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Abstract. The growing adoption of secure multi-party computation (MPC) has driven
the development of efficient symmetric key primitives tailored for MPC. Recent
advances, such as the alternating moduli paradigm, have shown promise but leave
room for cryptographic and practical improvements. In this paper, we analyze a
family of weak pseudorandom functions (wPRF) proposed at Crypto 2024, focusing
on their One-to-One parameter sets. We demonstrate that these configurations fail to
achieve their intended one-to-one mappings and exploit this observation to develop
an efficient key recovery attack.
Our analysis reveals critical vulnerabilities, reducing the complexity of key recovery
to O(2λ/2 log2 λ) for the Standard One-to-One wPRF and O(20.84λ) for the Reversed
Moduli variant – both substantially below their claimed λ-bit security. We validate
our findings through experimental evaluation, confirming alignment between predicted
and observed attack complexities.
Keywords: Multi-Party Computation · Weak pseudorandom functions · Alternating
moduli paradigm · Symmetric cryptanalysis · Key recovery attack

1 Introduction
The rise of interest in secure multi-party computation (MPC) and the growing threat
of quantum computers have created an urgent need for efficient and quantum-resistant
symmetric key primitives specifically designed for use in MPC settings. While classic
symmetric key primitives hold promise due to their simplicity and performance potential,
existing constructions were developed for different (and usually incompatible) settings.
This creates a pressing need for new designs that avoid such vulnerabilities while remaining
suitable for MPC applications.

Important cryptographic tasks, such as ring signatures, oblivious pseudorandom func-
tions (OPRFs), verifiable random functions (VRFs), and blind signatures, require efficient
solutions tailored to these evolving challenges [RST01, FIPR05, NR97, MRV99, Cha82].
Ideally, these primitives should be evaluable in a single round of communication using linear
secret-sharing techniques. While there has been progress in adapting existing symmetric
key primitives for MPC [AGP+19, ARS+16, DEG+18, DGH+21, GØSW22, GRR+16],
many constructions still require too many communication rounds or involve high over-
heads [BIP+18]. This inefficiency stems in part from the difficulty of balancing low-depth
functions, which are essential for efficiency in MPC settings, with security requirements.

To address these issues, Boneh et al. [BIP+18] introduced the alternating moduli
paradigm, separating the requirements for MPC efficiency from those for cryptographic
security. By alternating linear operations over different moduli, they built a depth-2 weak
pseudorandom function (wPRF) that can be securely evaluated in a single communication
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round after preprocessing. Dinur et al. [DGH+21] extended this work by introducing new
one-way functions (OWFs), pseudorandom generators (PRGs), and wPRFs within the same
framework. They showed that their OWF could be used to build a post-quantum signature
scheme with good efficiency. Despite these advances, the protocols built around these
constructions often fell short of state-of-the-art performance. Moreover, the two-party
computation (2PC) protocols for these constructions require significant preprocessing time
to generate correlated randomness, with communication overheads remaining higher than
optimal.

Building on this line of work, Alamati et al. [APRR24] revisited the alternating
moduli paradigm to propose a new wPRF that improves on previous constructions in
terms of efficiency and practicality. According to the authors, their design significantly
reduces communication and computational costs, particularly in the main evaluation phase,
and minimizes the need for oblivious transfers. In terms of cryptanalysis, they argue
that the security of their wPRF depends on the hardness of solving sparse multivariate
polynomial systems over F3 or, in the dual form, on sparse multilinear interpolation. This
argument is used by the authors to justify their focus on subset-sum attacks as the primary
cryptanalytic threat. However, our analysis shows that this focus may be too narrow, as
other potential attack vectors remain relevant and deserve further attention.

Our Contributions. In this paper, we present cryptanalysis of the One-to-One parameter
sets proposed by Alamati et al. for their alternating moduli wPRF. We show that these
do not provide the approximately one-to-one mappings they were designed to achieve.
Leveraging this observation, we present a novel key recovery attack against the Standard
One-to-One parameter set of the wPRF. Our attack achieves a complexity of O(2λ/2 log2 λ),
significantly lower than the claimed λ-bit security level.

Next, we adapt the key recovery attack to the Reversed Moduli One-to-One parameter
set. While this variant introduces additional challenges, our modified attack successfully
recovers the key with a complexity of O(20.84λ), once again breaking the claimed 2λ

security level. We have also considered the Many-to-One parameter sets but did not find
any successful attacks against these variants.

We provide both theoretical complexity analyses and experimental verification of our
attacks. Our experiments confirm that the observed attack complexities closely align with
the theoretical predictions. Beyond identifying these vulnerabilities, we propose potential
countermeasures to mitigate these attacks, aiming to enhance the security of future designs.

Outline of this Paper. This paper is structured as follows. In Section 2, we provide
the necessary preliminaries, namely the definition and security notions of weak pseudo-
random functions, as well as the classical and generalized birthday paradox. Section 3
presents the wPRF construction by Alamati et al., detailing its specification, variants,
and recommended parameter sets. In Section 4, we describe our primary contributions,
offering a comprehensive cryptanalysis of two of the proposed wPRF parameter sets and
analyzing the theoretical complexity of our key recovery attack. Section 5 validates our
theoretical analysis with experimental results, showcasing the feasibility and accuracy of
our approach. Finally, in Section 6, we conclude by summarizing our findings, discussing
potential countermeasures, and outlining open problems for future research.

2 Preliminaries
In this section, we present the foundational concepts necessary for understanding the
results and analysis in this paper. These include the definition and security notions of weak
pseudorandom functions, along with the classical and generalized forms of the birthday
paradox.
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2.1 Weak Pseudorandom Functions
The definition of a weak pseudorandom function below follows Definition 2.1 from [BIP+18].

Definition 1. A weak pseudorandom function (wPRF) is a keyed function f : K ×
X → Y that, when queried on random inputs x ∈ X , is computationally indistinguishable
from a truly random function. More formally, for a randomly selected key k ∈ K, the
output f(k, x) for x sampled uniformly at random from X is indistinguishable from the
output g(x) of a random function g : X → Y to any adversary running in time t(λ) with
access to an oracle for f .

The distinction between a weak PRF and a strong PRF lies in the adversarial query
model: wPRFs restrict adversaries to query only random inputs, whereas strong PRFs
permit the adversary to query adaptive, chosen inputs.

Security Notion of a wPRF. The security of a wPRF f is quantified by the advantage
an adversary A running in time t(λ) has in distinguishing f(k, x) from a random function.
We say that f is secure if

AdvwPRF
f,A =

∣∣∣Pr[Af(k,·) = 1]− Pr[Ag(·) = 1]
∣∣∣ ≤ ϵ(λ),

where ϵ(λ) is negligible in λ. If a wPRF claims to provide λ-bit security, it means that
the above security notion holds when t(λ) = 2λ. That is, the above advantage remains
negligible even when A is allowed up to 2λ queries and runs in time 2λ.

2.2 The Birthday Paradox
The birthday paradox is a probabilistic phenomenon that explains the counterintuitive
likelihood of repeated outcomes when drawing samples from a finite set. It is particularly
relevant in cryptographic contexts, where it is used to estimate the probability of repeated
outputs in hash functions and similar structures.

Given a function that maps inputs to |Y| equally likely outputs, the birthday paradox
quantifies the number of samples required to observe the same output at least twice.

Lemma 1. [CLR90, Sec. 5.4.1] Classical Birthday Paradox. For a uniform random
distribution over |Y| possible outputs, the expected number of samples S required to observe
the first repeated outcome is:

S ≈
√

2|Y|.

The analysis given in [CLR90] naturally extends to estimating the number of random
samples needed to find multiple pairs of repeated outcomes. In this paper, we refer to this as
the generalized birthday paradox, noting that it differs from other common generalizations
[Wag02, Das05].

Lemma 2. Generalized Birthday Paradox. For a uniform random distribution over
|Y| possible outputs, the expected number of samples S required to observe c pairs of
repeated outcomes is:

S ≈
√

2|Y|c.

The generalized form reveals that the sample complexity scales proportionally to
√

c,
meaning that detecting more collisions requires only a sublinear increase in samples.
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3 A New Weak PRF
At Crypto 2024, Alamati et al. [APRR24] introduced a novel wPRF tailored for effi-
cient multiparty computation (MPC) applications. This construction builds upon and
generalizes the alternating-moduli paradigm initially proposed by Boneh et al. [BIP+18].
By alternating computations over two distinct moduli, typically F2 followed by F3, this
approach has demonstrated significant potential in achieving both simplicity and efficiency
in advanced cryptographic protocols.

We explore the details of Alamati et al.’s new wPRF constructions, and discuss their
recommended parameter sets for achieving λ-bit security under various constraints.

3.1 Specification.
In their work [BIP+18], Boneh et al. considered the function

f(K, x) := g(K ·2 x), where g(w) =
∑

i

wi mod 3.

Here, the operation ·p denotes multiplication modulo p, the matrix K ∈ Fm×n
2 is the secret

key and the term K ·2 x ∈ Fm
2 is embedded into Fm

3 component-wise in the natural way.
Extensions to this idea defined the wPRF

f(K, x) := B ·3 (K ·2 x),

where K is a square matrix and B is a compressing matrix.
To improve upon Boneh et al.’s construction, Alamati et al. propose a new wPRF that

optimizes the end-to-end cost of MPC protocols while enhancing performance during the
main computation phase, leading to significant gains in both communication complexity
and computational efficiency. Their construction relies on three core components:

1. Non-linear combination of the input and key modulo two.

2. Matrix multiplication modulo two.

3. Natural modulus conversion followed by a public compressing linear map B.

3.2 Definition of the Standard wPRF.
The proposed standard (F2,F3)-wPRF is formulated as follows:

F (k, x) := B ·3 (A ·2 [k ⊙2 x]) ,

where:

• x, k ∈ Fn
2 are random vectors representing the input and key,

• A ∈ Fm×n
2 is a random matrix,

• B ∈ Ft×m
3 is a random compressing matrix (i.e., t < m).

Here, the operation ⊙p denotes component-wise multiplication modulo p.
A visual representation of the standard wPRF construction is given in Fig. 1.
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Figure 1: Construction of the standard (F2,F3)-wPRF.

Variants of the Standard wPRF. The generalized (Fp,Fq)-wPRF extends this concept
to arbitrary primes p and q in a straightforward manner as

F (k, x) := B ·q (A ·p [k ⊙p x]) ,

where x, k ∈ Fn
p , A ∈ Fm×n

p , and B ∈ Ft×m
q .

For scenarios requiring binary secret-sharing outputs, Alamati et al. propose the Reversed
Moduli (F3,F2)-wPRF:

F (k, x) := B ·2 (A ·3 [k ⊙3 x]) ,

where the roles of the moduli are reversed.

3.3 Parameters.
Table 2 summarizes the recommended parameter sets from [APRR24] across the different
wPRF constructions. Alamati et al. divide the parameter sets into two groups, namely
One-to-One and Many-to-One parameters. The authors assert that each parameter set
achieves λ-bit security.

One-to-One Parameters. The One-to-One parameter set is designed to provide a
(roughly) one-to-one mapping between inputs and outputs. Specifically, the input and
output spaces are of the same size, and for any given input x, the authors claim we can
expect a unique corresponding output y. This setup represents their most conservative
alternative.

Many-to-One Parameters. As the name suggests, the Many-to-One parameter set has a
larger input space than output space. This means that for any given output y, there should
be multiple input values x mapping to y, leading to a many-to-one mapping between input
and output values.

4 Our Attack
In this section, we present a key recovery attack against the two One-to-One parameter
sets proposed by the authors. Our method exploits weaknesses in these parameter sets,
and efficiently identifies key bits using collisions. The attack is able to recover the key in
O(2λ/2 log2 λ) calls to the wPRF in the standard version, and in O(20.84λ) calls in the
reversed moduli variant, demonstrating a significant reduction in complexity compared to

4



Table 1: Recommended parameter sets for the wPRF for λ-bit security.

Variant
One-to-One Many-to-One

n m t n m t

(F2,F3)-wPRF 2λ 7.06λ
2λ

log2(3) 4λ 2λ
λ

log2(3)

(F3,F2)-wPRF 2λ

log2(3)
7.06λ

log2(3) 2λ
4λ

log2(3) 2λ λ

the claimed 2λ calls. We begin with an analysis of the Standard One-to-One wPRF to
establish the basic methodology. Following this, we demonstrate how the attack can be
modified for the Reversed Moduli variant, overcoming its additional complexities.

In the following, let X denote the input space of the wPRF, let M denote the output
space of the multiplication with the matrix A, and let Y denote the output space of the
wPRF.

One-to-One? We target the proposed parameter sets where the input space size is
|X| = 22λ (= 3(2λ/ log2 3)), the intermediate space has size |M | = 27.06λ (= 3(7.06λ/ log2 3)),
and the output space size is |Y | = 32λ/ log2 3 = 22λ. The authors argue that these
configurations result in a (roughly) one-to-one mapping between inputs and outputs of
the wPRF. However, this assumption does not hold once the wPRF is instantiated with a
fixed key k. We exploit this observation to construct a key recovery attack.

• Standard One-to-One. Define h1 as the Hamming weight of k, and let h0 = 2λ− h1
denote the number of zeros in k. For a key k chosen uniformly at random, we expect
h1 ≈ h0 ≈ λ, following a binomial distribution. In positions where ki = 0, the value
of xi is irrelevant, as ki ⊙ xi will always equal zero. This leads to 2h0 distinct values
of x producing the same input to the multiplication with A, creating a 2h0-to-1
sub-mapping in the wPRF. Consequently, once the key is fixed, the wPRF becomes
a 2h0-to-1 mapping. The image of the wPRF F , denoted as im(F ), thus has size
2h1 ≈ 2λ instead of 22λ.

• Reversed Moduli One-to-One. Extending notation, let h∗
i be the number of elements

in k that take the value i (for i = 0, 1, 2). For a uniformly random key k, we expect
h∗

0 ≈ h∗
1 ≈ h∗

2 ≈
2λ

3 log2(3) . Similarly to the standard case, the operation k ⊙ x

induces a 3h∗
0 -to-1 sub-mapping, which can be expressed as 22λ−log2(3)(h∗

1+h∗
2)-to-1.

As a result, im(F ) has size 2log2(3)(h∗
1+h∗

2), with an expected value of 24λ/3, instead
of the intended 22λ.

4.1 Key Recovery Attack on Standard One-to-One wPRF
Our attack aims to recover the key k by finding pairs x, x′ such that F (k, x) = F (k, x′).
Whenever this occurs we say we have a collision. The attack is described in Algorithm 1
and explained in the following.

We initialize a key K as K = [1, 1, 1, . . . , 1] and iteratively refine it towards the
correct key k by identifying positions in k that must be 0. The idea is to query the
wPRF on random inputs, building up a table of input and output values (x, y). By the
birthday paradox (see Lemma 1), collisions are expected to appear after approximately√

2|im(F )| = 2(h1+1)/2 samples.
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Let x and x′ be two inputs producing the same output y. If xi ̸= x′
i, then it must hold

that ki = 0. To understand this, note that |M | = 27.06λ is much larger than |X| = 22λ,
and only 2h1 different values go into multiplication with B, which is much smaller than
|Y | = 22λ. Thus, the probability of creating collisions after multiplying k ⊙ x with A
becomes negligible. Therefore, with overwhelming probability, the only source of collisions
is the 2h0 -to-1 mapping of k⊙x. So, if xi ≠ x′

i, then ki must be zero, as the differing input
bits would otherwise result in different values in M (and therefore a different output y).

To further support this and address potential false positives, we observe that both
the input and output spaces have cardinalities |X| = |Y | = 22λ, so the probability that a
difference in input results in the same output is analogous to finding a collision in a random
mapping from a space of size 22λ to itself. By the birthday bound, the probability of any
collision after I random inputs is approximately I2/22λ+1. In our setting, we will later
show that the attack requires approximately I ≈ 2λ/2 such queries, yielding a collision
probability of 1/2λ+1, which is exponentially small in λ. This makes false positives—cases
where xi ̸= x′

i but ki = 1—highly improbable, so each collision reveals with high confidence
that the differing positions in x and x′ correspond to zero entries in k.

To further analyze the key recovery, let

J0 = {i|ki = 0} and J1 = {i|ki = 1}.

For two colliding inputs x, x′, let X= = X=(x, x′) = {i|xi = x′
i} and X̸= = X̸=(x, x′) =

{i|xi ̸= x′
i}.

As collisions accumulate, we progressively update K by changing 1-bits in K to 0 for
all indices in X̸=. For each collision, we know that J1 ⊆ X= and X̸= ⊆ J0. For positions
i ∈ J0, we have either xi = x′

i or xi ̸= x′
i with equal probability since both x and x′ are

drawn uniformly at random. Consequently, we expect that only half of the set J0 will be
revealed from any one collision. Thus, each new independent collision is expected to reveal
half of the previously unrevealed positions where ki = 0. This suggests that the Hamming
distance between K and k is halved with each new collision. Specifically, the expected
Hamming distance after c collisions can be expressed as

dc = h0/2c. (1)

4.1.1 Collision Saturation Point.

As the attack progresses and additional collisions are found, the rate of discovering new
J0 positions decreases, as many zeros in k have already been determined. At a certain
point, it becomes more efficient to perform an exhaustive search among keys within a
small Hamming distance of the current guess K. The transition occurs when the expected
cost of generating the (c + 1)-th collision surpasses the cost of exhaustive search among
vectors with hamming distance at most dc from K.

Cost of New Collision. By the generalized birthday paradox (see Lemma 2), the expected
number of samples required to find c collisions is

√
2h1+1c. To find the (c + 1)-th collision

after already obtaining c collisions, the number of new queries needed is√
2h1+1(c + 1)−

√
2h1+1c = 2(h1+1)/2(

√
c + 1−

√
c). (2)

The total cost of generating the (c+1)-th collision is dominated by this term, since verifying
collisions can be done in constant time by storing (x, y)-pairs in a hash table.

Cost of Exhaustive Search. For exhaustive search, we consider all keys within a Hamming
distance of at most dc from K. Notably, we only flip 1-bits in K to 0, never changing
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0-bits to 1. This restricted search space is referred to as the one-sided Hamming distance

from K. Thus, the number of candidate keys to search is
⌈dc⌉∑
j=1

(
H1

j

)
, where H1 is the

current Hamming weight of K. To verify each key candidate, we compute an output using
the current key guess and a previously queried input. Since the number of candidate
keys remains below 2(λ+1)/2 · (

√
c + 1 −

√
c) < 2(λ+1)/2 (see Inequality 3 below), the

probability of an incorrect key producing the expected output is negligibly small. This
should guarantee that only the correct key passes with very high probability. In the worst
case, this results in a total query cost of

⌈dc⌉∑
j=1

(
H1

j

)
.

To determine the optimal transition point to exhaustive search, we substitute the
expected values h0 = h1 = λ into Equations (2) and (1). Minimizing the total attack cost
requires switching strategies once c collisions have been found and the following inequality
holds:

⌈λ/2c⌉∑
j=1

(
H1

j

)
< 2(λ+1)/2 · (

√
c + 1−

√
c). (3)

This condition does not guarantee that the correct key lies within dc Hamming distance of
K. If exhaustive search fails to find the correct key at this stage, we simply identify one
more collision and retry.

4.1.2 Complexity Analysis.

We measure the complexity of the attack in terms of the needed number of queries to
the wPRF. The attack follows a two-phase approach: first, collisions are accumulated
until reaching the transition point; then, exhaustive search on the key is applied. Let C
denote the number of collisions at the transition point. We know that C ≤ log2 λ, since
for C = log2 λ and H1 ≤ n = 2λ Inequality (3) always holds for λ ≥ 17.

As discussed above, the total number of samples required to recover the key is approxi-
mately

√
2λ+1C +

⌈λ/2C⌉∑
j=1

(
H1

j

)
,

where H1 represents the Hamming weight of the guessed key after C collisions. By
construction of K, we estimate H1 as h1 + h0

2C
≈ λ + λ

2C
.

For C = log2 λ, the sum in the expression above stops at j = 1, leading to an attack
complexity of the order

O
(

2λ/2 log2 λ
)

.

The total cost of the attack is thus significantly lower than 2λ, demonstrating a clear
compromise of the claimed security level. We explicitly note that this complexity analysis
assumes h1 = λ, which corresponds to the expected Hamming weight of a uniformly
random key. While this assumption provides a realistic estimate of the computational cost
for a typical key, we acknowledge that the actual complexity may vary slightly for specific
instances where the key deviates significantly from the expected Hamming weight.
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Algorithm 1 Key Recovery Attack
Require: Input-output oracle O, security parameter λ
Ensure: Recovered key k

K ← [1, 1, . . . , 1]
P ← ∅
c← 0
H1 ← n
while Correct key not found do

repeat
Collect a new input-output pair (x, y) using O
if (x′, y) ∈ P for some x′ ̸= x then

for i ∈ X̸= do
if Ki = 1 then

Ki ← 0
H1 ← H1 − 1

end if
end for
c← c + 1

end if
Add (x, y) to P

until Collision is found

if
⌈λ/2c⌉∑

j=1

(
H1

j

)
≤ 2(λ+1)/2 · (

√
c + 1−

√
c) then

for each k′ with one-sided Hamming distance at most dc from K do
if k′ matches an input-output pair from P then

return k′

end if
end for

end if
end while
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4.2 Attack on Reversed Moduli One-to-One wPRF
We adapt the collision-based key recovery attack methodology used in the standard
parameter set to the reversed moduli One-to-One wPRF. The key difference in this variant
is that non-zero key positions can take two distinct values, requiring modifications to our
approach. The modified attack still remains feasible and reveals vulnerabilities in the
construction. Below, we detail the process and analyze its computational complexity.

4.2.1 Collisions: Identifying Zero Key Positions.

The first step of the attack is to identify the positions in the key k where ki = 0. To achieve
this, we employ the same collision-finding method used previously in the standard case.
By the birthday paradox (see Lemma 1), we expect collisions to appear after collecting
approximately √

2|im(F )| = 2(log2(3)(h∗
1+h∗

2)+1)/2 ≈ 2(4λ+3)/6

samples.
In this setting, the size of the domain M is again significantly larger than the size of the

input space X, ensuring that collisions arise solely from the 3h∗
0 -to-1 mapping induced by

k ⊙ x with overwhelming probability. Therefore, each collision reveals information about
positions in k where ki = 0.

Let J0 = {i | ki = 0} and x and x′ two colliding inputs as before. We again have

X̸= = X̸=(x, x′) = {i|xi ̸= x′
i} ⊆ J0.

For positions i ∈ J0, we have either xi = x′
i or xi ≠ x′

i, but these events do not occur with
equal probability in the reversed moduli case. Since x takes values in F3, we have xi ̸= x′

i

with probability 2/3. Thus, we expect to recover approximately 2/3 of J0 from any given
collision. This higher recovery rate, compared to the standard wPRF, reduces the number
of collisions required to fully determine J0.

We continue generating collisions until all zero positions in the key are likely identified.
To estimate the number of collisions required, we analyze the probability of revealing
additional zeroes as we accumulate collisions. As discussed, the first collision is expected
to reveal approximately 2/3 · h∗

0 zeroes. The second collision builds upon this, revealing
another 2/32 · h∗

0 zeroes. More generally, after c collisions, the total number of recovered
zeroes is

c∑
i=1

2
3i
· h∗

0.

Thus, the number of remaining zero positions in k yet to be identified after c collisions is
given by

h∗
0 −

c∑
i=1

2
3i
· h∗

0 =
(

1−
c∑

i=1

2
3i

)
h∗

0.

To ensure all zero positions are likely identified, the number of remaining positions must
be less than 1, i.e., (

1−
c∑

i=1

2
3i

)
h∗

0 ≈

(
1−

c∑
i=1

2
3i

)
2λ

3 log2(3) < 1.

Solving this expression for c gives the minimum number of expected collisions required to
recover all zero positions in the key. To ensure high-probability recovery, we introduce
a small safety margin by multiplying the derived value for c by three. In any case, the
complexity of determining all zero positions remains of the order O(log3(λ)) collisions.
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4.2.2 Exhaustive Search over Non-Zero Key Positions.

Once the positions in J0 are determined, the values of the remaining positions J1 ∪ J2 =
{i | ki ∈ {1, 2}} remain unknown. These positions are expected to constitute 2/3 of the
key. However, for these positions, each ki can only take one of two possible values, 1 or
2, since all zeroes have already been detected. For a key of length n = 2λ

log2 3 , the total
number of candidates for the remaining key components is therefore

2(2/3)·(2λ/ log2 3) ≈ 20.84λ.

The correctness of any candidate key can be verified by querying the wPRF on an input-
output pair as before. Thus, the exhaustive search over all possible keys in J1 ∪J2 requires
at most 20.84λ queries.

4.2.3 Complexity Analysis.

The overall complexity of the attack consists of two main components: identifying zero
positions via collisions and performing an exhaustive search over non-zero key positions.

Collision Complexity. By the generalized birthday paradox (see Lemma 2), the expected
cost of finding enough collisions to identify all zero positions of the key is√

2(4λ+3)/3C,

where C = O(log3(λ)) denotes the number of collisions required to fully determine J0.
The total complexity of this step thus becomes O(22λ/3 log3(λ)).

Exhaustive Search Complexity. Once the zero positions are known, the exhaustive search
requires testing 20.84λ key candidates, each verified with a query. This results in a total
cost of 20.84λ.

Total Complexity. The overall complexity of the attack is the sum of the costs of
the collision and exhaustive search steps. Notably, the complexity is dominated by the
exhaustive search step, and so the attack has a total cost of O(20.84λ). This is well below
the claimed security level of 2λ, demonstrating that the Reversed Moduli One-to-One
parameter set also fails to provide the intended security guarantees.

4.3 Applicability beyond the One-to-One Parameter Sets
Many-to-One Parameter Sets. The attack described above does not apply to the
Many-to-One variants of the wPRF. In these cases, the input space size |X| = 24λ

significantly exceeds the output space size |Y | = 2λ, making collisions unavoidable. Since
the intermediate output space of the pointwise multiplication followed by multiplication
with A has size |M | = 22λ, most collisions occur independently of the term k ⊙ x. More
specifically, distinct points in M produce a collision in Y at a rate of once every 2λ/2

queries, while collisions due to k ⊙ x being a 22λ-to-1 mapping only appear at a rate of
once every 2λ queries. As a result, generating even a single collision where k ⊙ x = k ⊙ x′

will take O(2λ) time, making our approach ineffective for these parameter sets.

Boneh et al.’s wPRF. Recall that Alamati et al.’s construction builds upon the wPRF
derived by Boneh et al.’s alternating-moduli function [BIP+18]. This wPRF is defined
as f(K, x) := B ·3 (K ·2 x), where K is a square matrix acting as the secret key, and
x is an input vector. Unlike Alamati et al.’s wPRF, which employs component-wise
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multiplication k ⊙ x before a linear transformation, Boneh et al.’s construction instead
performs a full matrix-vector multiplication K ·2 x directly. This difference has a crucial
impact on the applicability of our attack. In Alamati et al.’s wPRF, zero entries in k
eliminate contributions from corresponding positions in x, effectively reducing the entropy
of the input to subsequent computations and enabling the attack. However, in Boneh
et al.’s construction, each xi in the input x is multiplied with n different bits of the key
K, ensuring that no input component is entirely zeroed out due to a zero entry in K.
Consequently, the structure that enables our attack in Alamati et al.’s scheme is absent
here, making our approach ineffective against Boneh et al.’s wPRF.

5 Experimental Verification
To validate our proposed approach, we have conducted a series of low-scale experiments1 in
the Standard One-to-One parameter set, using λ = 28 and λ = 34 as test cases. For each
scenario, we have performed 1000 independent experiments to ensure statistical significance,
recording the average results obtained. Table 2 summarizes our experimental findings,
which corroborate the theoretical estimations presented in Section 4 and demonstrate the
feasibility of a successful key recovery attack.

We analyze the average complexity of the two principal components outlined in Section 4:
finding collisions and exhaustive search.

• Collision Finding (Ccol): We measure the average number of samples required to
generate a sufficient number of collisions necessary for key recovery.

• Exhaustive Search (Cexs): Once the sufficient number of collisions is identified,
we perform an exhaustive search over the key candidates with a small Hamming
distance from the current key guess. We record the average number of calls to F for
this step.

By combining these components, we compute the total complexity Ctot = Ccol + Cexs of
the attack. Our results demonstrate that we achieve key recovery with complexity closely
aligned with the theoretical expectation of O(2λ/2 log2(λ)):

• For λ = 28, the observed average total complexity is Ctot = 216.6, which is consistent
with the estimated complexity of 2λ/2 log2(λ) = 216.27.

• For λ = 34, the observed average total complexity is Ctot = 219.82, closely matching
the estimated complexity of 2λ/2 log2(λ) = 219.35.

Note that all 1000 experiments recovered the correct key, and that the numbers used to
calculate Ccol and Cexs represent the total number of calls to the wPRF oracle, including
instances where the attack had to go back and find an additional collision before trying
exhaustive search again.

Additionally, we evaluate the accuracy of the transition step discussed in Section 4,
which estimates the optimal transition point between collision finding and exhaustive
search. Specifically, we measure the success rate of the computed transition point C
from Inequality 3 by verifying whether, after finding C collisions, the key is successfully
recovered on the first attempt at exhaustive search. The measured success rate is 76.6% for
λ = 28 and 88.8% for λ = 34, indicating that the theoretical model becomes increasingly
accurate for larger values of λ.

Furthermore, we report the average number of collisions required to recover the full
key. Our results show that the attack requires approximately 4.39 collisions for λ = 28

1The implementation details and source code are available at
https://github.com/Simula-UiB/wPRF-Collision-Attack.
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and 4.19 collisions for λ = 34 to achieve full key recovery. We would expect the number
of necessary collisions to increase for higher values of λ, as a higher λ corresponds to a
higher Hamming weight of the key on average, requiring more bits to be flipped to 0 to
reach the final correct guess of the key. However, our experiments indicate that this is not
necessarily the case. This discrepancy may be attributed to the significant differences in
the accuracy of the computed transition point C. For λ = 28, fewer collisions should, in
theory, have been required before successfully switching to exhaustive search. Nonetheless,
due to inaccuracies in approximating the transition point correctly in nearly 25% of the
cases, more collisions were needed than expected. As the accuracy of C improves with
higher values of λ, we observe fewer such deviations. We therefore hypothesize that this
theoretical trend persists for higher values of λ, where the discrepancy in the transition
point accuracy is likely to diminish further, thereby reducing unexpected variations in the
number of collisions needed to recover the key through exhaustive search.

Table 2: Summary of experimental results for λ = 28 and λ = 34. The columns represent
the average complexity of collision finding (Ccol), exhaustive search (Cexs), and total
complexity (Ctot). Additionally, the table reports the average number of collisions required
to achieve full key recovery and the success rate of the transition point C estimated using
Inequality 3. All values are averaged over 1000 independent experiments.

λ Ccol Cexs Ctot # Collisions Accuracy of C (%)

28 216.6 27.64 216.6 4.39 76.6

34 219.82 210.88 219.82 4.19 88.8

5.1 Hamming Distance Analysis
In addition to the previously described experiments, we also verify the assumption that
the Hamming distance between the actual key k and the guessed key K is approximately
halved with each new collision.

We have performed 100 independent experiments for various values of λ and recorded
the average results. While the findings are consistent across different values of λ, we
present the case of λ = 34 as a representative example. Figure 2 illustrates the average
decrease in Hamming distance between the current guessed key and the actual key after
each identified collision. The graph shows that the Hamming distance roughly halves with
each collision, as expected.

6 Conclusions
In this paper, we conducted a detailed cryptanalysis of the One-to-One parameter sets in
the alternating moduli wPRFs proposed by Alamati et al. Our analysis reveals critical
vulnerabilities in these constructions, allowing for efficient key recovery attacks that
compromise the claimed λ-bit security levels. Specifically, we presented an attack with
complexity O(2λ/2 log2 λ) against the Standard One-to-One wPRF and O(20.84λ) against
the Reversed Moduli variant. Both attacks exploit the reduction in output space caused
by the 0-values in the random but fixed key, which induces sub-mappings that deviate
significantly from the intended one-to-one mappings. The effectiveness of the attacks was
further validated through experimental implementations.

To address these vulnerabilities, we propose potential countermeasures. One strategy
is to restrict the selection of keys to elements in F∗

p, thereby excluding zero values as
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Figure 2: Number of found collisions vs. the average Hamming distance between the
guessed key and the actual key for λ = 34.

coefficients in the key and ensuring that no part of the input is zeroed out in the first
operation of the wPRF. The drawback of this mitigation is that p must be greater than
2 for this countermeasure to be applicable, and so one can not have Fn

2 as the space for
inputs and keys. Another approach is to replace the pointwise multiplication operation
with addition or another operation that does not make any part of the input irrelevant.

We also identify open problems for future research. A deeper analysis of the Many-to-
One parameter sets, which were not susceptible to our current attack, could shed light on
the resilience of alternating moduli constructions in different configurations. Additionally,
studying the trade-offs between mitigation techniques and their impact on performance
in secure MPC environments requires further investigation. Finally, exploring alternative
low-depth cryptographic designs that balance efficiency and security remains an important
direction.
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