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Abstract. The design of tweakable wide block ciphers has advanced significantly
over the past two decades. This evolution began with the approach of designing
a wide block cipher by Naor and Reingold. Since then, numerous tweakable wide
block ciphers have been proposed, many of which build on existing block ciphers
and are secure up to the birthday bound for the total number of blocks queried.
Although there has been a slowdown in the development of tweakable wide block
cipher modes in last couple of years, the latest NIST proposal for accordion modes
has reignited interest and momentum in the design and analysis of these ciphers.
Although new designs have emerged, their security often falls short of optimal (i.e.,
n-bit) security, where n is the output size of the primitive. In this direction, designing
an efficient tweakable wide block cipher with n-bit security seems to be an interesting
research problem. An optimally secure tweakable wide block cipher mode can easily
be turned into a misuse-resistant RUP secure authenticated encryption scheme with
optimal security. This paper proposes HCTR+, which turns an n-bit tweakable
block cipher (TBC) with n-bit tweak into a variable input length tweakable block
cipher. Unlike tweakable HCTR, HCTR+ ensures n-bit security regardless of tweak
repetitions. We also propose two TBC-based almost-xor-universal hash functions,
named PHASH+ and ZHASH+, and use them as the underlying hash functions
in the HCTR+ construction to create two TBC-based n-bit secure tweakable wide
block cipher modes, PHCTR+ and ZHCTR+. Experimental results show that both
PHCTR+ and ZHCTR+ exhibit excellent software performance when their underlying
TBC is instantiated with Deoxys-BC-128-128.
Keywords: Tweakable Wide Block Enciphering, Tweakable Block Cipher, TSPRP,
Optimal Security, HCTR

1 Introduction
A Tweakable Enciphering Scheme (TES) is a function Ẽ : K × T ×M→ C that maps a
plaintext M into a ciphertext C under the control of a key K and a tweak T , denoted as
C = ẼT

K(M). The ciphertext must have the same length as the plaintext and there must
be an inverse function D̃T

K to ẼT
K . The security guarantee we require is that the function

should behave like a strong tweakable pseudorandom permutation, which intuitively
means that an oracle that maps (T, M) into C = ẼT

K(M) and (T, C) into M = D̃T
K(C)

must be indistinguishable (when the key K is random and secret) from an oracle that
realizes T -indexed family of random permutations and their inverses. A secure tweakable
enciphering scheme (a.k.a tweakable wide block cipher) is a useful tool to solve the disk-
sector encryption problem, where one stores at disk sector location T , the encryption
C = ẼT

K(M) of a message M .
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Design of TES was informally started with the approach of Naor and Reingold [NR99b,
NR99a, NR97] in designing wide block cipher. Their design approach was based on a
paradigm called hash-encipher-hash that involves applying a invertible blockwise-universal
hash function 1 on the input followed by enciphering the result in ECB mode and then
applying yet another invertible blockwise-universal hash-function. Although, they did not
fully specify the mode of operation, but in [NR99b], they came closer to show how to make
the invertible blockwise-universal hash function out of an xor-universal hash function.

1.1 Revisiting Tweakable Enciphering Schemes
Following [NR99b, NR99a, NR97], the field of designing tweakable enciphering schemes
has gained a significant momentum. Over the last two decades, a number of designs on
tweakable enciphering schemes have been proposed. The design landscape of tweakable
enciphering schemes can be broadly categorized into two distinct classes: (i) Encrypt-Mix-
Encrypt, and (ii) Hash-Encrypt-Hash.

1.1.1 Encrypt-Mix-Encrypt

In [HR03], Halevi and Rogaway have introduced the design paradigm of tweakable encipher-
ing scheme, in which a simple mixing layer is sandwiched between two invertible encryption
layers. As an instantiation of this generic design framework, Halevi and Rogaway [HR03]
have proposed CMC (CBC-Mix-CBC) construction, where CBC mode of encryption is
used in both the encryption layers with a simple linear mixing function in between of
them. Due to the CBC structure, CMC is inherently a sequential construction. As a follow
up work of CMC, Halevi and Rogaway [HR04] have subsequently proposed a parallel
construction, called EME (ECB-Mix-ECB) that uses ECB mode of encryption in both the
layers. The drawback of EME is that it works only for full-block messages. In a later
work, Halevi [Hal04] extended this construction and proposed EME∗ that is capable of
handling arbitrary length messages. In [Jiv14], Jivsov presented a variant of the EME
construction, called WCFB and have shown that it works extremely well for commonly
occurring plaintext and repeated operations on the same wide block. In [BN15], Bhaumik
et al. have proposed FMix, a single-keyed inverse free tweakable enciphering scheme.

1.1.2 Hash-Encrypt-Hash

As the name suggests, this design paradigm of tweakable enciphering scheme invokes
an encryption layer in between of two universal hash functions. This design framework
was introduced by Naor and Reingold in [NR97,NR99a] to propose a wide block cipher
from a fixed input block cipher. Their proposed construction uses a invertible ECB mode
of encryption layer which is sandwiched between two invertible pairwise independent
blockwise-universal hash functions. However, the description of the construction given
in [NR97,NR99a] is at a top level and also the latter work [NR99b] does not fully specify
a mode of operation. In [MF04], McGrew et al. have proposed the Hash-Counter-Hash
type construction, called XCB, that instantiate the encryption layer of Hash-Encrypt-Hash
paradigm with the counter mode encryption which is sandwiched between two almost-xor
universal hash functions 2. The advantage of using the counter mode encryption is to
tackle the variable length messages easily. XCB requires five independent keys and two
block cipher invocations (excluding the block cipher calls in counter mode encryption).
Later, Wang et al. have proposed HCTR [WFW05] construction with a single block cipher

1A hash function is said to be an ϵ-blockwise-universal hash function, if the collision probability of any
two output blocks of the hash function applied on two distinct messages, is at most ϵ.

2An n-bit keyed hash function is said to be an ϵ-almost-xor-universal hash function, if for any two
distinct messages M, M ′ and for any n-bit string ∆, the probability that xor of the hash value of two
messages attains ∆, is at most ϵ.
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call (excluding the block cipher calls in counter mode encryption) and two keys (one hash
key and one block cipher key). It was shown that HCTR achieves a security bound of σ3/2n,
where σ denotes the total number of message blocks queried to the construction. In [CS06],
Chakraborty and Sarkar have proposed PEP, an instantiation of the Hash-Encrypt-Hash
paradigm by sandwiching a ECB mode of operation in the encryption layer in between of
two layers of polynomial hash functions. In the next year, Halevi proposed TET [Hal07],
an efficient variant of the PEP construction. Later, Chakraborty et al. came up with
HEH [CS08] that improves upon TET. Meanwhile, Chakraborty and Nandi [CN08a] have
shown that HCTR achieves birthday bound security in the order of σ2/2n, assuming the
underlying hash function to be almost-xor-universal. In [Kum18], Kumar observed that the
underlying hash function of HCTR construction does not satisfy the almost-xor-universal
property. In [CB18], Crowley and Biggers have proposed a twekable enciphering scheme,
called Adiantum, that closely follows the Hash-Counter-Hash design paradigm, where it uses
an ϵ-almost-xor-universal n-bit keyed hash function, an n-bit block cipher and the variable
input length pseudorandom function of HCTR is replaced by a IV-based stream cipher.
In a recent work, Crowley et al. [CHB21] have proposed a single-keyed efficient variant
of the HCTR construction, dubbed HCTR2, that uses an efficient almost-xor-universal
hash function and allows more pre-computation for better performance. In [CGLS22],
Chakraborty et al. have proposed a PRF based inverse free tweakable enciphering scheme,
called FAST, and showed it achieves a security bound in the order of σ2/2n.

Amongst the above mentioned constructions, only CMC and EME∗ are block cipher based
constructions with a light weight masking layer in between of two encryption layers,
whereas the other two paradigms require the field multiplication (as a part of the hash
function evaluation) along with the block cipher evaluation. Thus, the only significant
cost for Encrypt-Mix-Encrypt type constructions are the block cipher calls, whereas for
the other two paradigms the cost involved in both evaluating the block cipher calls and
the finite field multiplications. A detailed comparison of the performance and efficiency
of different tweakable enciphering schemes can be found in [Hal07, CS08, Sar07]. This
comparison study along with [MCR07] suggests that HCTR is one of the most efficient
candidates amongst all the above tweakable enciphering schemes.

1.1.3 Deck Based Construction

In [GDM22], Gunsing et al. have proposed two tweakable wide block cipher modes
from doubly-extendable cryptographic keyed (deck) functions and a keyed hash function:
double-decker and docked-double-decker. Double-decker is a direct generalization of Farfalle
wideblock cipher [BDH+17], and is a four-round Feistel network on two arbitrarily large
branches, where the middle two rounds call deck functions and the first and last rounds
call the blinded keyed hash function. On the other hand, Docked-double-decker is a variant
of the double-decker construction, where the bulk of the input to the deck functions is
moved to the keyed hash functions. The security advantage of both of the constructions
are reduced to the pseudorandom function advantage of the underlying round function and
the blinded keyed hashing distinguishing advantage. Dobraunig et al. [DMMT24] have
instantiated the Docked-Double-Decker construction with AES and finite field multiplication
to realize three concrete constructions, called ddd-AES, ddd-AES+, and bbb-ddd-AES. It
has been shown that first two constructions are secured up to σ2/2n, where σ denotes the
total number of blocks queried to the construction. On the other hand, bbb-ddd-AES is
secured up to 22n/3 queries provided the same tweak is not used too often.

It is to be noted that the security guarantee by most of the above mentioned constructions
becomes vacuous after about 2n/2 blocks have been enciphered. Only a few constructions
are there that achieve security beyond the birthday bound.
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1.2 BBB Secure Tweakable Enciphering Schemes
In [MI11], Minematsu and Iwata have first proposed two beyond birthday bound secure
constructions that achieve n-bit security. However, their proposed construction turns
a fixed and small length block cipher to a large length block cipher, called wide block
cipher mode. In [ST13], Shrimpton and Terashima have proposed TCT2 construction, that
achieves 2n/3 bit security. We would like to note that both the constructions [MI11,ST13]
require two primitives, a block cipher and a universal hash function. In [DN18], Dutta
and Nandi have proposed a tweakable variant of the HCTR construction, called THCTR,
that uses tweakable block cipher as a primitive instead of a block cipher in the HCTR
construction. It has been shown that THCTR achieves security in the order of µq/2n,
where µ represents the maximum number of tweak repetition in encryption and decryption
queries. The security bound of THCTR indicates that the construction achieves n-bit
tweakable sprp security, if tweaks are distinct in each query, and it degrades gracefully
as the maximum number of repeated tweaks increases. In [BLN18], Bhaumik et al. have
proposed a tweakable block cipher based wide block cipher mode, called ZCZ and showed
that it achieves n-bit security. ZCZ follows the ZHash-Counter-ZHash structure, where
ZHash is a 2n-bit tweakable block cipher based hash function used in ZMAC [IMPS17]
construction. Moreover, ZCZ uses tweakable block ciphers, where tweak-size should be
more than the block-size, and offers optimal properties in terms of both performance and
security. It requires only 3ℓ/2 calls (which is optimal) to the primitive for processing ℓ-block
messages and provides n-bit security for a primitive with an n-bit state and tweak size.
However, this construction does not support arbitrary-length tweaks as input. Recently,
Dobraunig et al. [DMMT24] have proposed a beyond birthday bound secure block cipher
based tweakable enciphering scheme, called bbb-ddd-AES, which is a specific instantiation of
Docked-Double-Decker construction with AES as its underlying block cipher. In particular,
authors have shown that bbb-ddd-AES is secured up to 22n/3 queries, provided the same
tweak is not used too often.

1.3 Designing Accordion Modes
It is evident from the last discussion that during the last two decades, the symmetric-
key community have proposed a considerable corpus of tweakable enciphering schemes.
To standardize construction, recently NIST has initiated a call for standardizing length
preserving tweakable variable-input-length strong pseudorandom permutation (equivalently
tweakable enciphering scheme), that they call as Accordion mode. The term accordion
signifies that the mode would act as a cipher, not only on a single block but on a range
of input sizes and should support arbitrary length tweaks. It is desirable that a well-
designed accordion mode could potentially provide significant advantages over most of
the block cipher modes that NIST currently approves and specified in the SP 800-38
series. As reported in the call that an accordion mode should easily be extended to design
authenticated encryption (with associated data) schemes, tweakable encryption schemes,
deterministic authenticated encryption schemes etc. Moreover, an accordion mode should
also provide multi-user security, beyond the birthday bound security, key and context
commitment, key-dependent input security, and nonce-hiding security.
To cater the need of the NIST requirement on the design of accordion mode, researchers
have started to submit various design proposals on accordion modes. Amongst the new
designs, Lee [Lee24] presented a beyond birthday bound secure variant of the HCTR
construction, called Double-block HCTR (DbHCTR). It uses a 2n-bit state in the HCTR
construction, where a fixed-length (2n-bit) beyond birthday bound secure SPRP construc-
tion CTET+ [CEL+21] is combined with the masked counter mode. The construction
employs a 2n-bit hash function, which is essentially the concatenation of two independent
n-bit polynomial hashes. It requires one block cipher call and four field multiplications
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per block and supports arbitrary length tweaks. Duy et al. [DFUB24] have proposed two
accordion modes based on Hash-Encrypt-Hash paradigm, called ACCOR-S and ACCOR-L.
The authors have proved that ACCOR-S achieves a security bound in the order of q2a2/2129,
whereas ACCOR-L achieves a security bound in the order of qaℓctr/2n, where a denotes
the total number of blocks (including message and tweak), and ℓctr denotes the number of
message blocks processed in the counter mode of encryption. 3 Both of these two construc-
tions require ℓ block cipher calls along with two universal hash function evaluations, where
ℓ denotes the total number of message blocks. Naito et al. [NSS24] have proposed a wide
block encryption mode, called FFF construction that achieves context committing security.

1.4 Accordion Mode with Optimal Security: Motivation

As mentioned in the NIST requirements, the accordion modes are supposed to work in
high-end applications where security is the primary concern. As we typically work on
128-bit blocks, security beyond the birthday bound is highly desired. Till now, none of
the tweakable enciphering schemes has achieved n-bit security, when n is the output size
of the primitive 4. An accordion mode that accepts variable-length tweaks and provides
optimal security can be used to build cryptographic tools that can be used in different
applications demanding stronger security. For example, one can design an optimally
secure misuse-resistant authenticated encryption (MRAE) scheme using an accordion
mode, where one considers the (nonce, associated data) pair as the tweak and encrypts
the padded message (message padded with a 10∗ block) using an accordion mode. If the
underlying accordion mode provides optimal security (even with repeated tweaks), the
resulting construction provides optimal MRAE security. We emphasize that having an
accordion mode with optimal security for repeated tweaks is crucial because, in the verified
decryption algorithm of an AE scheme, the nonce and associated data (i.e., the tweak in
the underlying accordion mode) can be repeated any number of times. Moreover such
an MRAE scheme, by definition, will provide RUP security. Thus, an optimally secure
accordion mode is extremely useful in building AEAD constructions targeting applications
in the depth-in-defence category. In addition, one can also trivially design a deterministic
authenticated encryption (DAE) by setting the tweak as empty and encrypting a message
padded with one 10∗ block using the accordion mode. Such a DAE scheme can be used as a
key-wrapping algorithm. Another possible application is to design optimally secure nonce-
hiding AEAD schemes by considering the associated data as the tweak and encrypting
a padded message (message followed by a 10⋆ block) containing the nonce. In addition,
an AEAD from a carefully constructed accordion mode should achieve additional security
such as key or context-committing security, multi-user security, and key-dependent input
security. The above discussion motivates us to design an efficient accordion mode with
n-bit security that should provide n-bit security even with tweak repetitions.

Therefore, to summarize, all the existing beyond the birthday bound secure tweakable
enciphering schemes either fall off from full n-bit security or achieve security that
degrades gracefully with tweak repetition.

The above summary immediately raises the question whether we can have a tweakable
enciphering scheme that provides full n-bit security even in the presence of arbitrary
tweak repetition.

3We would like to mention that authors proved the security bound of the construction assuming the
underlying block cipher is related-key secure, which is a stronger proof model than the standard one.

4THCTR provides n-bit security under the constraint that all the tweaks must be distinct.
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1.5 Our Contribution

This paper introduces HCTR+, a single-keyed, n-bit secure accordion mode derived from
an n-bit tweakable block cipher with n-bit tweak. At a high level, the construction is a
variant of the HCTR construction, where the underlying n-bit keyed almost-xor-universal
hash functions are replaced by 2n-bit keyed almost-xor-universal hash function. The
block cipher (a.k.a sprp) in the left-hand side of the HCTR construction is replaced by a
three-round TBC-based Luby Rackoff construction, dubbed as TLR3 [CDMS10], and the
counter mode encryption is replaced by a tweakable counter mode encryption C̃TRT, where
the underlying block cipher of the counter mode is replaced by tweakable block cipher,
and the counter is fed in as a tweak in the TBC. C̃TRT is almost identical to the CTRT
construction [PS16] and the IVCTRT construction [LN17] except that the tweak space for
the tweakable block cipher used in both the constructions (CTRT and IVCTRT) contain
an indicator i ∈ N used for domain separation. Note that, our proposed construction
belongs to the Hash-Counter-Hash paradigm. The core idea to ensure n-bit security from
Hash-Counter-Hash type design is to use an n-bit secure strong pseudorandom permutation
on the left side of the construction, and an n-bit secure variable input length pseudorandom
function on the right. The sprp guarantee in HCTR+ has been realized through the TLR3
construction and the n-bit variable input length pseudorandom function has been realized
through C̃TRT construction. To instantiate our mode, we propose two hash functions
PHASH+ and ZHASH+ which can be seen as a simple variant of the PMAC2x [LN17] and
ZMAC [IMPS17] constructions respectively. We have shown that both the hash function
achieves O(2−2n)-almost-xor-universal security. Finally, we instantiate our construction
HCTR+ using the above two hash functions, and Deoxys-BC-128-128 [JNPS16] as the
underlying tweakable block cipher. The resulting two constructions, dubbed as PHCTR+
and ZHCTR+, demonstrate excellent software performance, as shown in Table 2. The
results indicate that our constructions achieve three times improvement in cycles per byte
(CPB) over the ZCZ construction, the only existing n-bit secure sprp construction with no
tweak. We compare our proposed constructions PHCTR+ and ZHCTR+ with the existing
beyond the birthday bound secure tweakable enciphering schemes in terms of the number
of primitive calls, security, number of operations per block, number of keys required and
the presence of tweak in Table 1.

Table 1: Comparative Study of Beyond the Birthday Bound Secure Tweakable Enciphering
Scheme. TBC denotes Tweakable Block Cipher, BC denotes Block Cipher, and FM denotes
Field Multiplication. We use ℓ and τ to denote the message and tweak length respectively
(in blocks). The † symbol indicates that the security degrades gracefully with maximum
repetition of tweaks. Security is mentioned in terms of the number of bits.

Construction Primitive Security # Ops per Block # of Keys Tweak
LargeBlock [MI11] TBC n 1 TBC + 4 FM ℓ + 2 ×

TCT2 [ST13] BC 2n/3 4 TBC ℓ + τ + 19 ✓
THCTR [DN18] TBC n † 1 TBC + 2 FM 3 ✓

bbb-ddd-AES [DMMT24] BC 2n/3 † 2 BC + 2 FM 3 ✓
Db-HCTR [Lee24] BC 2n/3 1 BC + 4 FM 3 ✓

ZCZ [BLN18] TBC n 1.5 TBC 1 ×
ZHCTR+ [Ours] TBC n 3 TBC 1 ✓
PHCTR+ [Ours] TBC n 3 TBC 1 ✓
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Effect of Arbitrary Tweak Repetition. As we mentioned earlier a tweakable enciphering
scheme can be easily turned into an (n)AE scheme by incorporating the nonce and associated
data into the tweak. Now, if a tweakable enciphering scheme achieves full n-bit security
even in the arbitrary tweak repetition scenario, then it implies that the corresponding AE
scheme achieves full n-bit misuse-resistant security. On the other hand, a few tweakable
enciphering schemes achieve n-bit security in graceful setting [DN18,DMMT24], where
the security linearly degrades with the tweak repetition. Such a scheme cannot be easily
adapted to an AE scheme, because the security model of the tweakable enciphering scheme
restricts the adversary to make a limited number of decryption queries with the same
tweak. As a result, the adversary for the corresponding AE scheme also cannot repeat
nonces in the decryption queries - a scenario which is not practical at all.

Discussion: NIST mandates that Accordion mode should build upon AES block ciphers,
it has several reasons for that: (i) it will primarily be used in powerful processors and cloud
environments, where AES hardware acceleration is advantageous; and (ii) the mode must
provide significant parallelism for large input sizes, a feature supported by modern CPUs,
which can execute multiple AES instructions in parallel. Although our proposals are based
on tweakable block cipher (instead of a block cipher), we have instantiated the tweakable
block cipher with Deoxys-128-128 in our two construction ZHCTR+ and PHCTR+, which
leverages the AES round functions. This ensures users benefit from the key advantages of
AES, namely the ability to exploit AES instruction sets available in modern hardware and
achieve substantial parallelism for large inputs, allowing modern CPUs to handle multiple
AES operations simultaneously.

Organization: Sect. 2 is comprised of all notations, security definitions, and some useful
results. In Sect. 3, we provide a formal specification of our design HCTR+, justifying its
design rationale and presenting the main security result demonstrating that the construction
achieves optimal security. We provide the proof of our security result in Sect. 4. We
have instantiated our construction with PHASH+ and ZHASH+ and provide concrete
security results for the resulting constructions PHCTR+ and ZHCTR+ in Sect. 5. Finally,
in Sect. 7, we discuss the implementation of the PHCTR+ and ZHCTR+ and provide
detailed software performance results that justify the efficiency of our proposed mode.

2 Preliminaries
Notation. For a set X , X ←$ X denotes that X is sampled uniformly at random from X .
We write X ← Y to denote that Y is assigned in variable X. We denote an empty set as
∅. We say two sets X and Y are disjoint if X ∩ Y = ∅ and we denote their union as X ⊔ Y
(which we refer to as disjoint union). For any natural number n, {0, 1}n denotes the set
of all bit strings of length n and {0, 1}∗ denotes the set of all binary strings of arbitrary
finite length. Sometimes, we call an element of {0, 1}n a block.
For X, Y ∈ {0, 1}n, we write X⊕Y to denote the bitwise xor of X and Y . For any element
X ∈ {0, 1}∗, we write |X| to denote the number of bits of X and for any two X, Y ∈ {0, 1}∗,
we write X∥Y to denote the concatenation of X followed by Y . We also represent the
concatenation of two arbitrary strings X, Y as (X, Y ). For any X ∈ {0, 1}∗, we parse X as
X = X1∥X2∥ . . . ∥Xℓ, where each |Xi| = n for 1 ≤ i ≤ ℓ− 1 and 1 ≤ |Xℓ| ≤ n. We denote
it as (X1, X2, . . . , Xℓ)

n←− Parse(X). For a fixed natural number n, we define an injective
function Padn : {0, 1}∗ → {0, 1}∗ as follows:

Padn(X) =
{

X; if |X| is a multiple of n

X∥0n−(|X| mod n); otherwise .
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For any binary string X ∈ {0, 1}∗ such that |X| ≥ n, we write (X1, X2) n←− X to denote
that X1 is the most significant n-bit string of X and X2 is the remaining string of X. For
a sequence of elements X1, X2, . . . , Xs ∈ {0, 1}∗, we write Xi

a to denote the a-th block of
the i-th element Xi.
For any natural number q, [q] denotes the set {1, . . . , q}. For integers 1 ≤ b ≤ a, (a)b denotes
a(a− 1) . . . (a− b + 1), where (a)0 = 1 by convention. For any function Φ : X → {0, 1}2n,
we define Φ1 and Φ2 be two functions from X to {0, 1}n such that for all x ∈ X , Φ[1](x)
denotes the leftmost n bits of the 2n bit output of Φ(x) and Φ[2](x) denotes the rightmost
n bits of the 2n bit output of Φ(x). For a positive non-zero integer i, ⟨i⟩n denotes the
n-bit binary representation of integer i. For any natural number i, we use the notation
Msbi(S) and Lsbi(S) to denote the most significant and the least significant i bits of a
binary string S respectively, such that |S| ≥ i.

2.1 Tweakable Block Cipher
A tweakable block cipher (TBC) is a mapping Ẽ : K × T × X → X , where K is called the
key space, T is called the tweak space and X is the input space, such that for all keys
K ∈ K and for all tweaks T ∈ T , X 7→ Ẽ(K, T, X) is a permutation over X . We denote
with TBC(K, T ,X ) the set of all tweakable block ciphers with key space K, tweak space
T , and message space X .
A tweakable permutation with tweak space T and message space X , is a mapping P̃ :
T × X → X such that for all tweaks T ∈ T , X 7→ P̃(T, X) is a permutation over X . We
write TP(T ,X ) to denote the set of all tweakable permutations with tweak space T and
message space X . We often simulate a tweakable random permutation P̃ with the help
of a table Π[·, ·] which is initialized as empty. For each tweak T ∈ T , we define the set
Rng(Π[T, ·]) as {Y : ∃X, Π[T, X] = Y }. Similarly, for each tweak T ∈ T , we define the set
Dom(Π[T, ·]) as {X : ∃Y, Π[T, X] = Y }.
A tweakable block cipher is required to satisfy that for a uniformly sampled key K, the
tweakable block cipher be indistinguishable from a tweakable permutation chosen at
random from TP(T ,X ). Sometimes we consider the tweak space T as T = D × T ′ where
D is a finite set of natural numbers, called domain-separators which are encoded in d bit
string.

Definition 1 (STPRP security). Let Ẽ : K × T × X → X be a tweakable block cipher
and let A be a deterministic, adaptive adversary. The advantage of A in breaking the
strong tweakable pseudorandom permutation security of Ẽ is defined as

AdvSTPRP
Ẽ

(A)def=
∣∣∣Pr[K ←$ K,AẼK(·,·),̃E−1

K
(·,·) = 1]− Pr[P̃←$ TP(T ,X ),AP̃(·,·),̃P−1(·,·) = 1]

∣∣∣ .

We say that Ẽ is (q, t, ϵ)-secure if the maximum strong tweakable pseudorandom permuta-
tion advantage of Ẽ is ϵ where the maximum is taken over all distinguishers A that makes
q queries to its oracle and runs time at most t. For a tweakable block cipher, one typically
consider X to be {0, 1}n, the set of all n-bit binary strings. This paper considers the tweak
space T and the input space X to be the set of all n-bit binary strings.

Tweakable Enciphering Scheme: If the tweak size and the input size of Ẽ is of variable
length, then we call Ẽ to be a length preserving tweakable enciphering scheme. In that
case, the resources of the adversary A are not only limited to the number of queries but
also depend on the maximum message length queried to the cipher. By an “(q, ℓmax, t)
chosen-plaintext chosen-ciphertext adversary A against the stprp security of some tweakable
enciphering scheme C”, we mean that A makes q queries such that the maximum message
length of each query is ℓmax with maximum running time is at most t.
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2.2 Almost XOR Universal Hash Function
Let H : Kh×X → {0, 1}n be an n-bit keyed hash function. We call H to be an ϵ-almost-xor
universal keyed hash function, if for every X ̸= X ′, and for every Y ∈ {0, 1}n, we have

Pr[Kh ←$ Kh : HKh
(X)⊕ HKh

(X ′) = Y ] ≤ ϵ.

2.3 H-Coefficients Technique
H-Coefficient Technique, introduced by Patarin [Pat08], provides a “systematic” way to
upper bound the statistical distance between the answers of two interactive systems and
is typically used to prove the information-theoretic pseudo randomness of constructions.
Let A be a computationally unbounded deterministic distinguisher that interacts with
either the real oracle, i.e., the construction of our interest, or the ideal oracle which is
usually considered to be a uniform random function or permutation. The collection of all
the queries and responses that A made and received to and from the oracle, is called the
transcript of A, denoted as τ . Sometimes, we allow the oracle to release more internal
information to A only after A completes all its queries and responses, but before it outputs
its decision bit. In this case, the transcript of A includes the additional information about
the oracle and clearly the maximum distinguishing advantage of A in this setting can
not be less than that of without additional information. Observe that the transcript τ
is a random variable and the randomness of the distribution of τ only comes from the
randomness of the oracle with which A interacts.
Let Xre denote the random variable that takes a transcript τ realized in the real world.
Similarly, Xid denotes the random variable that takes a transcript τ realized in the ideal
world. The probability of realizing a transcript τ in the ideal (resp. real) world is called
ideal (resp. real) interpolation probability. A transcript τ is said to be attainable with
respect to a distinguisher D, if its ideal interpolation probability is non-zero. Let Θ denote
the set of all attainable transcripts. Following these notations, we state the main theorem
of the H-Coefficient technique as follows:

Theorem 1 (H-Coefficient). Let A be a fixed deterministic distinguisher that has access
to either the real oracle Ore or the ideal oracle Oid. Let Θ = Θgood ⊔Θbad be some partition
of the set of attainable transcripts Θ. For any good attainable transcript τ ∈ Θgood, let

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− ϵgood,

for some ϵgood ≥ 0, and there exists ϵbad ≥ 0 such that Pr[Xid ∈ Θbad] ≤ ϵbad holds. Then,

AdvOid
Ore

(A) := |Pr[AOre = 1]− Pr[AOid = 1]| ≤ ϵgood + ϵbad.

3 Specification and Security Result of HCTR+
In [WFW05], Wang et al. have proposed HCTR, which is a mode of operation that
turns an n-bit strong pseudorandom permutation into a tweakable strong pseudorandom
permutation, supporting arbitrary and variable length input and tweak which is no less
than n bits. For any message M ∈ {0, 1}∗ and a tweak T ∈ {0, 1}∗ such that |M | ≥ n,
HCTR works as follows: it first parses the message M into two parts M1 and MR, where
M1 is the first n bits of M and MR is the remaining bit string of M . Then, it applies an
n-bit keyed hash function H on the string MR∥T and xor its n-bit output value with the
first message block M1 to produce an intermediate value X which is encrypted through an
n-bit block cipher E. The output of the block cipher Y is xor-ed with X to produce an
initialization value IV . This initialization value which acts as a counter in the block cipher
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based counter mode encryption to produce nℓ bits keystream, where ℓ is the number of
message blocks of MR. Then the first |MR| bits of nℓ bits keystream is blinded with the
corresponding message MR to produce a ciphertext CR of length |MR|. Finally, the same
keyed hash function H is applied on CR∥T and xor its output with Y to produce the first
ciphertext block C1. Wang et al. [WFW05] have shown that HCTR achieves σ3/2n security
bound, where σ denotes the total number of message blocks queried to the construction
across all encryption and decryption queries. Later in [CN08a], Chakraborty and Nandi
have improved its security bound from σ3/2n to σ2/2n.

3.1 Specification of HCTR+
HCTR+ is a single-keyed tweakable and double-block variant of the HCTR construction.
For any message M ∈ {0, 1}∗ and a tweak T ∈ {0, 1}∗ such that |M | ≥ 2n, HCTR+ works
as follows: it first derives five tweakable block cipher keys K1, . . . , K5 as shown below:

Ki ← ẼK(10n−1, ⟨i⟩n), 1 ≤ i ≤ 5.

Then, it parses the message M into two parts M1∥M2 and MR, where M1∥M2 is the first
2n bits of M and MR is the remaining bit string of M . Then, it applies an 2n-bit keyed
hash function H on the string MR∥T and xor its 2n-bit output value with the first two
message blocks M1∥M2 to produce a 2n-bit intermediate value (U1, U2). Then, we feed
this pair of n-bit strings (U1, U2) to the three round TBC based Luby Rackoff construction,
called TLR3, which was proposed by Coron et al. [CDMS10] and shown its SPRP security
up to 2n queries, where n denotes the output length of the TBC. Let the output of TLR3 be
(V1, V2). We tap two intermediate n-bit values of the construction U2 and V2, as shown in
Fig. 2, and take their xor to derive the value W which is used as an input in a TBC based
counter mode of encryption. On the other hand, Z is used as a tweak in the underlying
TBC of the counter mode encryption. We would like to mention that every time a message
is processed, its tweaks are incremented at every call of the TBC, however, the input value
of the TBC W remains fixed throughout the message processing part. Let ℓ denotes the
number of message blocks of the message M . Now the output of the TBC based counter
mode encryption is an n(ℓ− 2)-bit string. The most significant |MR| bits of n(ℓ− 2) bits
keystream is masked with MR to produce the ciphertext CR of length |MR|. Finally, the
same 2n-bit keyed hash function is applied on CR∥T and xor its output with (V1, V2) to
produce 2n-bit ciphertext C1∥C2. A schematic diagram of the construction is shown in
Fig. 2.
As can be seen from the algorithm in Fig. 1, there are primarily three building blocks used
in the construction; a 2n-bit keyed almost-xor-universal hash function H, an n-bit tweakable
block cipher with n-bit tweak and a tweakable block cipher based counter mode encryption.
Given an n-bit binary string Z, we define a sequence Z̃ = (Z ⊕ ⟨1⟩n, . . . , Z ⊕ ⟨ℓ − 2⟩n),
where ℓ = ⌈|M |/n⌉. Given such a sequence Z̃, a key K, and an n-bit input W , we define
the tweakable block cipher based counter mode encryption as follows:

C̃TRT[ẼK ](Z̃, W, l) def= ∥ℓ−2
i=1

(
ẼK(Z ⊕ ⟨i⟩n, W )

)
.

3.2 Security Result of HCTR+
In this section, we state the security result of HCTR+. In specific, we state that if Ẽ is an
(n, n) tweakable block cipher, H = (H[1], H[2]) is an ϵ-axu 2n-bit keyed hash function such
that each H[i] is an ϵi-axu n-bit keyed hash function, then HCTR+ is a secure tweakable
enciphering scheme against all chosen plaintext and chosen ciphertext adaptive adversaries
that make roughly 2n many encryption and decryption queries. Formally, the following
result bounds the tweakable sprp advantage of HCTR+.
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HCTR+.Enc(K, T, M)

1. ((M1∥M2), MR) 2n←−M ;

2. for i = 1 to 5

3. Ki ← ẼK(10n−1, ⟨i⟩n);

4. U1∥U2 ← (M1∥M2)⊕ HK5(MR∥T );

5. Z ← ẼK1(U2, U1); V2 ← ẼK2(Z, U2);

6. V1 ← ẼK3(V2, Z); W ← U2 ⊕ V2;

7. for i = 1 to ⌈|MR|/n⌉

8. Si ← ẼK4(Z ⊕ ⟨i⟩n, W ) ;

9. S ← S1∥ · · · ∥S⌈|MR|/n⌉;

10. CR ← Msb|MR|(S)⊕MR;

11. (C1, C2)← (V1, V2)⊕ HK5(CR∥T );

12. return (C1∥C2∥CR);

HCTR+.Dec(K, T, C)

1. ((C1∥C2), CR) 2n←− C;

2. for i = 1 to 5

3. Ki ← ẼK(10n−1, ⟨i⟩n);

4. V1∥V2 ← (C1∥C2)⊕ HK5(CR∥T );

5. Z ← Ẽ−1
K3

(V2, V1); U2 ← Ẽ−1
K2

(Z, V2);

6. U1 ← Ẽ−1
K1

(U2, Z); W ← U2 ⊕ V2;

7. for i = 1 to ⌈|CR|/n⌉

8. Si ← ẼK4(Z ⊕ ⟨i⟩n, W );

9. S ← S1∥ · · · ∥S⌈|CR|/n⌉;

10. MR ← Msb|CR|(S)⊕ CR;

11. (M1, M2)← (U1, U2)⊕ HK5(MR∥T );

12. return (M1∥M2∥MR);

Figure 1: HCTR+ construction based on an n-bit tweakable block cipher Ẽ with n-bit
tweak and an 2n-bit keyed hash function H. (Left): Encryption algorithm of HCTR+ and
(Right): Decryption algorithm of HCTR+

Theorem 2. Let K be a non-empty finite set. Let Ẽ : K × {0, 1}n × {0, 1}n → {0, 1}n be
an (n, n) tweakable block cipher. Let H : {0, 1}n×{0, 1}∗ → {0, 1}2n be a 2n-bit keyed hash
function such that H is an ϵ-almost-xor-universal 2n-bit keyed hash function and each H[i],
where H = (H[1], H[2]), is an ϵi-almost-xor universal n-bit keyed hash function. Then, for
any (q, ℓmax, t)-chosen plaintext chosen ciphertext adaptive adversary A against the stprp
security of HCTR+[Ẽ, H] such that each query is of length at least 2n bits, there exists a
(σ, t′)-chosen plaintext chosen ciphertext adversary A′ against the stprp security of Ẽ, such
that

AdvSTPRP
HCTR+[̃E,H]

(A) ≤ 5AdvSTPRP
Ẽ

(A′) + q2ϵ + q2ϵ2

2n
+ 4q2ℓmax

22n
+ q2

22n
+ 10

2n
,

where σ is the total number of message blocks queried, and t′ = O(t+σ + qtH), tH denotes
the time for computing the hash function H.

3.3 Design Rationale of HCTR+
The motivation of our construction is to ensure that we should achieve n-bit tweakable
sprp security and unlike [DN18], the security bound should not depend on repetition of the
tweak. In order to do this, we need an n-bit secure strong pseudorandom permutation on
the left side of the construction and an n-bit secure variable output length pseudorandom
function on the right side of the construction. We use three round TBC based Luby
Rackoff construction TLR3 on the left side of the construction and a TBC based counter
mode of encryption C̃TRT on the right side of the construction.
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ẼK1

M1

ẼK3

C1

Z

U1

V1

M2

ẼK2

C2

U2

V2

HK5

C̃TRTK4
Z

W

HK5

MR

CR

T

Figure 2: Schematic representation of HCTR+ construction. HK5 is a 2n-bit keyed hash
function, Ẽ is an n-bit tweakable block cipher with n-bit tweak and C̃TRT is a tweakable
block cipher based counter mode encryption, where the tweak of the underlying TBC is
incremented in every call of the primitive.

It has been shown [CDMS10] that three round TBC based Luby Rackoff construction
TLR3 is n-bit secure tweakable sprp. Although, TLR3 ensures optimal tweakable strong
pseudorandom permutation security, we need to generate 2n bit random values from the
TLR3 construction. We choose the output of the first TBC call of the TLR3 construction
as a tweak and the xor of the input and the output of the second TBC call of the TLR3
construction as an input to the C̃TRT construction. Since, the input size of TLR3 is 2n
bits, we use 2n bit keyed hash function that hashes the rest of the message MR along with
the tweak T . The 2n bit output of the hash is blinded with the first two message blocks
(M1, M2) to generate the input of TLR3. Note that, we are not externally providing tweaks
to the underlying TBC of the TLR3 construction. Instead, the intermediate n-bit states
of the construction are served as tweak. Moreover, we tap two such intermediate n-bit
states Z and W = (U2 ⊕ V2) that is fed to the C̃TRT construction, where (Z ⊕ ⟨1⟩n, Z ⊕
⟨2⟩n, . . . , Z ⊕ ⟨ℓ− 2⟩n) are used as tweak for the underlying TBC of C̃TRT and W is used
as the input of the TBC. We would like to emphasize that in C̃TRT mode, the counter
has been used in the tweak part of the underlying TBC instead of incrementing the input
value W at every call of the TBC. This role swap is necessary due to the single query
distinguishing attack on the THCTR construction demonstrated in two independent works
by Andreeva et al. [ABPV21] and by Khairallah [Kha24].

4 Proof of Theorem 2
Let A be a (q, ℓmax, t) distinguisher against the strong tweakable pseudorandom permuta-
tion security of HCTR+[Ẽ, H]. We consider another construction R-HCTR+ that is identical
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to the HCTR+ construction, the only difference is that the key derivation step of HCTR+
construction is replaced by uniform random sampling of five n-bit keys. Thus, by following
the PRP-PRF switching lemma [CN08b], we have

AdvSTPRP
HCTR+[̃E,H]

(A) ≤ AdvTPRP
Ẽ

(A) + AdvSTPRP
R-HCTR+[̃E,H]

(A) + 10
2n

.

Thus, it is enough to bound the stprp advantage of the R-HCTR+ construction. Initially,
we replace the four independently keyed tweakable block ciphers ẼK1 , ẼK2 , ẼK3 , and ẼK4

with four independently sampled tweakable random permutations P̃ := (P̃1, P̃2, P̃3, P̃4) at
the cost of the strong tweakable pseudorandom permutation advantage of the underlying
TBC. Therefore, we have

AdvSTPRP
R-HCTR+[̃E,H]

(A) ≤ 4AdvSTPRP
Ẽ

(A) + AdvSTPRP
R-HCTR+∗ [̃P,H]

(A)︸ ︷︷ ︸
δ

From now onwards, we omit P̃ and H from the notation R-HCTR+∗[P̃, H] and simply write
R-HCTR+∗ whenever they are understood from the context. Now, our goal is to upper
bound δ. Note that, we have

δ ≤ max
A

∣∣∣Pr[AR-HCTR+∗,(R-HCTR+∗)−1
= 1]− Pr[APP,PP−1

= 1]
∣∣∣ ,

where the first probability is taken over the randomness of P̃i ←$ TP({0, 1}n, {0, 1}n)
for i ∈ [4] and the second probability is computed over the randomness of PP ←$

TP({0, 1}∗, {0, 1}∗). Moreover, the maximum is taken over non-trivial adversaries5. Hence,
δ can not be larger than the advantage of the best non-trivial adversary between the two
world (R-HCTR+∗, (R-HCTR+∗)−1) and (PP, (PP)−1). This formulation allows us to apply
the H-Coefficient Technique [Pat08].

4.1 Extended Query Transcript
We fix a non-trivial distinguisher A and assume that A is computationally unbounded
and hence without loss of generality a deterministic distinguisher. A interacts either with
the real world (R-HCTR+∗, (R-HCTR+∗)−1) or with the ideal world (PP, (PP)−1). In the
online phase of the interaction, A obtains either C = R-HCTR+∗(T, M) in the real world
or PP(T, M) corresponding to the encryption query (T, M), where M = M1∥M2∥MR

and C = C1∥C2∥CR. Similarly, it will get M = (R-HCTR+∗)−1(T, C) or (PP)−1(T, C)
corresponding to the decryption query (T, C).

4.1.1 Releasing Additional Informations

After the interaction is over, but before outputting the decision bit, the distinguisher
is provided the hash key K5. In the real world, K5 is the actual hash key used in the
construction, whereas in the ideal world a dummy hash key K5 is sampled uniformly and
independently from the hash key space {0, 1}n. This enables the adversary to compute
the pair of tuples (U i

1, U i
2) and (V i

1 , V i
2 ), where

(U i
1, U i

2) = HK5(T i, M i
R)⊕ (M i

1, M i
2), (V i

1 , V i
2 ) = HK5(T i, Ci

R)⊕ (Ci
1, Ci

2).

The distinguisher is also provided with intermediate variables as an additional information.
In the real world, the distinguisher is provided with the pair of tuples (Z1, Z2, . . . , Zq) and
(W 1, W 2, . . . , W q), which have been generated in the construction R-HCTR+∗. However,

5A non-trivial adversary is one who does not repeat queries.
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in the ideal world, these additional information are required to be generated. We sample
these pair of q tuples (Z1, Z2, . . . , Zq) in the ideal world using a sampler S whose objective
would be to sample these pair of tuples in such a way so that it becomes close to the
distribution of the the tuple (Z1, Z2, . . . , Zq) generated in the real world. On the other
hand, the tuple (W 1, W 2, . . . , W q) is generated in the ideal world as W i = U i

2 ⊕ V i
2 for all

i ∈ [q]. To carry out the sampling, S will simulate the tweakable random permutations
P̃1 and P̃−1

3 used in the real construction with the help of the following tables Π1[·, ·] and
Π−1

3 [·, ·]. In other words, P̃1 will be simulated using the table Π1[·, ·] and P̃−1
3 will be

simulated using the table Π−1
3 [·, ·]. The tables are initialized as empty. The sampler S

runs as follows.

For i-th encryption query,

• Checks if Π1[U i
2, U i

1] has already been set. If it has not been set, S samples
Zi as follows:

Zi := Π1[U i
2, U i

1]←$ {0, 1}n \ Rng(Π1[U i
2, ·])

and set Zi ← Π1[U i
2, U i

1].

For i-th decryption query,

• Checks if Π−1
3 [V i

2 , V i
1 ] has already been set. If it has not been set, S samples

Zi as follows:

Zi := Π−1
3 [V i

2 , V i
1 ]←$ {0, 1}n \ Rng(Π−1

3 [V i
2 , ·])

and set Zi ← Π−1
3 [V i

2 , V i
1 ].

The adversary is provided these intermediate variables Zi, W i for all i ∈ [q]. Note that,
these additional informations do not degrade the advantage of the adversary as it is always
possible to discard them. Therefore, after releasing the additional informations, the overall
attack transcript is τ = (τ ′, K5), where

τ ′ =
(

(T 1, M1, C1, Z1, W 1), . . . , (T q, Mq, Cq, Zq, W q)
)

.

4.2 Defining and Bounding Bad Transcripts
Let [qen] (resp. [qde]) be the set of encryption (resp. decryption) queries and q denotes the
total number of queries, i.e., q = qen + qde. Let Θ be the set of all transcripts τ such that
the probability of realizing it in the ideal world is non-zero. We begin with defining the
bad transcripts and bound their probability in the ideal world. We would like to note that
the underlying principle for identifying the bad events is

non-trivial collisions in the tweak-input or tweak-output pairs for any call to the
tweakable permutations of the construction.

Definition 2. An attainable transcript τ = (τ ′, K5) is bad, if there exist two queries i
and j (w.l.o.g j < i), such that either of the following holds:

1. Bad1: For any i ̸= j ∈ [q], such that HK5(M i
R, T i) = HK5(M j

R, T j).

2. Bad2: For any i ̸= j ∈ [q], such that HK5(Ci
R, T i) = HK5(Cj

R, T j).
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3. Bad3: For i ∈ [qde], j ∈ [q] and i ̸= j such that Zi = Zj , M i
2 ⊕ HK5 [2](M i

R, T i) =
M j

2 ⊕ HK5 [2](M j
R, T j).

4. Bad4: For i ∈ [qen], j ∈ [q] and i ̸= j such that Zi = Zj , Ci
2 ⊕ HK5 [2](Ci

R, T i) =
Cj

2 ⊕ HK5 [2](Cj
R, T j).

5. Bad5: For any i ≠ j ∈ [q] and α ∈ [ℓi − 2], β ∈ [ℓj − 2], such that Zi ⊕ ⟨α⟩n =
Zj ⊕ ⟨β⟩n and W i = W j :

6. Bad6: For any i ≠ j ∈ [q] and α ∈ [ℓi − 2], β ∈ [ℓj − 2], such that Zi ⊕ ⟨α⟩n =
Zj ⊕ ⟨β⟩n and M i

α+2 ⊕ Ci
α+2 = M j

β+2 ⊕ Cj
β+2.

Let Θbad denotes the set of all attainable transcripts τ such that it satisfies one of the
above conditions and the event Bad denotes

Bad :=
6∨

i=1
Badi.

Following Lemma establish an upper bound on the probability of the event Bad holds
under the ideal world distribution.

Lemma 1. Let Xid and the event Bad be defined as above. Then, for any integer q such
that q ≤ 2n−1, one has

ϵbad = Pr[Xid ∈ Θbad] ≤ q2ϵ + q2ϵ2

2n
+ 4q2ℓmax

22n
.

Proof. Recall that Bad := Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4 ∨ Bad5 ∨ Bad6.

Bounding Bad1: For a fixed choice of distinct indices i, j ∈ [q], the probability of the
event Bad1 is boiled down to the following equation:

HK5(T i, M i
R)⊕ HK5(T j , M j

R) = (M i
1 ⊕M j

1 )∥(M i
2 ⊕M j

2 ).

Note that, by definition of the almost-xor-universal of a 2n-bit keyed hash function, the
above event is bounded by ϵ, where ϵ is the almost-xor-universal advantage of the 2n-bit
keyed hash function H. Therefore, by summing over all possible choices of (i, j), we have

Pr[Bad1] ≤ q2ϵ

2 . (1)

Bounding Bad2: We bound this event similar to bounding as Bad1. For a fixed choice of
indices i, j ∈ [q], the probability of the event Bad2 is boiled down to the following equation:

HK5(T i, Ci
R)⊕ HK5(T j , Cj

R) = (Ci
1 ⊕ Cj

1)∥(Ci
2 ⊕ Cj

2).

Note that, by definition of the almost-xor-universal of a 2n-bit keyed hash function, the
above event is bounded by ϵ, where ϵ is the almost-xor-universal advantage of the 2n-bit
keyed hash function H. Therefore, by summing over all possible choices of (i, j), we have

Pr[Bad2] ≤ q2ϵ

2 . (2)

Bounding Bad3|¬Bad2: For a fixed choice of distinct indices i ∈ [qde] and j ∈ [q], the
event M i

2 ⊕ HK5 [2](T i, M i
R) = M j

2 ⊕ HK5 [2](T j , M j
R) is upper bounded by ϵ2, where ϵ2

is the almost-xor-universal advantage of H[2]. Since we have conditioned on ¬Bad2, we
have two cases: (a) if V 2

i = V 2
j , then the event Zi = Zj holds with probability 0. On the

other hand, (b) if V 2
i ̸= V 2

j , then the event Zi = Zj holds with probability 2−n due to the
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sampling of Zi as the i-th query is a decryption query. Therefore, by summing over all
possible choices of (i, j), we have

Pr[Bad3|¬Bad2] ≤ q2ϵ2

2n+1 . (3)

Bounding Bad4|¬Bad1: For a fixed choice of distinct indices i ∈ [qen] and j ∈ [q], the
event Ci

2 ⊕HK5 [2](T i, Ci
R) = Cj

2 ⊕HK5 [2](T j , Cj
R) is upper bounded by ϵ2, where ϵ2 is the

almost-xor-universal advantage of H[2]. Since we have conditioned on ¬Bad1, we have two
cases: (a) if U2

i = U2
j , then the event Zi = Zj holds with probability 0. On the other hand,

(b) if U2
i ̸= U2

j , then the event Zi = Zj holds with probability 2−n due to the sampling
of Zi as the i-th query is an encryption query. Therefore, by summing over all possible
choices of (i, j), we have

Pr[Bad4|¬Bad1] ≤ q2ϵ2

2n+1 . (4)

Bounding Bad5: For a fixed choices of indices i > j ∈ [q], α ∈ [ℓi − 2], β ∈ [ℓj − 2], the
event Zi ⊕ ⟨α⟩n = Zj ⊕ ⟨β⟩n is upper bounded by 1/2n due to randomness of Zi. Now,
the event W i = W j is boiled down to the equation

M i
2⊕HK5 [2](T i, M i

R)⊕Ci
2⊕HK5 [2](T i, Ci

R) = M j
2⊕HK5 [2](T j , M j

R)⊕Cj
2⊕HK5 [2](T j , Cj

R)

Now, the probability of the above event is upper bounded by 1/2n−1 due to the randomness
of Ci

2 (in case i-th query being an encryption query) or due to the randomness of M i
2 (in

case i-th query being a decryption query). Therefore, by summing over all possible choices
of indices i, j, α, β we have

Pr[Bad5] ≤ 2q2ℓmax

22n
. (5)

Bounding Bad6: Similar to bounding the event Bad5, for a fixed choice of indices
i > j ∈ [q], α ∈ [ℓi− 2], β ∈ [ℓj − 2], the event Zi⊕ ⟨α⟩n = Zj ⊕ ⟨β⟩n is upper bounded by
1/2n. The second event, i.e., M i

α+2 ⊕ Ci
α+2 = M j

β+2 ⊕ Cj
β+2 is upper bounded by 1/2n−1,

due to the randomness of Ci
α+2 (in case i-th query being an encryption query) or due to

the randomness of M i
α+2 (in case i-th query being a decryption query). Therefore, by

summing over all possible choices of indices i, j, α, β we have

Pr[Bad6] ≤ 2q2ℓmax

22n
. (6)

The result follows by applying the union bound on the probability of the above events as
stated in Eqn. (1)-Eqn. (6).

4.3 Analysis of Good Transcripts
In this section, we fix a good transcript τ = (τ ′, k5) and we have to lower bound the ratio
of real to ideal interpolation probability. Formally, we have the following lemma.

Lemma 2. Let τ = (τ ′, K5) be a good transcript, where

τ ′ = ((T 1, M1, C1, Z1, W 1), . . . , (T q, Mq, Cq, Zq, W q)).

Then

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− q2

22n︸︷︷︸
ϵgood

.
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Proof. Let τ ∈ Θgood and we have to lower bound the ratio of real and ideal interpolation
probability. To do so, we begin by introducing a few notations required to calculate the
ratio.

• Let Ti be the set of tweaks queried to P̃i, for i = 1, . . . , 4.

• Let T en
i (resp. T de

i ) be the set of distinct tweaks queried to P̃i during
encryption (resp. decryption), for i = 1, . . . , 3.

• Let αT , βT , γT and δT be the number of calls to P̃i with tweak T ∈ Ti for
i = 1, . . . , 4 respectively.

• Let αen
T , βen

T , and γen
T (resp. αde

T , βde
T , and γde

T ) be the number of calls to P̃i

with tweak T ∈ Ti during encryption (resp. decryption), for i = 1, . . . , 3
respectively.

• Let L be the number of distinct input lengths to the construction and we
denote those input lengths with ℓ1, ℓ2, . . . , ℓL. Let ℓmin = min{ℓ1, ℓ2, . . . , ℓL}

• Let qi be the number of queries of length ℓi.

• Let ti be the number of distinct tweaks queried to the construction for inputs
of length ℓi and qi,j be the number of calls of j-th tweak for inputs of length
ℓi.

Therefore, it holds that∑
T ∈T1

αT =
∑

T ∈T2

βT =
∑

T ∈T3

γT = q and
∑

T ∈T de
1

αde
T +

∑
T ∈T en

3

γen
T ≤ q. (7)

Without loss of generality, we assume that each ℓi is a multiple of n. Thus, we assume
that each input length ℓi consists of κi blocks, i.e., ℓi = nκi. Moreover, ℓmin ≥ 2n.

4.3.1 Real Interpolation Probability

To compute the real interpolation probability, we would like to note that the hash key
K5 has been sampled uniformly at random from {0, 1}n. Since we consider τ is a good
transcript, there will be no collision in the input or the output to the pair of independent
tweakable random permutations for some fixed tweak queried to it. Thus, to compute the
real interpolation probability for the good transcript τ , we count the number of times each
tweakable random permutation has been invoked for each distinct tweak. Therefore, we
have

Pr[Xre = τ ] = 1
2n
×

∏
T ∈T1

1
(2n)αT

×
∏

T ∈T2

1
(2n)βT

×
∏

T ∈T3

1
(2n)γT

×
∏

T ∈T4

1
(2n)δT

. (8)

4.3.2 Ideal Interpolation Probability

In the ideal world, the ciphertext C = C1∥C2∥CR is the response of the tweakable random
permutation PP of an encryption query M = M1∥M2∥MR. Similarly, M = M1∥M2∥MR

is the response of the tweakable random permutation (PP)−1 of a decryption query
C = C1∥C2∥CR. After the interaction is over, a dummy hash key K5 has been sampled
uniformly at random from {0, 1}n. Finally, the intermediate random variables Z has been
sampled according to the procedures described in Sect. 4.1.1. Thus, the ideal interpolation
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probability for the good transcript τ is

Pr[Xid = τ ] = 1
2n
×

L∏
i=1

ti∏
j=1

1
(2ℓi)qi,j

×
∏

T ∈T en
1

1
(2n)αen

T

×
∏

T ∈T de
3

1
(2n)γde

T

. (9)

4.3.3 Ratio of Real to Ideal Interpolation Probability

By taking ratio of Eqn. (8) to Eqn. (9), we have the following

Pr[Xre = τ ]
Pr[Xid = τ ] =

∏L
i=1

∏ti

j=1(2ℓi)qi,j
×

∏
T ∈T en

1
(2n)αen

T
×

∏
T ∈T de

3
(2n)γde

T∏
T ∈T1

(2n)αT
×

∏
T ∈T2

(2n)βT
×

∏
T ∈T3

(2n)γT
×

∏
T ∈T4

(2n)δT

=
∏L

i=1
∏ti

j=1(2ℓi)qi,j∏
T ∈T de

1
(2n)αde

T
×

∏
T ∈T en

3
(2n)γen

T
×

∏
T ∈T2

(2n)βT
×

∏
T ∈T4

(2n)δT

≥
∏L

i=1
∏ti

j=1(2ℓi)qi,j

22nq ×
∏

T ∈T4
(2n)δT

[using the fact (2n)x ≤ (2n)x and Eqn. 7]

Applying the fact that
∑

T ∈T4
δT ≤ (

∑L
i=1

∑ti

j=1 κi · qi,j)− 2q, we get

Pr[Xre = τ ]
Pr[Xid = τ ] ≥

∏L
i=1

∏ti

j=1(2nκi)qi,j

22nq × (2n)
∑L

i=1

∑ti

j=1
κi·qi,j × 2−2nq

≥
∏L

i=1
∏ti

j=1(2nκi)qi,j

(2n)
∑L

i=1

∑ti

j=1
κi·qi,j

≥
L∏

i=1

ti∏
j=1

qi,j−1∏
r=1

(
1− r

2nκi

)
≥ 1−

L∑
i=1

ti∑
j=1

qi,j−1∑
r=1

r

2nκi

≥ 1−
L∑

i=1

ti∑
j=1

q2
i,j

2nκi
(10)

Since, κmin is the number of blocks contained in ℓmin, where ℓmin ≥ 2n and
∑L

i=1
∑ti

j=1 qi,j ≤
q, following Eqn. (10), we have

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− q2

2nκmin
= 1− q2

22n
.

This concludes the proof of Lemma 2.

Finally, by applying H-Coefficient technique, Lemma 1 and Lemma 2, the result of
Theorem 2 follows.

5 Instantiation of HCTR+
In this section, we propose two single-keyed variable input length tweakble sprp that
achieves optimal security. Our constructions can be seen as an instantiation of our generic
framework HCTR+ by replacing its 2n-bit generic keyed hash function with some concrete
proposals. In the following two sections, we provide a complete description of the two
constructions along with their corresponding security bound.

5.1 PHCTR+: An Optimally Secure WBC
In this section, we propose an optimally secure single keyed variable input length tweak-
able sprp, dubbed as PHCTR+. Our construction is a specific instance of the HCTR+
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construction, where we instantiate the underlying 2n-bit keyed hash function of HCTR+
by PHASH+ function. PHASH+ is structurally almost similar to the PMAC2x [LN16]
construction with a slight difference, explained below.
On input a key Kh, a message D and a tweak T , we first apply an injective encoding
function on T∥D to derive ℓ many blocks B[1], B[2], . . . , B[ℓ]. Then, we process each block
B[i] by evaluating a TBC ẼKh

, as shown in line-4 of Fig. 3, which yields a 2n-bit state
(X, Y ). The leftmost n-bit part of the state is obtained by taking the xor of the output of
the tweakable block cipher evaluated on individual blocks B[i] and the rightmost n-bit
state is obtained by taking a linear combination of the output of the tweakable block
cipher evaluated on individual blocks B[i], i.e.,

X[ℓ] = Z[1]⊕ Z[2]⊕ · · · ⊕ Z[ℓ], Y [ℓ] = 2ℓ−1Z[1]⊕ 2ℓ−2Z[2]⊕ · · · ⊕ Z[ℓ],

where Z[i] denotes the output of the tweakable block cipher evaluated on the block B[i] with
tweak (000∥⟨i⟩n−3). In this regard, we would like to mention that PMAC2x construction
derives Y [ℓ] as follows:

Y [ℓ] = 2ℓZ[1]⊕ 2ℓ−1Z[2]⊕ · · · ⊕ 2Z[ℓ],

whereas we generate Y [ℓ] as

Y [ℓ] = 2ℓ−1Z[1]⊕ 2ℓ−2Z[2]⊕ · · · ⊕ Z[ℓ].

Thus, our construction potentially saves one doubling operation compared to the PMAC2x
construction. Finally, we compute the 2n bit hash output (U, V ), where U is obtained
by evaluating the tweakable block cipher on input X[ℓ] with tweak (010∥Lsbn−3(Yℓ))
and V is obtained by evaluating the tweakable block cipher on input Y [ℓ] with tweak
(011∥Lsbn−3(Xℓ)).
Encoding Function. The encoding function takes a variable length tweak T and a
variable length message D and outputs a string B ∈ ({0, 1}n)+ as follows:

Encode(T, D) := Padn(T ) ∥ Padn(D) ∥ (⟨|T |⟩n/2∥⟨|D|⟩n/2).

Since we have encoded the length information of T and D, it is immediate to see that the
encoding function is injective. An algorithmic description of the encoding function is given
in Fig. 3.
To count the number of tweakable block cipher calls of PHCTR+ construction, let LM

denote the length of the input message M in number of bits to the construction and LT

denotes the length of the tweak T in number of bits to the construction. In each of the
two layers of the hash function, we require ℓ + 2 many tweakable block cipher calls, where

ℓ =
( ⌊

LM − 2n

n

⌋
+

⌊
LT

n

⌋
+ 3

)
.

Therefore, in the PHCTR+ construction, we require a total of

5 + 2(ℓ + 2) + 3 +
⌈

LM − 2n

n

⌉
(11)

tweakable block cipher calls, where five tweakable block cipher calls are required to derive
five keys, three tweakable block cipher calls are required in the left hand side of the
construction and ⌈(LM − 2n)/n⌉ many tweakable block cipher calls are required in counter
mode encryption. Therefore, by plugging-in the value of ℓ in Eqn. (11), the construction
requires a total of

2
( ⌊

LM − 2n

n

⌋
+

⌊
LT

n

⌋ )
+

⌈
LM

n

⌉
+ 18

tweakable block cipher calls.
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PHASH+(Kh, D, T )

1. (X[0], Y [0])← (0n, 0n);

2. (B[1], B[2], . . . , B[ℓ])← Encode(T, D);

3. for i = 1 to ℓ;

4. Z[i]← ẼKh
((000∥⟨i⟩n−3), B[i]);

5. X[i]← X[i− 1]⊕ Z[i];

6. Y [i]← 2Y [i− 1]⊕ Z[i];

7. U ← ẼKh
((010∥Lsbn−3(Y [ℓ]), X[ℓ]);

8. V ← ẼKh
((011∥Lsbn−3(X[ℓ]), Y [ℓ]);

9. return (U, V );

Encode(T, D)

1. Len← ⟨|T |⟩n/2∥⟨|D|⟩n/2

2. B ← Padn(T )∥Padn(D)∥Len;

3. (B[1], B[2], . . . , B[ℓ]) n←− Parse(B);

4. return (B[1], B[2], . . . , B[ℓ]);

PHCTR+(K, M, T )

1. ((M1∥M2), MR) 2n←−M ;

2. for i = 1 to 5

3. Ki ← ẼK(10n−1, ⟨i⟩n);

4. H1∥H2
n←− PHASH+(K5, MR, T );

5. U1 ←M1 ⊕H1; U2 ←M2 ⊕H2;

6. Z ← ẼK1(U2, U1); V2 ← ẼK2(Z, U2);

7. V1 ← ẼK3(V2, Z); W ← U2 ⊕ V2;

8. for i = 1 to ⌈|MR|/n⌉

9. Si ← ẼK4(Z ⊕ ⟨i⟩n, W ) ;

10. S
def= S1∥ . . . ∥S⌈|MR|/n⌉ ;

11. CR ← Msb|MR|(S)⊕MR;

12. H ′
1∥H ′

2
n←− PHASH+(K5, CR, T );

13. C1 ← V1 ⊕H ′
1; C2 ← V2 ⊕H ′

2;

14. return (C1∥C2∥CR);

Figure 3: We describe the hash function PHASH+ in the left hand side of the algorithm
and PHCTR+ construction is described in the right hand side of the algorithm. Encoding
function is described in the lower left of the algorithm.

Remark 1. We would like to mention that the original proposal of the PMAC2x [LN17]
construction was shown to be insecure by Minematsu and Iwata [MI17] by exploiting the
fact that different tweaks were used in processing the last message block based on whether
the message is full or not. Later on, the authors have revised their eprint version of the
paper [LN16] and introduces the always padding restriction on the input message, i.e.,
the input message is always padded with 10∗ irrespective of whether the last message
block is full or partial. This fix removed the flaw of the original design of PMAC2x [LN17]
construction. We would like to mention that we have adopted the revised construction of
PMAC2x [LN16], i.e., we always pad the input message with 10∗, to design PHASH+.

5.2 Security Result of PHCTR+

In this section we state the security result of PHCTR+ construction, which is described
as above. Before that, we state and prove the following result which bounds the almost-
xor-universal advantage of the PHASH+ construction as well as the almost-xor-universal
advantage of each of its n-bit output.

Lemma 3. Let K be a non-empty finite set and Ẽ : K × {0, 1}n × {0, 1}n → {0, 1}n be
a tweakable block cipher. Let PHASH+ be defined as above in Fig. 3. Then, for any two
distinct messages M and M ′ such that the number of message blocks in M and M ′ be ℓ
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and ℓ′ respectively, and for any 2n-bit string ∆, we have

Pr[Kh ←$ K : PHASH+[ẼKh
](M)⊕ ZHASH+[ẼKh

](M ′) = ∆] ≤ 118
(2n − 1)2 + 1

22n

Lemma 4. Let K be a non-empty finite set and Ẽ : K × {0, 1}n × {0, 1}n → {0, 1}n be a
tweakable block cipher. Let U denote the leftmost n-bit output of PHASH+ and V denote
the rightmost n-bit output of PHASH+. Then, for any n-bit string δ, we have

Pr[Kh ←$ K : U⊕U ′ = δ] ≤ 63
2n − 1 + 1

22n
and Pr[Kh ←$ K : V ⊕V ′ = δ] ≤ 63

2n − 1 + 1
22n

.

Proofs of the above two lemmas are deferred to Section 6.1 and Section 6.2 respectively. By
combining Theorem 2, Lemma 3, and Lemma 4, we derive the security bound of PHCTR+
construction as follows:

Theorem 3. Let K be a non-empty finite set. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be an
(n, n) tweakable block cipher. Then, for any (q, ℓmax, t)-chosen plaintext chosen ciphertext
adaptive adversary A against the stprp security of PHCTR+[Ẽ] construction such that each
query is of length at least 2n bits, there exists a (σ, t′)-chosen plaintext chosen ciphertext
adversary A′ against the stprp security of Ẽ, such that

AdvSTPRP
PHCTR+[̃E]

(A) ≤ 5AdvSTPRP
Ẽ

(A′) + 183q2

(2n − 1)2 + 4q2ℓmax

22n
+ q2

22n
+ 10

2n
,

where σ is the total number of message and tweaks blocks queried, t′ = O(t + σ + 2qtH),
and tH is the time for computing PHASH+.

5.3 ZHCTR+: An Optimally Secure WBC
In this section, we propose another optimally secure single keyed variable input length
tweakable sprp, dubbed as ZHCTR+. As before, ZHCTR+ is a specific instance of the
HCTR+ construction, where we instantiate the underlying 2n-bit keyed hash function of
HCTR+ by ZHASH+ function. ZHASH+ is structurally similar to the ZMAC [IMPS17]
construction with some subtle differences between the two designs, explained in Sect. 5.3.
On input a key Kh, a message D and a tweak T , we first apply an injective encoding
function on T∥D to derive ℓ many 2n-bit blocks B[1], B[2], . . . , B[ℓ]. We also derive two
masking values Ll and Lr by evaluating the tweakable block cipher Ẽ on input 0n and
tweak 000∥0n−3 (for generating Ll) and 000∥0n−4∥1 (for generating Lr). Then, we process
each 2n-bit block B[i] as follows: we split B[i] into two n-bit blocks Xl[i] and Xr[i]
and they are masked with Ll and Lr respectively to generate two n-bit values Sl[i] and
Sr[i]. Then, we evaluate a tweakable block cipher Ẽ with input Sl[i] and the tweak is
001∥Lsbn−3(Sr[i]). Let the output be Cl[i], which is masked with Xr[i] to generate Cr[i].
Then we update two running variables U as 2U ⊕Cl[i] and V as V ⊕Cr[i]. We also update
Ll and Lr by doubling its old value. Finally, we compute the 2n bit hash output (Y1, Y2),
where Y1 is obtained by evaluating the tweakable block cipher on input U with tweak
010∥Lsbn−3(V ) and Y2 is obtained by evaluating the tweakable block cipher on input V
with tweak 011∥Lsbn−3(U).
Encoding Function. The encoding function takes a variable length tweak T and a
variable length message D and outputs a string B ∈ ({0, 1}n)+ as follows:

Encode(T, D) := Pad2n(T ) ∥ Pad2n(D) ∥ (⟨|T |⟩n/2∥⟨|D|⟩n/2)∥0n.

We parse the resulting string B into ℓ many 2n-bit blocks. Since, we have encoded the
length information of T and D, it is immediate to see that the encoding function is injective.
An algorithmic description of the encoding function is given in Fig. 4.



22 Optimally Secure TBC Based Accordion Mode

ZHASH+(Kh, D, T )

1. (U, V )← (0n, 0n);

2. Ll ← ẼKh
(000∥0n−3, 0n);

3. Lr ← ẼKh
(000∥0n−4∥1), 0n);

4. (B[1], B[2], . . . , B[ℓ])← Encode(T, D);

5. for i = 1 to ℓ;

6. (Xl[i], Xr[i]) n←− B[i];

7. Sl[i]← Ll ⊕Xl[i], Sr[i]← Lr ⊕Xr[i];

8. Cl[i]← ẼKh
((001∥Lsbn−3(Sr[i])), Sl[i]);

9. Cr[i]← Cl[i]⊕Xr[i];

10. U ← 2U ⊕ Cl[i]; V ← V ⊕ Cr[i];

11. (Ll, Lr)← (2Ll, 2Lr);

12. Y1 ← ẼKh
((010∥Lsbn−3(V )), U);

13. Y2 ← ẼKh
((011∥Lsbn−3(U)), V );

14. return (Y1, Y2);

Encode(T, D)

1. Len← ⟨|T |⟩n/2∥⟨|D|⟩n/2;

2. B ← Pad2n(T )∥Pad2n(D)∥Len∥0n;

3. (B[1], B[2], . . . , B[ℓ]) 2n←− Parse(B);

4. return (B[1], B[2], . . . , B[ℓ]);

ZHCTR+(K, M, T )

1. ((M1∥M2), MR) 2n←−M ;

2. for i = 1 to 5

3. Ki ← ẼK(10n−1, ⟨i⟩n);

4. H1∥H2
n←− ZHASH+(K5, MR, T );

5. U1 ←M1 ⊕H1;

6. U2 ←M2 ⊕H2;

7. Z ← ẼK1(U2, U1);

8. V2 ← ẼK2(Z, U2);

9. V1 ← ẼK3(V2, Z);

10. W ← U2 ⊕ V2;

11. for i = 1 to ⌈|MR|/n⌉

12. Si ← ẼK4(Z ⊕ ⟨i⟩n, W ) ;

13. S
def= S1∥ . . . ∥S⌈|MR|/n⌉ ;

14. CR ← Msb|MR|(S)⊕MR;

15. H ′
1∥H ′

2
n←− ZHASH+(K5, CR, T );

16. C1 ← V1 ⊕H ′
1;

17. C2 ← V2 ⊕H ′
2;

18. return (C1∥C2∥CR);

Figure 4: We describe the hash function ZHASH+ in the left hand side of the algorithm
and ZHCTR+ construction is described in the right hand side of the algorithm. Encoding
function is described in the lower left of the algorithm.

To count the number of tweakable block cipher calls of ZHCTR+ construction, let LM

denote the length of the input message M in number of bits to the construction and LT

denotes the length of the tweak T in number of bits to the construction. In each of the
two layers of the hash function, we require ℓ + 4 many tweakable block cipher calls, where

ℓ ≤
(

(LM − 2n + n) + (LT + n) + n + n

2n

)
= LM + LT + 2n

2n
.

Therefore, in the ZHCTR+ construction, we require a total of

5 + 2(ℓ + 4) + 3 +
⌈

LM − 2n

n

⌉
(12)

tweakable block cipher calls, where five tweakable block cipher calls are required to derive
five keys, three tweakable block cipher calls are required in the left hand side of the



N. Datta, A. Dutta, S. Ghosh, H. Nandi 23

construction and
⌈

LM −2n
n

⌉
many tweakable block cipher calls are required in counter mode

encryption. Therefore, by plugging-in the value of ℓ in Eqn. (12), the construction requires
at most (

LM + LT

n
+

⌈
LM − 2n

n

⌉
+ 18

)
tweakble block cipher calls.

Differences Between ZMAC and ZHASH+ The primary differences between the two
constructions are the following: (i) in ZMAC, after processing ℓ many message blocks
(B[1], B[2], . . . , B[ℓ]), where each B[i] ∈ {0, 1}n+t, the running variables (U, V ) can be
expressed as follows:

U = 2ℓCl[1]⊕ 2ℓ−1Cl[2]⊕ . . .⊕ 2Cl[ℓ]
V = Cr[1]⊕ Cr[2]⊕ . . .⊕ Cr[ℓ]

where B[i] = (Xl[i]∥Xr[i]), Xl[i] ∈ {0, 1}n, Xr[i] ∈ {0, 1}t, and Cr[i] = Msbt(Cl[i])⊕Xr[i] 6.
On the other hand, in ZHASH+, the running variable (U, V ) is expressed as follows:

U = 2ℓ−1Cl[1]⊕ 2ℓ−2Cl[2]⊕ . . .⊕ Cl[ℓ]
V = Cr[1]⊕ Cr[2]⊕ . . .⊕ Cr[ℓ]

where B[i] ∈ {0, 1}2n, Xl[i], Xr[i] ∈ {0, 1}n, and Cr[i] = Cl[i]⊕Xr[i]. Thus, we are saving
one doubling operation in our construction compared to the ZMAC construction. (ii) In
the finalization function of ZMAC, Y1 and Y2 are derived as follows:

Y1 = ẼK(0∥V, U)⊕ ẼK(1∥V, U), Y2 = ẼK(2∥V, U)⊕ ẼK(3∥V, U).

On the other hand, in ZHASH+, we derive Y1 and Y2 as follows:

Y1 = ẼK(010∥Lsbn−3(V ), U), Y2 = ẼK(011∥Lsbn−3(U), V ).

Thus, it saves two TBC calls in the ZHASH+ design. We would like to mention here that
instead of considering (Y1, Y2) as the 2n-bit output of the hash function, we could have
considered (U, V ) as the output of the hash function ZHASH+. But then, as mentioned
in [IMPS17], ZHASH+ cannot be proven to be an almost-xor-universal function. We would
also like to make the following remark here: we could have used U as input and Lsbn−3(V )
as the tweak in deriving both Y1 and Y2 values with appropriate domain separation.
However, as we will show later that such choice would result in 2−n almost-xor-universal
advantage of the ZHASH+ function (please see Remark 2). In the following section, we
bound the almost-xor-universal advantage of the ZHASH+ function.

5.4 Security Result of ZHCTR+
In this section we state the security result of ZHCTR+ construction. Before that, we state
and prove the following result which bounds the almost-xor-universal advantage of the
ZHASH+ construction (in Lemma 5) as well as the almost-xor-universal advantage of each
of its n-bit output (in Lemma 6).

Lemma 5. Let K be a non-empty finite set and Ẽ : K × {0, 1}n × {0, 1}n → {0, 1}n be
a tweakable block cipher. Let ZHASH+ be defined as above in Fig. 4. Then, for any two
distinct messages M and M ′ such that the number of message blocks in M and M ′ be ℓ
and ℓ′ respectively, and for any 2n-bit string ∆, we have

Pr[Kh ←$ K : ZHASH+[ẼKh
](M)⊕ ZHASH+[ẼKh

](M ′) = ∆] ≤ 118
(2n − 1)2 + 1

22n

6We are assuming t ≤ n. If t > n, then Cl[i] is appropriately padded with 10∗
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Lemma 6. Let K be a non-empty finite set and Ẽ : K × {0, 1}n × {0, 1}n → {0, 1}n be a
tweakable block cipher. Let Y1 denote the leftmost n-bit output of ZHASH+ and Y2 denote
the rightmost n-bit output of ZHASH+. Then, for any n-bit string δ, and for b ∈ {1, 2},
we have

Pr[Kh ←$ K : Yb ⊕ Y ′
b = δ] ≤ 63

2n − 1 + 1
22n

.

Proofs of the above two lemmas are deferred to Section 6.3 and Section 6.4 respectively. By
combining Theorem 2, Lemma 5, and Lemma 6, we derive the security bound of ZHCTR+
construction as follows:

Theorem 4. Let K be a non-empty finite set. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be an
(n, n) tweakable block cipher. Then, for any (q, ℓmax, t)-chosen plaintext chosen ciphertext
adaptive adversary A against the stprp security of ZHCTR+[Ẽ] construction such that each
query is of length at least 2n bits, there exists a (σ′, t′)-chosen plaintext chosen ciphertext
adversary A′ against the stprp security of Ẽ, such that

AdvSTPRP
ZHCTR+[̃E]

(A) ≤ 5AdvSTPRP
Ẽ

(A) + 183q2

(2n − 1)2 + 4q2ℓmax

22n
+ q2

22n
+ 10

2n
, (13)

where σ is the total number of message and tweaks blocks queried, t′ = O(t + σ + 2qtH),
and tH is the time for computing ZHASH+.

6 Proofs of AXU advantages for PHASH+ and ZHASH+
In this section, we will prove Lemma 3, Lemma 4, Lemma 5 and Lemma 6, which establish
bounds on the AXU advantages of PHASH+ and ZHASH+ as well as the AXU advantages
for each of their n-bit outputs.

6.1 Proof of Lemma 3
Let ∆ be a fixed 2n bit string which is parsed as two n-bit strings ∆1 and ∆2, i.e.,
∆ = ∆1∥∆2, and ∆1, ∆2 ∈ {0, 1}n. Let E denotes the event that the xor of hash output of
PHASH+ on two distinct messages M and M ′ attains the value ∆. i.e.,

Pr[E] = Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2],

where the randomness of the above probability is defined over U, U ′, V , and V ′. From the
description of PHASH+ construction,

U ← ẼKh
(010∥Lsbn−3(Y [ℓ]), X[ℓ]), V ← ẼKh

(011∥Lsbn−3(X[ℓ]), Y [ℓ])

(see line 7 and line 8 of Fig. 3). Since the domain separation string used in the tweak
part of deriving U and V are different, it follows that U and V are two independently
sampled n-bit strings. Let us denote Lsbn−3(X[ℓ]) as X̂[ℓ] and Lsbn−3(Y [ℓ]) as Ŷ [ℓ]. Now,
to bound the probability of the event E holds, we have the following two cases:
Case-I: (X[ℓ] = X ′[ℓ′] and Y [ℓ] = Y ′[ℓ′]). This event implies X̂ℓ = X̂ ′

ℓ and Ŷℓ = Ŷ ′
ℓ

and hence it implies U = U ′ and V = V ′. The analysis mostly follows the analysis
of [LN16, Theorem 1, Case 1]. We revisit to the analysis for the sake of completeness. Note
that, the condition X[ℓ] = X ′[ℓ′] and Y [ℓ] = Y ′[ℓ′] implies the following two equations:{

(Z[1]⊕ Z[2]⊕ · · · ⊕ Z[ℓ])⊕ (Z ′[1]⊕ Z ′[2]⊕ · · · ⊕ Z ′[ℓ′]) = 0n

(2ℓ−1Z[1]⊕ 2ℓ−2Z[2]⊕ · · · ⊕ Z[ℓ])⊕ (2ℓ′−1Z ′[1]⊕ 2ℓ′−2Z ′[2]⊕ · · · ⊕ Z ′[ℓ′]) = 0n.
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Now, if either of the ∆1 or ∆2 is a non-zero n-bit string, then the probability of the event
is zero. Thus, if ∆ = 02n, then we bound the probability of the above system of equations
hold in several cases as follows:
Case-A: Let ℓ = ℓ′ and ∃h ∈ {1, . . . , ℓ} such that B[h] ̸= B′[h] and B[s] = B′[s] for all
s ̸= h. Therefore,

Y [ℓ]⊕ Y ′[ℓ]⇒ 2ℓ−h(Z[h]⊕ Z ′[h]), X[ℓ]⊕X ′[ℓ]⇒ Z[h]⊕ Z ′[h].

To imply that Y [ℓ] = Y ′[ℓ] and X[ℓ] = X ′[ℓ], it must have to be the case that Z[h] = Z ′[h].
But then it means that B[h] = B′[h], which contradicts to the assumption that B[h] ̸= B′

[h].
Therefore, in this case, the probability of the event Y [ℓ] = Y ′[ℓ] and X[ℓ] = X ′[ℓ] is zero.
Case-B: Let ℓ = ℓ′ and ∃h ̸= s ∈ {1, . . . , ℓ} such that B[h] ̸= B′[h] and B[s] ̸= B′[s].
Therefore,

Y [ℓ]⊕ Y ′[ℓ] ⇒ 2ℓ−h(Z[h]⊕ Z ′[h])⊕ 2ℓ−s(Z[s]⊕ Z ′[s])⊕
⊕

i ̸=h,s

2ℓ−i(Z[i]⊕ Z ′[i])︸ ︷︷ ︸
Σ

,

X[ℓ]⊕X ′[ℓ] ⇒ (Z[h]⊕ Z ′[h])⊕ (Z[s]⊕ Z ′[s])⊕
⊕

i̸=h,s

(Z[i]⊕ Z ′[i])︸ ︷︷ ︸
Θ

.

Note that each term of Σ and Θ are independent. Let λh = 2ℓ−h and λs = 2ℓ−s. Then,
Y [ℓ] = Y ′[ℓ], X[ℓ] = X ′[ℓ] implies the following system of equations hold:{

λh∆Z[h]⊕ λs∆Z[s] = Σ
∆Z[h]⊕∆Z[s] = Θ

Note that the above system of equations has rank 2, and hence, it has a unique solution,
namely {

∆Z[h] = (λsΘ⊕ Σ)/(λh ⊕ λs)
∆Z[s] = (λhΘ⊕ Σ)/(λh ⊕ λs)

Note that, since ∆Z[h] and ∆Z[s] for h ̸= s are independently distributed as different
tweaks are employed and they are uniformly distributed over {0, 1}n, it implies that

Pr[∆Y [ℓ] = 0n, ∆X[ℓ] = 0n] ≤ 1
22n

.

Case-C: Let ℓ′ = ℓ + 1. Then, we have

∆Y [ℓ] =
⊕

1≤i≤ℓ

2ℓ−iZ[i]⊕
⊕

1≤i≤ℓ′

2ℓ′−iZ ′[i]

= Z[ℓ]⊕ 2Z ′[ℓ]⊕ Z ′[ℓ + 1]⊕
⊕

i ̸=ℓ,ℓ′

2ℓ−i∆Z[i]

∆X[ℓ] = Z[ℓ]⊕ Z ′[ℓ]⊕ Z ′[ℓ + 1]⊕
⊕

i̸=ℓ,ℓ′

(∆Z[i])

Then (∆X[ℓ], ∆Y [ℓ]) = (0n, 0n) implies the following system of equations hold:{
Z[ℓ]⊕ 2Z ′[ℓ]⊕ Z ′[ℓ + 1] =

⊕
i ̸=ℓ,ℓ′ 2ℓ−i∆Z[i]

Z[ℓ]⊕ Z ′[ℓ]⊕ Z ′[ℓ + 1] =
⊕

i ̸=ℓ,ℓ′(∆Z[i])
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Note that the above system of equations has rank 2, and hence, it has a unique solution.
Moreover, as (Z[ℓ]⊕ Z ′[ℓ + 1]) and Z ′[ℓ] are uniformly distributed over {0, 1}n and they
are independent, it implies that

Pr[∆X[ℓ] = 0n, ∆Y [ℓ] = 0n] ≤ 1
22n

.

Case-D: Let ℓ′ ≥ ℓ + 2. Then, we have

∆Y [ℓ] =
⊕

1≤i≤ℓ

2ℓ−iZ[i]⊕
⊕

1≤i≤ℓ′

2ℓ′−iZ ′[i]

= 2Z ′[ℓ′ − 1]⊕ Z ′[ℓ′]⊕
⊕

1≤i≤ℓ

2ℓ−iZ[i]⊕
⊕

1≤i≤ℓ′−2
2ℓ′−iZ ′[i]

∆X[ℓ] = Z ′[ℓ′ − 1]⊕ Z ′[ℓ′]⊕
⊕

1≤i≤ℓ

Z[i]⊕
⊕

1≤i≤ℓ′−2
Z ′[i]

Then (∆X[ℓ], ∆Y [ℓ]) = (0n, 0n) implies the following system of equations hold:{
2Z ′[ℓ′ − 1]⊕ Z ′[ℓ′] =

⊕
1≤i≤ℓ 2ℓ−iZ[i]⊕

⊕
1≤i≤ℓ′−2 2ℓ′−iZ ′[i]

Z ′[ℓ′ − 1]⊕ Z ′[ℓ′] =
⊕

1≤i≤ℓ Z[i]⊕
⊕

1≤i≤ℓ′−2 Z ′[i]

Note that the above system of equations has rank 2, and hence, it has a unique solution.
Moreover, as (Z ′[ℓ′]⊕ Z ′[ℓ′ − 1]) are independent and uniformly distributed over {0, 1}n,
it implies that

Pr[∆X[ℓ] = 0n, ∆Y [ℓ] = 0n] ≤ 1
22n

.

Therefore, by combining the above four cases, we derive the upper bound on the probability
of the event E holds in Case-I as follows:

Pr[E] = Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 1
22n

. (14)

Case-II: ¬(X[ℓ] = X ′[ℓ′] and Y [ℓ] = Y ′[ℓ′]). In this case the followings can be possible:

• Case-A: (X[ℓ] = X ′[ℓ′] and Y [ℓ] ̸= Y ′[ℓ′]). Bounding the probability of the event
E holds under this case again gives rise to the following two subcases: (a) if
Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]), then U = U ′. However, since Y [ℓ] ̸= Y ′[ℓ′], it
implies that V ̸= V ′. Therefore, for a fixed non-zero n-bit string ∆2, the event
V ⊕ V ′ = ∆2 holds with probability at most 1/(2n − 1). Moreover, the event
X[ℓ] = X ′[ℓ′] and Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]) implies the following two equations:

(Z[1]⊕ Z[2]⊕ · · · ⊕ Z[ℓ])⊕ (Z ′[1]⊕ Z ′[2]⊕ · · · ⊕ Z ′[ℓ′]) = 0n

Lsbn−3(2ℓ−1Z[1]⊕ 2ℓ−2Z[2]⊕ · · · ⊕ Z[ℓ])
⊕Lsbn−3(2ℓ′−1Z ′[1]⊕ 2ℓ′−2Z ′[2]⊕ · · · ⊕ Z ′[ℓ′]) = 0n.

Since the rank of the above system of equations is at least 1, the probability that
the above system of equations holds is at most 23(23 − 1)/2n as each assignment in
the most significant three bits of Y [ℓ], there are exactly 7 assignments in the most
significant three bits of Y ′[ℓ′] that eventually ensures Y [ℓ] ̸= Y ′[ℓ′]. Therefore, we
have,

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤
{

56
2n(2n−1) if ∆1 = 0n and ∆2 ̸= 0n

0 if ∆1 ̸= 0n or ∆2 = 0n.
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(b) If Lsbn−3(Y [ℓ]) ̸= Lsbn−3(Y ′[ℓ′]), then U and U ′ are independently distributed.
However, since Y [ℓ] ̸= Y ′[ℓ′], it implies that V ̸= V ′ and they are not independently
distributed. Therefore, for a fixed non-zero n-bit string ∆2 and for any n-bit string
∆1, the event U ⊕U ′ = ∆1, V ⊕V ′ = ∆2 holds with probability at most 1/2n(2n−1).
On the other hand, if ∆2 = 0n, then the probability of the event becomes zero, i.e.,

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤
{

1
2n(2n−1) if ∆2 ̸= 0n

0 if ∆2 = 0n.

Therefore, by combining the two subcases, we derive the upper bound on the
probability of the event E in Case-A as follows:

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 57
2n(2n − 1) . (15)

• Case-B: (Y [ℓ] = Y ′[ℓ′] and X[ℓ] ̸= X ′[ℓ′]). This case is symmetrical to Case-A (by
just swapping the role between U and V , and that of between U ′ and V ′). Thus, we
omit the details of the analysis and conclude that

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 57
2n(2n − 1) . (16)

• Case-C: (X[ℓ] ̸= X ′[ℓ′] and Y [ℓ] ̸= Y ′[ℓ′]). Bounding the probability of the event
E holds under this case again gives rise to the following four subcases: (a) if
Lsbn−3(X[ℓ]) = Lsbn−3(X ′[ℓ′]) and Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]), then it follows
that U and U ′ are not two independent random variables. Similarly, V and V ′ are not
two independent random variables. However, since X[ℓ] ̸= X ′[ℓ′] and Y [ℓ] ̸= Y ′[ℓ′],
it implies that U ̸= U ′ and V ̸= V ′. Therefore, for a fixed 2n-bit string ∆ = ∆1∥∆2
such that ∆1 ̸= 0n and ∆2 ̸= 0n, the probability of the event

U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2

is bounded by 1/(2n−1)2 due to the randomness U and V . Otherwise, the probability
of the event would have been zero, i.e.,

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤
{

1
(2n−1)2 if ∆1 ̸= 0n and ∆2 ̸= 0n

0 otherwise .

(b) If Lsbn−3(X[ℓ]) = Lsbn−3(X ′[ℓ′]) and Lsbn−3(Y [ℓ]) ̸= Lsbn−3(Y ′[ℓ′]), then V and
V ′ are distinct and they are not independent random variables. However, since
Lsbn−3Y [ℓ] ̸= Lsbn−3(Y ′[ℓ′]), it implies that U and U ′ are two independent random
variables. Thus, for a fixed 2n bit string ∆ such that ∆ = ∆1∥∆2 with ∆2 ≠ 0n, we
have

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 1
2n(2n − 1) .

(c) If Lsbn−3(X[ℓ]) ̸= Lsbn−3(X ′[ℓ′]) and Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]), then U
and U ′ are distinct and they are not independent random variables. However, since
Lsbn−3(X[ℓ]) ̸= Lsbn−3(X ′[ℓ′]), it implies that V and V ′ are two independent random
variables. Thus, for a fixed non-zero 2n bit string ∆ such that ∆ = ∆1∥∆2 with
∆1 ̸= 0n, we have

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 1
2n(2n − 1) .
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(d) If both Lsbn−3(X[ℓ]) ̸= Lsbn−3(X ′[ℓ′]) and Lsbn−3(Y [ℓ]) ̸= Lsbn−3(Y ′[ℓ′]), then
V and V ′ are two independent random variables and U and U ′ are two independent
random variables. Thus, for a fixed ∆1∥∆2, we have

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 1
22n

.

Therefore, by combining the above four subcases, we derive the upper bound on the
probability of the event E in Case C as follows:

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 4
(2n − 1)2 . (17)

Now, by combining Eqn. (15), Eqn. (16), and Eqn. (17), we derive the upper bound on
the probability of the event E in Case-II as follows:

Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 118
(2n − 1)2 . (18)

Finally, by combining Eqn. (14) and Eqn. (18), we derive the upper bound on the probability
of the event E as

Pr[E] = Pr[U ⊕ U ′ = ∆1, V ⊕ V ′ = ∆2] ≤ 118
(2n − 1)2 + 1

22n
. (19)

6.2 Proof of Lemma 4
We bound the almost-xor-universal advantage of each of the n-bit output of PHASH+
in a similar way as we did in the proof of Lemma 3. Let E1 and E2 denote the events
U ⊕ U ′ = δ and V ⊕ V ′ = δ respectively. As before, the analysis of upper bounding the
probability of the events E1 and E2 are based on the following two cases:
Case-I: (X[ℓ] = X ′[ℓ′] and Y [ℓ] = Y ′[ℓ′]). In this case U = U ′. Therefore, for a fixed
non-zero n-bit string δ, the probability of the event U ⊕ U ′ = δ is zero. Similarly, for a
fixed non-zero n-bit string δ, the probability of the event V ⊕ V ′ = δ is zero. On the other
hand, if δ = 0n, the probability of the event U ⊕ U ′ = δ is boiled down to the probability
of the event X[ℓ] = X ′[ℓ′] and Y [ℓ] = Y ′[ℓ′]. Similarly, if δ = 0n, the probability of the
event V ⊕ V ′ is boiled down to the probability of the event X[ℓ] = X ′[ℓ′] and Y [ℓ] = Y ′[ℓ′].
Now, from the analysis of Case-I in the proof of Lemma 3, we have

Pr[X[ℓ] = X ′[ℓ′], Y [ℓ] = Y ′[ℓ′]] ≤ 1
22n

.

Therefore,

Pr[U ⊕ U ′ = δ] =
{

1
22n if δ = 0n

0 otherwise
and Pr[V ⊕ V ′ = δ] =

{
1

22n if δ = 0n

0 otherwise
(20)

Case-II: ¬(X[ℓ] = X ′[ℓ′] and Y [ℓ] = Y ′[ℓ′]). As before, we split this case into three subcases
as follows:

• Case-A: (X[ℓ] = X ′[ℓ′] and Y [ℓ] ̸= Y ′[ℓ′]). We split this subcase further into two
subcases as follows: (a) if Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]), then it implies that U = U ′.
Therefore, for a fixed non-zero δ, the probability that U ⊕ U ′ = δ holds is zero.
On the other hand, if δ = 0n, then the probability is boiled down to evaluate the
probability of the event X[ℓ] = X ′[ℓ′] and Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]) holds. Note
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that, X[ℓ] = X ′[ℓ′] and Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]) implies the following system
of equations hold:

(Z[1]⊕ Z[2]⊕ · · · ⊕ Z[ℓ])⊕ (Z ′[1]⊕ Z ′[2]⊕ · · · ⊕ Z ′[ℓ′]) = 0n

Lsbn−3(2ℓ−1Z[1]⊕ 2ℓ−2Z[2]⊕ · · · ⊕ Z[ℓ])
⊕Lsbn−3(2ℓ′−1Z ′[1]⊕ 2ℓ′−2Z ′[2]⊕ · · · ⊕ Z ′[ℓ′]) = 0n.

Note that the rank of the above system of equations is at least 1. Hence, the
probability of the above system of equations hold is at most 23(23− 1)/2n as for each
assignment in the most significant three bits of Y [ℓ], there are exactly 7 assignments
in the most significant three bits of Y ′[ℓ′] that eventually ensures Y [ℓ] ̸= Y ′[ℓ].
On the other hand, under the subcase (a) V and V ′ are distinct and they are not
independent random variables. Thus, for any non-zero n-bit string δ, the probability
of the event V ⊕ V ′ = δ is at most 1/(2n − 1). Therefore, by summarizing, we have

Pr[U ⊕ U ′ = δ] ≤
{

56
2n if δ = 0n

0 otherwise
and Pr[V ⊕ V ′ = δ] ≤

{
1

2n−1 if δ ̸= 0n

0 otherwise

(b) If Lsbn−3(Y [ℓ]) ̸= Lsbn−3(Y ′[ℓ′]), then it implies that U and U ′ are two indepen-
dent random variables. Therefore, for a fixed n-bit string δ, the probability that
U ⊕ U ′ = δ holds is at most 1/2n. On the other hand, under the subcase (b) V
and V ′ are distinct and they are not independent random variables. Thus, for any
non-zero n-bit string δ, the probability of the event V ⊕V ′ = δ is at most 1/(2n− 1).
Therefore, by summarizing, we have

Pr[U ⊕ U ′ = δ] ≤ 1
2n

and Pr[V ⊕ V ′ = δ] ≤
{

1
2n−1 if δ ̸= 0n

0 otherwise

Therefore, by combining the above two subcases, we derive the upper bound on the
probability of the event E1 and the probability of the event E2 in Case-A as follows:

Pr[U ⊕ U ′ = δ] ≤ 57
2n

, and Pr[V ⊕ V ′ = δ] ≤ 2
2n − 1 . (21)

• Case-B: (Y [ℓ] = Y ′[ℓ′] and X[ℓ] ̸= X ′[ℓ′]). This case is symmetrical to Case-A by
just swapping the role between U and V and that of U ′ and V ′. Thus, we omit the
details of the analysis and conclude that for any n-bit string δ,

Pr[U ⊕ U ′ = δ] ≤ 2
2n − 1 and Pr[V ⊕ V ′ = δ] ≤ 57

2n
. (22)

• Case-C: (X[ℓ] ̸= X ′[ℓ′] and Y [ℓ] ̸= Y ′[ℓ′]). We analyze this case into the following four
subcases: (a) if Lsbn−3(X[ℓ]) = Lsbn−3(X ′[ℓ′]) and Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]),
then it follows that U and U ′ distinct and they are not independent random variables.
Similarly, V and V ′ are distinct and they are not independent random variables.
Therefore, for any non-zero n-bit string δ, the probability of the event U ⊕ U ′ = δ is
bounded by 1/2n − 1. Similarly, for any non-zero n-bit string δ, the probability of
the event V ⊕ V ′ = δ is bounded by 1/2n − 1. So, we have

Pr[U ⊕ U ′ = δ] ≤ 1
2n − 1 and Pr[V ⊕ V ′ = δ] ≤ 1

2n − 1

(b) If Lsbn−3(X[ℓ]) = Lsbn−3(X ′[ℓ′]) and Lsbn−3(Y [ℓ]) ̸= Lsbn−3(Y ′[ℓ′]), then it
follows that V and V ′ are distinct and they are not independent random variables.
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However, since Lsbn−3(Y [ℓ]) ̸= Lsbn−3(Y ′[ℓ′]), it implies that U and U ′ are two
independent random variables. Thus, for a fixed string δ, we have

Pr[U ⊕ U ′ = δ] ≤ 1
2n

and Pr[V ⊕ V ′ = δ] ≤
{

1
2n−1 if δ ̸= 0n

0 otherwise

(c) If Lsbn−3(X[ℓ]) ̸= Lsbn−3(X ′[ℓ′]) and Lsbn−3(Y [ℓ]) = Lsbn−3(Y ′[ℓ′]), then it
follows that U and U ′ are distinct and they are not independent random variables.
However, since Lsbn−3(X[ℓ]) ̸= Lsbn−3(X ′[ℓ′]), it implies that V and V ′ are two
independent random variables. Thus, for a fixed n-bit string δ, we have

Pr[U ⊕ U ′ = δ] ≤
{

1
2n−1 if δ ̸= 0n

0 otherwise
and Pr[V ⊕ V ′ = δ] ≤ 1

2n
.

(d) If both Lsbn−3(X[ℓ]) ̸= Lsbn−3(X ′[ℓ′]) and Lsbn−3(Y [ℓ]) ̸= Lsbn−3(Y ′[ℓ′]), then
it follows that V and V ′ are two independent random variables and U and U ′ are
two independent random variables. Thus, for a fixed n-bit string δ we have

Pr[U ⊕ U ′ = δ] ≤ 1
2n

and Pr[V ⊕ V ′ = δ] ≤ 1
2n

.

By combining the above four subcases, we derive the upper bound on the probability of
the event E1 and the probability of the event E2 in Case-C as follows:

Pr[U ⊕ U ′ = δ] ≤ 4
2n − 1 and Pr[V ⊕ V ′ = δ] ≤ 4

2n − 1 . (23)

By combining Eqn. (21), Eqn. (22), and Eqn. (23), we derive the upper bound on the
probability of the event E1 and the probability of the event E2 in Case-II as follows:

Pr[U ⊕ U ′ = δ] ≤ 63
2n − 1 and Pr[V ⊕ V ′ = δ] ≤ 63

2n − 1 . (24)

Finally, by combining Eqn. (20) and Eqn. (24), we derive the upper bound on the probability
of the event Eb for b ∈ {1, 2} as follows:

Pr[U ⊕ U ′ = δ] ≤ 63
2n − 1 + 1

22n
and Pr[V ⊕ V ′ = δ] ≤ 63

2n − 1 + 1
22n

. (25)

6.3 Proof of Lemma 5
Let ∆ be a fixed 2n-bit string which is parsed as two n-bit strings ∆1 and ∆2, i.e.,
∆ = ∆1∥∆2, and ∆1, ∆2 ∈ {0, 1}n. Let E denotes the event that the xor of the output of
ZHASH+ on two distinct messages M and M ′ attains the value ∆, i.e.,

Pr[E] = Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2],

where the randomness of the above probability is defined over Y1, Y ′
1 , Y2, and Y ′

2 . Thus,
we bound the probability of the event E holds. From the description of the ZHASH+
construction, we have

Y1 ← ẼKh
(010∥Lsbn−3(V ), U), Y2 ← ẼKh

(011∥Lsbn−3(U), V )

(see line 12 and line 13 of Fig. 4). Since the domain separation string used in the tweak
part of deriving Y1 and Y2 are different, it follows that Y1 and Y2 are two independently



N. Datta, A. Dutta, S. Ghosh, H. Nandi 31

sampled n-bit strings. Let us denote Lsbn−3(V ) as V̂ and Lsbn−3(U) as Û . Now, to bound
the probability of the event E holds, we have the following two cases:
Case-I: (U = U ′ and V = V ′). This event implies Û = Û ′ and V̂ = V̂ ′ and hence it implies
Y1 = Y ′

1 and Y2 = Y ′
2 . The analysis mostly follows the analysis of [IMPS17, Lemma 4].

We revisit to the analysis for the sake of completeness. Note that, the condition U = U ′

and V = V ′ implies the following two equations:{
(2ℓ−1Cl[1]⊕ 2ℓ−2Cl[2]⊕ · · · ⊕ Cl[ℓ])⊕ (2ℓ′−1C ′

l [1]⊕ 2ℓ′−2C ′
l [2]⊕ · · · ⊕ C ′

l [ℓ′]) = 0n

(Cr[1]⊕ Cr[2]⊕ · · · ⊕ Cr[ℓ])⊕ (C ′
r[1]⊕ C ′

r[2]⊕ · · · ⊕ C ′
r[ℓ′]) = 0n.

Note that, if either one of the ∆1 or ∆2 is a non-zero n-bit string, then the probability of
the event is zero. Thus, if ∆ = 02n, then we bound the probability of the above system of
equations hold in several cases as follows:
Case-A: Let ℓ = ℓ′ and ∃h ∈ {1, . . . , ℓ} such that B[h] ̸= B′[h] and B[s] = B′[s] for all
s ∈ {1, . . . , ℓ} \ {h}. Therefore,

U ⊕ U ′ ⇒ 2ℓ−h(Cl[h]⊕ C ′
l [h]), V ⊕ V ′ ⇒ Cr[h]⊕ C ′

r[h].

To imply that U = U ′ and V = V ′, it must have to be the case that Cl[h] = C ′
l [h] and

Cr[h] = C ′
r[h]. But then it means that Xr[h] = X ′

r[h] and Xl[h] = X ′
l [h], which contradicts

to the assumption that B[h] ̸= B′[h]. Therefore, in this case, the probability of the event
U = U ′ and V = V ′ is zero.
Remark 2. We would like to remark here that if we had used

Y1 ← ẼKh
(010∥Lsbn−3(V ), U), Y2 ← ẼKh

(011∥Lsbn−3(V ), U),

then we cannot guarantee the axu advantage of ZHASH+ up to 2−2n. Note that, the bad
event would be U = U ′ and V̂ = V̂ ′. This renders Y1 = Y ′

1 and Y2 = Y ′
2 . Let us consider

an adversary A that chooses two messages M, M ′ of equal length in such way that ensures
Xl[h] = X ′

l [h] and Lsbn−3(Xr[h]) = Lsbn−3(X ′
r[h]) and for all s ≠ h, B[s] = B′[s]. In this

case, we have

∆Û = 2ℓ−h(Cl[h]⊕ C ′
l [h]), ∆V̂ = Lsbn−3(Cl[h]⊕Xr[h])⊕ Lsbn−3(C ′

l [h]⊕X ′
r[h]).

Note that Cl[h] = C ′
l [h] holds with probability 2−n as they are independently distributed

(the tweak involved in generating Cl[h] is different from the tweak used in generating
C ′

l [h]). If this collision holds, then that implies ∆V̂ = 0n. As a result, the event U = U ′

implies V̂ = V̂ ′ and hence the axu advantage of ZHASH+ is dropped to 2−n.

Case-B: Let ℓ = ℓ′ and ∃h ̸= s ∈ {1, . . . , ℓ} such that B[h] ̸= B′[h] and B[s] ̸= B′[s].
Therefore,

∆U := U ⊕ U ′ ⇒ 2ℓ−h(Cl[h]⊕ C ′
l [h])⊕ 2ℓ−s(Cl[s]⊕ C ′

l [s])⊕
⊕

i̸=h,s

2ℓ−i(Cl[i]⊕ C ′
l [i])︸ ︷︷ ︸

Σ

,

∆V := V ⊕ V ′ ⇒ (Cr[h]⊕ C ′
r[h])⊕ (Cr[s]⊕ C ′

r[s])⊕
⊕

i ̸=h,s

(Cr[i]⊕ C ′
r[i])︸ ︷︷ ︸

Θ

.

Note that each term of Σ and Θ are independent. Let λh = 2ℓ−h and λs = 2ℓ−s. Note
that, Cr[h] = Cl[h]⊕Xr[h] and Cr[s] = Cl[s]⊕Xr[s]. Then, (∆U, ∆V ) = (0n, 0n) implies
the following system of equations hold:{

λh∆Cl[h]⊕ λs∆Cl[s] = Σ
∆Cl[h]⊕∆Cl[s] = Θ⊕∆Xr[h]⊕∆Xr[s]
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Note that the above system of equations has rank 2, and hence, it has a unique solution,
namely {

∆Cl[h] = (λsδ ⊕ Σ)/(λh ⊕ λs)
∆Cl[s] = δ ⊕ (λsδ ⊕ Σ)/(λh ⊕ λs)

Note that, since ∆Cl[h] and ∆Cl[s] for h ̸= s are independently distributed as different
tweaks are employed and they are uniformly distributed over {0, 1}n, it implies that

Pr[∆U = 0n, ∆V = 0n] ≤ 1
22n

.

Case-C: Let ℓ′ = ℓ + 1. Then, we have

∆U =
⊕

1≤i≤ℓ

2ℓ−iCl[i]⊕
⊕

1≤i≤ℓ′

2ℓ′−iC ′
l [i]

= Cl[ℓ]⊕ 2C ′
l [ℓ]⊕ C ′

l [ℓ + 1]⊕
⊕

i ̸=ℓ,ℓ′

2ℓ−i∆Cl[i]

∆V = Cl[ℓ]⊕ C ′
l [ℓ]⊕ C ′

l [ℓ + 1]⊕∆Xr[ℓ]⊕X ′
r[ℓ + 1]⊕

⊕
i ̸=ℓ,ℓ′

(∆Cl[i]⊕∆Xr[i])

Then (∆U, ∆V ) = (0n, 0n) implies the following system of equations hold:{
Cl[ℓ]⊕ 2C ′

l [ℓ]⊕ C ′
l [ℓ + 1] =

⊕
i ̸=ℓ,ℓ′ 2ℓ−i∆Cl[i]

Cl[ℓ]⊕ C ′
l [ℓ]⊕ C ′

l [ℓ + 1] = ∆Xr[ℓ]⊕X ′
r[ℓ + 1]⊕

⊕
i ̸=ℓ,ℓ′(∆Cl[i]⊕∆Xr[i])

Note that the above system of equations has rank 2, and hence, it has a unique solution.
Moreover, as (Cl[ℓ]⊕ C ′

l [ℓ + 1]) and C ′
l [ℓ] are uniformly distributed over {0, 1}n and they

are independent, it implies that

Pr[∆U = 0n, ∆V = 0n] ≤ 1
22n

.

Case-D: Let ℓ′ ≥ ℓ + 2. Then, we have

∆U =
⊕

1≤i≤ℓ

2ℓ−iCl[i]⊕
⊕

1≤i≤ℓ′

2ℓ′−iC ′
l [i]

= 2C ′
l [ℓ′ − 1]⊕ C ′

l [ℓ′]⊕
⊕

1≤i≤ℓ

2ℓ−iCl[i]⊕
⊕

1≤i≤ℓ′−2
2ℓ′−iC ′

l [i]

∆V = C ′
l [ℓ′ − 1]⊕ C ′

l [ℓ′]⊕
⊕

1≤i≤ℓ

(Cl[i]⊕Xr[i])⊕
⊕

1≤i≤ℓ′−2
(C ′

l [i]⊕X ′
r[i])

Then (∆U, ∆V ) = (0n, 0n) implies the following system of equations hold:{
2C ′

l [ℓ′ − 1]⊕ C ′
l [ℓ′] =

⊕
1≤i≤ℓ 2ℓ−iCl[i]⊕

⊕
1≤i≤ℓ′−2 2ℓ′−iC ′

l [i]
C ′

l [ℓ′ − 1]⊕ C ′
l [ℓ′] =

⊕
1≤i≤ℓ(Cl[i]⊕Xr[i])⊕

⊕
1≤i≤ℓ′−2(C ′

l [i]⊕X ′
r[i])

Note that the above system of equations has rank 2, and hence, it has a unique solution.
Moreover, as (C ′

l [ℓ′]⊕ C ′
l [ℓ′ − 1]) are independent and uniformly distributed over {0, 1}n,

it implies that
Pr[∆U = 0n, ∆V = 0n] ≤ 1

22n
.

Therefore, by combining the above four cases, we derive the upper bound on the probability
of the event E holds in Case-I as follows:

Pr[E] = Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 1
22n

. (26)

Case-II: ¬(U = U ′ and V = V ′). Bounding the probability of the event E holds under the
assumption that ¬(U = U ′ and V = V ′) holds give rise to the following three subcases.
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• Case-A: (U = U ′ and V ≠ V ′). Bounding the probability of the event E holds under
this case again gives rise to the following two subcases: (a) if Lsbn−3(V ) = Lsbn−3(V ′),
then Y1 = Y ′

1 . However, since V ̸= V ′, it implies that Y2 ̸= Y ′
2 . Therefore, for a fixed

non-zero n-bit string ∆2, the event Y2 ⊕ Y ′
2 = ∆2 holds with probability at most

1/(2n − 1). Moreover, the event U = U ′ and Lsbn−3(V ) = Lsbn−3(V ′) implies the
following two equations:{

(2ℓ−1Cl[1]⊕ 2ℓ−2Cl[2]⊕ · · · ⊕ Cl[ℓ])⊕ (2ℓ′−1C ′
l [1]⊕ 2ℓ′−2C ′

l [2]⊕ · · · ⊕ C ′
l [ℓ′]) = 0n

Lsbn−3(Cr[1]⊕ Cr[2]⊕ · · · ⊕ Cr[ℓ])⊕ Lsbn−3(C ′
r[1]⊕ C ′

r[2]⊕ · · · ⊕ C ′
r[ℓ′]) = 0n.

Since the rank of the above system of equations is at least 1, the probability that
the above system of equations hold is at most 23(23 − 1)/2n as each assignment in
the most significant three bits of V , there are exactly 7 assignments in the most
significant three bits of V ′ that eventually ensures V ̸= V ′. Therefore, we have,

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤
{

56
2n(2n−1) if ∆1 = 0n and ∆2 ̸= 0n

0 if ∆1 ̸= 0n or ∆2 = 0n.

(b) If Lsbn−3(V ) ̸= Lsbn−3(V ′), then Y1 and Y ′
1 are independently distributed.

However, since V ̸= V ′, it implies that Y2 ≠ Y ′
2 and they are not independently

distributed. Therefore, for a fixed non-zero n-bit string ∆2 and for any n-bit string
∆1, the event Y1⊕Y ′

1 = ∆1, Y2⊕Y ′
2 = ∆2 holds with probability at most 1/2n(2n−1).

On the other hand, if ∆2 = 0n, then the probability of the event becomes zero, i.e.,

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤
{

1
2n(2n−1) if ∆2 ̸= 0n

0 if ∆2 = 0n.

Therefore, by combining the two subcases, we derive the upper bound on the
probability of the event E in Case-A as follows:

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 57
2n(2n − 1) . (27)

• Case-B: (V = V ′ and U ̸= U ′). This case is symmetrical to Case-A (by just swapping
the role between Y1 and Y2, and that of between Y ′

1 and Y ′
2). Thus, we omit the

details of the analysis and conclude that

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 57
2n(2n − 1) . (28)

• Case-C: (U ≠ U ′ and V ̸= V ′). Bounding the probability of the event E holds under
this case again gives rise to the following four subcases: (a) if Lsbn−3(U) = Lsbn−3(U ′)
and Lsbn−3(V ) = Lsbn−3(V ′), then it follows that Y1 and Y ′

1 are not two independent
random variables. Similarly, Y2 and Y ′

2 are not two independent random variables.
However, since U ̸= U ′ and V ≠ V ′, it implies that Y1 ̸= Y ′

1 and Y2 ̸= Y ′
2 . Therefore,

for a fixed 2n-bit string ∆ = ∆1∥∆2 such that ∆1 ̸= 0n and ∆2 ̸= 0n, the probability
of the event

Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2

is bounded by 1/(2n − 1)2 due to the randomness Y1 and Y2. Otherwise, the
probability of the event would have been zero, i.e.,

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤
{

1
(2n−1)2 if ∆1 ̸= 0n and ∆2 ̸= 0n

0 otherwise .
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(b) If Lsbn−3(U) = Lsbn−3(U ′) and Lsbn−3(V ) ̸= Lsbn−3(V ′), then Y2 and Y ′
2 are

distinct and they are not independent random variables. However, since Lsbn−3(V ) ̸=
Lsbn−3(V ′), it implies that Y1 and Y ′

1 are two independent random variables. Thus,
for a fixed 2n bit string ∆ such that ∆ = ∆1∥∆2 with ∆2 ̸= 0n, we have

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 1
2n(2n − 1) .

(c) If Lsbn−3(U) ̸= Lsbn−3(U ′) and Lsbn−3(V ) = Lsbn−3(V ′), then Y1 and Y ′
1 are

distinct and they are not independent random variables. However, since Lsbn−3(U) ̸=
Lsbn−3(U ′), it implies that Y2 and Y ′

2 are two independent random variables. Thus,
for a fixed non-zero 2n bit string ∆ such that ∆ = ∆1∥∆2 with ∆1 ̸= 0n, we have

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 1
2n(2n − 1) .

(d) Finally, if both Lsbn−3(U) ̸= Lsbn−3(U ′) and Lsbn−3(V ) ̸= Lsbn−3(V ′), then Y2
and Y ′

2 are two independent random variables and Y1 and Y ′
1 are two independent

random variables. Thus, for a fixed ∆1∥∆2, we have

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 1
22n

.

Therefore, by combining the above four subcases, we derive the upper bound on the
probability of the event E in Case C as follows:

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 4
(2n − 1)2 . (29)

Now, by combining Eqn. (27), Eqn. (28), and Eqn. (29), we derive the upper bound on
the probability of the event E in Case-II as follows:

Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 118
(2n − 1)2 . (30)

Finally, by combining Eqn. (26) and Eqn. (30), we derive the upper bound on the probability
of the event E as

Pr[E] = Pr[Y1 ⊕ Y ′
1 = ∆1, Y2 ⊕ Y ′

2 = ∆2] ≤ 118
(2n − 1)2 + 1

22n
. (31)

6.4 Proof of Lemma 6
We bound the almost-xor-universal advantage of each of the n-bit output of ZHASH+ in a
similar way as we did in the proof of Lemma 5. For b ∈ {1, 2}, let Eb denotes the event
Yb ⊕ Y ′

b = δ. As before, the analysis of upper bounding the probability of the event Eb is
based on the following two cases:
Case-I: (U = U ′ and V = V ′). In this case Y1 = Y ′

1 . Therefore, for a fixed non-zero n-bit
string δ, the probability of the event Y1 ⊕ Y ′

1 = δ is zero. Similarly, for a fixed non-zero
n-bit string δ, the probability of the event Y2 ⊕ Y ′

2 = δ is zero. On the other hand, if
δ = 0n, the probability of the event Y1 ⊕ Y ′

1 is boiled down to the probability of the event
U = U ′ and V = V ′. Similarly, if δ = 0n, the probability of the event Y2 ⊕ Y ′

2 is boiled
down to the probability of the event U = U ′ and V = V ′. Now, from the analysis of Case-I
in the proof of Lemma 5, we have

Pr[U = U ′, V = V ′] ≤ 1
22n

.
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Therefore, for b ∈ {1, 2}, we have

Pr[Yb ⊕ Y ′
b = δ] =

{
1

22n if δ = 0n

0 otherwise
(32)

Case-II: ¬(U = U ′ and V = V ′). As before, we split this case into three subcases as follows:

• Case-A: (U = U ′ and V ̸= V ′). We split this subcase further into two subcases as
follows: (a) if Lsbn−3(V ) = Lsbn−3(V ′), then it implies that Y1 = Y ′

1 . Therefore,
for a fixed non-zero δ, the probability that Y1 ⊕ Y ′

1 = δ holds is zero. On the other
hand, if δ = 0n, then the probability is boiled down to evaluate the probability
of the event U = U ′ and Lsbn−3(V ) = Lsbn−3(V ′) holds. Note that, U = U ′ and
Lsbn−3(V ) = Lsbn−3(V ′) implies the following system of equations hold:

(2ℓ−1Cl[1]⊕ 2ℓ−2Cl[2]⊕ · · · ⊕ Cl[ℓ])⊕ (2ℓ′−1C ′
l [1]⊕ 2ℓ′−2C ′

l [2]⊕ · · · ⊕ C ′
l [ℓ′]) = 0n

Lsbn−3(Cr[1]⊕ Cr[2]⊕ · · · ⊕ Cr[ℓ])⊕ Lsbn−3(C ′
r[1]⊕ C ′

r[2]⊕ · · · ⊕ C ′
r[ℓ′]) = 0n.

Note that the rank of the above system of equations is at least 1. Hence, the
probability of the above system of equations hold is at most 23(23− 1)/2n as for each
assignment in the most significant three bits of V , there are exactly 7 assignments in
the most significant three bits of V ′ that eventually ensures V ̸= V ′. On the other
hand, under the subcase (a) Y2 and Y ′

2 are distinct and they are not independent
random variables. Thus, for any non-zero n-bit string δ, the probability of the event
Y2 ⊕ Y ′

2 = δ is at most 1/2n. Therefore, by summarizing, we have

Pr[Y1 ⊕ Y ′
1 = δ] ≤

{
56
2n if δ = 0n

0 otherwise

On the other hand

Pr[Y2 ⊕ Y ′
2 = δ] ≤

{
1

2n−1 if δ ̸= 0n

0 otherwise

(b) If Lsbn−3(V ) ̸= Lsbn−3(V ′), then it implies that Y1 and Y ′
1 are two independent

random variables. Therefore, for a fixed n-bit string δ, the probability that Y1⊕Y ′
1 = δ

holds is at most 1/2n. On the other hand, under the subcase (b) Y2 and Y ′
2 are

distinct and they are not independent random variables. Thus, for any non-zero
n-bit string δ, the probability of the event Y2⊕Y ′

2 = δ is at most 1/2n−1. Therefore,
by summarizing, we have

Pr[Y1 ⊕ Y ′
1 = δ] ≤ 1

2n
.

On the other hand

Pr[Y2 ⊕ Y ′
2 = δ] ≤

{
1

2n−1 if δ ̸= 0n

0 otherwise

Therefore, by combining the above two subcases, we derive the upper bound on the
probability of the event E1 and the probability of the event E2 in Case-A as follows:

Pr[Y1 ⊕ Y ′
1 = δ] ≤ 57

2n
, Pr[Y2 ⊕ Y ′

2 = δ] ≤ 2
2n − 1 . (33)
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• Case-B: (V = V ′ and U ̸= U ′). This case is symmetrical to Case-A by just swapping
the role between Y1 and Y2 and that of Y ′

1 and Y ′
2 . Thus, we omit the details of the

analysis and conclude that for any n-bit string δ,

Pr[Y1 ⊕ Y ′
1 = δ] ≤ 2

2n − 1 , Pr[Y2 ⊕ Y ′
2 = δ] ≤ 57

2n
. (34)

• Case-C: (U ≠ U ′ and V ̸= V ′). We analyze this case into the following four subcases:
(a) if Lsbn−3(U) = Lsbn−3(U ′) and Lsbn−3(V ) = Lsbn−3(V ′), then it follows that
Y1 and Y ′

1 distinct and they are not independent random variables. Similarly, Y2
and Y ′

2 are distinct and they are not independent random variables. Therefore, for
any non-zero n-bit string δ, the probability of the event Y1 ⊕ Y ′

1 = δ is bounded
by 1/2n − 1. Similarly, for any non-zero n-bit string δ, the probability of the event
Y2 ⊕ Y ′

2 = δ is bounded by 1/2n − 1, i.e., for b ∈ {1, 2}, we have

Pr[Yb ⊕ Y ′
b = δ] ≤ 1

2n − 1 .

(b) If Lsbn−3(U) = Lsbn−3(U ′) and Lsbn−3(V ) ̸= Lsbn−3(V ′), then it follows that Y2
and Y ′

2 are distinct and they are not independent random variables. However, since
Lsbn−3(V ) ̸= Lsbn−3(V ′), it implies that Y1 and Y ′

1 are two independent random
variables. Thus, for a fixed string δ, we have

Pr[Y1 ⊕ Y ′
1 = δ] ≤ 1

2n

On the other hand,

Pr[Y2 ⊕ Y ′
2 = δ] ≤

{
1

2n−1 if δ ̸= 0n

0 otherwise

(c) If Lsbn−3(U) ̸= Lsbn−3(U ′) and Lsbn−3(V ) = Lsbn−3(V ′), then it follows that Y1
and Y ′

1 are distinct and they are not independent random variables. However, since
Lsbn−3(U) ̸= Lsbn−3(U ′), it implies that Y2 and Y ′

2 are two independent random
variables. Thus, for a fixed n-bit string δ, we have

Pr[Y1 ⊕ Y ′
1 = δ] ≤

{
1

2n−1 if δ ̸= 0n

0 otherwise

On the other hand,
Pr[Y2 ⊕ Y ′

2 = δ] ≤ 1
2n

.

(d) Finally, if both Lsbn−3(U) ̸= Lsbn−3(U ′) and Lsbn−3(V ) ̸= Lsbn−3(V ′), then it
follows that Y2 and Y ′

2 are two independent random variables and Y1 and Y ′
1 are two

independent random variables. Thus, for a fixed n-bit string δ and for b ∈ {1, 2} we
have

Pr[Yb ⊕ Y ′
b = δ] ≤ 1

2n
.

By combining the above four subcases, we derive the upper bound on the probability of
the event E1 and the probability of the event E2 in Case-C as follows:

Pr[Y1 ⊕ Y ′
1 = δ] ≤ 4

2n − 1 , Pr[Y2 ⊕ Y ′
2 = δ] ≤ 4

2n − 1 . (35)
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By combining Eqn. (33), Eqn. (34), and Eqn. (35), we derive the upper bound on the
probability of the event E1 and the probability of the event E2 in Case-II as follows:

Pr[Y1 ⊕ Y ′
1 = δ] ≤ 63

2n − 1 , Pr[Y2 ⊕ Y ′
2 = δ] ≤ 63

2n − 1 . (36)

Finally, by combining Eqn. (32) and Eqn. (36), we derive the upper bound on the probability
of the event Eb for b ∈ {1, 2} as follows:

Pr[Yb ⊕ Y ′
b = δ] ≤ 63

2n − 1 + 1
22n

. (37)

7 Implementation
HCTR+ employs a tweakable block cipher as its underlying primitive, with the tweak
size matching the state size. Additionally, HCTR+ requires a 2n-bit hash function. As
discussed in Section 5, we have instantiated HCTR+ using PHASH+ and ZHASH+, which
we refer to as PHCTR+ and ZHCTR+, respectively. These hash functions also rely on a
tweakable block cipher as their underlying primitive, where the tweak size equals the block
size. Various tweakable block ciphers can be used to instantiate our constructions, such as
SKINNY-128-128 [BJK+16], QARMA-128-128 [Ava17], QARMAv2-128-128 [ABD+23] and
Deoxys-BC-128-128 [JNPS16]. These tweakable block ciphers feature a 128-bit key, tweak,
and state size.

Choice of TBC: In the concrete instantiations of PHCTR+ and ZHCTR+, we propose
using Deoxys-BC-128-128 [JNPS16] with 128-bit key, tweak, and state size. Deoxys-BC-
128-128 is a tweakable block cipher that adheres to the TWEAKEY framework [JNP14],
where the key and tweak are combined into a single entity called a tweakey. The round
function of Deoxys-BC-128-128 closely resembles that of AES, consisting of 14 rounds. Each
round involves the application of AddRoundTweakey, SubBytes, ShiftRow, and MixColumn.
Following the final round, an additional AddRoundTweakey operation is performed. Unlike
AES, however, the final round in Deoxys-BC-128-128 also includes the MixColumn operation.

Each AddRoundTweakey operation requires a subtweakey, denoted as STKi for the i-th
round, generated by a specific tweakey schedule algorithm. The initial tweakey TK =
TK0

0 ||TK1
0 is formed by initializing the 128-bit key K and the 128-bit tweak T as TK0

0 = T
and TK1

0 = K. The tweakey schedule algorithm is defined as

TK0
i+1 = H(TK0

i ) and TK1
i+1 = H(L(TK1

i )), for i = 0, ..., 13.

Here H denotes the byte permutation defined as
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

→


1 5 9 13
6 10 14 2
11 15 3 7
12 0 4 8


and L denotes the application of an LFSR to each of the 16 bytes of a 128-bit where the
LFSR is defined as

(x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||(x7 ⊕ x5)).

Finally, the subtweakey for the i-th round is computed as

STKi = TK0
i ⊕ TK1

i ⊕RCi for i = 0, ..., 14,
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where RCi is the i-th round constant with the following form

RCi =


1 rci 0 0
2 rci 0 0
4 rci 0 0
8 rci 0 0


and the value rci denotes the i-th key schedule constants of the AES.
One notable property of HCTR+ construction is that the key used in the tweakable block
cipher is derived once and the same derived keys are used throughout the computation
of the cipher. Meanwhile, the tweaks change in each call to the block cipher. Thus, it is
evident that for better performance, we need to choose a tweakable block cipher where the
tweak and key schedule perform separately, which is the case in Deoxys. Furthermore, the
tweakey schedule in Deoxys is lightweight. Another reason to use Deoxys-BC-128-128 is
the use of AES-NI instruction set. Using AES-NI instructions, Deoxys-BC-128-128 achieves
good performance in the software implementation.

Software Performance: Here we discuss the software performance of the C implemen-
tation of PHCTR+ and ZHCTR+ using Deoxys-BC-128-128 as the underlying TBC. The
performance is benchmarked in an Intel(R) Core(TM) i7-1165G7 machine with 2.80GHz
CPU, 32 GB DDR5 RAM, and supporting the AES-NI instructions. All the experiments
are done with Intel TurboBoost and HyperThreading disabled. The compilation is done
using GCC 12.2.0 with -O3 optimization and -march set. The machine runs on Debian
12.6 with Linux kernel 6.1.0. To capture the average cost of encryption, each experiment is
repeated 128 times. To reduce the influence of memory access, the cache is warmed before
the time begins.
We evaluate the performance of PHCTR+ and ZHCTR+, comparing them with the
only existing n-bit secure sprp, ZCZ, which utilizes Deoxys-BC-128-256 [JNPS16] as the
underlying TBC. The performance results, measured in Cycles Per Byte (CPB), are
presented in Table 2. To calculate CPB, the total number of CPU cycles required to
encrypt a message with a given tweak is divided by the message’s length and the tweak’s
length. These measurements are performed for various message and tweak lengths, as
detailed in Table 2, where the cost for key setup is excluded. The source codes of the
implementation are available at https://github.com/ShibamCrS/HCTR-.git.

Table 2: Software performance (CPB) of PHCTR+ and ZHCTR+, and comparison with
ZCZ. Note that ZCZ does not accept any tweak, so the comparison of ZCZ should be with
zero length tweak of PHCTR+ and ZHCTR+ (blue colored columns).

PHCTR+ ZHCTR+ ZCZName Tweak Length (Bytes)
0B 16B 32B 64B 128B 256B 0B 16B 32B 64B 128B 256B -

128B 5.85 5.40 4.95 4.50 3.70 2.80 4.85 4.65 4.10 3.50 2.80 2.10 14.10
256B 4.54 4.58 4.38 4.25 3.75 3.15 3.82 3.75 3.50 3.27 2.90 2.35 11.14
512B 3.82 3.75 3.70 3.65 3.49 3.20 3.01 3.00 2.91 2.75 2.60 2.35 8.31
1KB 3.45 3.40 3.35 3.32 3.25 3.10 2.60 2.61 2.56 2.50 2.40 2.29 6.77
2KB 3.20 3.20 3.19 3.18 3.15 3.05 2.40 2.41 2.39 2.35 2.32 2.25 5.97
4KB 3.11 3.10 3.10 3.11 3.09 3.04 2.30 2.30 2.29 2.28 2.26 2.23 5.42
8KB 3.06 3.06 3.05 3.06 3.04 3.03 2.26 2.26 2.25 2.25 2.24 2.22 5.16
16KB 3.03 3.03 3.03 3.03 3.03 3.02 2.23 2.23 2.23 2.23 2.22 2.21 4.84
32KB 3.02 3.02 3.02 3.02 3.02 3.01 2.22 2.22 2.22 2.22 2.22 2.21 4.57M

es
sa

ge
Le

ng
th

(B
yt

es
)

64KB 2.90 2.89 2.89 2.89 2.89 2.89 2.21 2.21 2.21 2.21 2.21 2.21 4.44

Note that, ZCZ is not a tweakable cipher. Thus, the comparison is fair when the tweak
length of PHCTR+ and ZHCTR+ is zero. To highlight the comparison with ZCZ, we
marked the columns corresponding to zero tweaks with blue color in Table 2. This is

https://github.com/ShibamCrS/HCTR-/tree/main/implementation/HCTR%2B_TLR3
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evident from the results in Table 2, PHCTR+ and ZHCTR+ are about 3 times better in
terms of software performance than ZCZ despite that ZCZ requires 1.5 TBC calls per
message, whereas our proposal requires 3 TBC calls per message. The key to improving
our scheme’s performance in practice lies in the tweak-size of the TBC. While ZCZ requires
a larger tweak-size than the state size to support an additional domain and block-counter,
our construction uses a TBC where the tweak size matches the state size. Specifically,
we instantiate Deoxys-BC-128-128 as the underlying primitive, whereas ZCZ used Deoxys-
BC-384 (equivalent to Deoxys-BC-128-256 in the original Deoxys paper [JNPS16], with
a 128-bit key and 256-bit tweak). Notably, Deoxys-BC-128-128 has 14-rounds, compared
to 16-rounds in Deoxys-BC-128-256, and involves fewer tweakey schedule operations per
round, reducing one shuffle and one LFSR call per round, which enhances performance.
Remark 3. We would like to point out here that VAESENC instruction significantly
enhances the performance of our constructions. We observed nearly a twofold improvement
in the performance of PHCTR+. However, we chose not to leverage these performance
gains to keep the implementation requirements minimal. Additionally, since ZCZ does not
utilize VAESENC and our comparisons are based on the author’s implementation of ZCZ,
it would not be a fair comparison if we used VAESENC for our benchmarks.

8 Conclusion
In this paper, we have proposed HCTR+, a single-keyed, optimally secure accordion mode
based on an n-bit tweakable block cipher with an n-bit tweak and a 2n-bit keyed hash
function. The strength of our construction lies in its ability to ensure optimal security
even in the presence of arbitrary tweak repetitions. This robustness against tweak misuse
provides a significant advancement in the field of tweakable enciphering schemes. We have
instantiated the underlying hash function of our mode with PHASH+ and ZHASH+ and
the underlying TBC with Deoxys-BC-128-128. Software implementations of the resulting
two constructions, PHCTR+ and ZHCTR+ indicate a significant performance improvement
compared to the ZCZ construction, the only existing n-bit secure sprp construction with
no tweak. It remains open to analyze the multi user security of HCTR+ and transform it
to a context committing AE scheme.

Acknowledgement: An initial version of this work used four-round TBC based LR
construction TLR4 on the left side of HCTR+. We would like to thank Eik List for his
suggestion in improving the design to achieve the same security bound of HCTR+ using
three-round TBC based LR construction TLR3.

References
[ABD+23] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam

Ghosh, Marcel Nageler, and Francesco Regazzoni. The qarmav2 family of
tweakable block ciphers. IACR Trans. Symmetric Cryptol., 2023(3):25–73,
2023.

[ABPV21] Elena Andreeva, Amit Singh Bhati, Bart Preneel, and Damian Vizár. 1, 2, 3,
fork: Counter mode variants based on a generalized forkcipher. IACR Trans.
Symmetric Cryptol., 2021(3):1–35, 2021.

[Ava17] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over
rings with zero divisors, nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.



40 Optimally Secure TBC Based Accordion Mode

[BDH+17] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Farfalle: parallel permutation-based cryptography. IACR
Trans. Symmetric Cryptol., 2017(4):1–38, 2017.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
CRYPTO (2), volume 9815 of Lecture Notes in Computer Science, pages
123–153. Springer, 2016.

[BLN18] Ritam Bhaumik, Eik List, and Mridul Nandi. ZCZ - achieving n-bit SPRP secu-
rity with a minimal number of tweakable-block-cipher calls. In Thomas Peyrin
and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018
- 24th International Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part I, volume 11272 of Lecture Notes in Computer Science, pages
336–366. Springer, 2018.

[BN15] Ritam Bhaumik and Mridul Nandi. An inverse-free single-keyed tweakable
enciphering scheme. In Tetsu Iwata and Jung Hee Cheon, editors, Advances
in Cryptology - ASIACRYPT 2015 - 21st International Conference on the
Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 159–180. Springer, 2015.

[CB18] Paul Crowley and Eric Biggers. Adiantum: length-preserving encryption for
entry-level processors. IACR Trans. Symmetric Cryptol., 2018(4):39–61, 2018.

[CDMS10] Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick Seurin.
A domain extender for the ideal cipher. In Daniele Micciancio, editor, Theory
of Cryptography, 7th Theory of Cryptography Conference, TCC 2010, Zurich,
Switzerland, February 9-11, 2010. Proceedings, volume 5978 of Lecture Notes
in Computer Science, pages 273–289. Springer, 2010.

[CEL+21] Benoît Cogliati, Jordan Ethan, Virginie Lallemand, ByeongHak Lee, Jooyoung
Lee, and Marine Minier. CTET+: A beyond-birthday-bound secure tweakable
enciphering scheme using a single pseudorandom permutation. IACR Trans.
Symmetric Cryptol., 2021(4):1–35, 2021.

[CGLS22] Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas López, and Palash
Sarkar. ${\sf {FAST}}$: Disk encryption and beyond. Adv. Math. Commun.,
16(1):185–230, 2022.

[CHB21] Paul Crowley, Nathan Huckleberry, and Eric Biggers. Length-preserving
encryption with HCTR2. IACR Cryptol. ePrint Arch., page 1441, 2021.

[CN08a] Debrup Chakraborty and Mridul Nandi. An improved security bound for
HCTR. In Kaisa Nyberg, editor, Fast Software Encryption, 15th International
Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised
Selected Papers, volume 5086 of Lecture Notes in Computer Science, pages
289–302. Springer, 2008.

[CN08b] Donghoon Chang and Mridul Nandi. A short proof of the PRP/PRF switching
lemma. IACR Cryptol. ePrint Arch., page 78, 2008.



N. Datta, A. Dutta, S. Ghosh, H. Nandi 41

[CS06] Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing
a tweakable strong pseudo-random permutation. In Matthew J. B. Robshaw,
editor, Fast Software Encryption, 13th International Workshop, FSE 2006,
Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume 4047 of
Lecture Notes in Computer Science, pages 293–309. Springer, 2006.

[CS08] Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering
scheme using the hash-counter-hash approach. IEEE Trans. Inf. Theory,
54(4):1683–1699, 2008.

[DFUB24] Hieu Nguyen Duy2, Pablo Garcia Fernandez, Aleksei Udovenko,
and Alex Biryukov. Accordion mode based on hash-encrypt-hash,
2024. Online: https://csrc.nist.gov/csrc/media/Presentations/
2024/accordion-mode-based-on-hash-encrypt-hash/images-media/
sess-7-fernandez-acm-workshop-2024.pdf.

[DMMT24] Christoph Dobraunig, Krystian Matusiewicz, Bart Mennink, and Alexander
Tereschenko. Efficient instances of docked double decker with AES. IACR
Cryptol. ePrint Arch., page 84, 2024.

[DN18] Avijit Dutta and Mridul Nandi. Tweakable HCTR: A BBB secure tweak-
able enciphering scheme. In Debrup Chakraborty and Tetsu Iwata, editors,
Progress in Cryptology - INDOCRYPT 2018 - 19th International Conference
on Cryptology in India, New Delhi, India, December 9-12, 2018, Proceedings,
volume 11356 of Lecture Notes in Computer Science, pages 47–69. Springer,
2018.

[GDM22] Aldo Gunsing, Joan Daemen, and Bart Mennink. Deck-based wide block
cipher modes and an exposition of the blinded keyed hashing model. IACR
Cryptol. ePrint Arch., page 247, 2022.

[Hal04] Shai Halevi. Eme*: Extending EME to handle arbitrary-length messages
with associated data. In Anne Canteaut and Kapalee Viswanathan, editors,
Progress in Cryptology - INDOCRYPT 2004, 5th International Conference
on Cryptology in India, Chennai, India, December 20-22, 2004, Proceedings,
volume 3348 of Lecture Notes in Computer Science, pages 315–327. Springer,
2004.

[Hal07] Shai Halevi. Invertible universal hashing and the TET encryption mode. In
Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2007, Proceedings, volume 4622 of Lecture Notes in Computer Science, pages
412–429. Springer, 2007.

[HR03] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, volume 2729 of Lecture Notes in Computer Science, pages
482–499. Springer, 2003.

[HR04] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In
Tatsuaki Okamoto, editor, Topics in Cryptology - CT-RSA 2004, The Cryp-
tographers’ Track at the RSA Conference 2004, San Francisco, CA, USA,
February 23-27, 2004, Proceedings, volume 2964 of Lecture Notes in Computer
Science, pages 292–304. Springer, 2004.

https://csrc.nist.gov/csrc/media/Presentations/2024/accordion-mode-based-on-hash-encrypt-hash/images-media/sess-7-fernandez-acm-workshop-2024.pdf
https://csrc.nist.gov/csrc/media/Presentations/2024/accordion-mode-based-on-hash-encrypt-hash/images-media/sess-7-fernandez-acm-workshop-2024.pdf
https://csrc.nist.gov/csrc/media/Presentations/2024/accordion-mode-based-on-hash-encrypt-hash/images-media/sess-7-fernandez-acm-workshop-2024.pdf


42 Optimally Secure TBC Based Accordion Mode

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A fast tweakable block cipher mode for highly secure message au-
thentication. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III,
volume 10403 of Lecture Notes in Computer Science, pages 34–65. Springer,
2017.

[Jiv14] Andrey Jivsov. WCFB: A wide block encryption for large data sets. In
David Garcia Rosado, Carlos Blanco, Daniel Mellado, Jan Jürjens, and
Luis Enrique Sánchez, editors, WOSIS 2014 - Proceedings of the 11th In-
ternational Workshop on Security in Information Systems, Lisbon, Portugal,
27 April, 2014, pages 75–82. SciTePress, 2014.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In ASIACRYPT (2), volume 8874 of
Lecture Notes in Computer Science, pages 274–288. Springer, 2014.

[JNPS16] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys v1. 41,
2016. Online: https://competitions.cr.yp.to/round3/deoxysv141.pdf.

[Kha24] Mustafa Khairallah. A note on -tweakable HCTR: A BBB secure tweakable
enciphering scheme-. IACR Cryptol. ePrint Arch., page 600, 2024.

[Kum18] Manish Kumar. Security of xcb and hctr, 2018. Online: http://library.
isical.ac.in:8080/jspui/handle/10263/6953.

[Lee24] Byeonghak Lee. A bbb secure accordion mode from hctr,
2024. Online: https://csrc.nist.gov/Presentations/2024/
a-bbb-secure-accordion-mode-from-hctr.

[LN16] Eik List and Mridul Nandi. Revisiting full-PRF-secure PMAC and using it for
beyond-birthday authenticated encryption. Cryptology ePrint Archive, Paper
2016/1174, 2016.

[LN17] Eik List and Mridul Nandi. Revisiting full-prf-secure PMAC and using it
for beyond-birthday authenticated encryption. In Helena Handschuh, editor,
Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA
Conference 2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings,
volume 10159 of Lecture Notes in Computer Science, pages 258–274. Springer,
2017.

[MCR07] Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-
Henríquez. Efficient implementations of some tweakable enciphering schemes
in reconfigurable hardware. In K. Srinathan, C. Pandu Rangan, and Moti
Yung, editors, Progress in Cryptology - INDOCRYPT 2007, 8th International
Conference on Cryptology in India, Chennai, India, December 9-13, 2007,
Proceedings, volume 4859 of Lecture Notes in Computer Science, pages 414–424.
Springer, 2007.

[MF04] David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode
of operation. IACR Cryptol. ePrint Arch., page 278, 2004.

[MI11] Kazuhiko Minematsu and Tetsu Iwata. Building blockcipher from tweakable
blockcipher: Extending FSE 2009 proposal. In Liqun Chen, editor, Cryptogra-
phy and Coding - 13th IMA International Conference, IMACC 2011, Oxford,
UK, December 12-15, 2011. Proceedings, volume 7089 of Lecture Notes in
Computer Science, pages 391–412. Springer, 2011.

https://competitions.cr.yp.to/round3/deoxysv141.pdf
http://library.isical.ac.in:8080/jspui/handle/10263/6953
http://library.isical.ac.in:8080/jspui/handle/10263/6953
https://csrc.nist.gov/Presentations/2024/a-bbb-secure-accordion-mode-from-hctr
https://csrc.nist.gov/Presentations/2024/a-bbb-secure-accordion-mode-from-hctr


N. Datta, A. Dutta, S. Ghosh, H. Nandi 43

[MI17] Kazuhiko Minematsu and Tetsu Iwata. Cryptanalysis of pmacx, pmac2x, and
sivx. IACR Trans. Symmetric Cryptol., 2017(2):162–176, 2017.

[NR97] Moni Naor and Omer Reingold. On the construction of pseudo-random
permutations: Luby-rackoff revisited (extended abstract). In Frank Thomson
Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May
4-6, 1997, pages 189–199. ACM, 1997.

[NR99a] Moni Naor and Omer Reingold. On the construction of pseudorandom permu-
tations: Luby-rackoff revisited. J. Cryptol., 12(1):29–66, 1999.

[NR99b] Moni Naor and Omer Reingold. A pseudo-random encryption mode, 1999.
Online: https://www.wisdom.weizmann.ac.il/âĹnaor/.

[NSS24] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Commit-
ting wide encryption mode with minimum ciphertext expan-
sion, 2024. Online: https://csrc.nist.gov/csrc/media/
Presentations/2024/committing-wide-encryption-mode/
images-media/sess-8-naito-acm-workshop-2024.pdf.

[Pat08] Jacques Patarin. The "coefficients h" technique. In Selected Areas in Cryptog-
raphy, 15th International Workshop, SAC 2008, Sackville, New Brunswick,
Canada, August 14-15, Revised Selected Papers, pages 328–345, 2008.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenticated encryp-
tion modes for tweakable block ciphers. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science,
pages 33–63. Springer, 2016.

[Sar07] Palash Sarkar. Improving upon the TET mode of operation. In Kil-Hyun
Nam and Gwangsoo Rhee, editors, Information Security and Cryptology -
ICISC 2007, 10th International Conference, Seoul, Korea, November 29-30,
2007, Proceedings, volume 4817 of Lecture Notes in Computer Science, pages
180–192. Springer, 2007.

[ST13] Thomas Shrimpton and R. Seth Terashima. A modular framework for building
variable-input-length tweakable ciphers. In Kazue Sako and Palash Sarkar,
editors, Advances in Cryptology - ASIACRYPT 2013 - 19th International
Conference on the Theory and Application of Cryptology and Information
Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part I, volume
8269 of Lecture Notes in Computer Science, pages 405–423. Springer, 2013.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors,
Information Security and Cryptology, First SKLOIS Conference, CISC 2005,
Beijing, China, December 15-17, 2005, Proceedings, volume 3822 of Lecture
Notes in Computer Science, pages 175–188. Springer, 2005.

https://www.wisdom.weizmann.ac.il/∼naor/
https://csrc.nist.gov/csrc/media/Presentations/2024/committing-wide-encryption-mode/images-media/sess-8-naito-acm-workshop-2024.pdf
https://csrc.nist.gov/csrc/media/Presentations/2024/committing-wide-encryption-mode/images-media/sess-8-naito-acm-workshop-2024.pdf
https://csrc.nist.gov/csrc/media/Presentations/2024/committing-wide-encryption-mode/images-media/sess-8-naito-acm-workshop-2024.pdf

	Introduction
	Revisiting Tweakable Enciphering Schemes
	BBB Secure Tweakable Enciphering Schemes
	Designing Accordion Modes
	Accordion Mode with Optimal Security: Motivation
	Our Contribution

	Preliminaries
	Tweakable Block Cipher
	Almost XOR Universal Hash Function
	H-Coefficients Technique

	Specification and Security Result of HCTR+
	Specification of HCTR+
	Security Result of HCTR+
	Design Rationale of HCTR+

	Proof of Theorem 2
	Extended Query Transcript
	Defining and Bounding Bad Transcripts
	Analysis of Good Transcripts

	Instantiation of HCTR+
	PHCTR+: An Optimally Secure WBC
	Security Result of PHCTR+
	ZHCTR+: An Optimally Secure WBC
	Security Result of ZHCTR+

	Proofs of AXU advantages for PHASH+ and ZHASH+
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Implementation
	Conclusion

