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Abstract. In this work, we study the singular locus of the varieties de-
�ned by the public keys of UOV and VOX, two multivariate signature
schemes submitted to the additional NIST call for post-quantum sig-
nature schemes. We give a new attack for UOV+̂ and VOX targeting
singular points of the underlying UOV key. Our attack lowers the secu-
rity of the schemes, both asymptotically and in number of gates, showing
in particular that the parameter sets proposed for these schemes do not
meet the NIST security requirements. More precisely, we show that the
security of VOX/UOV+̂ was overestimated by factors 22, 218, 237 for se-
curity levels I, III, V respectively.
As an essential element of the attack on VOX, we introduce a polyno-
mial time algorithm performing a key recovery from one vector, with an
implementation requiring only 15 seconds at security level V.

Keywords: Multivariate cryptography · Cryptanalysis · Singular points
· Bihomogeneous polynomial system

1 Introduction

Unbalanced Oil and Vinegar (UOV) is a multivariate signature scheme intro-
duced in 1999 by Kipnis, Patarin and Goubin [21] to counter the Kipnis-Shamir
attack [22] on the Oil and Vinegar signature scheme [27]. Since then, UOV has
su�ered no major attack and has been used as a basis for many multivariate
signature schemes. The design is straightforward: the public key is a quadratric
homogeneous polynomial system of m equations in n > 2m variables over a �-
nite �eld Fq, and the secret key is an m−dimensional linear subspace of Fn

q that
cancels the public key.

There is a strong belief that polynomial system solving remains a hard
task for quantum computers, and this motivated the submission of UOV-based
schemes to post-quantum standardisation contests. Among them, the NIST com-
petition for post-quantum cryptography has garnered the most attention from
the cryptographic community. Many multivariate signature schemes were sub-
mitted, in particular Rainbow [13] was a �nalist in the third round. The crypt-
analysis of Rainbow [5] renewed the interest in UOV and its variants, and among
the 10 multivariate schemes submitted to the additional signature round, 7 are
closely related to UOV (either special cases or using modi�ed UOV keys). These
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submissions are MAYO [4], PROV [9], QR-UOV [19], SNOVA [34], TUOV [12],
(plain) UOV [6] and VOX [10].

The main appeal of these schemes, compared with the NIST PQC standards
based on lattices, is the signi�cantly shorter signature size they achieve: at NIST
security level I, UOV achieves signatures as short as 96 bytes, as opposed to
Falcon requiring 666 bytes. The drawback of these schemes is the very large key
size: at NIST security level I, a UOV public key requires at least 278 kilobytes
where Falcon uses an 897 bytes public key. This is mitigated by considering
additional structure. For instance, the MAYO submission achieves at the same
security level a signature of 321 bytes for a key size of 1168 bytes.

We follow a geometric approach to study the security of these schemes. In
particular, we study the existence of singular points of the solution sets of the
polynomial systems de�ned by the public key of UOV-based schemes. A singular
point is a solution of the system at which the tangent space is too large. These
points do not exist for random polynomial systems, therefore their existence
yields attacks on these schemes.

Contributions and main results Denote V(I) the set of solutions of the
polynomial system de�ned by a UOV public key (p1, . . . , pm). We provide an
algebraic variant of the Kipnis-Shamir attack described in [21] by studying the
set of singular points of V(I). Our �rst result, Theorem 3.1, gives a lower bound
on the dimension of the singular locus.

We also show that these are the only singular points of a generic (in the
Zariski sense) UOV variety if the characteristic of the �eld is large enough in
Theorem 3.2.

This has several consequences: we are able to identify some heuristics used
in the Kipnis-Shamir attack, and our attacks do not su�er from the �eld size,
as opposed to the Kipnis-Shamir attack which is enumerative by nature. In
particular, the existence of singular points in the base �eld and an estimation
of their number enables one to carry out the Kipnis-Shamir attack, whereas our
attacks do not fail when there exists singular points only in a �eld extension.

We apply this work to UOV+̂, a UOV variant which adds random quadratic
equations to the public key. In Theorem 4.1, we prove that the +̂ structure does
not prevent the attacker from targeting the singular points of the underlying
UOV key.

We provide a polynomial time algorithm recovering the full VOX private
key from a single oil vector, generalizing a result of [28]. Combined with the
dimension computation of Theorem 4.1, we obtain a key recovery attack against
VOX/UOV+̂ with an exponential coe�cient smaller by a factor qt in Theorem
4.3. We obtain cheaper attack costs than the estimates found in [16] and [10].
We propose alternative UOV+̂ parameters defeating this attack.

We provide implementations of the attacks and experimental results with the
code used to obtain them, to study the practical behavior of the di�erent attacks
and in particular compare the theoretical bounds with practical results on small
instances.
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Related work The Kipnis-Shamir attack [21] is an enumerative attack that
repeatedly computes eigenvectors of some linear maps related to the public key
of a UOV instance. It has been observed that this attack computes singular
points in the intersection of two quadrics that share a large linear subspace.
This observation is due to Luyten [24] in the context of Oil and Vinegar, and
has been generalized to the case of UOV by Beullens and Castryck (private
communication, July 2023). The di�erence in our approach is the focus on the
properties of the singular locus, in particular its dimension, and proposing an
alternative algebraic modeling of this computation.

VOX is a signature scheme based on UOV+̂ and utilizing the QR structure
introduced by [19]. The QR transform consists in using block matrices in the key
pair. Each block, of size ℓ×ℓ, represents an element of a �eld extension of degree
ℓ, allowing for smaller public keys but introducing a new security assumption.
Based on [18], Furue and Ikematsu attacked the parameters of the QR transform
used in VOX. In response, alternative parameters were suggested for VOX [25],
but the QR transform used in this case was shown to be insecure by Guo and
Ding [20].

Neither of these attacks targeted the UOV+̂ scheme. In contrast, we show
that the unstructured security assumption, namely the security of the UOV+̂
scheme, is overestimated by the VOX speci�cation.

Organisation of the paper In Section 2, we de�ne the UOV signature scheme
and recall some classical results. In Section 3, we prove the non-vacuity of the
singular locus of the UOV variety, and give the dimension of its intersection
with O. We then exploit this structure to introduce key recovery attacks against
UOV. In Section 4, we apply the results of the previous sections to introduce
key recovery attacks against UOV+̂ bypassing the +̂ structure. To obtain a full
key recovery attack, we generalize the key recovery from one vector of [28] to the
case of UOV+̂. These results directly apply to VOX. In Section 5, we present
experimental results supporting the theory presented throughout the paper.

2 Preliminaries

2.1 Notations

Let q = pe for p prime and e ∈ N>0. Let Fq denote the �nite �eld with q
elements. The prime p is the characteristic of Fq. Vectors are assumed to be
column vectors and are denoted by bold letters: x,y,o, . . .. Matrices are denoted
by capital letters, and transposition of a matrix is written AT . For a matrix Fk,

the coe�cient at position i, j is noted f
(k)
i,j . The kernel of a matrix A is denoted

by ker(A) and is a right kernel: x ∈ ker(A) ⇐⇒ Ax = 0. Given a �eld F and
an integer n, we denote by F[x1, . . . , xn] or F[x] the polynomial ring of F in n
indeterminates. If I is an ideal of F[x], the variety de�ned by this ideal is noted
V(I) = {x ∈ Fn

,∀p ∈ I, p(x) = 0}. The restriction of a function f to a set E is
denoted by f|E . The canonical basis of the vector space Fn

q is noted (e1, . . . , en).
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For a given monomial ordering ≺, the leading term of a polynomial p is noted
LT≺(p).

2.2 Unbalanced Oil and Vinegar

A UOV key pair for parameters (n,m, q) is composed of a secret key (A,F) and
a public key P, with:
� A ∈ GLn(Fq) an invertible matrix,

� F = (F1, . . . , Fm) ∈ F(n×n)m
q with f

(k)
i,j = 0 for 1 ≤ i, j, k ≤ m

� P = (P1, . . . , Pm) := (ATF1A, . . . , ATFmA).

These matrices represent homogeneous quadratic maps (there are no constant
and linear terms). The corresponding quadratic maps are de�ned by:

F(x) : x ∈ Fn
q 7→ (xTF1x, . . . ,x

TFmx) (1)

P(x) : x ∈ Fn
q 7→ (xTP1x, . . . ,x

TPmx) (2)

P = F ◦A (3)

Given a hash function H : {0, 1}∗ → Fm
q , a signature for a message M is a

vector x ∈ Fn
q such that

P(x) = H(M) ∈ Fm
q .

The idea was introduced by Patarin in [27] and the motivation was that the
secret system F(x) = t is linear in x1, . . . , xm:

F(x) = t ⇐⇒


xTF1x = t1
...

xTFmx = tm

(4)

The x1, . . . , xm variables are distinguished from the other variables and are
named �oil variables�. The variables xm+1, . . . , xn are �vinegar variables�. The
knowledge of A allows the signer to e�ciently solve P(x) = t using this prop-
erty. De�ne the ideal generated by the public key I = ⟨p1, . . . , pm⟩. The set of
accepted signatures for a message t ∈ Fm

q is the set of Fq−rational points of
an algebraic variety of dimension n − m generically. We distinguish the case
t = (0, . . . , 0) and de�ne the UOV variety

V(I) = {x ∈ Fn

q ,P(x) = (0, . . . , 0)}.

An insight from the cryptanalysis of Oil and Vinegar [22] and Rainbow [3]
is the interest of having a geometric perspective on the equations de�ning the
scheme. More precisely, these papers reformulate the UOV trapdoor in terms of
subspaces, which yields a better understanding of the relationship between the
public and private keys.

Let f be a quadratic form on a vector space Fn
q . The polar form associated to

f is f⋆ : (x,y) 7→ f(x+y)−f(x)−f(y). A subspace V ⊂ Fn
q is totally isotropic

for f if for all x ∈ V, f(x) = 0. The secret key of UOV may be characterized in
terms of isotropic subspaces:
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Lemma 2.1. The linear subspace O is a totally isotropic subspace of a quadratic
form f if and only if for all (x,y) ∈ O2, f⋆(x,y) = 0.

Let (o1, . . . ,om) be a basis of O, a totally isotropic subspace of f . Complete
(o1, . . . ,om) into a basis of Fn

q denoted B. Then a symmetric matrix1 represent-
ing f in basis B has the secret UOV shape:

MatB(f) =

(
0 F (1)

F (2) F (3)

)
.

This shows that the secret key of UOV is a totally isotropic subspace O of
dimension m shared by each of the public key quadratic forms. Therefore:

O ⊂ V(I).

This observation is due to Kipnis and Shamir in their attack against OV in
1998 [22], and this secret subspace was called �oil space�.

2.3 Cryptanalysis of UOV and its variants

Consider an instance of UOV with parameters (q, n,m) with a public key P.

The Kipnis-Shamir attack [21, 22] The Kipnis-Shamir attack on Oil and
Vinegar [22, Theorem 7] is a polynomial time algorithm (polynomial in n and
log(q)) retrieving a basis of O when n = 2m. It motivated the �unbalanced�
property of UOV introduced in [21]. The attack has been generalized to UOV
by [21, Theorem 4.2], in which case it is no longer polynomial. We detail the
attack on UOV below.

Let (αi)1≤i≤m−1 ∈ Fm−1
q and de�ne M =

∑m−1
i=1 αiPi. Then P−1

m M has an

invariant subspace included in O with probability greater than p = q3m−n−1
qm−1 . The

attacks consists in computing eigenvectors using the characteristic polynomial
of M . It is computed in time O(nω) and factored in time O(n log(n)) Therefore,
after an expected qn−2m draws of eigenvectors of such linear maps, each with a
cost nω, an attacker expects to have found a vector in O.

Key recovery from one vector [1, 3, 14, 28] Once one or more vectors of
the secret key have been obtained, one obtains linear equations characterizing
the remaining vectors. This is the reconciliation attack [3, 14], and it yields a
polynomial time key recovery from two vectors by solving a linear system.

In fact, one vector su�ces for this task with the following observation:

x ∈ O =⇒ O ⊂ ker

xT (P1 + PT
1 )

...
xT (Pm + PT

m)

 .

1 If the matrix is not symmetric, then the block of zeros is replaced by any skew-
symmetric matrix
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This kernel has dimension n − m generically. Therefore, the restriction of the
UOV public key to this linear subspace is a UOV instance with fewer variables.
If n − m < 2m, by [28, Lemma 2] the matrices composing the public key of
this new UOV instance are singular. The kernels of these matrices are linear
subspaces included in O that generically span O.

3 Key recovery attack against UOV: Singular points

As seen in the previous section, �nding one vector in the secret subspace O is
enough to break UOV. This task is challenging, and motivates the search for
distinguished points in O. If such points exist, one may hope to compute them
more e�ciently than random points in O. This section focuses on this question,
proving that there exists a large number of singular points of the UOV variety
in the secret subspace O. This leads to new key recovery attacks on UOV.

3.1 Singular points of V(I)

The goal of this subsection is to study the singular locus of the UOV variety,
in particular its dimension. We start by de�ning singular points of an algebraic
variety:

The main algebraic object we consider is the Jacobian matrix of a system of
m equations in n variables de�ned by JacP(x) = ( ∂pi

∂xj
)1≤i≤m,1≤j≤n.

Notice that for square matrices P1, . . . , Pm, the Jacobian of the system P(x) =
(xTP1x, . . . ,x

TPmx) has a simple description:

JacP(x) =

xT (P1 + PT
1 )

...
xT (Pm + PT

m)

 (5)

De�nition 3.1. Let (p1, . . . , pm) be a collection of homogeneous polynomials
over K[x] de�ning a radical ideal I = ⟨p1, . . . , pm⟩. We say that x ∈ V(I)\{0} is
a singular point of V(I) if the rank of the Jacobian matrix JacP(x) ∈ K[x]m×n

is less than codim(I). The set of singular points of V(I) is noted Sing(V(I)).

The singular locus is de�ned for the vanishing ideal I(V(I)), therefore if the
ideal I is not radical the polynomials p1, . . . , pm must be chosen in

√
I. In the

rest of the paper, we assume that n > m and that the system (p1, . . . , pm) forms
a regular sequence, therefore codim(I) = m. This is a natural assumption since
the pi are chosen uniformly at random among the quadrics that vanish on O. In
this case, a point x in the variety is singular if the Jacobian evaluated at x is
not full rank. For generic polynomial systems, there are no singular points.

In the following theorem, we make a distinction between the values m and
o = dim(O), even though they are equal for UOV. There are two reasons for
this:
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� There are schemes, such as MAYO [4] and PROV [9], based on the same
core ideas as UOV but where o ̸= m.

� This allows us to consider subsystems to compute singular points by lever-
aging the positive dimension of the full singular locus.

Theorem 3.1 (Homogeneous singularities). Let p1, . . . , pm be quadratic forms
de�ning an ideal I = ⟨p1, . . . , pm⟩ of Fq[x1, . . . , xn] such that V(I) contains an
o−dimensional linear subspace O. Let d = 2o+m−n−1 and assume n > m+o.

If d ≥ 0, then the singular locus of V(I) is non-empty and its intersection
with O has dimension at least d.

Proof. Let P(x) = (p1(x), . . . , pm(x)). Let B = (b1, . . . , bn) be a basis of Fn
q such

that b1, . . . , bo is a basis of O. Let F(x) = P(Bx). This system has the shape of a
UOV secret key by Lemma 2.1: the equations depend linearly on x1, . . . , xo. This
implies that the partial derivatives with respect to any �oil� variable 1 ≤ j ≤ o
are linear forms in the �vinegar� variables xo+1, . . . , xn. Therefore, the Jacobian
of the system has a special shape: x1, . . . , xo do not appear in the �rst o columns
of the Jacobian. Thus, for all x ∈ Fo

q × {0}n−o (an �oil vector�), we have:

JacF (x) =


1 . . . o o+ 1 . . . n
0 . . . 0 1
...

...
...

0 . . . 0 m

J ′(x)


where J ′(x) ∈ Fq[x1, . . . , xo]

m×(n−o) with entries that are linear forms. Since
n > m, notice that JacF (x) is not full rank if and only if J ′(x) is not full rank
since any minor containing one of the �rst o columns is zero. Thus, JacF (x) is
not full rank if and only if x lies in the variety of the determinantal ideal Jm−1

generated by the m−minors of J ′. As n− o > m, by [7, Theorem 2.1], this ideal
has dimension at least d = o− (n− o− (m− 1))(m− (m− 1)) if d ≥ 0, namely:

d = 2o+m− n− 1.

By the chain rule, there is a one-to-one mapping from singular points of the
system F to singular points of the system P:

JacP(x) = JacF (B
−1x)B−1.

Therefore dimSing(V(I)) ≥ d.

By restricting to a subset of r equations from the public key, we may consider
a zero-dimensional system:

2o+ r − n− 1 ≥ 0 ⇐⇒ r ≥ n− 2o+ 1 (6)

In particular, for r0 = n − 2o + 2, the singular locus is expected to be (a�ne)
1-dimensional, enabling us to solve a 0-dimensional system after dehomogenizing
(adding an a�ne constraint on the variables, such as x1 = 1). In practice, the
lower bound computed in Theorem 3.1 is achieved (see Section 5).
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3.2 Generic smoothness

Smoothness - the absence of singularities - is a generic property of varieties in
�elds of characteristic 0 or su�ciently large [15, Corollary 16.23]. This fact also
yields a tool to prove that for a generic UOV variety (informally, the variety
of a key chosen uniformly at random), all the singularities are expected to lie
in O. The main caveat is that the �eld sizes used in practice are too small to
hope to apply the results directly. Therefore, we will heuristically consider that
the failure of the result in small characteristic will only yield low dimensional
components of the singular locus, that will disappear when intersecting with
generic hyperplanes.

The main ingredient is an algebraic version of Thom's weak transversality
theorem due to Safey El Din and Schost [30, Proposition B.3], which itself re-
lies on an algebraic version Sard's lemma. The methodology is to consider the
coe�cients in a UOV key (or more generally in a polynomial mapping) as inde-
terminates.

Let n,m, d be positive integers. Let F be a �eld of characteristic 0. Let Φ :
Fn × Fd → Fm be a polynomial mapping. For θ ∈ Fd, denote by Φθ : Fn → Fm

the induced mapping x 7→ Φ(x, θ). We say that t ∈ Fm is a regular value of Φ if
Φ is non-singular on Φ−1({t}).

Thom's weak transversality theorem ( [30, Proposition B.3]). Let S ⊂ Fn

be a Zariski open set and suppose that 0 is a regular value of Φ on S × Fd.
Then there exists a non-empty Zariski open set U ⊂ Fd such that for all θ ∈ U ,
0 is a regular value of Φθ on S.

We apply this to the case of UOV to prove that for a generic UOV key and
a large enough �eld, the only singularities lie in O. Notice here that we de�ne
the keys in Q instead of Fp: this will allow us to apply the previous result since
char(Q) = 0. We then obtain the result in Fp for p a su�ciently large prime by
reducing the equations modulo p. In the rest of this section, we will assume that
p is a prime.

De�nition 3.2. Let n,m, o be positive integers with n ≥ 2o.

Let d = m
(
o(n− o) + (n−o)(n−o+1)

2

)
. Let O = [1, . . . , o], V = [o + 1, . . . , n]

the indices of oil (resp. vinegar) variables in the UOV secret key. Let Φ : Qn ×
Qd → Qm induced by x, (α,β) 7→ (Φ1(x, (α,β)), . . . , Φk(x, (α,β))) where for
1 ≤ k ≤ m,

Φk(x, (α,β)) =
∑

i∈O,j∈V

α
(k)
i,j xixj +

∑
i∈V,j∈V

β
(k)
i,j xixj (7)

Let Ox = Qo × {0}n−o. Let S = Qn \ Ox

Notice that if F = (f1, . . . , fm) ∈ Fm(n×n)
p is the secret quadratic map of a

UOV key in a prime �eld Fp, then there exists coe�cients θ = (α,β) ∈ Zd ⊂ Qd,
such that F = Φθ mod p.
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Theorem 3.2. Using the notations of De�nition 3.2, and for p large enough,
there exists a non-empty Zariski open set U ⊂ Fd

p such that for all θ = (α,β) ∈
U , 0 is a regular value of Φθ on Fn

p \ (Fo
p × {0}n−o).

In other words, consider the set of all UOV keys in su�ciently large charac-
teristic p. It admits a non-empty Zariski open set U such that for all P ∈ U , the
only singularities of V = {x ∈ Fn

p ,P(x) = (0, . . . , 0)} belong to the corresponding
oil space.

Proof. First, notice that Ox = Qo × {0}n−o is a Zariski closed set, therefore
S = Qn \ Ox is a Zariski open set.

Next, we prove that the Jacobian matrix JacΦ(x,α,β) is full rank on S×Qd.
To do so, we will prove that it contains an identity submatrix. Recall that

JacΦ(x,α,β) =

∇(Φ1(x,α,β))
...

∇(Φm(x,α,β))

 ∈ Q[x,α,β]m×(n+d) (8)

To ease the description, we decompose the indeterminates in smaller subsets.
Let xO = (x1, . . . , xo),xV = (xo+1, . . . , xn). For all 1 ≤ k ≤ m, let α(k) =

(α
(k)
1,o+1, . . . , α

(k)
o,n) and β(k) = (β

(k)
o+1,o+1, . . . , β

(k)
n,n).

We can detail the Jacobian matrix based on the de�nition of Φ in Equation
(7). The partial derivatives with respect to the x variables are not relevant in
this proof but are included for completeness. Let 1 ≤ k ≤ m.

a) For ℓ ∈ O, ∂
∂xℓ

Φk =: L
(1)
k (xV ,α) does not depend on xO.

b) For ℓ ∈ V, ∂
∂xℓ

Φk =
∑

i∈O α
(k)
i,ℓ xi+

∑
i∈V,i ̸=ℓ β

(k)
i,l xi+2β

(k)
ℓ,ℓ xℓ =: L

(2)
k (x,α,β).

c) For i, j ∈ O × V , we have ∂

∂α
(k)
i,j

Φk = xixj .

d) If ℓ ̸= k and i, j ∈ O × V then ∂

∂α
(k)
i,j

Φℓ = 0.

e) Similarly, for i, j ∈ V × V , we have ∂

∂β
(k)
i,j

Φk = xixj .

f) For ℓ ̸= k and i, j ∈ V × V, ∂

∂β
(k)
i,j

Φℓ = 0.

This is summarized in Equation (9):

JacΦ(x,α,β) =


xO xV α(1) β(1) . . . α(m) β(m)

L
(1)
1 (xV ,α) L

(2)
1 (x,α,β) xixj xixj . . . 0 0 1

...
...

...

L
(1)
m (xV ,α) L

(2)
m (x,α,β) 0 0 . . . xixj xixj m

 (9)

We now restrict x to S = Qn \ Ox. As x ̸∈ Ox, there exists i ∈ V such that
xi ̸= 0. Therefore, for all 1 ≤ k ≤ m, we have:

∂

∂β
(k)
i,i

Φk = x2
i and ∀ℓ ̸= k,

∂

∂β
(k)
i,i

Φℓ =
∂

∂β
(ℓ)
i,i

Φk = 0.
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In other words, the following submatrix of JacΦ(x,α,β) is x2
i times the identity

matrix:

JacΦ(βi,i) =


∇βi,i

Φ1

∇βi,i
Φ2

...
∇βi,i

Φm

 =


β
(1)
i,i β

(2)
i,i . . . β

(m)
i,i

x2
i 0 . . . 0 1
0 x2

i . . . 0 2
...

...
0 0 . . . x2

i m

 .

Since xi ̸= 0, then x2
i · Im is invertible, therefore JacΦ(x,α,β) is full rank, and

therefore 0 ∈ Qm is a regular value of Φ on S.
By Thom's weak transversality theorem [30, Proposition B.3], there exists a

non-empty Zariski open set U ⊂ Qd such that for all θ ∈ U , 0 is a regular value
of Φθ on S.

By de�nition of a non-empty Zariski open set, there exists a non-zero ideal
I ⊂ Q[θ] such that

U = Qd \ V(I).
There exists a non-constant polynomial u ∈ I since I is non-zero. Let D be
the least common multiple of the denominators of the coe�cients of u. Then
v = Du ∈ Z[θ]. Since u ̸= 0 ∈ Q[θ] we have v ̸= 0 ∈ Z[θ]. Let p0 be a prime
greater than the largest prime dividing D. Then, for all p ≥ p0, v ̸= 0 mod p.

Let p ≥ p0. De�ne UFp , the complement of the Zariski closed set de�ned by
the vanishing of Ip = {u mod p, u ∈ I} which is an ideal of Fp[θ]:

UFp = Fd
p \ V(Ip).

Since v mod p ̸= 0 and v ∈ Ip, then Ip ̸= {0}. This yields:

V(Ip) ̸= Fd
p.

Therefore, UFp
is a non-empty Zariski open set of Fd

p. For all θ ∈ UFp
, 0 is a

regular value of Φθ mod p on S mod p.

Notice that Theorem 3.2 also yields a proof that a generic polynomial map
does not admit singularities. Since the �eld sizes in UOV are typically very small
(around 28), this does not yield a proof for the practical parameter sets.

The heuristic expectation is that the cases of failures of the result (the ex-
istence of singularities outside of O in small characteristic) yield only low di-
mensional components of the singular locus, which therefore does not a�ect the
computations described in the next sections of the paper. This is veri�ed exper-
imentally in Section 5 by computing Gröbner bases of the ideal of the singular
locus for various parameter sets.

3.3 Gröbner bases of the singular locus

The original Kipnis-Shamir attack of [21] implicitly relied on two ingredients: the
fact that all singular points are elements of O, which generically holds for large
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enough �elds by Theorem 3.2, and the existence of Fq-rational singular points,
which are singular points that are de�ned over Fq as opposed to an extension of
Fq. This hypothesis allows us to perform an algebraic attack even in the absence
of rational singular points.

Hypothesis 1 (Kipnis-Patarin-Goubin). Let V(I) = {x ∈ Fn

q , p1(x) = . . . =
pm(x) = 0} be the variety de�ned by a collection of quadrics with a common
totally isotropic subspace O. Then Sing(V(I)) ⊂ O.

Hypothesis 1 is used in [21, �How to �nd O?�] implicitly, as the invariant
subspace H computed by the attack is one-dimensional, and one cannot use [21,
Lemma 3] to distinguish lines in the variety from lines in O. To apply [21, Lemma
3], one requires a two-dimensional subspace of Fn

q at least. The relationship
between these invariant subspaces and singular points is clari�ed in Section 3.6.

Note however that if the hypothesis does not hold, the attack is not prevented,
but it may return false positives. This does not signi�cantly a�ect the complexity,
as these can be e�ciently recognized as such using a test “x ∈ O?” [1, 28].

As opposed to the Kipnis-Shamir approach, we obtain an attack without
computing solutions of the system and only through a grevlex Gröbner basis
computation.

Lemma 3.1. Let I be a proper ideal of K[x]. Assume there exists linear poly-
nomials in I, and let ≺ be a graded ordering.

a) A Gröbner basis of I with respect to ≺ contains at least one linear polynomial.
b) If ℓ1 . . . , ℓs are the linear polynomials contained in a Gröbner basis with re-

spect to ≺, then
⋂

1≤i≤s

V(ℓi) =
⋂

f∈I,deg(f)=1

V(f).

Proof. a) Let G = (g1, . . . , gt) be a Gröbner basis of I with respect to ≺. Since
I is proper, G ̸= (1). By de�nition of a Gröbner basis, for all f ∈ I, LT≺(f)
must be divisible by the leading term of an element of G. The order ≺ is graded,
therefore the degree of the leading term of a polynomial must be the total degree
of this polynomial.

Let f ∈ I be a linear polynomial. There exists i ∈ [1, t] such that:

LT≺(gi)|LT≺(f).

Since deg(LT≺(f)) = 1, LT≺(gi) is of degree 1 and therefore gi is of degree 1.
b) By a), let g1, . . . , gs be the linear polynomials in a Gröbner basis G =

(g1, . . . , gt) for I with respect to ≺ (assuming without loss of generality that
they are indexed by (1, . . . , s)). Let f be a linear polynomial in I. By de�nition
of a Gröbner basis, LT≺(f) must be divisible by the leading term of an element of
G. We have observed in a) that only a degree 1 polynomial in the Gröbner basis
may perform this division, and the quotient of a linear polynomial by another
linear polynomial is a constant polynomial (an element of the �eld).

This implies that every degree 1 polynomial in I can be written as a lin-
ear combination f =

∑s
i=1 aigi of the degree 1 elements of the Gröbner basis.
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Therefore, ⋂
1≤i≤s

V(gi) ⊂
⋂

f∈I,deg(f)=1

V(f).

The reverse inclusion comes from the fact that for all i ∈ [1, s], gi ∈ I. Therefore,
the subspaces

⋂
1≤i≤s

V(gi) and
⋂

f∈I,deg(f)=1

V(f) are equal.

If the Gröbner basis is reduced, the same argument shows that the linear
polynomials in the Gröbner basis must de�ne distinct hyperplanes.

In the UOV case, using Theorem 3.2 or Hypothesis 1 combined with Lemma
3.1, one hopes to �nd exactly n − o linear polynomials in a reduced grevlex
Gröbner basis for the ideal de�ning Sing(V(I)). This behavior is observed in
practice in Section 5. Note that a geometric property on a variety (here the
singular locus) yields an algebraic property on the radical of the ideal de�ning
it, therefore we make a (slightly weaker) statement that applies to the radical of
the ideal de�ning the singular locus.

Let P ∈ Fq[x1, . . . , xn]
m be a set of m homogeneous quadratic equations

vanishing on a proper o−dimensional linear subspace O with d = 2o+m−n−1 >
0 and let I = ⟨p1, . . . , pm⟩. Let H1, . . . ,Hd−1 be generic linear polynomials. We
de�ne an ideal that vanishes on a subset of the singular locus of V(I):

J = ⟨p1, . . . , pm⟩+ ⟨Minorsm(JacP(x))⟩+ ⟨x1 − 1, H1(x), . . . ,Hd−1(x)⟩.

Note that by Theorem 3.1 J is zero-dimensional generically. We dehomogenize
the system with x1 − 1.

In the next result, we assume that when the conclusions of Theorem 3.2 do
not hold (because of a small characteristic), then the singularities that lie outside
of O form a low dimensional subvariety of the singular locus of a generic UOV
key. This is a weaker assumption than Sing(V(I)) ⊂ O.

Proposition 1. Assume that dim (Sing(V(I)) \ O) < 2o − m − n − 1. Then a
Gröbner basis of

√
J with respect to a graded order contains linear polynomials,

and the variety de�ned by these linear polynomials is a subspace of O.

Proof. First, notice that dim (Sing(V(I)) \ O) < d =⇒ V(J) ⊂ O. Indeed,
(Sing(V(I)) \ O) ∩ V(H1) ∩ . . . ∩ V(Hd−1) ∩ V(x1 − 1) = ∅ by de�nition of the
dimension of a variety.

Since ∅ ⊊ O ⊊ Fn
q , there exists a non-trivial linear polynomial h such that

O ⊂ V(h). Since V(J) ⊂ O, ∀x ∈ V(J), h(x) = 0. By the Nullstellensatz [35,
Theorem 14, p. 164], this implies h ∈

√
J . By Lemma 3.1, this implies that a

Gröbner basis of
√
J with respect to a graded order contains linear polynomials,

and the intersection of the varieties they de�ne is a subspace of O.

Note that in experiments (Section 5) J was always found to be radical.
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3.4 Modeling singularities

We use Theorem 3.1 to obtain key recovery attacks against UOV by computing
a grevlex Gröbner basis for the ideal describing the singular locus of the variety
de�ned by subsets of equations of the UOV public key. By Proposition 1 we
expect such a Gröbner basis to contain linear polynomials that characterize O
when the ideal is radical. In particular, one does not require the singular points
to be Fq-rational to complete the attack.

We consider two di�erent modelings that are folklore, the minors modeling
and a bihomogeneous modeling based on the �Lagrange multiplier� method as it
is known in optimization (this is closely related to the Kipnis-Shamir approach
to the MinRank problem). Both modelisations are highly structured (the former
de�nes a determinantal ideal and the latter is bihomogeneous of bidegree (2,1)).
Informally, the intuition is the following:

� Minors modeling: The Jacobian is not full rank if all its maximal minors
vanish.

� Lagrange multipliers: The Jacobian is not full rank if there is a non-zero
vector in its left-kernel.

In practice, we enforce the constraint x ̸= 0 by dehomogenizing the system using
for instance the equation x1 − 1 = 0.

De�nition 3.3. Let P(x) be a UOV system of m equations in n variables. We
denote by JacP,r the Jacobian matrix of the system P(x) truncated to the �rst r
lines.

1. Minors modeling:

M(P, r) :


x ∈ Fn

q ,x ̸= 0

P(x) = 0

Minorsr(JacP,r(x)) = 0

(10)

2. Bihomogeneous modeling:

B(P, r) :


x ∈ Fn

q ,y ∈ Fr
q,x ̸= 0,y ̸= 0

P(x) = 0

yT JacP,r(x) = 0

(11)

The solutions x of either of these systems, if any, are singular points of the
variety de�ned by ⟨p1, . . . , pm⟩ by construction.

In the case of Oil and Vinegar, Luyten [24] observed that solving the minors
modeling system for r = 2 is a polynomial task in practice. However, the minors
modeling does not scale well in the case of UOV, due to the cost of computing
maximal minors (there are

(
n
r

)
maximal minors). This is why we introduce the

bihomogeneous system.
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Equations (10) and (11) de�ne the singular points of a subset of r equa-
tions from a UOV public key. The value chosen for r is the one such that the
ideal ⟨p1(x), . . . , pr(x)⟩ + ⟨Minorsr(JacP(x))⟩ de�nes a one-dimensional variety
by Theorem 3.1 and (6). By intersecting it with an arbitrary hyperplane to deho-
mogenize (for instance the one de�ned by x1 − 1), we obtain a zero-dimensional
variety.

Notice that a priori, Theorem 3.1 gives a bound on the dimension of the
singular locus of the variety de�ned by a system of r UOV equations and some
equations describing the rank defect of the Jacobian of these equations. Though,
in (10) and (11), the quadratic equations include allm public key equations. This
is because Theorem 3.1 gives the dimension of the intersection of the singular
locus with the secret subspace O: any point in this intersection is an element of
O, and it therefore cancels all the public key equations.

Even ignoring the large cost of computing the
(
n
r

)
minors of degree r in the

minors modeling case, the degree of regularity of the ideal suggests a slightly
worse complexity than the bihomogeneous modeling. Therefore, we focus on the
analysis of complexity results associated with the bihomogeneous modeling.

Note that any r lines of the Jacobian may be chosen to build JacP,r, the
choice of the �rst r ones is arbitrary.

3.5 Computing singular points using the bihomogeneous modeling

In this section, we are interested in the complexity of obtaining a grevlex Gröbner
basis for the system described in Equation (11). The system is bihomogeneous
and we rely on results presented �rst in [33], and their application to computer
algebra in [17,31] and in cryptography in [29].

De�nition 3.4. Let K be a �eld, let x = (x1, . . . , xn),y = (y1, . . . , ym) be two
sets of variables. Let p be a polynomial in K[x,y]. We say that p is bihomogeneous
of bidegree (d1, d2) with respect to x,y if

∀(λ, µ) ∈ K2
, p(λx, µy) = λd1µd2p(x,y).

Recall that y is any non-zero element of the left kernel of the Jacobian
evaluated on a singular point. This kernel must be of dimension at least one
by de�nition of a singular point, and expected to be of dimension no greater
than one if the formula for the dimension of the determinantal ideal Jm−2 of
the m − 1 minors of the Jacobian from [7, Theorem 2.1] is negative. Thus, for
each x ∈ Sing(V(I)), there exists q choices of y in (Fq)

r. We dehomogenize with
y1 − 1 = 0 to obtain a unique solution with high probability.

We may choose r such that the system B(P, r) de�nes a 1-dimensional (a�ne)
variety. We dehomogenize this system by adding the equation x1 − 1 = 0 to the
system, yielding a zero-dimensional system.
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Ignoring for a moment the m− r polynomials of the public key not involved
in the Jacobian matrix, we still consider a zero-dimensional system:

x ∈ Fn
q ,y ∈ Fr

q

P1(x) = . . . = Pr(x) = 0

yT JacP,r(x) = 0

x1 − 1 = 0

Notice that the n Lagrange multiplier equations yT JacP(x) = 0 ∈ Fn
q are bi-

linear of bidegree (1,1) and the �public equations� P(x) = 0 ∈ Fm
q only involve

(x1, . . . , xn) and therefore have bidegree (2,0).
Following [31, Lemma 7], under the assumption that this system forms a

regular sequence, we obtain the following bivariate Hilbert series:

(1− t1t2)
n(1− t1)(1− t2)(1− t21)

r

(1− t1)n+1(1− t2)r+1

We are interested in the �rst term with a non-positive coe�cient of least
total degree. Note that it is not clear that this approach can be extended to
the overdetermined case, therefore we consider the zero-dimensional case as an
upper bound.

O

((
n+ r + dreg

dreg

)ω)
.

We give in Table 1 the estimated number of arithmetic operations required to
solve the bihomogeneous system (11) using a generic Gröbner basis algorithm.

Parameter set
(n,m, q)

uov-Is
(160, 64, 16)

uov-Ip
(112, 44, 256)

uov-III
(184, 72, 256)

uov-V
(244, 96, 256)

log2 ops 421 314 516 671

Table 1: Maximal degree in a grevlex Gröbner basis computation of singular
points for UOV

This suggests that the approach is not competitive with the state of the art
of key recovery attacks against UOV.

3.6 Revisiting the Kipnis-Shamir attack [22], [21]

In this section, we combine the dimension computation of Theorem 3.1 along
with an estimate of the number of Fq-rational singular points of the UOV variety
to give a complexity estimate for an enumerative algorithm computing singular
points, which turns out to be entirely equivalent to the Kipnis-Shamir attack [21].
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Bihomogeneous modeling - y−Enumeration. Consider a hybrid approach
to the bihomogeneous system de�ned in Equation (11), where we enumerate
over all possible values of y. In this case, we have n linear equations in x, having
evaluated all the y variables in Fq. Let us consider this case more carefully, by
rewriting the modeling:

∃x,y,

{
yT JacP(x) = 0

P(x) = 0
⇐⇒ ∃x,y,


(

m∑
i=1

yi(Pi + PT
i )

)
x = 0

P(x) = 0

(12)

Instead of using a Gröbner basis algorithm, observe that the linear equations

entirely determine x, and there are no x solutions to

(
m∑
i=1

yi(Pi + PT
i )

)
x = 0

unless the linear combination
∑m

i=1 yi(Pi+PT
i ) is singular. If x is a solution of the

linear system, we check whether it is a solution of the quadratic system simply by
evaluating P(x). Such a point will be singular for the system {p1(x), . . . , pm(x)}
by (12).

Since the quadratic system is homogeneous, it does not matter which solution
of the linear system we choose, as we expect only a dimension 1 kernel. Denote
M(y) =

∑m
i=1 yi(Pi + PT

i ).
Since the matrices are square, and the target rank is n− 1, we may consider

Equation (12) as a MinRank instance where the only equation is the determinant
of the matrix M(y). Guessing all the y variables is an enumerative method for
this MinRank instance.

To estimate the complexity of this approach, we count the number of choices
of y corresponding to singular points. To avoid counting the same vectors mul-
tiple times, we count projective points instead of a�ne ones. For each projective
singular point x, there exists a single projective point y ∈ ker(JacP(x)) as the
rank of the Jacobian is n − 1. Let S be the number of projective rational sin-
gular points of the UOV variety. This yields S valid choices of y out of qm−1

possibilities (recall that we impose y1 = 0).
Before estimating S, we focus on the cost of �nding a valid value of y: we

can reduce the number of possible y to qm−2.
We can improve the previous approach by noticing that we did not use the

equation de�ned by the determinant of M(y): we only checked whether it was
vanished. If we only guess m−2 variables, then we can consider the determinant
as a univariate polynomial in the remaining variable (for example, ym). We may
solve this univariate equation with a fast �nite �eld algorithm [8] to �nd the
values of ym such that the determinant vanishes. Computing the determinant of a
univariate matrix is a polynomial task with e�cient algorithms in practice1 [26].
To summarize, for each guess of the m− 2 variables (y2, . . . , ym−1), we proceed
as follows:

� Compute M(y) a sum of m n× n matrices in Fq[y]≤1 (amortized2) O(n2)

1 Precomputing this determinant as a multivariate polynomial in y is not a good idea
because of its very large size - even evaluating it will be costly with

(
n

m−1

)
monomials.

2 We avoid recomputing the full sum and instead update it at each step.
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� Compute det(M(y)), a determinant in Fq[y] O(nω)
� Solve det(M(y)) = 0 in Fq. O(n log n)
� For each of the ℓ roots, solve an n× n linear system O(ℓnω)
� Check if any solution cancels the quadratic system (amortized3) O(ℓn2)

The expected number of rational roots of a univariate polynomial in Fq is 1.
Assuming S is non-zero, the expected complexity of computing singular

points enumeratively is:

C(n,m, q) = O

(
qm−2

S
nω

)
(13)

Kipnis-Shamir attack. The Kipnis-Shamir attack computes singular points
in the intersection of two quadrics that share a large isotropic subspace. This
observation is due to Luyten [24], and Beullens and Castryck (private commu-
nication, July 2023). We can derive the same result with the tools introduced
earlier.

The Kipnis-Shamir attack studies the characteristic polynomial of the matrix
P−1
m M , where M is a random linear combination of public key matrices M =∑m−1
i=1 yiPi. Using Coppersmith's trick [22, Remark above De�nition 5.], the

matrices Pi and Pi + PT
i both have the (U)OV property, namely that they are

congruent to a matrix with an m ×m block of zeros on the diagonal, with the
same change of variables. This implies that we may replace Pi by Pi+PT

i in the
attack, matching the formulation of (12).

Lemma 3.2. For 1 ≤ i ≤ m, let P ⋆
i = Pi + PT

i . Assume P ⋆
m is invertible.

If x is an eigenvector of (P ⋆
m)−1

∑m−1
i=1 yiP

⋆
i , then JacP(x) has a rank defect.

Proof. Let M =
∑m−1

i=1 yiP
⋆
i and let χ be the characteristic polynomial of

(P ⋆
m)−1M .

χ(λ) = det
(
(P ⋆

m)−1M − λI
)
.

Therefore:

det(P ⋆
m) · χ(λ) = det(M − λP ⋆

m) (14)

In Equation (12), we solved det(M − λP ⋆
m)(y) = 0 to compute ym.

This shows that eigenvectors of (P ⋆
m)−1M associated to an eigenvalue λ0

induce a rank defect in JacP by Equation (12), and an associated element of the
left kernel of JacP is (y1, . . . , ym−1,−λ0).

In particular, this shows that if an eigenvector of (P ⋆
m)−1M lies in the variety

V(I), then by Hypothesis 1, it must lie in O.
To obtain the cost of the Kipnis-Shamir attack, the following heuristic is used

in [21, Note above Theorem 4.2].

3 Any solution that does not belong to O will vanish any indivual equation only with
probability 1/q, therefore it is on average su�cient to check O(1) equations



18 Pierre Pébereau

Hypothesis 2. Let P1, . . . , Pm be matrices from a UOV public key for parame-
ters n,m, q. Among a collection of qn−2m distinct linear maps of the form P−1

j M ,
the expected number of eigenspaces of dimension 1 that lie in O is at least 1.

Since each eigenspace included in O corresponds exactly to a single singular
point of the variety, this result allows for an estimate of S. Another heuristic but
more standard approach is the Lang-Weil bound [23, Lemma 1], which states
that there are roughly qd Fq-rational points in a projective variety of dimension
d. This yields S ≈ qdim(Sing(V (I)))−1 = q3m+n−2. In both cases, we obtain:

C(n,m, q) = O(qn−2mnω) (15)

In conclusion, an enumerative approach to the computation of singular points
provides an algebraic interpretation of the Kipnis-Shamir attack from [21]. Fur-
thermore, we highlight a hypothesis (Hypothesis 1) used in the original Kipnis-
Shamir attack of [21], and prove it generically in large enough �elds. We repro-
duce the experiments of [21] in low dimension in a new algebraic framework.

4 Application to UOV+̂ and VOX

4.1 De�nition of UOV+̂

VOX [10] is a signature scheme submitted to the �rst round of the NIST call
for additional signatures. It relies on the same core principles as UOV, but adds
random homogeneous quadratic equations to the public key. These equations
are used to hide the structure of the UOV trapdoor in the form of �noise� by
mixing them with the UOV public key equations. This is the �hat plus� (noted
+̂) transform [16]. This allows the signer to use smaller parameters at the cost of
solving a polynomial system for each signature instead of a linear system. VOX
also relies on an additional structure, the Quotient Ring (QR) transform [19],
which is akin to the construction of structured lattices.

We dismiss the additional structure of the QR transform and work in the
general case: we consider that the VOX secret matrices are dense and random
instead of structured. This is equivalent to working directly on UOV+̂ or Full-
VOX (FOX, introduced in the same speci�cation), by multiplying the parameters
o, v by the �QR factor� c. Note that VOX uses prime �elds with q > 2.

A UOV+̂ key pair for parameters (q, o, v, t) is composed of a secret key
(S,A,F) and a public key P, with:

� A ∈ GLo+v(Fq)

� S =

(
It S′

0 Io−t

)
, S′ ∈ F(o−t)×t

q ,S ∈ GLo(Fq)

� F = (F1, . . . , Fo) ∈ F(n×n)o
q with f

(k)
i,j = 0 for 1 ≤ i, j ≤ o, t < k ≤ o

� P = S ◦ F ◦A a quadratic map

Let n = o + v and let F̂ = (Ft+1, . . . , Fo) be the underlying UOV secret key.
The (truncated) UOV key pair underlying the UOV+̂ key is (F̂ , A), P̂ = F̂ ◦A.
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The polynomials p1, . . . , pt = f1, . . . , ft are uniformly random (they are called
�vinegar polynomials� in [10]) and they de�ne the variety Vt = {x ∈ Fn

q , p1(x) =
. . . = pt(x) = 0} of dimension n− t. To avoid confusion with vinegar variables,
we will refer to them as the random polynomials of the public key.

4.2 Singular points of the UOV+̂ variety

We now apply the results of Section 3 to UOV+̂. The core idea is to study, as
previously done for UOV, how singular points of the secret key are mapped by
the secret change of variables, and in turn deduce non-generic properties of the
public key. In the case of UOV, all singular points of the secret key were mapped
to singular points of the public key by the one-to-one map A.

In the case of UOV+̂, the singular locus of the underlying UOV key is in-
tersected by the variety de�ned by the random polynomials to obtain singular
values of the public key. Still, singular values of the public system are elements
of O, the UOV secret of the UOV+̂ key.

Theorem 4.1. Let P = (p1, . . . , po) be a UOV+̂ public key for parameters
(q, o, v, t), with n > 2o. Let d = 3o− n− 2t− 1.
If d ≥ 0, the UOV+̂ variety V(I) = {x ∈ Fn

q , p1(x) = . . . = pr(x) = 0} has a
singular locus of dimension at least d.

Proof. Assume d is non-negative. Consider the underlying UOV public key de-
�ned by P̂(x) = F̂ ◦ A(x) = (p̂t+1(x), . . . , p̂o(x)). By Theorem 3.1, it de�nes a
variety V(Î) = {x ∈ Fn

q , P̂(x) = 0} with a singular locus of dimension at least

d+ t . The UOV+̂ variety V(I) is obtained by intersecting V(Î) with t random
quadric hypersurfaces de�ned by the equations p1(x) = 0, . . . , pt(x) = 0.

The Jacobian of the system P ′(x) : (p1 = 0, . . . , pt = 0, p̂t+1 = 0, . . . , p̂o = 0)
contains the Jacobian of P̂(x) as a submatrix. The UOV+̂ public key is obtained
by linear combination of equations from P ′(x):

P(x) = S ◦ P ′(x).

The chain rule implies that

JacP(x) = S · JacP′(x).

Therefore, if x ∈ V(I) is a singular point of V(Î), then x must be a singular
point of V(I). This implies that the singular locus of V(I) contains the inter-
section of the singular locus of V(Î) with Vt, the variety de�ned by the random
equations.

By [11, Chapter 9, Section 4, Theorem 3 (page 499)], this intersection has
dimension at least d, which yields the result.

The UOV+̂ (and VOX) security estimates rely on the idea that one cannot
attack the partial UOV key without �rst guessing the coe�cients of the S map
on at least two equations, therefore multiplying the cost of any attack on the
partial key by a factor q2t.
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Theorem 4.1 shows that we can target the partial UOV key by computing
singular points of the UOV+̂ key without guessing S, since the singular locus of
the partial key intersects the variety Vt if d is non-negative. In light of Section
3.6, this proves that the Kipnis-Shamir attack directly works on the UOV+̂
public key since it computes rational singular points of the variety generated by
a collection of quadratic equations.

Applying once again the Lang-Weil bound [23, Lemma 1], we use Equation
(13) to predict the cost of the Kipnis-Shamir attack interpreted as an enumera-
tive singular point computation. We have dimSingV(I) = 3o− n− 1− 2t. This
yields the following expected cost for the Kipnis-Shamir attack against UOV+̂:

C(q, n, o, t) = O

(
qo−1

|SingV(I)|
nω

)
= O(qn−2o+2tnω) (16)

This cost is identical to the estimations in [16] and [10].
We propose in the next section to adapt the Kipnis-Shamir attack to the case

of UOV+̂ by computing the singular points of the underlying UOV key instead
of those of the public key, improving the complexity by an exponential factor.

4.3 Key recovery from one vector against UOV+̂

The main tool we need to adapt the Kipnis-Shamir attack to UOV+̂ is an algo-
rithm to distinguish elements of O from random elements of Fn

q . In UOV, this
task is much easier because elements of O cancel the public key polynomials.

A polynomial-time key recovery from one vector against UOV is introduced
both in [1] and [28].

We focus on the second approach, which proceeds by studying the kernel
of the Jacobian of the system evaluated on an element of the secret subspace
O. In [28, Section 4], these tools are applied to VOX, interpreted as UOV+̂:
the underlying UOV public key is targeted once the map S is inverted. Using t
vectors of the UOV secret key, one inverts the map by solving a linear system.
The author concludes that the method does not apply out of the box, and instead
requires t vectors of O to break the scheme.

In this section, we show that [28, Theorem 7] may be generalized to UOV+̂
without inverting S, and thus show how to perform a key recovery against UOV+̂
and VOX using a single oil vector. Furthermore, for �xed t and for n − 2o = t,
the parameter regime chosen in VOX [10], we achieve a complexity polynomial
in n and o.

The next lemma enables us to restrict a UOV+̂ public key to a smaller
subspace containing an unusually large intersection with the underlying UOV
secret subspace O.

Lemma 4.1. Let P = (P1, . . . , Po) be a UOV+̂ public key for parameters
(q, o, v, t), let O be the associated UOV secret subspace.

If x ∈ O, then ker(JacP(x)) ∩ O has dimension at least o − t as a linear
subspace.
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Proof. Recall that

JacP(x) =

xT (P1 + PT
1 )

...
xT (Po + PT

o )

 .

Furthermore, by de�nition of S the chain rule yields:

JacP(x) = S · JacP̂(x) (17)

Since S is injective, the right kernels of JacP̂(x) and JacP(x) are equal. The
observation of [28] is that

O ⊂ ker

xT (P̂t+1 + P̂T
t+1)

...

xT (P̂o + PT
o )

 .

Notice that by Equation (17) we have:

ker(JacP(x)) = ker

xT (P1 + PT
1 )

...
xT (Pt + PT

t )

 ∩ ker

xT (P̂t+1 + P̂T
t+1)

...

xT (P̂o + P̂T
o )

 .

Therefore in our case

O ∩ ker

xT (P1 + PT
1 )

...
xT (Pt + PT

t )

 ⊂ ker(JacP(x)).

This intersection has dimension at least o− t and is contained in ker(JacP(x)),
therefore

dim (ker(JacP(x)) ∩ O) ≥ o− t.

This concludes the proof.

By genericity of P1, . . . , Pt, we expect this to be an equality, which is veri�ed
in practice. We obtain a key recovery from one vector by restricting the UOV+̂
public key to this kernel, and by considering the properties of this new UOV+̂
instance. In the parameters of the NIST submission, t is bounded by 8. In theory
this value can be increased, but this could sign�cantly increase the time required
to sign a message.

Theorem 4.2. Let P be a UOV+̂ public key for parameters (q, o, v, t) with t ≤ 8,
let O be the associated UOV secret subspace, let x ∈ O and assume n = 2o + t
and 3t+ 1 < o.

There exists a probabilistic algorithm taking as input x and P and outputting

a basis of O, using O
((

n−2o+2t+5
4

)2(n−2o+2t+1
2

))
arithmetic operations in Fq.
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Proof. Notice that ker(JacP(x)) has dimension n − o for regular points, and
dimension n− o+ 1 for singular points of the underlying UOV key. We assume
the latter. Indeed, when x is not singular, the dimension of the kernel is smaller
and the problem is easier to solve. Let B be a basis of ker(JacP(x)).

Following [28], we restrict the UOV+̂ public key to this kernel.

Pi|B := BT · Pi ·B for 1 ≤ i ≤ o.

The collection P|B = (P1|B , . . . , Po|B) is a public key of a generalized
4 UOV+̂

instance with the same number of equations o, in dimension n′ = n− o+1, and
with an UOV trapdoor of dimension o− t by Lemma 4.1.

Let

O′ = O ∩ ker

xT (P1 + PT
1 )

...
xT (Pt + PT

t )


be the oil space associated to this key. De�ne the following ideals: I = ⟨P1|B , . . . , Po|B⟩
and It = ⟨P1|B , . . . , Pt|B⟩.

Notice that if x ∈ V(It) then P1|B(x) = ... = Pt|B(x) = 0 by de�nition.

Recall that P̂ is the underlying truncated UOV public key: if x ∈ O′, then
P̂t+1|B(x) = ... = P̂o|B(x) = 0. Finally, if x ∈ O′ ∩ V(It), for t+ 1 ≤ i ≤ o:

Pi|B(x) = (S ◦ F )i|B(x) = P̂i|B(x) +
∑

1≤j≤t

si,jPj|B(x) = 0.

Therefore x ∈ O′ ∩ V(It) implies x ∈ V(I):

V(It) ∩ O′ ⊆ V(I).

Recall that dim(O′) = o− t therefore dim(V(It) ∩ O′) ≥ o− t− t and therefore
dimV(I) ≥ o−2t. On the other hand, the expected dimension of a variety de�ned
by a generic collection of o equations in n− o+1 variables is n− 2o+1 = t+1.
Therefore, if n−2o+1 < o−2t, then the variety V(I) is in general strictly larger
if x ∈ O than if x ̸∈ O, as in the second case the system P|B admits no UOV
trapdoor.

This property yields a distinguisher by computing a grevlex Gröbner ba-
sis for the ideal J = I + ⟨h1, . . . , ho−2t⟩, where h1, . . . , ho−2t are generic linear
polynomials that we add to the system to reach dimension 0. As always, we
dehomogenize the system by making sure that (at least) one of the hi is in-
homogeneous: for example, h1 = x1 − 1. Note that V(J) ⊂ O′. Therefore by
Lemma 3.1, the grevlex Gröbner basis contains o − 2t (the number of hi) + 2t
(the number of hyperplanes de�ning O′) = o linear polynomials.

Notice that this system is (heavily) overdetermined as n − 2o + 2t + 1 =
3t + 1 < o: the number of variables5 depends only on t, which is bounded by

4 In the sense that the number of equations and the dimension of the oil-space di�er.
5 Each hyperplane eliminates one variable.
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8. Assuming semi-regularity, the cost of the linear algebra step for computing a
Gröbner basis is understood by studying the Hilbert series

H(z) =
(1− z2)o

(1− t)n−2o+2t+1
= (1 + t)o(1− t)o−3t−1.

The degree of regularity is the index of the �rst non-positive coe�cient in this
series (which is a polynomial). The coe�cient of degree d of this series is a
polynomial in o and t of degree at most d:

c
(d)
t (o) =

d∑
i=0

(
o− 3t− 1

i

)
(−1)i

(
o

d− i

)
(1)d−i.

We study this coe�cient case by case:

� For d = 4 and t = 6, this polynomial is negative for o ∈ [44, 337].
� For d = 3 and t = 6, this polynomial is negative for o ≥ 70
� For d = 4 and t = 7, this polynomial is negative for o ∈ [57, 450].
� For d = 3 and t = 7, this polynomial is negative for o ≥ 92
� For d = 4 and t = 8, this polynomial is negative for o ∈ [71, 580].
� For d = 3 and t = 8, this polynomial is negative for o ≥ 117.

The interest of this computation is two-fold:

1. For the parameters used in VOX, the degree of regularity is 4.
2. When o grows, the degree of regularity is less than 4 for �xed t.

We use the complexity estimate for solving a quadratic polynomial system in [10,
Section 7.1]:

O

((
nvars + d

d

)2(
nvars

2

))
(18)

Which yields the following upper bound on the number of arithmetic opera-
tions required for the computation of a grevlex Gröbner basis:

O

((
n− 2o+ 2t+ 5

4

)2(
n− 2o+ 2t+ 1

2

))
(19)

This is a polynomial in n and o. To summarize, given x, the algorithm computes
a grevlex Gröbner basis for the ideal J , and returns the linear terms in the grevlex
Gröbner basis if x ∈ O. If x ̸∈ O, the ideal is ⟨1⟩ and the grevlex Gröbner basis
is the singleton {1}.

To fully recover the key, one computes O′ from the linear terms, and then
solves a linear system for each equation to determine the coe�cients of S. Once
S is known, the attacker performs a one vector key recovery attack against the
underlying UOV key which is now known, using for example [28]. The cost of
these last steps is O(onω), and is dominated by the Gröbner basis computation.
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Notice that this yields a test �x ∈ O?� with the same complexity by checking
whether the Gröbner basis is di�erent from {1}.

We verify experimentally the degree of regularity prediction and the com-
plexity of the algorithm in Section 5.2.

4.4 Key recovery on VOX by computing underlying singular points

We combine the study of the singular points from Section 4.2 with the one vector
key recovery from Section 4.3 and introduce a novel attack on UOV+̂ and VOX.

The Kipnis-Shamir attack on UOV computes vectors that drop the rank of
the Jacobian of a UOV public key among eigenvectors of some linear maps. For
each such vector x, it checks whether P(x) = 0, in which case the attacker
concludes that they have computed a point of O. For UOV+̂ and VOX, a simple
generalization of the attack computes singular points of the VOX public key
with identical computations.

We proceed di�erently: for points that drop the rank of the Jacobian, instead
of checking P(x) = 0, check �x ∈ O?� using Section 4.3. This means that we
will compute points in the singular locus of the underlying UOV key which has
dimension at least d+ t by (the proof of) Theorem 4.1.

Theorem 4.3 (Key recovery attack on VOX). Let P be a UOV+̂ public key for
parameters (q, o, v, t). Let n = o+ v and assume n = 2o+ t and 3t+ 1 < o.

There exists an algorithm computing an equivalent secret key for P using an
expected number of arithmetic operations:

O

(
qn−2o+t

(
n− 2o+ 2t− 3

4

)2(
n− 2o+ 2t+ 1

2

))
.

Proof. As seen in the proof of Theorem 4.1, the singular points of the underlying
UOV key P̂ drop the rank of the Jacobian. Since the dimension of the singular
locus of P̂ is 3o− t−n− 1, following the methodology of Section 3.6, we expect
to �nd an element of O among the points that drop the rank of the Jacobian
after qn−2o+t trials. With the notations of Section 3.6, each trial costs:

� Computing x ∈ ker(P−1
o M) O(nω)

� Testing x ∈ O? using Theorem 4.2 O
((

n−2o+2t−3
4

)2(n−2o+2t+1
2

))
The second step dominates the cost of each trial, yielding an expected number
of arithmetic operations:

O

(
qn−2o+t

(
n− 2o+ 2t− 3

4

)2(
n− 2o+ 2t+ 1

2

))
.

Following NIST methodology, we consider that one arithmetic operation re-
quires log(q)2 + 2 log(q) gates, which gives bit complexities for VOX in Figure
1.
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q, o · c, v · c, t Bit complexity Previous [10] Target

251, 48, 54, 6 140 142 143

1021, 70, 77, 7 188 206 207

4093, 96, 104, 8 243 280 272

Fig. 1: Complexity of the key recovery attack against VOX [10].

4.5 Defeating the attack

The attack presented in Theorem 4.3 is exponential, therefore patching the
scheme is straightforward: increase any of the exponential quantities su�ciently
to reach the security levels. The two main levers are t and v = n − o. The
parameter t exponentially a�ects the signing time, therefore it cannot be signi�-
cantly increased or it would make VOX dramatically slower than other signature
schemes.

We focus on the second option: increasing the number of vinegar variables,
while leaving o, q, t untouched. Theorem 4.2 achieves a polynomial complexity
in n and log(q) when n− 2o = O(1), but the degree of this polynomial is given
by the cost of solving an overdetermined polynomial system:

O

((
n− 2o+ 2t+ 1 + d

d

)2(
n− 2o+ 2t+ 1

2

))
where d is the �rst non-positive index in the Hilbert series of the ideal:

H(z) =
(1− z2)o

(1− t)n−2o+2t+1
.

By increasing v, we hit two birds with one stone in Theorem 4.3: we increase
both the cost of enumeration qn−2o+t and the cost of testing each candidate.
Therefore, small increases in this parameter will yield a scheme that can with-
stand this attack. We give in Figure 2 a set of parameters defeating our attack.

We include the reduction in expanded public key size that these parameters
achieve compared with plain UOV at a comparable security level: this is the
main motivation to use VOX, as the compressed public key size only depends on
m in UOV (see [6, Section 3.3, page 20]). The percentage is computed as U−V

U
where U (resp. V ) is the expanded public key size in UOV (resp. in VOX).

Level q, o, v, t Complexity Th. 4.3 (log2) epk (bytes ) epk gain vs UOV [6]

I 251, 48, 55, 6 148.8 177 566 36% / 57%

III 1021, 70, 79, 7 208.7 677 482 44%

V 4093, 96, 107, 8 279.8 2 066 429 28%

Fig. 2: Alternative VOX parameters defeating modi�ed Kipnis-Shamir
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5 Experimental results

We start with experimental computations of the dimension of Theorem 3.1, along
with the property described in Lemma 3.1. Next, we present an implementation
of the attacks of Section 4.3 and Section 4.4.

The degree of regularity and complexity claims of the algorithm of Theorem
4.2 are veri�ed by the provided implementation. Based on this, the complexity
of the algorithm in Theorem 4.3 depends on the expected number of trials before
a vector in O is found. Checking this amounts to performing a Kipnis-Shamir
attack on the underlying UOV key, and verifying that the number of trials is
correct.

We detail our experiments in this section, and provide code in the additional
�les to replicate them.

5.1 Dimension of the singular locus of the UOV variety

To study the properties of the singular locus, we use the bihomogeneous modeling
de�ned in Equation (11).

Let P be the public key of a UOV instance for parameters n,m, q, let d =
3m− n− 1 (as in Theorem 3.1), and choose f a collection of d− 1 linear maps
uniformly at random. These linear maps de�ne the hyperplanes with which we
intersect our variety. The zero-dimensional system we solve to perform a key
recovery attack (without a hybrid approach) is the following:

x ∈ Fn
q , x1 = 1,y ∈ Fm

q , y1 = 1


P(x) = 0 ∈ Fm

q

yT JacP(x) = 0 ∈ Fn
q

f(x) = 0 ∈ Fd
q

(20)

We list in Figure 3 the results obtained on UOV systems. We provide code
to reproduce our experiments.

We can compute experimentally the degree and dimension of a variety using
the computation of a Gröbner basis. More precisely, the dimension is the degree
of the denominator of the Hilbert series and the degree is the evaluation of the
numerator of the series at 1.

In practice, all the systems were zero-dimensional, which implies that our
experiment matches Theorem 3.1: if the dimensions had been overestimated, the
Gröbner bases would be [1], while the fact that the systems are zero-dimensional
show that we added the right number of linear equations to the system. In every
case, the Gröbner basis contains exactly n − m linear polynomials de�ning O,
which by Proposition 1 supports applying Theorem 3.2 even in a small �eld.

5.2 �x ∈ O?� for VOX/UOV+̂

We give in Figure 4 the experimental results of the algorithm of Theorem 4.2
on all security levels for VOX. The experiments were ran on a laptop with
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m,n Dimension Degree of the variety Degree of regularity

4, 8 2 4 3
4, 9 1 10 4
4, 10 0 20 5

5, 10 3 5 4
5, 11 2 15 4
5, 12 1 35 5
5, 13 0 70 6

6, 12 4 6 4
6, 13 3 21 5
6, 14 2 56 6
6, 15 1 126 6
6, 16 0 252 7

7, 14 5 7 4
7, 15 4 28 5
7, 16 3 84 6
7, 17 2 210 7

Fig. 3: Experimental computation of Gröbner bases for bihomogeneous modeli-
sations of the singularities of UOV systems in F251.

an Intel CPU i7-1165G7 running at 2.80GHz with 8GB of RAM, using the
library msolve [2] with 8 threads (option -t8) after generating the equations
using SageMath [32].

q, o, v, t Bit complexity Running time dreg
251, 48, 54, 6 38.6 1.8s 4

1021, 70, 77, 7 41.1 5.5s 4

4093, 96, 104, 8 43.4 15.4s 4

Fig. 4: �x ∈ O� for VOX in polynomial time.

Notice that in every case, the degree matches the prediction of Theorem 4.2,
while the complexity growth (roughly a factor 5 for each security level) is a small
overestimation of the running time.
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