly
sampled key k from K.

The distinguisher A is given access to either (ẼE
k, (Ẽ−1)E

k, E±) for a randomly sampled
key k or (P̃, P̃−1, E±) for P̃ $←− TP(T , {0, 1}n), where E $←− BC(K, {0, 1}n) is a uniformly

8 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

sampled n-bit block cipher such that A can make forward or inverse queries to E, which is
denoted as E±. We define the tsprp-advantage of A against the tweakable block cipher Ẽ
in the ideal cipher model as

Advtsprp-icm
Ẽ

(A) := Adv(̃EE
k,(̃E−1)E

k,E±)
(P̃,̃P−1,E±)

(A),

for k
$←− K, P̃

$←− TP(T , {0, 1}n), E $←− BC(K, {0, 1}n) and the randomness of the adversary
A. We say that Ẽ is a (q, p, ϵ)-tsprp in the ideal cipher model if

Advtsprp-icm
Ẽ

(A) ≤ ϵ,

for all adversaries A that make q queries to Ẽ, Ẽ−1, p forward and inverse offline ideal-cipher
queries to E.

2.1 H-Coefficient Technique
Let A be a computationally unbounded deterministic distinguisher that interacts with
either the oracles in the real world, or in the ideal world. The collection of all the queries
and responses that A made and received to and from the oracle, is called the transcript of
A, denoted as τ . Sometimes, we allow the oracle to release more internal information to A
only after A completes all its queries and responses, but before it outputs its decision bit.

Let Xre and Xid denote the probability distributions of the transcript τ induced by
the real oracle and the ideal oracle respectively. The probability of realizing a transcript τ
in the ideal oracle (i.e., Pr[Xid = τ]) is called the ideal interpolation probability. Similarly,
one can define the real interpolation probability. A transcript τ is said to be attainable
with respect to A if the ideal interpolation probability is non-zero (i.e., Pr[Xid = τ] > 0).
We denote the set of all attainable transcripts by Θ. Following these notations, we state
the main theorem of H-Coefficient Technique [Pat08,CS14] as follows:

Theorem 1 (H-Coefficient Technique). Let A be a fixed deterministic distinguisher
that has access to either the real oracle Ore or the ideal oracle Oid. Let Θ = Θg ⊔ Θb
(disjoint union) be some partition of the set of all attainable transcripts of A. Suppose
there exists ϵratio ≥ 0 such that for any τ ∈ Θg,

Pr[Xre = τ]
Pr[Xid = τ] ≥ 1− ϵratio,

and there exists ϵbad ≥ 0 such that Pr[Xid ∈ Θb] ≤ ϵbad. Then,

AdvOid
Ore

(A) := |Pr[AOre = 1]− Pr[AOid = 1]| ≤ ϵratio + ϵbad. (1)

2.2 Sum Capture Lemma
In this section, we state a variant of the sum capture lemma [Bab02] used in [CS14].
Informally, the results states that when choosing a random subset Z of GF(2n) (or more
generally any abelian group) of size q, the value

µ(Z) := max
X ,Y⊆GF(2n)

|{(z, x, y) ∈ Z × X × Y : z = x⊕ y}|,

is at most q|X ||Y|/2n, except with negligible probabilty. Chen et al. [CS14] proved the
result for a different setting where Z arises from the interaction of an adversary with a
random permutation P, namely Z = {x⊕ y : (x, y) ∈ Q}, where Q is the transcript of the
interaction between the adversary and the permutation. We employ the similar result in
our setting which is stated as follows:

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 9

Lemma 1. Let RF be a random function that maps elements from {0, 1}n to {0, 1}n.
Let A be some probabilitistic distinguisher that makes q adaptive queries to RF. Let
Q = ((x1, y1), . . . , (xq, yq)) denotes the transcript of the interaction with RF to A. For any
two subsets U and V of {0, 1}n, let

µ(Q,U ,V) = |{((x, y), u, v) ∈ Q× U × V : x⊕ u = y ⊕ v}|.

Then assuming 9n ≤ q ≤ 2n−1, we have

Pr
RF,ω

[
∃ U ,V ⊆ {0, 1}n : µ(Q,U ,V) ≥ q|U||V|

2n
+ 3

√
nq|U||V|

]
≤ 2

2n
, (2)

where the probability is taken over the random choices of RF and the random coins ω of A.

2.3 Useful Combinatorial Results
In this section, we state and prove some important combinatorial results that would be
required later in the security analysis of different tweakable block cipher constructions.

Lemma 2. Let f = (f1, f2, f3, f4) be a function, where fs : {0, 1}3n → {0, 1}n, ∀s ∈
{1, 2, 3, 4} are affine functions. Then f satisfies one of the following conditions:

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t1) = fs(t2),∀ s ∈ {1, 2, 3, 4}.

2. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f1(ti) = f1(tj), f3(ti) ̸=
f3(tj), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

3. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f1(ti) = f1(tj), f2(ti) ̸=
f2(tj), f4(ti) ̸= f4(tj), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

We defer the proof of the lemma in Supplementary Material A.1.

Lemma 3. Let γ be an element in {0, 1}n. Let f = (f1, f2, f3, f4) be a function, where
fs : {0, 1}3n → {0, 1}n for all s ∈ {1, 2, 3, 4} are affine functions. Then f satisfies at least
one of the following conditions:

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t1) = fs(t2) for all s ∈ {1, 2, 3, 4}.

2. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f2(ti) ̸= f2(tj), f3(ti) =
f3(tj), f4(ti) = f4(tj), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

3. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f1(ti) ̸= f1(tj), f3(ti) ̸=
f3(tj), f4(ti) = γ.f3(ti), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

4. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f2(ti) ̸= f2(tj), f4(ti) =
γ.f3(ti), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

We defer the proof of the lemma in Supplementary Material A.2.

Lemma 4. Let f = (f1, f2, f3, f4) be a function, where fs : {0, 1}3n → {0, 1}n for all
s ∈ {1, 2, 3, 4} are affine functions. Then f satisfies at least one of the following conditions:

10 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t1) = fs(t2) for all s ∈ {1, 2, 3, 4}.

2. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f2(ti) ̸= f2(tj), f4(ti) =
f4(tj), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

3. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f1(ti) ̸= f1(tj), f3(ti) ̸=
f3(tj), f4(ti) = f4(tj), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

We defer the proof of the lemma in Supplementary Material A.3.

3 Generic Birthday Attacks on TBCs with 3n-bit Tweak
from Three BCs with Any Tweak-independent Key

In this section, we demonstrate that constructing tweakable block ciphers with 3n-bit
tweaks that are secure beyond the birthday bound using three block ciphers is impossible
unless all the block ciphers have tweak-dependent keys. To support our claim, we first
illustrate birthday-bound attacks on the generic construction where all three block ciphers
use tweak-independent keys. Subsequently, we extend the idea to mount birthday attacks
in cases where one or two block ciphers use tweak-independent keys. Note that our search
space considers constructions with the following simplified assumptions: (i) the message is
fed only at the input of the last block cipher call, (ii) no tweak is fed into the input or the
output of the last block cipher call. We will justify the choice of this search space at the
end of the subsection.

3.1 Constructions with Three Tweak-independent Keys
In this subsection, we consider TBC constructions with three block ciphers, in which we
have all the block cipher calls with tweak-independent keys. The generalized construction
for this case, dubbed C1, is depicted in Fig. 16. Here we assume f1, f2 : {0, 1}3n → {0, 1}n

are any affine functions and a1, a2, a3, α1, α2, α3.β1, β2 are elements from {0, 1}n. Note
that incorporating tweaks into the message does not amplify security. So, we refrain from
using such modifications in our constructions. Now, to attack this generic construction,

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k

c⊕

α3.y1 ⊕ β2.y2

Figure 5: Construction C1: All the block ciphers use tweak-independent key

our strategy is as follows:

1. Find two tweaks such that t1, t2 such that f1(t1) = f1(t2), f2(t1) = f2(t2). Note
that, with this choice of tweaks, we will have y1

1 = y2
1 as well as y1

2 = y2
2 .

2. We can use the above observation to distinguish the TBC from a random tweakable
permutation by making two oracle queries (m, t1), (m, t2), and verifying if the
corresponding outputs match. Note that, for the real construction, this matches

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 11

with probability 1, while for random tweakable permutations, the probability is only
1/2n.

An algorithmic description of the attack is presented in Fig. 18 of the Supplementary
Material C.1.

3.2 Constructions with Two Tweak-independent Keys
In this subsection, we consider all the possible TBC constructions with three block ciphers
where we have two block cipher calls with tweak-independent keys. By tweak-independent
keys, we mean keys are derived only from the master secret key. Use of such keys are
efficient as one do not need separate sub-key generation functions to process those block
cipher calls. It is straightforward to see that there are three possible cases depending on
which of the block cipher invocations uses the tweak-dependent key.

Case 1: First block cipher uses the tweak-dependent key. Here we look at all the
possible constructions where the first block cipher uses the tweak-dependent key and the
next two block cipher uses tweak-independent keys. The generalized construction, dubbed
C2, is depicted in Fig. 6. Now, to attack this generic construction, let us consider the

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k

c⊕

α3.y1 ⊕ β2.y2

Figure 6: Construction C2: Only first block cipher uses tweak-dependent key

function f : {0, 1}3n → {0, 1}3n defined as f(t) := f1(t)∥f2(t)∥f3(t) is injective. Otherwise,
we can find two tweaks t1 and t2 for which f(t1) = f(t2). Now if we encrypt (m, t1) and
(m, t2), we have y1

1 = y2
1 , and y1

2 = y2
2 , which ensures the obtained ciphertexts would be

same for the real construction. Thus, we can mount an attack with a constant number of
queries. Now we consider the case when f is injective, and in this case, our strategy is as
follows:

1. Find 2n/2 tweaks such that for each pair of tweaks (ti, tj), we have f2(ti) ̸= f2(tj),
and f3(ti) = f3(tj). The injectivity of the function f ensures that we will have such
tweaks. Now look at the y1 values - since the keys used in the block cipher for
generating these values are distinct, and we have 2n/2 keys, at least two of them
collide, i.e., there exists i, j such that yi

1 = yj
1.

2. Now, let’s examine the y2 values. Given that the same keys are utilized in the block
cipher to generate these values, and there exist indices i and j such that yi

1 = yj
1 and

f3(ti) = f3(tj), it follows that yi
2 = yj

2. Now the question is how to detect such a
collision. Observe that, in such a case the ciphertext ci generated for (m, ti) would
be equal to cj , the ciphertext generated for (m, tj).

3. Finally, we can distinguish the TBC from a random tweakable permutation by
making two additional oracle queries (m⋆, ti), (m⋆, tj), where m⋆ ̸= m, and verifying
if the corresponding outputs match. Note that, for the real construction, this matches
with probability 1, while for random tweakable permutations, the probability is only
1/2n.

12 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

An algorithmic description of the attack is shown in Fig. 19 (See Supplementary Material
C.2).

Case 2: Second block cipher uses the tweak-dependent key. Here we look at all the
possible constructions where the second block cipher uses the tweak-dependent key and
the other two block cipher uses tweak-independent keys. The generalized construction,
dubbed C3, is depicted in Fig. 7.

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k ⊕ α2.y1 ⊕ f3(t)

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k

c⊕

α4.y1 ⊕ β2.y2

Figure 7: Construction C3: Only second block cipher uses tweak-independent keys

It is easy to see that a similar birthday attack with 2n/2 tweaks satisfying f1(ti) = f1(tj)
and f3(ti) ̸= f3(tj), for each (ti, tj) pairs, following an adversary as given in Fig.20,
Supplementary Material C.3, will hold in this case.

Case 3: Final block cipher uses the tweak-dependent key. Here we look at all the
possible constructions where the final block cipher uses the tweak-dependent key and the
first two block cipher uses tweak-independent keys. The generalized construction, dubbed
C4, is depicted in Fig. 8.

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k ⊕ α3.y1 ⊕ β2.y2 ⊕ f3(t)

c⊕

α4.y1 ⊕ β3.y2

Figure 8: Construction C4: Only the final block cipher uses tweak-independent key

Now, to mount an attack on this generic construction, we consider the following
sub-cases depending on the values of β1 and β2:
Sub-case 3.1: β1 = β2 = 0. In this case, we mount the birthday attack as follows:

1. Find tweaks t1 and t2 such that f1(t1) = f1(t2), f2(t1) ̸= f2(t2), and f3(t1) = f3(t2).

2. Make two queries (m, t1) and (m, t2). Note that the condition β1 = β2 = 0 ensures
that there is a (key, input) collision occurs in the final block cipher for both queries.
Let us assume that the corresponding ciphertexts are c1 and c2. It is easy to see that
we have y1

2 ⊕ y2
2 = c1 ⊕ c2.

3. Finally, we can distinguish the real construction from a random tweakable permuta-
tion by making two additional oracle queries (m⊕∆, ti), (m⊕∆, tj), where ∆ ̸= 0,
and verifying that the corresponding ciphertexts, say c⋆

i and c⋆
j , satisfy the equation

c⋆
1 ⊕ c⋆

2 = c1 ⊕ c2.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 13

Sub-case 3.2: β1 ̸= 0, β2 = 0. Here we mount the attack as follows:

1. Find 2n/2 tweaks such that for each pair of tweaks (ti, tj), we have f1(ti) = f1(tj),
f2(ti) ̸= f2(tj), and f3(ti) = f3(tj). Again, the injectivity of the function f =
(f1, f2, f3) ensures that we will have such tweaks. Note that, with this choice of
tweaks, we will have yi

1 = yj
1, for all (i, j).

2. Now we make 2n/2 queries in the form (mi, ti), such that for all i, j, mi ̸= mj . Note
that our choice of messages ensures that a (key, input) collision occurs in the final
block cipher if yi

2 ⊕ yj
2 = β−1

1 (mi ⊕mj). It is easy to see that by birthday paradox,
we expect that at least one such pair, say ((mi, ti), (mj , tj)) exists, and in that case,
we have ci ⊕ cj = β−1

1 β3(mi ⊕mj).

3. Finally, we can distinguish the real construction from a random tweakable permuta-
tion by making two additional oracle queries (mi⊕∆, ti), (mj ⊕∆, tj), where ∆ ̸= 0,
and verifying that the corresponding ciphertexts, say c⋆

i and c⋆
j , satisfy the equation

c⋆
i ⊕ c⋆

j = β−1
1 β3(mi ⊕mj).

Sub-case 3.3: β2 ̸= 0. Here we proceed as follows:

1. Find 2n/2 tweaks such that for each pair of tweaks (ti, tj), we have f1(ti) = f1(tj),
f2(ti) ̸= f2(tj), and f3(ti) ̸= f3(tj).

2. Now we make 2n/2 queries in the form (mi := β−1
2 β1f3(ti), ti). Note that our choice

of messages ensures that a (key, input) collision occurs in the final block cipher if
β1(yi

2⊕yj
2) = mi⊕mj . Now by birthday paradox, we expect that at least one such pair,

say ((mi, ti), (mj , tj)) exists. In that case we have ci ⊕ cj = β3β−1
2 (f3(ti)⊕ f3(tj)).

3. Finally, we can distinguish the real construction from a random tweakable permuta-
tion by making two additional oracle queries (mi⊕∆, ti), (mj ⊕∆, tj), where ∆ ̸= 0,
and verifying that the corresponding ciphertexts, say c⋆

i and c⋆
j , satisfy the equation

c⋆
i ⊕ c⋆

j = ci ⊕ cj .

An algorithmic description of the attack corresponding to the three sub-cases are
presented in Fig. 20 of the Supplementary Material C.4.

3.3 Constructions with One Tweak-independent Key
In this subsection, we consider all the possible TBC constructions with three block ciphers
where we have a single block cipher call with tweak-independent key. It is straightforward
to see that there are three possible cases depending on which of the block cipher invocations
uses the tweak-dependent key.

Case 1: First block cipher uses the tweak-independent key. Here we look at all the
possible constructions where the first block cipher uses the tweak-independent key and the
next two block cipher uses tweak-dependent keys. The generalized construction, dubbed
C5, is depicted in Fig. 9.
Sub-case 1.1: β1 = β2 = 0. In this case, we mount the constant query attack as follows:

1. Find 2 tweaks t1, t2 such that f1(t1) = f1(t2) and f4(t1) = f4(t2). Note that, with
this choice of tweaks, we will have y1

1 = y2
1 .

2. Now we make 2 queries (m, t1) and (m, t2), for some message m. We will have the
same (input, key) pair of the final block cipher as the messages and the first block
cipher outputs are the same for both queries. Observe corresponding responses say
c1 and c2.

14 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k ⊕ α2.y1 ⊕ f3(t)

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k ⊕ α4.y1 ⊕ β2.y2 ⊕ f4(t)

c⊕

α5.y1 ⊕ β3.y2

Figure 9: Construction C5: Only the first block cipher uses tweak-independent key

3. Finally, we can distinguish the TBC from a random tweakable permutation by making
two additional oracle queries (m⊕∆, t1), (m⊕∆, t2), where ∆ ̸= 0 and observing if
the corresponding ciphertexts, say c⋆

1 and c⋆
2 satisfies the equation c⋆

1 ⊕ c⋆
2 = c1 ⊕ c2.

Note that, for our TBC construction, this equation matches with probability 1, while
for random tweakable permutations, the probability is only 1/2n.

Sub-case 1.2: β1 ̸= 0, β2 = 0. In this case, we will be able to find 2n/2 tweaks
t1, . . . , t2n/2 such that for each pair of tweaks (ti, tj), f1(ti) = f1(tj), f4(ti) = f4(tj),
and either f3(ti) ̸= f3(tj) or f2(ti) ̸= f2(tj). Based on this observation, our approach is
described as follows:

1. Find 2n/2 tweaks t1, . . . , t2n/2 such that for each pair of tweaks (ti, tj), we have at
least of above two condition. Note that, with this choice of tweaks, we will have
yi

1 = yj
1, for all (i, j).

2. Now we make 2n/2 queries (mi, ti), where mi ≠ mj for each pair (i, j). We expect at
least one collision in the (input, key) pair of the final block cipher as such a collision
occurs when (yi

2 ⊕ yj
2) = β−1

1 (mi ⊕mj). This collision is observable through the
equation β1(ci ⊕ cj) = β3(mi ⊕mj).

3. Finally, we can distinguish the real construction from a random tweakable permuta-
tion by making two additional oracle queries (mi ⊕∆, ti), (mj ⊕∆, tj), where ∆ ̸= 0
and observing if the corresponding ciphertexts, say c⋆

i and c⋆
j satisfies the equation

c⋆
i ⊕ c⋆

j = ci ⊕ cj .

Sub-case 1.3: β2 ̸= 0. If we can find 2n/2 tweaks t1, . . . , t2n/2 such that for each pair of
tweaks (ti, tj), we have f1(ti) = f1(tj), f3(ti) ̸= f3(tj), then we use the following strategy.

1. Find 2n/2 tweaks t1, . . . , t2n/2 such that for each pair of tweaks (ti, tj), we have
f1(ti) = f1(tj), f3(ti) ̸= f3(tj). Note that, with this choice of tweaks, we will have
yi

1 = yj
1, for all (i, j).

2. Now we make 2n/2 queries (mi = β−1
2 β1(f4(ti)), ti). We expect at least one collision

in the (input, key) pair of the final block cipher as such a collision occurs when
(yi

2 ⊕ yj
2) = β−1

2 (f4(ti)⊕ f4(tj)). This collision is observable through the equation
(ci + cj) = β3β−1

2 (f4(ti) + f4(tj)).

3. Finally, we can distinguish the TBC from a random tweakable permutation by making
two additional oracle queries (mi⊕∆, ti), (mj ⊕∆, tj), where ∆ ̸= 0 and observing if
the corresponding ciphertexts, say c⋆

i and c⋆
j satisfies the equation c⋆

i ⊕ c⋆
j = ci ⊕ cj .

Otherwise, by virtue of Lemma 2, we can find 2n/2 tweaks t1, . . . , t2n/2 such that for each
pair of tweaks (ti, tj), we have f1(ti) = f1(tj), f2(ti) ̸= f2(tj), and f4(ti) ̸= f4(tj). In this
case, our approach is described as follows:

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 15

1. Find 2n/2 tweaks t1, . . . , t2n/2 such that for each pair of tweaks (ti, tj), we have
f1(ti) = f1(tj), f2(ti) ̸= f2(tj), and f4(ti) ̸= f4(tj). Note that, with this choice of
tweaks, we will have yi

1 = yj
1, for all (i, j).

2. Now we make 2n/2 queries (mi = β−1
2 β1(f4(ti)), ti). We expect at least one collision

in the (input, key) pair of the final block cipher as such a collision occurs when
(yi

2 ⊕ yj
2) = β−1

2 (f4(ti)⊕ f4(tj)). This collision is observable through the equation
β1(ci ⊕ cj) = β3(mi ⊕mj).

3. Finally, we can distinguish this construction from a random tweakable permutation
by making two additional oracle queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), where ∆ ̸= 0
and observing if the corresponding ciphertexts, say c⋆

i and c⋆
j satisfies the equation

c⋆
i ⊕ c⋆

j = ci ⊕ cj . Note that, for our TBC construction, this equation matches with
probability 1, while for random tweakable permutations, the probability is only 1/2n.

An algorithmic description of the attack corresponding to the three sub-cases are
presented in Fig. 21 of the Supplementary Material C.5.

Case 2: Second block cipher uses the tweak-independent key. We will look at all
the possible constructions where the second block cipher uses the tweak-independent key
and the other two block cipher uses tweak-dependent keys. The generalized construction,
dubbed C6, is depicted in Fig. 10. Note that if α1 = 0, then we can easily mount a birthday
attack using similar technique as used in the previous case. Hence, we concentrate only on
the constructions with α1 ̸= 0. Now, to make an attack on the generic construction, we

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k ⊕ α3.y1 ⊕ β2.y2 ⊕ f4(t)

c⊕

α4.y1 ⊕ β3.y2

Figure 10: Construction C6: Only the second block cipher uses tweak-independent key

first make the following observation: If we can find two tweaks t1, t2 ∈ {0, 1}3n satisfying
fs(t1) = fs(t2). ∀ s ∈ {1, 2, 3, 4}, then we are done. In this case, we use the following
strategy:

1. Find t1, t2 ∈ {0, 1}3n satisfying fs(t1) = fs(t2). ∀ s ∈ {1, 2, 3, 4}. This ensures
y1

1 = y2
1 and y1

2 = y2
2 .

2. Make two query (m, t1) and (m, t2) for any message m, and observe if the respective
cipher texts c1 and c2 are equal (TBC), or not (random tweakable permutation).

If we do not have such t1, t2, then we use following attack strategy:

Sub-case 2.1 α3 = 0. By virtue of lemma 4, we will have 2n/2 tweaks t1, t2, . . . , t2n/2

satisfying either (C1) f2(ti) ̸= f2(tj) ∧ f4(ti) = f4(tj), or (C2) f1(ti) ̸= f1(tj) ∧ f3(ti) ̸=
f3(tj) ∧ f4(ti) = f4(tj). For both cases, we use the following strategy:

1. Find 2n/2 tweaks t1, t2, . . . , t2n/2 satisfying at least one of conditions (C1) or (C2).

16 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

2. Now we make 2n/2 queries (mi = α2α−1
1 (f3(ti)), ti). We expect at least one collision

in the (input, key) pair of the final block cipher as such a collision occurs when
(yi

1 ⊕ yj
1) = α−1

1 (f3(ti)⊕ f3(tj)). This collision is observable through the equation
α1(ci ⊕ cj) = α4(f3(ti)⊕ f3(tj)).

3. Finally, we can distinguish the TBC from a random tweakable permutation by
making two additional queries (mi⊕∆, ti), (mj ⊕∆, tj), where ∆ ̸= 0 and observing
if the corresponding ciphertexts, say c∗

i , c∗
j satisfies c∗

i ⊕ c∗
j = ci ⊕ cj .

Sub-case 2.2 α3 ̸= 0. In this case, we apply Lemma 3 and deduce that we can find
2n/2 tweaks t1, t2, . . . , t2n/2 satisfying either (C1) f2(ti) ̸= f2(tj), f3(ti) = f3(tj), f4(ti) =
f4(tj), or (C2) f1(ti) ̸= f1(tj), f3(ti) ̸= f3(tj), f4(ti) = α3α−1

1 f3(ti), or (C3) f2(ti) ̸=
f2(tj), f4(ti) = α3α−1

1 f3(ti). For all the three cases, we use the following strategy:

1. Find 2n/2 tweaks t1, t2, . . . , t2n/2 satisfying at least one of conditions (C1), (C2) and
(C3).

2. Now we make 2n/2 queries (mi = α2α−1
1 (f3(ti)), ti). We expect at least one collision

in the (input, key) pair of the final block cipher as such a collision occurs when
(yi

1 ⊕ yj
1) = α−1

1 (f3(ti)⊕ f3(tj)). This collision is observable through the equation
α1(ci ⊕ cj) = α4(f3(ti)⊕ f3(tj)).

3. Finally, we can distinguish the TBC from a random tweakable permutation by
making two additional queries (mi⊕∆, ti), (mj ⊕∆, tj), where ∆ ̸= 0 and observing
if the corresponding ciphertexts, say c∗

i , c∗
j satisfies c∗

i ⊕ c∗
j = ci ⊕ cj .

An algorithmic description of the attack corresponding to the two sub-cases are shown
in Fig. 22 of the Supplementary Material C.6.

Case 3: Final block cipher uses the tweak-independent key. We will look at all
the possible constructions where the final block cipher uses the tweak-independent key
and the other two block cipher uses tweak-dependent keys. The generalized construc-
tion, dubbed C7, is depicted in Fig. 11. Now, if there exists t1, t2 ∈ {0, 1}3n satis-

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k ⊕ f4(t)⊕ α2.y1

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k

c⊕

α4.y1 ⊕ β2.y2

Figure 11: Construction C7: Only the final block cipher uses tweak-independent key

fying fs(t1) = fs(t2), ∀ s ∈ {1, 2, 3, 4}, we simply use the two-query distinguisher as
used in the previous case. Otherwise, there exist 2n/2 many tweaks say t1, t2, . . . , t2n/2

satisfying either (C1) (f1(ti) = f1(tj)) ∧ (f2(ti) = f2(tj)) ∧ (f3(ti) ̸= f3(tj), or (C2)
(f1(ti) = f1(tj)) ∧ (f2(ti) = f2(tj)) ∧ (f4(ti) ̸= f4(tj))), for all (i, j) pair. We use this fact
to mount the attack as follows.

Sub-case 3.1: β1 ̸= 0. In this case we use attack strategy as follows:

1. Find 2n/2 tweaks satisfying either (C1) or (C2).

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 17

2. Make 2n/2 queries (mi, ti), where mi ̸= mj for all (i, j) pair and observe cipher
text ci’s. We expect at least one collision in (input, key) pair of the final block
cipher as it occurs if yi

2 ⊕ yj
2 = β−1

1 (mi ⊕mj). This is observable by the equation
β1(ci ⊕ cj) = β2(mi ⊕mj).

3. Finally, make additional two queries (mi⊕∆, ti), (mj ⊕∆, tj) and get corresponding
cipher text c∗

i , c∗
j . Distinguish by observing whether c∗

i ⊕ c∗
j = ci ⊕ cj (real TBC

construction), or not (random tweakable permutation).

Sub-case 3.2: β1 = 0. We will proceed as follows:

1. Find two tweak t1, t2 such that f1(t1) = f1(t2) ∧ f2(t1) = f2(t2). It is easy to see
that we have y1

1 = y2
1 .

2. Make two queries (m, t1) and (m, t2). Note that if c1, c2 be two corresponding cipher
text, then c1 ⊕ c2 = β2(y1

2 ⊕ y2
2).

3. Finally, make two additional queries (m⊕∆, t1) and (m⊕∆, t2) and observe if the
corresponding cipher texts c∗

1 and c∗
2 satisfy the equation c∗

1 ⊕ c∗
2 = c1 ⊕ c2 (for real

TBC construction), or not (random tweakable permutation).

The concrete attacks correspond to these two subcases are formally presented in Fig.
23, Supplementary Material C.7.

3.4 Justification of the Search Space
We have already mentioned that our search space considers constructions with assumptions
that the message is fed only at the input of the last block cipher call, and no tweak is
fed into the input or the output of the last block cipher call. Here we briefly justify our
assumptions below:

• Case 1: Message is fed into keys: Here the construction won’t be invertible, as finding
the keys of a block cipher given its (input, output) pairs is not possible.

• Case 2: Message is fed into several block ciphers: Suppose the message is fed into the
second and the final block cipher. For the invertibility of the construction, the final
block cipher must be independent of the output of the second block cipher. This can
be exploited to mount a simple PRP attack. A similar argument can be made for all
possible combinations.

• Case 3: A linear combination of the message, tweaks and the block cipher outputs
is used to define the ciphertext: One can easily mount a two-query PRP attack,
exploiting the property that under the same tweak, a linear combination of two
ciphertexts can be written as a linear combination of the corresponding two plaintexts.

• Case 4: Tweak is fed into the input/output of the final block cipher: This does not
strengthen the security, and similar attacks will go through. In fact, since the tweaks
are controlled by the adversary, this may weaken the security.

• Case 5: Message is fed into one of the non-final block-ciphers: There are two cases:
the message in XORed before the first block cipher call or the second block cipher call.
For each of them, we have several cases when all the keys are not tweak-dependent,
and for each of the cases, we show a birthday or constant-time attacks using similar
ideas as used in Sect. 3.1-3.3 when the message block is used in the final block-cipher.
A detailed analysis of this presented in Supplementary Material B.

18 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

4 BBB Secure TBC with 3n-bit Tweaks Using Three Block
Cipher Calls

Let E : {0, 1}n × {0, 1}n → {0, 1}n be a n-bit block cipher. The tweakable block cipher
G̃3∗ : {0, 1}n×{0, 1}3n×{0, 1}n → {0, 1}n with a 3n bit tweak with only three block cipher
invocation is constructed as follows: two block cipher calls are first invoked sequentially to
produce two masks y1 and y2 from the tweaks t1, t2, t3 and the master key k. By using
y1 to mask both the input and output, and using y2, the master key k, and t1 to provide
variety in the sub-key, a third block cipher call is then invoked to encrypt the message m
to the ciphertext c. A pictorial illustration of the construction G̃3∗ is given in Fig. 12.

Et1

k ⊕ t2

y1 Et3

y1 ⊕ t2

y2 Em ⊕

y1

2.k ⊕ y2 ⊕ t1

c⊕

y1

Figure 12: G̃∗
3 construction: TBC with 3n bit tweaks using three block cipher calls. We

impose a natural ordering on the block cipher calls from left to right.

In the following, we demonstrate that G̃3∗ is a secure tweakable block cipher with 3n
bit tweaks against all adversaries that makes roughly 22n/3 construction and ideal-cipher
queries. Formally, we present the following result:

Theorem 2. Let A be an adversary making at most q construction queries and p ideal-
cipher queries including both forward and backward queries. Then,

Advtsprp-icm
G̃3∗

(A) ≤ q

2n
+ 12q2

22n
+ 6q2p

22n
+ 4qp

22n
+ 11qp2

22n
.

Proof. Let us assume that A makes at most q construction queries (to the first oracle) and p
ideal-cipher queries (to the second oracle). Let τc = {(t1, m1, c1), (t2, m2, c2), . . . , (tq, mq, cq)}
denotes the list of construction query-responses, where each ti = ti

1∥ti
2∥ti

3 is a concatenation
of three n-bit strings, and τp = {(L1, u1, v1), (L2, u2, v2), . . . , (Lp, up, vp)} denotes the list
of ideal-cipher query-responses, where Li denotes the ideal-cipher key chosen at the i-th
query. For the sake of convenience, we assume that the oracle releases some intermediate
values to the distinguisher after the interaction is over, but before A outputs its decision
bit. In the real world, the oracle releases the block cipher key k and the (yi

1, yi
2), i ∈ [q]

tuple. On the other hand, the oracle in the ideal world randomly samples n-bit dummy
key k and computes (yi

1, yi
2), i ∈ [q] tuple, where yi

1 and yi
2 are computed similar to the

real world and finally release them to the distinguisher. Therefore, the extended transcript
of the attack is τ = (τc, τp, (yi

1, yi
2)i∈[q], k).

4.1 Defining the Bad Transcripts

Let Θ denote the set of all attainable transcripts. We call an attainable transcript τ ∈ Θ
is bad if it satisfies either of the following:

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 19

1. Bad1: ∃i ∈ [q], α ̸= β ∈ [p] : k ⊕ ti
2 = Lα, yi

1 ⊕ ti
2 = Lβ

2. Bad2: ∃i ̸= j ∈ [q] : yi
1 ⊕ yj

1 = mi ⊕mj , yi
2 ⊕ yj

2 = ti
1 ⊕ tj

1

3. Bad3: ∃i ̸= j ∈ [q] : yi
1 ⊕ yj

1 = ci ⊕ cj , yi
2 ⊕ yj

2 = ti
1 ⊕ tj

1

4. Bad4: ∃i ∈ [q], α ∈ [p] : mi ⊕ yi
1 = uα, 2k ⊕ yi

2 ⊕ ti
1 = Lα

5. Bad5: ∃i ∈ [q], α ∈ [p] : ci ⊕ yi
1 = vα, 2k ⊕ yi

2 ⊕ ti
1 = Lα

6. Bad6: ∃i ̸= j ∈ [q] : 2k ⊕ yi
2 ⊕ ti

1 = k ⊕ tj
2, mi ⊕ yi

1 = tj
1

7. Bad7: ∃i ̸= j ∈ [q] : 2k ⊕ yi
2 ⊕ ti

1 = k ⊕ tj
2, ci ⊕ yi

1 = yj
1

8. Bad8: ∃i ̸= j ∈ [q] : 2k ⊕ yi
2 ⊕ ti

1 = yj
1 ⊕ tj

2, mi ⊕ yi
1 = tj

3

9. Bad9: ∃i ̸= j ∈ [q] : 2k ⊕ yi
2 ⊕ ti

1 = yj
1 ⊕ tj

2, ci ⊕ yi
1 = yj

2

10. Bad10: ∃i ∈ [q] : 2k ⊕ yi
2 ⊕ ti

1 = k ⊕ ti
2

In the following lemma we state that one of the bad events holds in the ideal world with
very low probability.

Lemma 5. Let Θb denote the set of all bad transcripts and recall that Xid denotes the
random variable of transcript τ induced in the ideal world. Then, we have the following:

Pr[Xid ∈ Θb] ≤ q

2n
+ 12q2

22n
+ 6q2p

22n
+ 4qp

22n
+ 11qp2

22n
. (3)

Proof Let us denote Bad = Bad1 ∨ (∨9
i=2Badi | Bad1) ∨ Bad10. Therefore, by applying

the union bound, we have

Pr[Bad] ≤ Pr[Bad1] +
9∑

i=2
Pr[Badi | Bad1] + Pr[Bad10].

Therefore, to bound the probability of the event Bad, we individually bound the probability
of the event Bad1, Bad10 and Badi for 2 ≤ i ≤ 10 conditioned on the complement of the
event Bad1 and then we apply the union bound to obtain the final result.

Bounding Bad1: We bound the event in two cases: (i) when ti
1 ̸= uα for all α ∈ [p] and

(ii) when ∃α ∈ [p] such that ti
1 = uα. To bound the first case, we note that if ti

1 ≠ uα, then
yi

1 is fresh and thus, we use the randomness of yi
1 to bound the event yi

1 ⊕ ti
2 = Lβ to at

most 1/(2n − p) ≤ 2/2n assuming p ≤ 2n−1. Moreover, due to the randomness of k, we
bound the event k ⊕ ti

2 = Lα to 1/2n. Therefore, by varying over all possible choices of
indices, we have

Pr[Bad1] ≤ 2qp2/22n. (4)

To bound the second case, we consider three following sub-cases: (a) when α > i and the
α-th ideal-cipher query is forward one. In that case, for a fixed choice of indices i ∈ [q],
α, β ∈ [p], the probability of the event k⊕ ti

2 = Lα, ti
1 = uα, vα⊕ ti

2 = Lβ is upper bounded
by 1/2n · 1/(2n − p) due to the randomness of the key k and the randomness of the ideal-
cipher query output vα. By varying over all possible choices of indices i ∈ [q], α ̸= β ∈ [p]
and by assuming p ≤ 2n−1, we have

Pr[Bad1] ≤ 2qp2/22n. (5)

20 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

(b) when α > i and the α-th ideal-cipher query is inverse one. In that case, for a fixed choice
of indices i ∈ [q], α, β ∈ [p], the probability of the event k⊕ ti

2 = Lα, ti
1 = uα, vα⊕ ti

2 = Lβ

is upper bounded by 1/2n · 1/(2n − p) due to the randomness of the key k and the
randomness of the ideal-cipher query output uα. By varying over all possible choices of
indices i ∈ [q], α ̸= β ∈ [p] and by assuming p ≤ 2n−1, we have

Pr[Bad1] ≤ 2qp2/22n. (6)

(c) On the other hand, if α < i, then we cannot use the randomness of vα. In that case, for
a fixed choices of i, α and β, the probability that k ⊕ ti

2 = Lα, ti
1 = uα, vα ⊕ ti

2 = Lβ holds
is upper bounded by 1/2n due to the randomness of the key k. However, the number of
choices of i, α and β such that vα ⊕ ti

2 = Lβ holds is at most qp2/2n by the virtue of the
Sum-Capture Lemma. Therefore, in both the cases, we have

Pr[Bad1] ≤ qp2/22n. (7)

Therefore, by combining Eqn. (4), Eqn. (5), Eqn. (6), and Eqn. (7), we have

Pr[Bad1] ≤ 7qp2/22n. (8)

Bounding Bad2 | Bad1: To bound the event, we need to bound the probability of the
following two equations hold:

E =
{

(1) : yi
1 ⊕ yj

1 = mi ⊕mj

(2) : yi
2 ⊕ yj

2 = ti
1 ⊕ tj

1

Now, we bound the probability of this event in several cases as follows:
Case I. (ti

1, ti
2) = (tj

1, tj
2): If the condition happens, then it implies that yi

1 = yj
1 and thus

from Eqn. (1), we have mi = mj . Since the distinguisher is non-trivial, therefore, it implies
that ti

3 ̸= tj
3. But then it implies that yi

2 ̸= yj
2. However, from Eqn. (2), we have yi

2 = yj
2

which is a contradiction and hence the probability of the event would be zero.
Case-II. y variables are determined by ideal-cipher query: Without loss of gener-
ality, we assume that yi

1 is determined by an ideal-cipher query. Then by the virtue of
Bad1, yi

2 fresh, i.e., it is not determined by any ideal-cipher query. Hence, the above
equations are boiled down to the following:

k ⊕ ti
2 = Lα

ti
1 = uα

yj
1 = mi ⊕mj ⊕ vα

yi
2 ⊕ yj

2 = ti
1 ⊕ tj

1

Using the randomness of yi
2 and the randomness of the key k, the probability of the above

event is bounded by 1/2n · 1/(2n − p). However, the number of choices of i, j, α is
(

q
2
)
p.

By assuming p ≤ 2n−1, we have

Pr[Bad2 | Bad1] ≤ q2p/22n. (9)

Case-III. none of the y variables are determined by ideal-cipher query: We con-
sider this case in several sub-cases as follows:

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 21

1. We consider the case when ti
1 = ti

3, tj
1 = tj

3, k = yi
1 and yi

1 = yi
2. This event implies

yi
1 = yi

2 and yj
1 = yj

2. Hence, the rank of the system of equations E is 1 and hence E
holds with probability at most 1/(2n − p). However, we also have the randomness
from the equation k = yi

1 which additionally contributes to 2−n in the probability.
Therefore, for a fixed choice of indices, the probability that E holds is at most
1/2n · 1/(2n − p). By varying over the all possible choices of indices and by assuming
p ≤ 2n−1, we have

Pr[Bad2] ≤ q2/22n. (10)

2. We consider a case when ti
1 = tj

3, ti
3 = tj

1, k ⊕ yj
1 = ti

2 ⊕ tj
2 and yi

1 = yj
1. This event

implies yi
1 = yj

2 and yj
1 = yi

2. Hence, the rank of the system of equations E is 1
and hence E holds with probability at most 1/(2n − p). However, we also have the
randomness from the equation k ⊕ yj

1 = ti
2 ⊕ tj

2 which additionally contributes to
2−n in the probability. Therefore, for a fixed choice of indices, the probability that E
holds is at most 1/2n · 1/(2n − p). By varying over the all possible choices of indices,
we have

Pr[Bad2] ≤ q2/22n. (11)

3. If the above two cases do not happen, then the rank of the system of equations E
is 2 and in that case, we obtain two fresh random variables yi

1 and yi
2 which jointly

contributes 1/(2n− p)2 to the probability of the above system of equations E . Hence,
for a fixed choice of indices, the probability that E holds is at most 1/(2n − p)2. By
varying over the all possible choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad2] ≤ 2q2/22n. (12)

Therefore, by combining Eqn. (9)-Eqn. (12), we have

Pr[Bad2 | Bad1] ≤ 4q2/22n + q2p/22n. (13)

Bounding Bad3 | Bad1: Bounding Bad3 | Bad1 is identical to that of Bad2 | Bad1 and
hence we have,

Pr[Bad3 | Bad1] ≤ 4q2/22n + q2p/22n. (14)

Bounding Bad4 | Bad1: We bound this event in several sub-cases as follows: (a) If yi
1 is

not determined by any ideal-cipher query, then for a fixed choices of indices, using the
randomness of yi

1 and key k, we bound this event up to 1/2n · 1/(2n − p). By varying the
choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad4] ≤ 2qp/22n (15)

(b) On the other hand, if yi
1 is determined by ideal-cipher query, let ti

1 = uβ , k ⊕ ti
2 = Lβ

for some β ∈ [p] which implies yi
1 = vβ , then by the virtue of Bad1, yi

2 must be fresh. In
that case, the event gets boils down to the following system of equations:

mi ⊕ yi
1 = uα

2k ⊕ yi
2 ⊕ ti

1 = Lα

ti
1 = uβ

k ⊕ ti
2 = Lβ

For a fixed choices of indices, using the randomness of yi
2 and k, the probability of the

above system of equation holds is 1/2n · 1/(2n − p). Moreover, the number of choices of
indices is qp2. Thus, we have

Pr[Bad4 | Bad1] ≤ 2qp2/22n. (16)

22 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

Therefore, by combining Eqn. (15), and Eqn. (16), we have

Pr[Bad4 | Bad1] ≤ 2qp/22n + 2qp2/22n. (17)

Bounding Bad5 | Bad1: Bounding Bad5 | Bad1 is identical to that of Bad4 | Bad1 and
hence, we have

Pr[Bad5 | Bad1] ≤ 2qp/22n + 2qp2/22n. (18)

Bounding Bad6 | Bad1: For a fixed choice of indices, the above event boils down to
bounding the following system of equations hold:{

3k = yi
2 ⊕ ti

1 ⊕ tj
2

yi
1 = mi ⊕ tj

1

Now, we analyze the probability of the above event in the following two sub-cases: (a)
when yi

1 is fresh, then we use the randomness of the key k and yi
1 to bound the probability

to at most 1/2n · 1/(2n − p). However, by varying the all possible choices of indices and by
assuming p ≤ 2n−1, we have

Pr[Bad6 | Bad1] ≤ q2/22n. (19)

(b) On the other hand, if yi
1 is not fresh, i.e., yi

1 is determined from ideal-cipher query,
then, the event boils down to the following system of equations hold:{

3k = yi
2 ⊕ ti

1 ⊕ tj
2

k ⊕ ti
2 = Lα

where α ∈ [p]. Since yi
1 is determined from ideal-cipher query, by the virtue of Bad1, yi

2
is fresh. Now, we use the randomness of the key k and yi

2 to bound the probability to
at most 1/2n · 1/(2n − p). However, by varying the all possible choices of indices and by
assuming p ≤ 2n−1, we have

Pr[Bad6 | Bad1] ≤ q2p/22n. (20)

By combining Eqn. (19) and Eqn. (20), we have

Pr[Bad6 | Bad1] ≤ q2/22n + q2p/22n. (21)

Bounding Bad7 | Bad1: Bounding this event is identical to that of bounding Bad6 | Bad1
and hence we have

Pr[Bad7 | Bad1] ≤ q2/22n + q2p/22n. (22)

Bounding Bad8: For a fixed choice of indices, the above event boils down to bounding
the following system of equations hold:{

2k = yi
2 ⊕ ti

1 ⊕ yj
1 ⊕ tj

2
yi

1 = mi ⊕ tj
3

Now, we analyze the probability of the above event in the following two sub-cases: (a)
when yi

1 is fresh, then we use the randomness of the key k and yi
1 to bound the probability

to at most 1/2n · 1/(2n − p). However, by varying the all possible choices of indices and by
assuming p ≤ 2n−1, we have

Pr[Bad8] ≤ q2/22n. (23)

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 23

(b) On the other hand, if yi
1 is not fresh, i.e., yi

1 is determined from ideal-cipher query,
then, the event boils down to the following system of equations hold:{

2k = yi
2 ⊕ ti

1 ⊕ yj
1 ⊕ tj

2
k ⊕ ti

2 = Lα

where α ∈ [p]. Since yi
1 is determined from ideal-cipher query, by the virtue of Bad1, yi

2
is fresh. Now, we use the randomness of the key k and yi

2 to bound the probability to
at most 1/2n · 1/(2n − p). However, by varying the all possible choices of indices and by
assuming p ≤ 2n−1, we have

Pr[Bad8 | Bad1] ≤ q2p/22n. (24)

By combining Eqn. (23) and Eqn. (24), we have

Pr[Bad8 | Bad1] ≤ q2/22n + q2p/22n. (25)

Bounding Bad9 | Bad1: Bounding this event is identical to that of bounding Bad8 | Bad1
and hence we have

Pr[Bad9 | Bad1] ≤ q2/22n + q2p/22n. (26)

Bounding Bad10: For a fixed choice of index i, the probability of the event 2k⊕yi
2⊕ti

1 =
k ⊕ ti

2 is upper bounded by 2−n due to the randomness of the n-bit key k. By varying
over all possible choices of indices, we have

Pr[Bad10] ≤ q/2n (27)

We derive the bound of Lemma 5 by combining Eqn. (8)-Eqn. (27).

4.2 Good Transcript Analysis
Let τ = (τc, τp, (yi

1, yi
2)i∈[q], k) be a good transcript. We consider a set

S = {
(
(k ⊕ t1

2, t1
1, y1

1), (y1
1 ⊕ t1

2, t1
3, y1

2)
)
, . . . ,

(
(k ⊕ tq

2, tq
1, yq

1), (yq
1 ⊕ tq

2, tq
3, yq

2)
)
}

that records the (key, input, output) triplet of the first and second block cipher call of
the construction across all q construction queries. For each n-bit string K ∈ {0, 1}n, we
define a list IC(K) = {(L, u, v) ∈ τp : L = K} that records the (ideal-cipher key, input,
output) triplet across all p ideal-cipher queries such that the ideal-cipher key is K. We
maintain a list of integers L1, where we include an index i ∈ [q] in L1, if ∃α ∈ [p] such
that k ⊕ ti

2 = Lα. Similarly, we maintain a list of integers L2, where we include an index
i ∈ [q] in L2, if ∃α ∈ [p] such that yi

1 ⊕ ti
2 = Lα. Note that, L1 ∩ L2 = ϕ, otherwise the

event Bad1 would have been hold. Now, we define a set

H1 := {(k ⊕ ti
2, ti

1, yi
1), (yi

1 ⊕ ti
2, ti

3, yi
3) : i /∈ L1 ∪ L2}.

Note that, H1 records the (key, input, output) triplet of the first and second block cipher
call of the construction across all q construction queries such that both keys of the
block cipher have not collided with any ideal-cipher key. Moreover, H1 ⊆ S. Finally,
for each i ∈ L1, we include the element (k ⊕ ti

2, ti
1, yi

1) into the list IC(k ⊕ ti
2), i.e.,

IC(k ⊕ ti
2) ← IC(k ⊕ ti

2) ∪ {(k ⊕ ti
2, ti

1, yi
1)}, and, for each i ∈ L2, we include the element

(yi
1 ⊕ ti

2, ti
3, yi

3) into the list IC(yi
1 ⊕ ti

2), i.e., IC(yi
1 ⊕ ti

2)← IC(yi
1 ⊕ ti

2) ∪ {(yi
1 ⊕ ti

2, ti
3, yi

3)}.
For each key K ∈ {0, 1}n, we define the set

H2(K) := {(2k ⊕ y2 ⊕ t1, m⊕ y1, c⊕ y1) : (t1∥t2∥t3, m, c) ∈ τc, 2k ⊕ y2 ⊕ t1 = K}

24 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

that records the (key, input, output) triplet of the third block cipher call such that the key
is K. Similarly, for each tweak t ∈ {0, 1}3n, we define the set

H(t) := {(t1∥t2∥t3, m, c) ∈ τc : t1∥t2∥t3 = t}

which records all q construction queries and response excluding the block cipher key such
that the tweak of the construction query is t. Finally, for each key K ∈ {0, 1}n, we define
the set

Z(K) := {(t1∥t2∥t3) : (t1∥t2∥t3, m, c) ∈ τc, 2k ⊕ y2 ⊕ t1 = K}.
It is to be noted that as the transcript is good, for each key K ∈ {0, 1}n, we have
H2(K)∩H1 = ϕ, otherwise either of the event Bad6-Bad10 would have been hold. Similarly,
for each key K ∈ {0, 1}n, we have H2(K)∩ IC(K) = ϕ, otherwise either of the events Bad4-
Bad9 would have been hold. Finally, by the virtue of the definition, we have H1∩ IC(K) = ϕ
for each key K ∈ {0, 1}n.
Let us fix a key K ∈ {0, 1}n. For each t ∈ Z(K), |H(t)| denotes the number of construction
queries with tweak t. Then, we have for each key K ∈ {0, 1}n,∑

t∈Z(K)

|H(t)| = |H2(K)|.

For the sake of simplicity, let us denote |H1| = α1. For each K ∈ {0, 1}n, we denote
|IC(K)| = αic(K), |H2(K)| = α2(K) and for each tweak t ∈ {0, 1}3n, we denote |H(t)| =
α(t). Therefore, for a fixed good transcript τ , the ideal interpolation probability becomes

Pr[Xid = τ] = 1
2n
·

∏
K∈{0,1}n

·
α2(K)−1∏

j=0

1
2n − j

·
(∏

K∈{0,1}n

αic(K)−1∏
j=0

1
2n − j

)

·
(∏

K∈{0,1}n

∏
t∈Z(K)

α(t)−1∏
p=0

1
2n − p

)

= 1
2n
·

∏
K∈{0,1}n

·
α2(K)−1∏

j=0

1
2n − j

·
(∏

K∈{0,1}n

αic(K)−1∏
j=0

1
2n − j

α2(K)−1∏
p=0

1
2n − p

)
.

To bound the real interpolation probability, the number of times block cipher is called for
deriving sub-keys is α1. However, number of times block cipher is called for ideal-cipher
queries and construction queries is αic(K) + α2(K) for each key K ∈ {0, 1}n. Therefore,
we have

Pr[Xre = τ] = 1
2n
·

∏
K∈{0,1}n

·
α2(K)−1∏

j=0

1
2n − j

·
(∏

K∈{0,1}n

αic(K)+α2(K)−1∏
j=0

1
2n − j

)
.

Since for each key K ∈ {0, 1}n, we have
αic(K)−1∏

j=0

1
2n − j

α2(K)−1∏
p=0

1
2n − p

≤
αic(K)+α2(K)−1∏

j=0

1
2n − j

,

the ratio of the real to ideal interpolation probability becomes ≥ 1, which proves the
result.

Remark 2. The security of our construction holds as long as the online query complexity
q ≤ 22n/3 and the offline query complexity p ≤ 22n/3. Ideally, the offline query complexity
should go up to 2n as they are cheaper than the online queries, but we believe that it is
challenging to improve the security bound of our construction that tolerates offline query
complexity up to 2n.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 25

5 Optimally Secure TBC with 3n-bit Tweaks Using Four
Block Cipher Calls

In this section, we show that to process 3n bit tweaks using four block cipher calls,
having one tweak-dependent block cipher key is both necessary and sufficient condition for
achieving security up to O(2n) queries. In the following, we first show that at least one
tweak-dependent key is necessary to construct TBCs with 3n-bit tweak from four block
ciphers calls. Followed by, we show that at least one tweak-dependent key is sufficient to
construct TBCs with 3n-bit tweak from four block ciphers calls.

5.1 Generic Birthday Attacks on TBCs with 3n-bit tweak from Four
BC with All Tweak-independent Keys

In this subsection, we will show that at least one tweak-dependent key is necessary to
construct TBCs with 3n-bit tweak from four block ciphers. In other words, we exhibit
birthday bound attacks on all TBC constructions with four block cipher calls that process
3n bit tweaks with no tweak dependency key. More precisely, we consider the generic
construction using four block ciphers where no block cipher keys are tweak-dependent,
dubbed C8 as depicted in Fig.13, and present a birthday attack on the construction.

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Eα2.y1 ⊕ β1.y2 ⊕ f3(t)

a3.k

y3

Em ⊕

α3.y1 ⊕ β2.y2 ⊕ γ1.y3

a4.k

c⊕

α4.y1 ⊕ β3.y2 ⊕ γ2.y3

Figure 13: Construction C8: All the four block cipher uses tweak-independent keys.

To mount an attack on this generic construction, our strategy is as follows:

Case 1: γ1 = 0. In this case we find a constant query attack as follows:

1. Find t1, t2 satisfying f1(t1) = f1(t2) and f2(t1) = f2(t2). This choice makes y1
1 = y2

1
and y1

2 = y2
2 .

2. Make two query with (m, t1) and (m, t2). We have the same (input, key) for both
queries. Note that, corresponding cipher texts c1, c2 will satisfy c1⊕ c2 = γ2(y1

3 ⊕ y2
3).

3. Finally, make two additional queries (m⊕∆, t1) and (m⊕∆, t2), where ∆ ̸= 0. Let
c⋆

1 and c⋆
2 be two cipher texts. Return 1 if c⋆

1 ⊕ c⋆
2 = c1⊕ c2. Note that, this equation

happens for TBC construction is 1, while for random tweakable permutation, the
probability is only 1/2n.

26 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

Case 2: γ1 ̸= 0. Here we find a birthday attack as follows:

1. Find 2n/2 many tweaks such that for each pair of tweaks (ti, tj), we have f1(ti) =
f1(tj), f2(ti) = f2(tj), and f3(ti) ̸= f3(tj). Note that, with this choice of tweaks, we
will have yi

1 = yj
1, and yi

2 = yj
2, for all (i, j).

2. Now we make 2n/2 queries (mi, ti) such that all the mi-values are distinct. It is
easy to see that a collision in the input of the final block cipher happens when
γ1(yi

3 ⊕ yj
3) = mi ⊕mj . Now due to birthday paradox, we expect one such collision.

Moreover, this collision is detectable as in this case, we have γ1(ci⊕cj) = γ2(mi⊕mj).

3. Finally, we can distinguish the TBC from a random tweakable permutation by
making two additional oracle queries (mi ⊕∆, ti), (mj ⊕∆, tj), where ∆ ̸= 0, and
verifying if the corresponding outputs, say c⋆

i and c⋆
j satisfies the following equation:

c⋆
i ⊕ c⋆

j = ci ⊕ cj .

An algorithmic description of the attack is shown in Fig. 24 (See Supplementary
Material C.8).
Remark 3. In general, we can mount a similar generic birthday attack on TBCs with
rn-bit tweak from (r + 1) Block ciphers if all the block cipher keys are Tweak-independent.

5.2 Optimal Secure TBC with 3n-bit tweak from Four BC with one
Tweak-dependent Key

Let E : {0, 1}n × {0, 1}n → {0, 1}n be a n-bit block cipher. The tweakable block cipher
G̃3 : {0, 1}n×{0, 1}3n×{0, 1}n → {0, 1}n with a 3n bit tweak using four block cipher calls
is constructed as follows: three block cipher calls are first invoked in parallel to produce
three masks y1, y2 and y3 from the tweaks t1, t2, t3 and the master key k. By using y1⊕ y2
to mask the input and by using y1 ⊕ y3 to mask the output, and using y2 ⊕ y3, the master
key k, and t1 to provide variety in the sub-key, a fourth block cipher call is then invoked
to encrypt the message m to the ciphertext c. A pictorial illustration of the construction
G̃3 is given in Fig. 14.

Et1

k

y1 Et2

2.k

y2 Et3

4.k

y3 Em ⊕

y1 ⊕ y2

k ⊕ t1 ⊕ y2 ⊕ y3

c⊕

y1 ⊕ y3

Figure 14: G̃3 construction: TBC with 3n-bit tweaks using four block cipher calls. We
impose a natural ordering on the block cipher calls from left to right.

In the following we show that G̃3 is a secure tweakable block cipher with 3n bit tweaks
against all adversaries that makes roughly 2n construction and ideal-cipher queries. For-
mally, we have the following result:

Theorem 3. Let A be an adversary making at most q construction queries and p ideal-
cipher queries including both forward and backward queries. Then,

Advtsprp-icm
G̃3

(A) ≤ 4q(p + q)
22n

+ 4q + 3p + 1
2n

.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 27

Proof. We consider A to be a computationally unbounded deterministic distinguisher that
interacts with a pair of oracles in either the real world (G̃3E, E±) or in the ideal world
(P̃, E±). Let us assume that A makes at most q construction queries and p ideal-cipher
queries. Let τc = {(t1

1∥t1
2∥t1

3, m1, c1), . . . , (tq
1∥t

q
2∥t

q
3, mq, cq)} denote the list of construction

query-responses and τp = {(L1, u1, v1), (L2, u2, v2), . . . , (Lp, up, vp)} denote the list of ideal-
cipher query-responses. For the sake of proof, let the oracle release some additional value
after all of adversary A’s query responses are finished. Note that these additional released
values can only increase the adversary’s advantage. We assume that the oracle in the real
world releases the block cipher key k and the tuple (yi

1, yi
2, yi

3), i ∈ [q] tuple. On the other
hand, the oracle in the ideal world randomly samples n-bit dummy key k and computes
(yi

1, yi
2, yi

3), i ∈ [q] tuple, where yi
1, yi

2, and yi
3 are computed similar to the real world and

finally released them to the distinguisher. Therefore, the extended transcript of the attack
is τ = (τc, τp, (yi

1, yi
2, yi

3)i∈[q], k). Let Θ denote the set of all attainable transcripts. We call
an attainable transcript τ ∈ Θ is bad if it satisfies either of the following:

1. Bad1: k = 0.

2. Bad2: ∃α ∈ [p] : Lα ∈ {k, 2k, 4k}.

3. Bad3: ∃i ∈ [q] : k ⊕ ti
1 ⊕ yi

2 ⊕ yi
3 ∈ {k, 2k, 4k}.

4. Bad4: ∃i ∈ [q], α ∈ [p] : mi ⊕ yi
1 ⊕ yi

2 = uα, k ⊕ ti
1 ⊕ yi

2 ⊕ yi
3 = Lα.

5. Bad5: ∃i ∈ [q], α ∈ [p] : ci ⊕ yi
1 ⊕ yi

3 = vα, k ⊕ ti
1 ⊕ yi

2 ⊕ yi
3 = Lα.

6. Bad6: ∃i ̸= j ∈ [q] : yi
1 ⊕ yi

2 ⊕ yj
1 ⊕ yj

2 = mi ⊕mj , yi
2 ⊕ yi

3 ⊕ yj
2 ⊕ yj

3 = ti
1 ⊕ tj

1.

7. Bad7: ∃i ̸= j ∈ [q] : yi
1 ⊕ yi

3 ⊕ yj
1 ⊕ yj

3 = ci ⊕ cj , yi
2 ⊕ yi

3 ⊕ yj
2 ⊕ yj

3 = ti
1 ⊕ tj

1.

In the following lemma we state that one of the bad events holds in the ideal world with
very low probability.

Lemma 6. Let Θb denote the set of all bad transcripts and recall that Xid denotes the
random variable of transcript τ induced in the ideal world. Then, we have the following:

Pr[Xid ∈ Θb] ≤ 4q(p + q)
22n

+ 4q + 3p + 1
2n

. (28)

Proof Let us denote Bad = Bad1 ∨ Bad2 ∨ (∨7
i=3Badi | Bad2). Therefore, by applying the

union bound, we have

Pr[Bad] ≤ Pr[Bad1] + Pr[Bad2] +
7∑

i=3
Pr[Badi | Bad2].

Therefore, to bound the probability of the event Bad, we individually bound the probability
of the event Bad1, Bad2 and Badi for 3 ≤ i ≤ 7 conditioned on the complement of the event
Bad2. Then we apply the union bound to obtain the final result.

Bounding Bad1: It is easy to see the randomness of the key k ensures that

Pr[Bad1] ≤ 1/2n. (29)

Bounding Bad2: For a fixed index α ∈ [p], the probability of the event k = Lα is upper
bounded by 1/2n due to the randomness of the key k. Similarly, the probability of the
event 2k = Lα is upper bounded by 1/2n and the probability of the event 4k = Lα is

28 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

upper bounded by 1/2n due to the randomness of the key k. By varying over all possible
choices of indices α ∈ [p], we have

Pr[Bad2] ≤ 3p/2n. (30)

Bounding Bad3 | Bad2: For a fixed choice of index i, we bound the event k⊕ti
1⊕yi

2⊕yi
3 =

k, which boils down to the event yi
2 ⊕ yi

3 = ti
1. Due to the event Bad2, yi

2 variable is fresh
and hence we bound the probability of the event to at most 1/(2n − p). Similarly, for a
fixed choice of index i, we bound the event k ⊕ ti

1 ⊕ yi
2 ⊕ yi

3 = 2k, which boils down to the
event

k = (2⊕ 1)−1(yi
2 ⊕ yi

3 ⊕ ti
1).

Using the entropy of the random variable k, we bound the probability of the event at most
1/2n. Similarly, for a fixed choice of index i, we bound the event k ⊕ ti

1 ⊕ yi
2 ⊕ yi

3 = 4k,
which boils down to the event

k = (22 ⊕ 1)−1(yi
2 ⊕ yi

3 ⊕ ti
1).

Using the entropy of the random variable k, we bound the probability of the event at most
1/2n. Therefore, by varying over all possible choices of indices and by assuming p ≤ 2n−1,
we have

Pr[Bad3 | Bad2] ≤ 4q/2n. (31)

Bounding Bad4 | Bad2: For a fixed choice of indices i ∈ [q], α ∈ [p], the probability of
the event {

yi
1 ⊕ yi

2 = mi ⊕ uα

k ⊕ yi
2 ⊕ yi

3 = ti
1 ⊕ Lα

is upper bounded by 1/2n · 1/(2n − p) due to the randomness of the key k and yi
1 as yi

1
is not determined by ideal-cipher query due to the virtue of ¬Bad2. By varying over all
possible choices of indices i ∈ [q], α ∈ [p] and by assuming p ≤ 2n−1, we have

Pr[Bad4 | Bad2] ≤ 2qp/22n. (32)

Bounding Bad5 | Bad2: Bounding this event is identical to that of Bad4 | Bad2 and
hence we have

Pr[Bad5 | Bad2] ≤ 2qp/22n. (33)

Bounding Bad6 | Bad2: We bound the probability of this event in several sub-cases as
follows:

1. if (ti
1, ti

2) = (tj
1, tj

2), then it implies that yi
1 = yj

1 and yi
2 = yj

2 which follows from the
construction. Hence, it implies from the above equation

(yi
1 ⊕ yi

2)⊕ (yj
1 ⊕ yj

2) = mi ⊕mj

that mi = mj . On the other hand, the above condition also implies from the equation

(yi
2 ⊕ yi

3)⊕ (yj
2 ⊕ yj

3) = ti
1 ⊕ tj

1

that yi
3 = yj

3 that follows from the construction which in turn implies that ti
3 = tj

3.
However, if the tweaks are same for i-th and j-th query, then the corresponding
message should be different as we assume non-trivial distinguisher which is violated
from the above sequence of logical events. Therefore, in this case, the probability of
the event is zero.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 29

2. if (ti
1, ti

3) = (tj
1, tj

3), then it implies that yi
1 = yj

1 and yi
3 = yj

3 which follows from the
construction. Hence, it implies from the above equation

(yi
2 ⊕ yi

3)⊕ (yj
2 ⊕ yj

3) = ti
1 ⊕ tj

1

that yi
2 = yj

2 which in turn implies that ti
2 = ti

3. On the other hand, the above
condition implies from the above equation

(yi
1 ⊕ yi

2)⊕ (yj
1 ⊕ yj

2) = mi ⊕mj

that mi = mj . However, if the tweaks are same for i-th and j-th query, then the
corresponding message should be different as we assume non-trivial distinguisher
which is violated from the above sequence of logical events. Therefore, in this case,
the probability of the event is zero.

3. if (ti
2, ti

3) = (tj
2, tj

3), then it implies that yi
2 = yj

2 and yi
3 = yj

3 which follows from the
construction. Hence, it implies from the above equation

(yi
2 ⊕ yi

3)⊕ (yj
2 ⊕ yj

3) = ti
1 ⊕ tj

1

that ti
1 = tj

1, which again implies that yi
1 = yj

1 that follows from the construction.
But again it implies that mi = mj which follows from the equation

(yi
1 ⊕ yi

2)⊕ (yj
1 ⊕ yj

2) = mi ⊕mj .

However, if the tweaks are same for i-th and j-th query, then the corresponding
message should be different as we assume non-trivial distinguisher which is violated
from the above sequence of logical events. Therefore, in this case, the probability of
the event is zero.

4. In all the other cases, at most one of ti
1, ti

2, ti
3 will collide with the corresponding

tj
1, tj

2, tj
3 respectively. In that case we obtain two fresh random variables from each of

the two equations {
(yi

2 ⊕ yi
3)⊕ (yj

2 ⊕ yj
3) = ti

1 ⊕ tj
1

(yi
1 ⊕ yi

2)⊕ (yj
1 ⊕ yj

2) = mi ⊕mj

Without loss of generality, we assume that i < j and in that case we choose yj
1 as

fresh random variable from the first equation and choose yj
3 as fresh random variable

from the second equation. Note that we can utilize the randomness of both yj
1 and yj

3
together due to Bad1. Using the randomness of yj

1 and yj
3, we bound the probability

of the above event for a fixed choices of indices to at most 1/(2n − p)2. By varying
over all possible choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad6 | Bad2] ≤ 2q2/22n. (34)

Bounding Bad7 | Bad2: Bounding this event is exactly identical to that of Bad6 | Bad2
and hence, we have

Pr[Bad7|Bad2] ≤ 2q2/22n. (35)

We derive the bound of Lemma 6 by combining the bounds from Eqn. (29)-Eqn. (35).
We lower bound the ratio of the real to ideal interpolation probability for a good transcript.
Formally, we prove the following lemma.

30 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

Lemma 7. Let τ = (τc, τp, (yi
1, yi

2, yi
3)i∈[q], k) be a good transcript. Let Xre and Xid be two

random variables defined as above. Then, we have
Pr[Xre = τ]
Pr[Xid = τ] ≥ 1. (36)

Proof Let τ = (τc, τp, (yi
1, yi

2, yi
3)i∈[q], k) be a good transcript. Let us consider the following

set:
H1 = {(k, t1

1, y1
1), (2k, t1

2, y1
2), (4k, t1

3, y1
3), . . . , (k, tq

1, yq
1), (2k, tq

2, yq
2), (4k, tq

3, yq
3))

which records the (key, input, output) triplet of the first, second and the third block cipher
call of the construction across all q construction queries. For each key K ∈ {0, 1}n, we
define the sets H2(K) = {(L, u, v) ∈ τp : L = K} and H3(K) = {(k ⊕ ti

1 ⊕ yi
2 ⊕ yi

3, mi ⊕
yi

1 ⊕ yi
2, ci ⊕ yi

1 ⊕ yi
2) : k ⊕ ti

1 ⊕ yi
2 ⊕ yi

3 = K}, where (ti
1∥ti

2∥ti
3, mi, ci) ∈ τc. Note that,

H2(K) denotes the set of (key, input, output) triplet across all p ideal-cipher queries such
that the key is K. Similarly, H3(K) denotes the set of all triplet of (key, input, output) of
the third block cipher call of the construction across all q construction queries such that
the key of the third block cipher call is K. For each tweak t ∈ {0, 1}3n, we define the set

H(t) = {(ti
1∥ti

2∥ti
3, mi, ci) ∈ τc : ti

1∥ti
2∥ti

3 = t}

which records all q triplet of tweak, queries and response excluding the block cipher key
such that the tweak of the construction query is t. Finally, for each key K ∈ {0, 1}n, we
define the set

Z(K) = {(ti
1∥ti

2∥ti
3) : (ti

1∥ti
2∥ti

3, mi, ci) ∈ τc ∧ k ⊕ ti
1 ⊕ yi

2 ⊕ yi
3 = K}.

Since the transcript is good, we have H1∩H2(K) = ∅, H1∩H3(K) = ∅, H2(K)∩H3(K) = ∅,
for each K ∈ {0, 1}n. These follow directly from Bad2, Bad3, and Bad4 ∧ Bad5.
Let us fix a key K ∈ {0, 1}n. For each t ∈ Z(K), |H(t)| denotes the number of construction
queries with tweak t. Due to Bad6 ∧ Bad7, we have for each key K ∈ {0, 1}n,∑

t∈Z(K)

|H(t)| = |H3(K)|.

For the sake of simplicity, let us denote |H1| = α1. For each K ∈ {0, 1}n, we denote
|H2(K)| = α2(K), |H3(K)| = α3(K) and for each tweak t ∈ {0, 1}3n, we denote |H(t)| =
α(t). Therefore, for a fixed good transcript τ , the ideal interpolation probability becomes

Pr[Xid = τ] ≤ 1
2n
·

α1−1∏
i=0

1
2n − i

·
(∏

K∈{0,1}n

α2(K)−1∏
j=0

1
2n − j

α3(K)−1∏
p=0

1
2n − p

)
.

To bound the real interpolation probability, the number of times block cipher is called for
deriving sub-keys is α1. However, the number of times block cipher is called for ideal-cipher
queries and construction queries is α2(K) + α3(K) for each key K ∈ {0, 1}n. Therefore,
we have

Pr[Xre = τ] = 1
2n
·

α1−1∏
i=0

1
2n − i

·
(∏

K∈{0,1}n

α2(K)+α3(K)−1∏
j=0

1
2n − j

)
.

Since for each key K ∈ {0, 1}n, we have
α2(K)−1∏

j=0

1
2n − j

α3(K)−1∏
p=0

1
2n − p

≤
α2(K)+α3(K)−1∏

j=0

1
2n − j

,

the ratio of the real to ideal interpolation probability becomes ≥ 1, which proves the
result.
Finally, Theorem 3 follows by combining Lemma 6 and Lemma 7.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 31

6 Optimally Secure TBC with rn-bit Tweaks Using (r + 1)
Block Cipher Calls

Let E : {0, 1}n×{0, 1}n → {0, 1}n be a n-bit block cipher and r ∈ N be a given parameter.
The tweakable block cipher G̃r : {0, 1}n ×{0, 1}rn ×{0, 1}n → {0, 1}n with a rn-bit tweak
is constructed using (r + 1) block ciphers as follows: r block cipher calls are first invoked in
parallel to produce r sub-keys y1, y2, . . . , yr from the tweaks t1, t2, . . . , tr and the master
key k as shown in Fig. 15. Then, the subkeys are linearly combined to generate two n-bit
strings Y and Z which are used to compute the ciphertext for a given message m as shown
in Fig. 15. In the following we show that G̃r is a secure tweakable block cipher with rn bit

Et1

k

y1 · · ·Et2

2.k

y2 Etr

2r−1.k

yr

Em ⊕

r∑
i=1

yi

k ⊕
r∑

i=1
2r.yi

c⊕

r∑
i=1

yi

Figure 15: G̃r construction: TBC with rn-bit tweaks using (r + 1) block cipher calls.

tweaks against all adversaries that makes roughly 2n construction and ideal-cipher queries.
Formally, we have the following result:

Theorem 4. Let A be an adversary making at most q construction queries and p ideal-
cipher queries including both forward and backward queries. Then,

Advtsprp-icm
G̃r

(A) ≤ 4q(p + q)
22n

+ 2rq + rp + 1
2n

.

Proof. Let τc = {(t1
1∥t1

2∥ . . . ∥t1
r, m1, c1), . . . , (tq

1∥t
q
2∥ . . . ∥tq

r, mq, cq)} and τp = {(L1, u1, v1),
(L2, u2, v2), . . . , (Lp, up, vp)} denotes the list of construction query-responses and ideal-
cipher query-responses of A respectively. After the interaction, the real world oracle
releases the block cipher key k and the tuple of sub-keys (yi

1, yi
2, . . . , yi

r), i ∈ [q] tuple,
whereas the ideal world oracle randomly samples n-bit dummy key k and computes the
sub-key tuple (yi

1, yi
2, . . . , yi

r), i ∈ [q], where yi
1, yi

2, . . . , yi
r are computed similar to the real

world and finally released them to the distinguisher. Therefore, the extended transcript of
the attack is τ = (τc, τp, (yi

1, yi
2, . . . , yi

r)i∈[q], k).

6.1 Definition of Bad Transcript and Bounding its Probability
Let Θ denote the set of all attainable transcripts. We call an attainable transcript τ ∈ Θ
is bad if it satisfies either of the following:

32 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

1. Bad1: k = 0.

2. Bad2: ∃α ∈ [p] : Lα ∈ {k, 2k, 22k, . . . , 2r−1k}.

3. Bad3: ∃i ∈ [q] : k ⊕ Z ∈ {k, 2k, 22k, . . . , 2r−1k}.

4. Bad4: ∃i ∈ [q], α ∈ [p] : mi ⊕ Yi = uα, k ⊕ Zi = Lα.

5. Bad5: ∃i ∈ [q], α ∈ [p] : ci ⊕ Yi = vα, k ⊕ Zi = Lα.

6. Bad6: ∃i ̸= j ∈ [q] : Yi ⊕ Yj = mi ⊕mj , Zi = Zj .

7. Bad7: ∃i ̸= j ∈ [q] : Yi ⊕ Yj = ci ⊕ cj , Zi = Zj .

Lemma 8. Let Θb denote the set of all bad transcripts and recall that Xid denotes the
random variable of transcript τ induced in the ideal world. Then, we have the following:

Pr[Xid ∈ Θb] ≤ 4q(p + q)
22n

+ 2rq + rp + 1
2n

. (37)

Proof Let us denote Bad = Bad1 ∨ Bad2 ∨ (∨7
i=3Badi | Bad2). Therefore, by applying the

union bound, we have

Pr[Bad] ≤ Pr[Bad1] + Pr[Bad2] +
7∑

i=3
Pr[Badi | Bad2].

Therefore, to bound the probability of the event Bad, we individually bound the probability
of the event Bad1, Bad2 and Badi for 3 ≤ i ≤ 7 conditioned on the complement of the event
Bad2. Then we apply the union bound to obtain the final result.

Bounding Bad1: Bounding this event is exactly identical to that of bounding Bad1 in
Lemma 6. Thus, we have

Pr[Bad1] ≤ 1/2n. (38)

Bounding Bad2: Bounding this event is again very similar to that of bounding Bad2 in
Lemma 6. For a fixed index α ∈ [p], and for a fixed i ∈ [r] the probability of the event
2i−1k = Lα is upper bounded by 1/2n due to the randomness of the key k. By varying
over all possible choices of indices α ∈ [p] and i ∈ [r], we have

Pr[Bad2] ≤ rp/2n. (39)

Bounding Bad3 | Bad2: For a fixed choice of index i ∈ [q], and for a fixed α ∈ [r], we
bound the event k ⊕ 2ryi

1 ⊕ 2r−1yi
2 ⊕ . . .⊕ 2yi

r = 2α−1k, which boils down to the event

2ryi
1 ⊕ 2r−1yi

2 ⊕ . . .⊕ 2yi
r = k(1⊕ 2α−1).

By the virtue of Bad2 event, the random variable yi
1 is fresh. Hence, we bound the

probability of the event to at most 1/2n − p using the randomness of yi
1. Therefore, by

varying over all possible choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad3 | Bad2] ≤ 2rq/2n. (40)

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 33

Bounding Bad4 | Bad2: For a fixed choice of indices i ∈ [q], α ∈ [p], the probability of
the event {

yi
1 ⊕ yi

2 ⊕ . . .⊕ yi
r = mi ⊕ uα

k ⊕ 2ryi
1 ⊕ 2r−1yi

2 ⊕ . . .⊕ 2yi
r = Lα

is upper bounded by 1/2n · 1/(2n − p) due to the randomness of the key k and yi
1 as yi

1
is not determined by ideal-cipher query due to the virtue of Bad2. By varying over all
possible choices of indices i ∈ [q], α ∈ [p] and by assuming p ≤ 2n−1, we have

Pr[Bad4 | Bad2] ≤ 2qp/22n. (41)

Bounding Bad5 | Bad2: Bounding this event is identical to that of Bad4 | Bad2 and
hence we have

Pr[Bad5 | Bad2] ≤ 2qp/22n. (42)

Bounding Bad6 | Bad2: For a fixed choice of indices i ≠ j ∈ [q], the probability of the
event {

(yi
1 ⊕ yi

2 ⊕ . . .⊕ yi
r)⊕ (yj

1 ⊕ yj
2 ⊕ yj

r) = mi ⊕mj

2r(yi
1 ⊕ yj

1)⊕ 2r−1(yi
2 ⊕ yj

2)⊕ . . .⊕ 2(yi
r ⊕ yj

r) = 0n

Let EQ = {α1, α2, . . . , αs} ⊆ [r] such that ti
α1

= tj
α1

, ti
α2

= tj
α2

, . . . ti
αs

= tj
αs

. Therefore,
we have

mi ⊕mj = ⊕α∈[r]\EQ(yi
α ⊕ yj

α)
0n = ⊕α∈[r]\EQ2r−α+1(yi

α ⊕ yj
α)

It is easy to see that |EQ| < r − 1, otherwise the probability of the above events would
have been zero. Therefore, we assume that |EQ| ≤ r − 2. Hence, we get at least two fresh
random variables yi

α1
, yi

α2
, where α1, α2 ∈ [r] \ EQ by the virtue of Bad2. Since, the above

system of equations is of rank 2, therefore, by using the randomness of yi
α1

and yi
α2

, we
upper bound the probability of the above event to 1/(2n − p)2. By varying all possible
choices of indices i ̸= j ∈ [q] and by assuming p ≤ 2n−1, we have

Pr[Bad6 | Bad2] ≤ 2q2/22n. (43)

Bounding Bad7 | Bad2: Bounding this event is exactly identical to that of Bad6 | Bad2
and hence, we have

Pr[Bad7|Bad2] ≤ 2q2/22n. (44)

We derive the bound of Lemma 8 by combining the bounds from Eqn. (38)-Eqn. (44).

6.2 Good Transcript Analysis
In this section, we lower bound the ratio of the real to ideal interpolation probability for a
good transcript. Formally, we prove the following lemma.

Lemma 9. Let τ = (τc, τp, (yi
1, yi

2, . . . , yi
r)i∈[q], k) be a good transcript. Let Xre and Xid be

two random variables defined as above. Then, we have

Pr[Xre = τ]
Pr[Xid = τ] ≥ 1. (45)

34 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

Proof Let τ = (τc, τp, (yi
1, yi

2, . . . , yi
r)i∈[q], k) be a good transcript. Let us consider the

following set:

H1 = {(k, t1
1, y1

1), (2k, t1
2, y1

2), . . . , (2r−1k, t1
r, y1

r), . . . , (k, tq
1, yq

1), (2k, tq
2, yq

2), . . . , (2r−1k, tq
r, yq

r))

which records the (key, input, output) triplet of the r many block cipher call in the
sub-key derivation phase of the construction across all q construction queries. For each
key K ∈ {0, 1}n, we define the sets H2(K) = {(L, u, v) ∈ τp : L = K} and H3(K) =
{(k⊕ 2ryi

1⊕ 2r−1yi
2⊕ . . .⊕ 2yi

r, mi⊕ yi
1⊕ yi

2⊕ . . .⊕ yi
r, ci⊕ yi

1⊕ yi
2⊕ . . .⊕ yi

r) : k⊕ 2ryi
1⊕

2r−1yi
2 ⊕ . . . ⊕ 2yi

r = K}, where (ti
1∥ti

2∥ . . . ∥ti
r, mi, ci) ∈ τc. For each tweak t ∈ {0, 1}rn,

we define the set

H(t) = {(ti
1∥ti

2∥ . . . ∥ti
r, mi, ci) ∈ τc : ti

1∥ti
2∥ . . . ∥ti

r = t}

which records all q triplet of tweak, queries and response excluding the block cipher key
such that the tweak of the construction query is t. Finally, for each key K ∈ {0, 1}n, we
define the set

Z(K) = {(ti
1∥ti

2∥ . . . ∥ti
r) : (ti

1∥ti
2∥ . . . ∥ti

r, mi, ci) ∈ τc ∧ k⊕ 2ryi
1⊕ 2r−1yi

2⊕ . . .⊕ 2yi
r = K}.

Since the transcript is good, we have H1∩H2(K) = ∅, H1∩H3(K) = ∅, H2(K)∩H3(K) = ∅,
for each K ∈ {0, 1}n. These follow directly from Bad2, Bad3, and Bad4 ∧ Bad5.
Let us fix a key K ∈ {0, 1}n. For each t ∈ Z(K), |H(t)| denotes the number of construction
queries with tweak t. Due to Bad6 ∧ Bad7, we have for each key K ∈ {0, 1}n,∑

t∈Z(K)

|H(t)| = |H3(K)|.

For the sake of simplicity, let us denote |H1| = α1. For each K ∈ {0, 1}n, we denote
|H2(K)| = α2(K), |H3(K)| = α3(K) and for each tweak t ∈ {0, 1}rn, we denote |H(t)| =
α(t). Therefore, for a fixed good transcript τ , the ideal interpolation probability becomes

Pr[Xid = τ] = 1
2n
·

α1−1∏
i=0

1
2n − i

·
(∏

K∈{0,1}n

α2(K)−1∏
j=0

1
2n − j

)

·
(∏

K∈{0,1}n

∏
t∈Z(K)

α(t)−1∏
p=0

1
2n − p

)

≤ 1
2n
·

α1−1∏
i=0

1
2n − i

·
(∏

K∈{0,1}n

α2(K)−1∏
j=0

1
2n − j

α3(K)−1∏
p=0

1
2n − p

)
.

To bound the real interpolation probability, the number of times block cipher is called for
deriving sub-keys is α1. However, the number of times block cipher is called for ideal-cipher
queries and construction queries is α2(K) + α3(K) for each key K ∈ {0, 1}n. Therefore,
we have

Pr[Xre = τ] = 1
2n
·

α1−1∏
i=0

1
2n − i

·
(∏

K∈{0,1}n

α2(K)+α3(K)−1∏
j=0

1
2n − j

)
.

Since for each key K ∈ {0, 1}n, we have
α2(K)−1∏

j=0

1
2n − j

α3(K)−1∏
p=0

1
2n − p

≤
α2(K)+α3(K)−1∏

j=0

1
2n − j

,

the ratio of the real to ideal interpolation probability becomes ≥ 1, which proves the
result.
Finally, Theorem 4 follows by combining Lemma 8 and Lemma 9.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 35

7 Software Implementation and Benchmarking Setup
We now describe the setup used for our software implementation and performance evaluation.
The benchmarking is conducted on an 11th Gen Intel(R) Core(TM) i7-1165G7 processor,
equipped with a 2.80GHz CPU, 32 GB of DDR5 RAM, and hardware support for AES-NI
instructions. The underlying block cipher used in all experiments is AES-128 [DR02], which
benefits from efficient implementation using AES-NI.

To ensure consistency in our performance measurements, Intel TurboBoost and Hy-
perThreading are disabled during testing. The implementation is compiled using GCC
12.2.0 with the -O3 optimization flag enabled and -march set for architecture-specific
tuning. The testing environment consists of Debian 12.6 running on Linux kernel 6.1.0.
Performance measurements are taken for various message sizes, with the cost of key setup
explicitly excluded. Each encryption experiment is repeated 128 times to obtain accurate
and reliable results, and cache warming is performed before starting the measurements.

We also discuss how domain separation is handled within the ZMAC framework. As
specified in the ZMAC construction [IMPS17b], domain separation requires a total of 10
distinct instances of the TBC. These instances of the tweakable block ciphers (TBC) are
denoted as Ẽi(K, T) for i = 0, . . . , 9.

To derive each instance, the i-th domain separation constant is computed by encrypting
i encoded as a 128-bit value, using the master key and an all-zero tweak, yielding the value
Di. The domain-separated instances are then defined as:

Ẽi(K, T, x) = Ẽ(K, T, x⊕Di) for i = 0, . . . , 9.

This approach follows the domain separation strategy outlined in [IMPS17b], ensuring
that each instance operates independently while maintaining efficiency and security.

8 Conclusion
In this paper, we have studied the design of tweakable block ciphers with 3n-bit tweaks
from n-bit block ciphers. Although G̃3∗ achieves 2n/3-bit security, it is not known if the
bound is tight. Hence, it appears to be a challenging problem to explore tightness of the
bound. In fact, it remains an open to determine if the construction achieves n-bit security.
A more general and pertinent question would be to find the minimum number of block
cipher calls required to design a tweakable block cipher with dn-bit tweaks to achieve n-bit
security.

References
[ABD+23] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam

Ghosh, Marcel Nageler, and Francesco Regazzoni. The qarmav2 family of
tweakable block ciphers. IACR Trans. Symmetric Cryptol., 2023(3):25–73,
2023.

[Bab02] László Babai. The fourier transform and equations over finite abelian groups
(lec- ture notes, version 1.3). 2002.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,

36 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes
in Computer Science, pages 123–153. Springer, 2016.

[BLN18] Ritam Bhaumik, Eik List, and Mridul Nandi. Zcz – achieving n-bit sprp
security with a minimal number of tweakable-block-cipher calls. In Thomas
Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT
2018, pages 336–366, Cham, 2018. Springer International Publishing.

[BN15] Ritam Bhaumik and Mridul Nandi. An inverse-free single-keyed tweakable
enciphering scheme. In Tetsu Iwata and Jung Hee Cheon, editors, Advances
in Cryptology - ASIACRYPT 2015 - 21st International Conference on the
Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 159–180. Springer, 2015.

[CDK23] Debrup Chakraborty, Avijit Dutta, and Samir Kundu. Designing tweak-
able enciphering schemes using public permutations. Adv. Math. Commun.,
17(4):771–798, 2023.

[CEL+21] Benoît Cogliati, Jordan Ethan, Virginie Lallemand, ByeongHak Lee, Jooyoung
Lee, and Marine Minier. CTET+: A beyond-birthday-bound secure tweakable
enciphering scheme using a single pseudorandom permutation. IACR Trans.
Symmetric Cryptol., 2021(4):1–35, 2021.

[CIL+20] Wonseok Choi, Akiko Inoue, ByeongHak Lee, Jooyoung Lee, Eik List, Kazuhiko
Minematsu, and Yusuke Naito. Highly secure nonce-based macs from the sum
of tweakable block ciphers. IACR Trans. Symmetric Cryptol., 2020(4):39–70,
2020.

[CJPS22] Benoît Cogliati, Jérémy Jean, Thomas Peyrin, and Yannick Seurin. A long
tweak goes a long way: High multi-user security authenticated encryption
from tweakable block ciphers. IACR Cryptol. ePrint Arch., page 846, 2022.

[CLS17] Benoît Cogliati, Jooyoung Lee, and Yannick Seurin. New constructions of macs
from (tweakable) block ciphers. IACR Trans. Symmetric Cryptol., 2017(2):27–
58, 2017.

[CS06] Debrup Chakraborty and Palash Sarkar. A general construction of tweakable
block ciphers and different modes of operations. In Helger Lipmaa, Moti
Yung, and Dongdai Lin, editors, Information Security and Cryptology, Second
SKLOIS Conference, Inscrypt 2006, Beijing, China, November 29 - December
1, 2006, Proceedings, volume 4318 of Lecture Notes in Computer Science, pages
88–102. Springer, 2006.

[CS08a] Debrup Chakraborty and Palash Sarkar. A general construction of tweakable
block ciphers and different modes of operations. IEEE Trans. Inf. Theory,
54(5):1991–2006, 2008.

[CS08b] Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering
scheme using the hash-counter-hash approach. IEEE Trans. Inf. Theory,
54(4):1683–1699, 2008.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in
Computer Science, pages 327–350. Springer, 2014.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 37

[DDDM23] Nilanjan Datta, Shreya Dey, Avijit Dutta, and Sougata Mandal. Cascading
four round LRW1 is beyond birthday bound secure. IACR Trans. Symmetric
Cryptol., 2023(4):365–390, 2023.

[DDLM23] Nilanjan Datta, Avijit Dutta, Eik List, and Sougata Mandal. On the security
of triplex- and multiplex-type constructions with smaller tweaks. In Anupam
Chattopadhyay, Shivam Bhasin, Stjepan Picek, and Chester Rebeiro, editors,
Progress in Cryptology - INDOCRYPT 2023 - 24th International Conference
on Cryptology in India, Goa, India, December 10-13, 2023, Proceedings, Part
I, volume 14459 of Lecture Notes in Computer Science, pages 25–47. Springer,
2023.

[DN18] Avijit Dutta and Mridul Nandi. Tweakable HCTR: A BBB secure tweak-
able enciphering scheme. In Debrup Chakraborty and Tetsu Iwata, editors,
Progress in Cryptology - INDOCRYPT 2018 - 19th International Conference
on Cryptology in India, New Delhi, India, December 9-12, 2018, Proceedings,
volume 11356 of Lecture Notes in Computer Science, pages 47–69. Springer,
2018.

[DR02] Joan Daemen and Vincent Rijmen. AES and the Wide Trail Design Strategy.
In Advances in Cryptology – Proceedings of EUROCRYPT, volume 2332 of
Lecture Notes in Computer Science, pages 108–109. Springer, 2002.

[Dwo10] Morris Dworkin. Recommendation for block cipher modes of operation: the
xts-aes mode for confidentiality on storage devices. NIST SP 800-38E, January
2010.

[FLS+] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. Skein. SHA-3 submission to
NIST, 2006 - 2012.

[GIK+] Chun Guo, Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and
Thomas Peyrin. Romulus v1.3. Submission to NIST Lightweight Cryptography
Standardization Process, 2018 - 2023. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/romulus-spec-final.pdf.

[GLS+] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
Anthony Journault, François Durvaux, Lubos Gaspar, and Stéphanie Ker-
ckhof. Scream. Submission to CAESAR Competition, 2013 - 2019. https:
//competitions.cr.yp.to/round2/screamv3.pdf.

[Hal04] Shai Halevi. EME*: Extending EME to handle arbitrary-length messages
with associated data. In Anne Canteaut and Kapalee Viswanathan, editors,
Progress in Cryptology - INDOCRYPT 2004, 5th International Conference
on Cryptology in India, Chennai, India, December 20-22, 2004, Proceedings,
volume 3348 of Lecture Notes in Computer Science, pages 315–327. Springer,
2004.

[Hir22] Shoichi Hirose. Collision-resistant and pseudorandom hash function using
tweakable block cipher. In Ilsun You and Taek-Young Youn, editors, Infor-
mation Security Applications - 23rd International Conference, WISA 2022,
Jeju Island, South Korea, August 24-26, 2022, Revised Selected Papers, volume
13720 of Lecture Notes in Computer Science, pages 3–15. Springer, 2022.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf

38 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-
encryption AEZ and the problem that it solves. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume
9056 of Lecture Notes in Computer Science, pages 15–44. Springer, 2015.

[HR03] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, volume 2729 of Lecture Notes in Computer Science, pages 482–499.
Springer, 2003.

[HR04] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In
Tatsuaki Okamoto, editor, Topics in Cryptology - CT-RSA 2004, The Cryp-
tographers’ Track at the RSA Conference 2004, San Francisco, CA, USA,
February 23-27, 2004, Proceedings, volume 2964 of Lecture Notes in Computer
Science, pages 292–304. Springer, 2004.

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the titans: The romulus and remus families of lightweight AEAD
algorithms. IACR Trans. Symmetric Cryptol., 2020(1):43–120, 2020.

[IMPS17a] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A fast tweakable block cipher mode for highly secure message authenti-
cation. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403
of Lecture Notes in Computer Science, pages 34–65. Springer, 2017.

[IMPS17b] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A fast tweakable block cipher mode for highly secure message authenti-
cation. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403
of Lecture Notes in Computer Science, pages 34–65. Springer, 2017.

[JKNS23] Ashwin Jha, Mustafa Khairallah, Mridul Nandi, and Abishanka Saha. Tight
security of TNT and beyond: Attacks, proofs and possibilities for the cascaded
LRW paradigm. IACR Cryptol. ePrint Arch., page 1272, 2023.

[JLM+17] Ashwin Jha, Eik List, Kazuhiko Minematsu, Sweta Mishra, and Mridul Nandi.
XHX - A framework for optimally secure tweakable block ciphers from classical
block ciphers and universal hashing. In Tanja Lange and Orr Dunkelman,
editors, Progress in Cryptology - LATINCRYPT 2017 - 5th International
Conference on Cryptology and Information Security in Latin America, Havana,
Cuba, September 20-22, 2017, Revised Selected Papers, volume 11368 of Lecture
Notes in Computer Science, pages 207–227. Springer, 2017.

[JN20] Ashwin Jha and Mridul Nandi. Tight security of cascaded LRW2. J. Cryptol.,
33(3):1272–1317, 2020.

[JNPa] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Joltik v1.3. Submission
to CAESAR Competition, 2013 - 2019. https://competitions.cr.yp.to/
round2/joltikv13.pdf.

https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round2/joltikv13.pdf

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 39

[JNPb] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Kiasu v1. Submission
to CAESAR Competition, 2013 - 2019. https://competitions.cr.yp.to/
round1/kiasuv1.pdf.

[JNPS21] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The deoxys
AEAD family. J. Cryptol., 34(3):31, 2021.

[LL18] ByeongHak Lee and Jooyoung Lee. Tweakable block ciphers secure beyond the
birthday bound in the ideal cipher model. In Thomas Peyrin and Steven D.
Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I,
volume 11272 of Lecture Notes in Computer Science, pages 305–335. Springer,
2018.

[LRW02] Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer
Science, pages 31–46. Springer, 2002.

[LRW11] Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. J. Cryptol., 24(3):588–613, 2011.

[LS13] Rodolphe Lampe and Yannick Seurin. Tweakable blockciphers with asymptoti-
cally optimal security. In Shiho Moriai, editor, Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, volume 8424 of Lecture Notes in Computer Science, pages
133–151. Springer, 2013.

[LST12] Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable
blockciphers with beyond birthday-bound security. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 14–30.
Springer, 2012.

[Men15a] Bart Mennink. Optimally secure tweakable blockciphers. In Gregor Leander,
editor, Fast Software Encryption - 22nd International Workshop, FSE 2015,
Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054 of
Lecture Notes in Computer Science, pages 428–448. Springer, 2015.

[Men15b] Bart Mennink. Optimally secure tweakable blockciphers. Cryptology ePrint
Archive, Paper 2015/363, 2015.

[MI15] Kazuhiko Minematsu and Tetsu Iwata. Tweak-length extension for tweakable
blockciphers. In Jens Groth, editor, Cryptography and Coding - 15th IMA
International Conference, IMACC 2015, Oxford, UK, December 15-17, 2015.
Proceedings, volume 9496 of Lecture Notes in Computer Science, pages 77–93.
Springer, 2015.

[Min06] Kazuhiko Minematsu. Improved security analysis of XEX and LRW modes. In
Eli Biham and Amr M. Youssef, editors, Selected Areas in Cryptography, 13th
International Workshop, SAC 2006, Montreal, Canada, August 17-18, 2006
Revised Selected Papers, volume 4356 of Lecture Notes in Computer Science,
pages 96–113. Springer, 2006.

https://competitions.cr.yp.to/round1/kiasuv1.pdf
https://competitions.cr.yp.to/round1/kiasuv1.pdf

40 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

[MM07] Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable enciphering
schemes from hash-sum-expansion. In K. Srinathan, C. Pandu Rangan, and
Moti Yung, editors, Progress in Cryptology - INDOCRYPT 2007, 8th Inter-
national Conference on Cryptology in India, Chennai, India, December 9-13,
2007, Proceedings, volume 4859 of Lecture Notes in Computer Science, pages
252–267. Springer, 2007.

[Nai15] Yusuke Naito. Full prf-secure message authentication code based on tweakable
block cipher. In Man Ho Au and Atsuko Miyaji, editors, Provable Security
- 9th International Conference, ProvSec 2015, Kanazawa, Japan, November
24-26, 2015, Proceedings, volume 9451 of Lecture Notes in Computer Science,
pages 167–182. Springer, 2015.

[Nai19] Yusuke Naito. A highly secure MAC from tweakable blockciphers with support
for short tweaks. In Julian Jang-Jaccard and Fuchun Guo, editors, Infor-
mation Security and Privacy - 24th Australasian Conference, ACISP 2019,
Christchurch, New Zealand, July 3-5, 2019, Proceedings, volume 11547 of
Lecture Notes in Computer Science, pages 588–606. Springer, 2019.

[NI22] Kazuki Nakaya and Tetsu Iwata. Generalized feistel structures based on
tweakable block ciphers. IACR Transactions on Symmetric Cryptology,
2022(4):24–91, Dec. 2022.

[NIS00] NIST Competition for Advanced Encryption Stan-
dard (AES), 1997 - 2000. https://csrc.nist.gov/
projects/cryptographic-standards-and-guidelines/
archived-crypto-projects/aes-development.

[NSS20] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenticated
encryption mode suitable for threshold implementation. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 -
39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part II, volume 12106 of Lecture Notes in Computer Science, pages 705–735.
Springer, 2020.

[NSS22] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Secret can be public: Low-
memory AEAD mode for high-order masking. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA,
USA, August 15-18, 2022, Proceedings, Part III, volume 13509 of Lecture Notes
in Computer Science, pages 315–345. Springer, 2022.

[Pat08] Jacques Patarin. The "coefficients h" technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography, 15th
International Workshop, SAC 2008, Sackville, New Brunswick, Canada, August
14-15, Revised Selected Papers, volume 5381 of Lecture Notes in Computer
Science, pages 328–345. Springer, 2008.

[PSS23] Thomas Peters, Yaobin Shen, and François-Xavier Standaert. Mul-
tiplex: TBC-based Authenticated Encryption with Sponge-Like Rate.
http://hdl.handle.net/2078.1/273131, 2023.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and re-
finements to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in
Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 41

and Application of Cryptology and Information Security, Jeju Island, Korea,
December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in Computer
Science, pages 16–31. Springer, 2004.

[Sar09] Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise)
universal hash functions. IEEE Trans. Inf. Theory, 55(10):4749–4760, 2009.

[Sar11] Palash Sarkar. Tweakable enciphering schemes using only the encryption
function of a block cipher. Inf. Process. Lett., 111(19):945–955, 2011.

[Sch] Richard Schroeppel. The hasty pudding cipher. AES submission to NIST,
1997 - 2000.

[SPS+22] Yaobin Shen, Thomas Peters, François-Xavier Standaert, Gaëtan Cassiers, and
Corentin Verhamme. Triplex: an Efficient and One-Pass Leakage-Resistant
Mode of Operation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):135–
162, 2022.

[SS23] Yaobin Shen and François-Xavier Standaert. Optimally secure tweakable block
ciphers with a large tweak from n-bit block ciphers. IACR Trans. Symmetric
Cryptol., 2023(2):47–68, 2023.

[Wan] Lei Wang. Shell v2.0. Submission to CAESAR Competition, 2013 - 2019.
https://competitions.cr.yp.to/round2/shellv20.pdf.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors,
Information Security and Cryptology, First SKLOIS Conference, CISC 2005,
Beijing, China, December 15-17, 2005, Proceedings, volume 3822 of Lecture
Notes in Computer Science, pages 175–188. Springer, 2005.

[WGZ+16] Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu. How
to build fully secure tweakable blockciphers from classical blockciphers. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pages
455–483, 2016.

[ZQG23] Zhongliang Zhang, Zhen Qin, and Chun Guo. Just tweak! asymptotically
optimal security for the cascaded LRW1 tweakable blockcipher. Des. Codes
Cryptogr., 91(3):1035–1052, 2023.

Appendix

A Proof of Combinatorial Results
A.1 Proof of Lemma 2
We need to show that at least one of the following conditions is true:

1. There exists t1, t2 ∈ {0, 1}3n such that fs(t1) = fs(t2),∀ s ∈ {1, 2, 3, 4}.

2. There exists t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f1(ti) = f1(tj), f3(ti) ̸= f3(tj), for
all i, j ∈ {1, 2, . . . , 2n/2}.

https://competitions.cr.yp.to/round2/shellv20.pdf

42 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

3. There exists t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f1(ti) = f1(tj), f2(ti) ̸= f2(tj), f4(ti) ̸=
f4(tj), for all i, j ∈ {1, 2, . . . , 2n/2}.

Let us consider the function f1 : {0, 1}3n → {0, 1}n. By the Pigeonhole Principle, there
exist at least 22n distinct inputs that map the function f1 to some fixed value, say a. Define
the set Aa := {t ∈ {0, 1}3n : f1(t) = a}. By definition, |Aa| ≥ 22n. Now, we consider the
two cases:

Case 1: f3 is solely dependent on f1. In this case, we have f3(t) = c,∀t ∈ Aa, for some
c ∈ {0, 1}n. Consider the sets Bb := {t ∈ Aa : f2(t) = b},∀b ∈ {0, 1}n. If there exists some
b such that |Bb| ≥ 2n + 1, then we can apply the Pigeonhole Principle to conclude there
exists t1 and t2 with f4(t1) = f4(t2), and hence satisfies condition 1. Otherwise, for each
b ∈ {0, 1}n, the set Bb has exactly 2n elements. If for some b, Bb has two elements t1, t2

with f4(t1) = f4(t2), then we are done as this satisfies condition 1. If not, for all b, the set
f4(Bb) is equal to {0, 1}n. Now take the set S =

⋃2n/2

i=1 {ti ∈ Bi : f4(ti) = i}. It is easy to
see that |S| = 2n/2, and the tweaks in set S satisfy condition 3.

Case 2: f3 does not solely depend on f1. Let us consider the sets Cc := {t ∈ Aa : f3(t) =
c},∀c ∈ {0, 1}n. If there exists 2n/2 indices c1, . . . , c2n/2 such that Cci ̸= ∅, ∀i ≤ 2n/2,
then the set S = {ti ∈ Cci : i = 1, 2, . . . , 2n/2}, containing 2n/2 elements, satisfies condition
2. Otherwise, there exists at most 2n/2 − 1 non-empty Cc’s. By the Pigeonhole principle,
at least one set, say Cc′ contains at least 23n/2 + 1 elements. Now look at the sets
Bb = {t ∈ Cc′ : f2(t) = b},∀b ∈ {0, 1}n. If there are at most 2n/2 − 1 non-empty Bb’s,
then there exists some b′, for which |Bb′ | ≥ 2n + 1, and hence, we would have t1, t2 ∈ Bb′

such that f4(t1) = f4(t2), satisfying condition 1. Otherwise, we have at least 2n/2 many
non-empty sets Bbi for i = 1, 2, . . . , 2n/2. Now, if all the Bbi sets are injective on f4, we
can construct a set S := {ti ∈ Bbi

: i = 1, 2, . . . , 2n/2} such that f4(ti) ̸= f4(tj) for all
i, j ∈ {1, 2, . . . , 2n/2} that provides the necessary values to satisfy condition 3. Otherwise,
we will have some i for which t1, t2 ∈ Bbi

: f4(t1) = f4(t2), and hence, t1, t2 will satisfy
condition 1.

A.2 Proof of Lemma 3
Here we fix γ ∈ {0, 1}n, and our goal is to show that one of the following holds for any
affine functions f1, f2, f3, f4.

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t1) = fs(t2) for all s ∈ {1, 2, 3, 4}. cannot

2. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f2(ti) ̸= f2(tj), f3(ti) = f3(tj), f4(ti) =
f4(tj), for all i, j ∈ {1, 2, . . . , 2n/2}.

3. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f1(ti) ̸= f1(tj), f3(ti) ̸= f3(tj), f4(ti) =
γf3(ti), for all i, j ∈ {1, 2, . . . , 2n/2}.

4. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f2(ti) ̸= f2(tj), f4(ti) = γf3(ti), for
all i, j ∈ {1, 2, . . . , 2n/2}.

We will consider the following two possible cases.

Case 1: f4 depends solely on f3. In this case, f4(ti) = f4(tj) implies f3(ti) = f3(tj), for
all ti, tj ∈ {0, 1}3n. In addition, we assume that both f1 and f2 are mutually independent
and also independent from f3 and f4. Otherwise, we will have t1, t2 satisfying condition 1.
Note that, we have at least 22n many ti’s satisfying f3(ti) = a, i ∈ {1, 2, . . . , 22n}, for some
a ∈ {0, 1}n. Let Aa := {ti ∈ {0, 1}3n : f3(ti) = a}. Now, define 2n many sets depending

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 43

on f2: ∀ b ∈ {0, 1}n, Bb := {t ∈ Aa : f2(t) = b}. Suppose there exist b1, b2, . . . , b2n/2

such that Bbi
’s are non-empty for each i ∈ {1, 2, . . . , 2n/2}. Then, the set S having one

element from each of Bbi
, for all i ∈ {1, 2, . . . , 2n/2}, satisfies condition 2. If such bi’s do

not exist, then we have at most 2n/2 − 1 many non-empty Bb’s. Hence, by the pigeonhole
principle, there exists b′ with |Bb′ | ≥ 23n/2 + 1. Hence, there exist t1, t2 ∈ Bb′ such that
f1(t1) = f1(t2), and t1, t2 satisfies condition 1.

Case 2: f4 does not solely depend on f3. As all the fs’s are affine functions, we can express
them as fs(t1, t2, t3) = as.t1⊕bs.t2⊕cs.t3⊕ds, where all as, bs, cs, ds ∈ {0, 1}n. Consider the
set A := {(t1, t2, t3) ∈ {0, 1}3n : (a4⊕γa3).t1⊕(b4⊕γb3).t2⊕(c4⊕γc3).t3⊕(d4⊕γd3) = 0}.
It is easy to see that, by definition, t ∈ A if and only if f4(t) = γ.f3(t) and |A| ≥ 22n.
Now, define the sets Bb := {t ∈ A : f2(t) = b}, for all b ∈ {0, 1}n. If there exist 2n/2

many non-empty Bb’s, then we will pick up 2n/2 many values, one from each of those
non-empty sets, satisfying condition 4. Otherwise, we will have at least one b′ ∈ 0, 1n such
that |Bb′ | ≥ 23n/2 + 1. In this case, we consider the sets Cc := {t ∈ Bb′ : f1(t) = c} for
all c ∈ {0, 1}n. If we do not have at least 2n/2 many non-empty Cc’s, then we will have a
c′ ∈ {0, 1}n satisfying |Cc′ | ≥ 2n + 1. Hence, we will have t1, t2 ∈ Cc′ satisfying condition
1. If there exists t1, t2 in some Cc′′ such that f3(t1) = f3(t2), then these two will satisfy
condition 1. Otherwise, we can construct a set S taking one element from each of Cc’s,
and the elements of S will satisfy condition 3.

A.3 Proof of Lemma 4
Here our goal is to show that one of the following holds:

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t1) = fs(t2) for all s ∈ {1, 2, 3, 4}.

2. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f2(ti) ̸= f2(tj), f4(ti) = f4(tj), for
all i, j ∈ {1, 2, . . . , 2n/2}.

3. There exist t1, t2, . . . , t2n/2 ∈ {0, 1}3n satisfying f1(ti) ̸= f1(tj), f3(ti) ̸= f3(tj), f4(ti) =
f4(tj), for all i, j ∈ {1, 2, . . . , 2n/2}.

We again consider two cases following the dependency of the two functions f2 and f4
as follows:

Case 1: f4 depends solely on f2. In this case if {f1, f3} are mutually dependent, or
dependent with f4 (consequently f2), then we will have t1, t2 satisfying condition 1.
Otherwise, we will have a set A := {t ∈ {0, 1}3n : f4(t) = a} for some a ∈ {0, 1}n, where
|A| ≥ 22n. Now, consider the sets Bb := {t ∈ A : f1(t) = b}, for all b ∈ {0, 1}n. If we have
at most 2n − 1 non-empty Bb’s, then there exist one b′ ∈ {0, 1}n satisfying |Bb′ | ≥ 2n + 1,
and we can find t1, t2 ∈ Bb′ satisfying f3(t1) = f3(t2). Hence, t1, t2 will satisfy condition 1.
Otherwise, we have 2n non-empty Bb’s, then either f3 is injective on each Bb, or there
exist b′′ ∈ {0, 1}n such that t1, t2 ∈ Bb′′ satisfying f3(t1) = f3(t2). If such t1, t2 exists
then those satisfy condition 1. If f3 is injective on each Bb, then we can construct a set S
taking one element from each Bb. The elements of the set S will satisfy condition 3.

Case 2: f4 does not depend solely on f2. Consider a set A := {t ∈ {0, 1}3n : f4(t) = a}
for some a ∈ {0, 1}n, such that |A| ≥ 22n. Now define Bb := {t ∈ A : f2(t) = b},
∀ b ∈ {0, 1}n. If we have at least 2n/2 many non-empty Bb’s, we can construct a set S
with one element from each Bb’s that satisfies condition 2. Otherwise, we will have some
b′ such that |Bb′ | ≥ 23n/2 + 1. Now define Cc := {t ∈ Bb′ : f1(t) = c}, ∀ c ∈ {c ∈ {0, 1}n}.
If we have at most 2n/2 − 1 non-empty Cc’s then we will have some Cc′ with at least

44 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

2n + 1 elements, that implies there exist t1, t2 ∈ Cc′ satisfying condition 1. Otherwise, we
have at least 2n/2 non-empty Cc’s. Now depending on whether f3 is injective on all the
non-empty Cc sets or not, we can have 2n/2 many tweaks satisfying condition 3, or two
tweaks satisfying condition 1, respectively.

B Necessity of all tweak-dependent Keys if Message is fed
into one of the non-final block-ciphers

In this section, we show that if the message is fed into the input of one of the non-final
block cipher then again the construction requires all the block cipher keys to be tweak
dependent.

B.1 Message is fed into First Block cipher
The generalized construction (ensuring the TBC is invertible) for this case, dubbed C9, is
depicted in Fig. 16. Note that incorporating tweaks into the message or ciphertext does
not amplify security. So, we refrain from using such modifications in our constructions.
Now we consider cases with different numbers of tweak-independent keys.

Em

g1(t)⊕ a1.k

y1 Eα1.y1 ⊕ f1(t)

g2(t)⊕ a2.k

y2 Eβ1.y2 ⊕ f2(t)

g3(t)⊕ a3.k

c

Figure 16: Construction C9: Message is fed in the first block cipher call

B.1.1 Constructions with Three Tweak-independent Keys

In this case, by definition, we have g1(t) = g2(t) = g3(t) = 0. To attack this construction,
our strategy is as follows:

1. Find two tweaks such that t1, t2 such that f1(t1) = f1(t2), f2(t1) = f2(t2). Note
that, with this choice of tweaks, if we make two queries (m, t1) and (m, t2), we will
have y1

1 = y2
1 as well as y1

2 = y2
2 .

2. We can use the above observation to distinguish the TBC from a random tweakable
permutation by making two oracle queries (m, t1), (m, t2), and verifying if the
corresponding outputs match.

B.1.2 Constructions with Two Tweak-independent Keys

In this subsection, we consider all the possible TBC constructions with three block ciphers
where we have two block cipher calls with tweak-independent keys.

Case 1: First block cipher uses the tweak-dependent key. In this case, we have
g2(t) = g3(t) = 0. Here we consider two subcases. If we can find two tweaks t1 and t2

such that f1(t1) = f1(t2), f2(t1) = f2(t2) and g1(t1) = g1(t2), we can simply carry out
the previous attack. Otherwise, we can find 2n/2 many tweaks t1, . . . , t2n/2 for which

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 45

f2(ti) = f2(tj) and g1(ti) = g1(tj). Note that, for all i, j, we have f1(ti) ̸= f1(tj). In this
case, we construct the attack as follows:

1. We make queries (mi, ti), for i = 1, . . . , 2n/2 with distinct messages, i.e., mi ̸= mj ,
for all i and j. We expect to find a collision in the input of the second block cipher,
i.e., find a and b such that α1.ya

1 ⊕ f1(ta) = α1.yb
1 ⊕ f1(tb) and in that case, we have

ya
2 = yb

2, and the outputs, ca and cb matches.

2. Now we fix ∆ ̸= 0 and find td such that f1(td) = f1(ta) + ∆, f2(td) = f2(ta) and
g1(td) = g1(ta). We also find te such that f1(te) = f1(tb) + ∆, f2(te) = f2(tb) and
g1(te) = g1(tb).

3. Finally, we make two queries: (ma, td) and (mb, te) and checks if the output matches.

Case 2: Second block cipher uses the tweak-dependent key. In this case, we
have g1(t) = g3(t) = 0. Now we have two subcases. If we can find two tweaks t1 and t2

such that f1(t1) = f1(t2), f2(t1) = f2(t2) and g2(t1) = g2(t2), we are done. Otherwise,
find 2n/2 many tweaks t1, . . . , t2n/2 for which f2(ti) = f2(tj) and g2(ti) ̸= g2(tj). Now we
construct the attack as follows:

1. We make queries (mi, ti), for i = 1, . . . , 2n/2 with distinct messages, i.e., mi ̸= mj ,
for all i and j. In this case, we expect to find a and b such that ya

2 = yb
2 (b’day

collision), and in that case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that f1(td) = f1(ta), f2(td) = f2(ta) + ∆ and
g2(td) = g2(ta). Also, find te such that f1(te) = f1(tb), f2(te) = f2(tb) + ∆ and
g2(te) = g2(tb).

3. Finally, query (ma, td) and (mb, te) and checks whether the output matches.

Case 3: Final block cipher uses the tweak-dependent key. In this case, we have
g1(t) = g2(t) = 0. Now we have two subcases. If we can find two tweaks t1 and t2 such that
f1(t1) = f1(t2), f2(t1) = f2(t2) and g3(t1) = g3(t2), we have a trivial attack. Otherwise,
find 2n/2 many tweaks t1, . . . , t2n/2 for which f2(ti) = f2(tj) and g3(ti) = g3(tj). Note
that, for all i, j, we have f1(ti) ̸= f1(tj). Here we construct the attack as follows:

1. We make queries (mi, ti), for i = 1, . . . , 2n/2 with distinct messages, i.e., mi ̸= mj ,
for all i and j. In this case, we expect to find a and b such that a collision occurs
in the input of the second block cipher, i.e., α1.ya

1 ⊕ f1(ta) = α1.yb
1 ⊕ f1(tb), and in

that case the outputs, ca and cb matches.

2. Now fix ∆ ̸= 0. Find td such that f1(td) = f1(ta), f2(td) = f2(td) + ∆ and
g3(td) = g3(ta). Also, find te such that f1(te) = f1(tb), f2(te) = f2(tb) + ∆ and
g3(te) = g3(tb).

3. Finally, we query (ma, td) and (mb, te) and checks whether the output matches.

B.1.3 Constructions with One Tweak-independent Key

Case 1: First two block ciphers use tweak-dependent key. In this case, we have
g3(t) = 0. If we can find two tweaks t1 and t2 such that f1(t1) = f1(t2), f2(t1) = f2(t2),
g1(t1) = g1(t2) and g2(t1) = g2(t2), we have a trivial attack. Otherwise, we break it into
the following cases based on the dependency of f1, f2, g1 and g2 as given below.

46 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

Subcase 1: {f2, g1} is linearly dependent. In this case, we proceed as follows. First we
find 2n/2 many tweaks t1, . . . , t2n/2 such that g1(ti) = g1(tj), f1(ti) ̸= f1(tj), g2(ti) = g2(tj),
f2(ti) = f2(tj).

1. We make queries (mi, ti), for i = 1, . . . , 2n/2 such that mi ̸= mj , for all i, j. Here
we expect to find a and b such that α1.ya

1 ⊕ f1(ta) = α1.yb
1 ⊕ f1(tb) (by birthday

collision), and in that case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that g1(td) = g1(ta), f1(td) = f1(ta) ⊕ ∆ and
g2(td) = g2(ta). Also, find te such that g1(te) = g1(tb), f1(te) = f1(tb) ⊕ ∆ and
g2(te) = g2(tb).

3. Finally, we query (ma, td) and (mb, te) and checks whether the output matches.

Subcase 2: {f1, f2, g1} are linearly dependent. In this case we proceed as follows.
First we find 2n/2 many tweaks t1, . . . , t2n/2 such that g1(ti) ̸= g1(tj), g2(ti) = g2(tj),
f2(ti) = f2(tj).

1. We make queries (m, ti), for i = 1, . . . , 2n/2. Here we expect to find a and b such
that α1.ya

1 ⊕ f1(ta) = α1.yb
1 ⊕ f1(tb) (by birthday collision), and in that case the

outputs, ca and cb matches.

2. Now fix ∆ ̸= 0. Find td such that g1(td) = g1(ta), f1(td) = f1(ta) and g2(td) =
g2(ta) ⊕ ∆. Also, find te such that g1(te) = g1(tb), f1(te) = f1(tb) and g2(te) =
g2(tb)⊕∆.

3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

Subcase 3: {f1, f2} or {f1, g2} or {f2, g2} or {f1, f2, g2} are linearly dependent.
First, let us consider the cases when {f1, f2} or {f1, f2, g2} is linearly dependent. Here we
proceed as follows. First we find 2n/2 many tweaks t1, . . . , t2n/2 such that g1(ti) ̸= g1(tj),
f1(ti) = f1(tj), f2(ti) = f2(tj), g2(ti) = g2(tj).

1. We make queries (m, ti), for i = 1, . . . , 2n/2, for all i and j. In this case, we expect to
find a and b such that ya

1 = yb
1 (by birthday collision), and in that case the outputs,

ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that g1(td) = g1(ta), f1(td) = f1(ta) ⊕ ∆ and
g2(td) = g2(ta). Also, find te such that g1(te) = g1(tb), f1(te) = f1(tb) + ∆ and
g2(te) = g2(tb).

3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

When {f2, g2} is linearly dependent, we follow the same algorithm except that we choose td

and te as follows: g1(td) = g1(ta), f1(td) = f1(ta) and g2(td) = g2(ta)⊕∆; g1(te) = g1(tb),
f1(te) = f1(tb) and g2(te) = g2(tb) + ∆.

When {f1, g2} is linearly dependent, we follow the same algorithm except that we
choose td and te as follows: g1(td) = g1(ta), f2(td) = f2(ta) and f1(td) = f1(ta) ⊕ ∆;
g1(te) = g1(tb), f2(te) = f2(tb) and f1(te) = f1(tb) + ∆.

Subcase 4: {f1, g1} or {f1, g1, g2} are linearly dependent. Here we find 2n/2 many
tweaks t1, . . . , t2n/2 such that g1(ti) ̸= g1(tj), f1(ti) ̸= f1(tj), f2(ti) = f2(tj), g2(ti) =
g2(tj).

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 47

1. We make queries (m, ti), for i = 1, . . . , 2n/2, for all i and j. Here we expect to find a
and b such that α1.ya

1 ⊕ f1(ta) = α1.yb
1 ⊕ f1(tb) (by birthday collision), and in that

case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that g1(td) = g1(ta), f1(td) = f1(ta), f2(td) = f2(ta)+∆.
Also, find te such that g1(te) = g1(tb), f1(te) = f1(tb), f2(te) = f2(tb) + ∆.

3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

Subcase 5: {g1, g2} or {f2, g1, g2} are linearly dependent. In this case we find 2n/2

many tweaks t1, . . . , t2n/2 such that g1(ti) = g1(tj), f1(ti) ̸= f1(tj), f2(ti) = f2(tj),
g2(ti) = g2(tj).

1. We make queries (mi, ti), for i = 1, . . . , 2n/2, where mi ̸= mj , for all i and j. In this
case, we expect to find a and b such that ya

2 = yb
2 (by birthday collision), and in that

case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that g1(td) = g1(ta), f1(td) = f1(ta), f2(td) = f2(ta)+∆.
Also, find te such that g1(te) = g1(tb), f1(te) = f1(tb), f2(te) = f2(tb) + ∆.

3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

Subcase 6: None of the proper subsets of {f1, f2, g1, g2} are linearly dependent. In
this case, we proceed as follows. First we find 2n/2 many tweaks t1, . . . , t2n/2 such that
g1(ti) ̸= g1(tj), f1(ti) ̸= f1(tj), g2(ti) = g2(tj), f2(ti) = f2(tj).

1. We make queries (m, ti), for i = 1, . . . , 2n/2, for all i and j. We expect to find a and
b such that α1ya

1 + f1(ta) = yb
1 + f1(tb) (by birthday collision), and in that case the

outputs, ca and cb matches.

2. Now fix ∆ ̸= 0. Find td such that g1(td) = g1(ta), f1(td) = f1(ta)+∆, f2(td) = f2(ta).
Also, find te such that g1(te) = g1(tb), f1(te) = f1(tb) + ∆, f2(te) = f2(tb).

3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

B.2 Message is fed into Second Block cipher
The generalized construction (ensuring the TBC is invertible) for this case, dubbed C10, is
depicted in Fig. 17. Note that incorporating tweaks into the message or ciphertext does
not amplify security. So, we refrain from using such modifications in our constructions.
Now we consider cases with different number of tweak-independent keys.

Ef1(t)

g1(t)⊕ a1.k

y1 Em⊕ α1.y1

g2(t)⊕ α2.y1 ⊕ a2.k

y2 Eβ1.y2 ⊕

α3.y1 ⊕ f2(t)

α4.y1 ⊕ g3(t)⊕ a3.k

c⊕

α5.y1

Figure 17: Construction C10: Message is fed into Second Block Cipher Call

48 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

B.2.1 Constructions with Three Tweak-independent Keys

In this case, by definition, we have g1(t) = g2(t) = g3(t) = 0, α2 = α4 = 0. To attack this
construction, our strategy is as follows:

1. Find two tweaks such that t1, t2 such that f1(t1) = f1(t2), f2(t1) = f2(t2). Note
that, with this choice of tweaks, if we make two queries (m, t1) and (m, t2), we will
have y1

1 = y2
1 as well as y1

2 = y2
2 .

2. We can use the above observation to distinguish the TBC from a random tweakable
permutation by making two oracle queries (m, t1), (m, t2), and verifying if the
corresponding outputs match.

B.2.2 Constructions with Two Tweak-independent Keys

Here we consider the possible TBC constructions with three block ciphers where we have
two block cipher calls with tweak-independent keys.

Case 1: First block cipher uses the tweak-dependent key. In this case, we have
g2(t) = g3(t) = 0 and α2 = α4 = 0. Now we have two subcases. If we can find two tweaks
t1 and t2 such that f1(t1) = f1(t2), f2(t1) = f2(t2) and g1(t1) = g1(t2), we have the trivial
attack. Otherwise, we find 2n/2 many tweaks t1, . . . , t2n/2 for which f1(ti) = f1(tj) and
f2(ti) = f2(tj). Note that, for all i, j, we have g1(ti) ̸= g1(tj). In this case we construct
the attack as follows:

1. We make queries (m, ti), for i = 1, . . . , 2n/2. In this case we expect to find a and b
such that ya

1 = yb
1 (b’day collision), and in that case the outputs, ca and cb matches.

2. Now fix ∆ ̸= 0. Make two queries (m + ∆, ta) and (m + ∆, tb) and checks whether
the output matches.

Similar attacks will work for the other two cases.

B.2.3 Constructions with One Tweak-independent Key

Here we consider the possible TBC constructions with three block ciphers where we have
one block cipher call with tweak-independent keys.

Case 1: First block cipher uses the tweak-dependent key. In this case, we have
g3(t) = 0 and α4 = 0. If we can find two tweaks t1 and t2 such that f1(t1) = f1(t2),
f2(t1) = f2(t2), g1(t1) = g1(t2) and g2(t1) = g2(t2), we have a trivial attack. Otherwise,
we break it into the following cases based on the dependency of f1, f2, g1 and g2 as given
below.

Subcase 1: {g1, g2} or {g1, f2} or {g1, g2, f2} is linearly dependent. Here we can find
2n/2 many tweaks t1, . . . , t2n/2 for which g1(ti) = g1(tj), f2(ti) = f2(tj), g2(ti) = g2(tj)
and f1(ti) ̸= f1(tj). Now we mount the following attack:

1. We make queries (mi, ti), for i = 1, . . . , 2n/2, where mi := α1α−1
3 f2(ti), for all i.

Note that by birthday assumption, we expect to find a and b such that mi⊕α1.ya
1 =

mj ⊕ α1.yb
1, then by definition, we will have ya

2 = yb
2, and subsequently the outputs,

ca and cb matches. Note that the choice of our messages ensures that we have
α3(yi

1 ⊕ yj
1) = f2(ti)⊕ f2(tj).

2. Now fix ∆ ̸= 0. Make two queries (m + ∆, ta) and (m + ∆, tb) and checks whether
the output matches.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 49

Subcase 2: All Other Cases. For all the remaining cases, we can find 2n/2 many
tweaks t1, . . . , t2n/2 for which g2(ti) = g2(tj), f2(ti) = f2(tj) and g1(ti) ̸= g1(tj), and
mount the following attack:

1. We make queries (m, ti), for i = 1, . . . , 2n/2. Note that by birthday assumption, we
expect to find a and b such that ya

1 = yb
1, then by definition, we will have ya

2 = yb
2,

and subsequently the outputs, ca and cb matches.

2. Now fix ∆ ̸= 0. Make two queries (m + ∆, ta) and (m + ∆, tb) and checks whether
the output matches.

Similar attacks will work for the remaining two cases, i.e., when the second or third block
cipher uses a tweak-independent key.

C Distinguishing Algorithms against various Constructions

C.1 Construction C1 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k

c⊕

α3.y1 ⊕ β2.y2

Distinguisher D1

1 : Choose t1, t2 : f1(t1) = f1(t2) ∧ f2(t1) = f2(t2);
2 : Make TBC Queries (m, t1), (m, t2); Let the responses be c1, c2;
3 : Return 1, if c1 = c2;

Figure 18: Distinguishing Algorithm against Construction C1

C.2 Construction C2 and A Distinguishing Algorithm against It

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k

c⊕

α3.y1 ⊕ β2.y2

50 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

Distinguisher D2

1 : Choose t1, . . . , t2n/2 : ∀i, j, f2(ti) ̸= f2(tj) ∧ f3(ti) = f3(tj);

2 : Make 2n/2 TBC Queries (m, t1), . . . , (m, tq);
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find a, b : ca = cb;
5 : Make TBC Queries (m⋆, ta), (m⋆, tb), m ̸= m⋆;
6 : Let the responses be c⋆

a, c⋆
b ;

7 : Return 1, if c⋆
a = c⋆

b ;

Figure 19: Distinguishing Algorithm against Construction C2

C.3 Construction C3 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k ⊕ α2.y1 ⊕ f3(t)

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k

c⊕

α4.y1 ⊕ β2.y2

Distinguisher D3

1 : Choose t1, . . . , t2n/2
: ∀i, j, f1(ti) = f1(tj) ∧ f3(ti) ̸= f3(tj);

2 : Make 2n/2 TBC Queries (m, t1), . . . , (m, tq);
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find a, b : ca = cb;
5 : Make TBC Queries (m⋆, ta), (m⋆, tb), m ̸= m⋆;
6 : Let the responses be c⋆

a, c⋆
b ;

7 : Return 1, if c⋆
a = c⋆

b ;

Figure 20: Distinguishing Algorithm against Construction C3

C.4 Construction C4 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k ⊕ α3.y1 ⊕ β2.y2 ⊕ f3(t)

c⊕

α4.y1 ⊕ β3.y2

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 51

Distinguisher D4 against the Construction when β1 = β2 = 0
1 : Choose t1, t2 : f1(t1) = f1(t2) ∧ f2(t1) ̸= f2(t2) ∧ f3(t1) = f3(t2);
2 : Make 2 TBC Queries (m, t1), (m, t2);
3 : Let the responses be c1, c2, respectively;
4 : Make TBC Queries (m ⊕ ∆, t1), (m ⊕ ∆, t2), ∆ ̸= 0;
5 : Let the responses be c⋆

1, c⋆
2;

6 : Return 1, if c⋆
1 ⊕ c⋆

2 = c1 ⊕ c2;

Distinguisher D4 against the Construction when β1 ̸= 0, β2 = 0
1 : Choose t1, . . . , t2n/2

: ∀i, j, f1(ti) = f1(tj) ∧ f2(ti) ̸= f2(tj) ∧ f3(ti) = f3(tj);

2 : Make 2n/2 TBC Queries (m1, t1), . . . , (mq, tq) : ∀i, j mi ̸= mj ;
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find i, j : ci ⊕ cj = β−1

1 β3(mi ⊕ mj);
5 : Make TBC Queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), ∆ ̸= 0;
6 : Let the responses be c⋆

i , c⋆
j ;

7 : Return 1, if c⋆
i ⊕ c⋆

i = β−1
1 β3(mi ⊕ mj);

Distinguisher D4 against the Construction when β2 ̸= 0
1 : Choose t1, . . . , t2n/2

: ∀i, j, f1(ti) = f1(tj) ∧ f2(ti) ̸= f2(tj) ∧ f3(ti) ̸= f3(tj);

2 : Make 2n/2 TBC Queries (m1 := β−1
2 β1f3(t1), t1), . . . , (mq := β−1

2 β1f3(tq), tq);
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find i, j : ci ⊕ cj = β−1

1 β3(mi ⊕ mj);
5 : Make TBC Queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), ∆ ̸= 0;
6 : Let the responses be c⋆

i , c⋆
j ;

7 : Return 1, if c⋆
i ⊕ c⋆

i = β−1
1 β3(mi ⊕ mj);

Figure 20: Distinguishing Algorithm against Construction C4.

52 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

C.5 Construction C5 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k ⊕ α2.y1 ⊕ f3(t)

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k ⊕ α4.y1 ⊕ β2.y2 ⊕ f4(t)

c⊕

α5.y1 ⊕ β3.y2

Distinguisher D5 against the Construction when β1 = β2 = 0
1 : Choose t1, t2 : f1(t1) = f1(t2) ∧ f4(t1) = f4(t2);
2 : Make 2 TBC Queries (m, t1), (m, t2); Let the responses be c1, c2;
3 : Make TBC Queries (m ⊕ ∆, t1), (m ⊕ ∆, t2), ∆ ̸= 0;
4 : Let the responses be c⋆

1, c⋆
2;

5 : Return 1, if c⋆
1 ⊕ c⋆

2 = c1 ⊕ c2;

Distinguisher D5 against the Construction when β1 ̸= 0, β2 = 0
1 : Choose t1, . . . , t2n/2

: ∀i, j, f1(ti) = f1(tj) ∧ f4(ti) = f4(tj)
∧ (f3(ti) ̸= f3(tj) ∨ f2(ti) ̸= f2(tj));

2 : Make 2n/2 TBC Queries (m1, t1), . . . , (mq, tq) : ∀i, j mi ̸= mj ;
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find i, j : β1(ci ⊕ cj) = β3(mi ⊕ mj);
5 : Make TBC Queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), ∆ ̸= 0;
6 : Let the responses be c⋆

i , c⋆
j ;

7 : Return 1, if c∗
i ⊕ c∗

j = ci ⊕ cj ;

Distinguisher D4 against the Construction when β2 ̸= 0
1 : Choose t1, . . . , t2n/2

: ∀i, j, f1(ti) = f1(tj) ∧ f3(ti) ̸= f3(tj) or

f1(ti) = f1(tj) ∧ f2(ti) ̸= f2(tj) ∧ f4(ti) ̸= f4(tj);

2 : Make 2n/2 TBC Queries (m1 := β−1
2 β1f4(t1), t1), . . . , (mq := β−1

2 β1f4(tq), tq);
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find i, j : β1(ci ⊕ cj) = β3(mi ⊕ mj);
5 : Make TBC Queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), ∆ ̸= 0;
6 : Let the responses be c⋆

i , c⋆
j ;

7 : Return 1, if c⋆
i ⊕ c⋆

i = ci ⊕ cj ;

Figure 21: Distinguishing Algorithm against Construction C5.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 53

C.6 Construction C6 and A Distinguishing Algorithm against It

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k ⊕ α3.y1 ⊕ β2.y2 ⊕ f4(t)

c⊕

α4.y1 ⊕ β3.y2

Distinguisher D6 against the Construction when α1 ̸= 0, α3 = 0
1 : Choose t1, . . . , t2n/2

: ∀i, j, f2(ti) ̸= f2(tj) ∧ f4(ti) = f4(tj) or

f1(ti) ̸= f1(tj) ∧ f3(ti) ̸= f3(tj) ∧ f4(ti) = f4(tj);

2 : Make 2n/2 TBC Queries (m1 = α2α−1
1 f3(t1), t1), . . . ,

(mq = α2α−1
1 f3(tq), tq) : ∀i, j mi ̸= mj ;

3 : Let the responses be c1, . . . , cq, respectively;
4 : Find i, j : α1(ci ⊕ cj) = α4(f3(ti) ⊕ f3(tj));
5 : Make TBC Queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), ∆ ̸= 0;
6 : Let the responses be c⋆

i , c⋆
j ;

7 : Return 1, if c∗
i ⊕ c∗

j = ci ⊕ cj ;

Distinguisher D6 against the Construction when α1 ̸= 0, α3 ̸= 0
1 : Choose t1, . . . , t2n/2

: ∀i, j, f2(ti) ̸= f2(tj), f3(ti) = f3(tj), f4(ti) = f4(tj) or

f1(ti) ̸= f1(tj), f3(ti) ̸= f3(tj), f4(ti) = α3α−1
1 f3(ti) or

f2(ti) ̸= f2(tj), f4(ti) = α3α−1
1 f3(ti);

2 : Make 2n/2 TBC Queries (m1 := α−1
2 α1f3(t1), t1), . . . , (mq := α−1

2 α1f3(tq), tq);
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find i, j : α1(ci ⊕ cj) = α4(f3(ti) ⊕ f3(tj));
5 : Make TBC Queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), ∆ ̸= 0;
6 : Let the responses be c⋆

i , c⋆
j ;

7 : Return 1, if c⋆
i ⊕ c⋆

i = ci ⊕ cj ;

Figure 22: Distinguishing Algorithm against Construction C6.

54 BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers

C.7 Construction C7 and A Distinguishing Algorithm against It

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k ⊕ f4(t)⊕ α2.y1

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k

c⊕

α4.y1 ⊕ β2.y2

Distinguisher D7 against the Construction when β1 ̸= 0
1 : Choose t1, . . . , t2n/2

: ∀i, j, f1(ti) = f1(tj) ∧ f2(ti) = f2(tj)
∧ (f3(ti) ̸= f3(tj) ∨ f4(ti) ̸= f4(tj));

2 : Make 2n/2 TBC Queries (m1, t1), . . . , (mq, tq) : ∀i, j mi ̸= mj ;
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find i, j : β1(ci ⊕ cj) = β2(mi ⊕ mj);
5 : Make TBC Queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), ∆ ̸= 0;
6 : Let the responses be c⋆

i , c⋆
j ;

7 : Return 1, if c∗
i ⊕ c∗

j = ci ⊕ cj ;

Distinguisher D7 against the Construction when β1 = 0
1 : Choose t1, t2 such that f1(t1) = f1(t2) ∧ f2(t1) = f2(t2);
2 : Make 2 TBC Queries (m, t1) and (m, t2);
3 : Let the responses be c1, C2 respectively;
4 : Make TBC Queries (m ⊕ ∆, t1), (m ⊕ ∆, t1), ∆ ̸= 0;
5 : Let the responses be c⋆

1, c⋆
2;

6 : Return 1, if c⋆
1 ⊕ c⋆

1 = c1 ⊕ c2;

Figure 23: Distinguishing Algorithm against Construction C7.

Arghya Bhattacharjee, Ritam Bhaumik and Nilanjan Datta, Avijit Dutta, Shibam Ghosh
and Sougata Mandal 55

C.8 Construction C8 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Eα2.y1 ⊕ β1.y2 ⊕ f3(t)

a3.k

y3

Em ⊕

α3.y1 ⊕ β2.y2 ⊕ γ1.y3

a4.k

c⊕

α4.y1 ⊕ β3.y2 ⊕ γ2.y3

Distinguisher D8 against the Construction when γ1 = 0
1 : Choose t1, t2 satisfying f1(t1) = f1(t2) and f2(t1) = f2(t2);

2 : Make 2n/2 TBC Queries (m, t1), (m, t2);
3 : Let the responses be c1, c2 respectively;
4 : Make TBC Queries (m ⊕ ∆, t1), (m ⊕ ∆, t2), ∆ ̸= 0;
5 : Let the responses be c⋆

1, c⋆
2;

6 : Return 1, if c⋆
1 ⊕ c⋆

2 = c1 ⊕ c2;

Distinguisher D8 against the Construction when γ1 ̸= 0
1 : Choose t1, . . . , tq : ∀i, j, f1(ti) = f1(tj) ∧ f2(ti) = f2(tj) ∧ f3(ti) ̸= f3(tj);

2 : Make 2n/2 TBC Queries (m1, t1), . . . , (mq, tq) : ∀i, j, mi ̸= mj ;
3 : Let the responses be c1, . . . , cq, respectively;
4 : Find i, j : γ1(ci ⊕ cj) = γ2(mi ⊕ mj);
5 : Make TBC Queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), ∆ ̸= 0;
6 : Let the responses be c⋆

i , c⋆
j ;

7 : Return 1, if c⋆
i ⊕ c⋆

j = ci ⊕ cj ;

Figure 24: Distinguishing Algorithm against Construction C8.

