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Abstract

We put forth a new primitive called obliviously programmable function (OPF) to construct two
random-oracle-like primitives:

• Universal computational extractors (UCEs), introduced byBellare, Hoang, andKeelveedhi
[BHK13], can securely replace random oracles in various applications, including KDM-
secure encryption, deterministic encryption, RSA-OAEP, universal hardcore bits, etc.

• Multi-bit point obfuscation with auxiliary input (MB-AIPO). It enables upgrading CPA-
secure public-key encryption (PKE) into a CCA-secure one [MH14] and serves as a tool
to instantiate the random oracles used in the Fujisaki-Okamoto transform for lossy PKEs
[MOZ23].

Despite their usefulness, constructing UCEs and MB-AIPO in the standard model is challeng-
ing. The existing constructions of both primitives [BM14a, BM14b] use indistinguishability ob-
fuscation (iO) plus point functions with auxiliary input (AIPO).

OPF can replace the use iO in the constructions of UCE and MB-AIPO. We use OPF plus
AIPO to construct

• UCE with one query for strongly unpredictable sources,
• MB-AIPO for strongly unpredictable distributions and
• PKE scheme that is IND-CPA secure in the presence of computationally uninvertible leak-

age on the secret key.
We then constructOPF forNC1 circuits from lattice assumptions based on theGGH15 encodings
[GGH15], without using iO. In sum, we give new constructions of the above three primitives
under the following assumptions: (1) LWE with subexponential hardness; (2) private-coin eva-
sive LWE assumption for specific samplers; (3) the existence of AIPO in NC1. As a byproduct,
we construct an ‘NC1-universal AIPO’ under the assumptions (1) and (2).

1 Introduction

The Random Oracle Methodology refers to the popular paradigm of designing cryptographic
schemes that consists of two steps: One first designs a scheme whose security can be proven in
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the random oracle (RO) model; then, the random oracle is instantiated by a good ‘cryptographic
hash function’ (e.g., SHA-3), hoping the resulting scheme is still safe. Well-known applications of
the RO methodology include the Fiat-Shamir transform [FS87] and the Fujisaki-Oakamoto trans-
form [FO99]. However, the RO methodology is only a rule of thumb and has been proven to be
theoretically unsound: In a seminal work, Canetti et al. [CGH04] designed a scheme that is secure
in the random oracle model but insecure when the random oracle is replaced by any function.

Even with these negative results, the random oracle methodology remains popular as people
deem the known counterexamples as artificially contrived. The hope is that in natural and practical
cases, the random oracle can be safely instantiated. A natural remedy is to identify ‘RO-like’ prop-
erties that are sufficient for important applications and then construct hash functions with such
properties under well-formed assumptions. Along this line, a number of security notions have
been proposed in existing literature, such as point obfuscation [Can97], correlation intractabil-
ity [CGH04], correlated-input security [GOR11], and universal computational extractors (UCEs)
[BHK13]. In this paper, we focus on the construction of point obfuscation and UCEs.

Point obfuscation. A point function 1x maps the string x to 1 and all other strings to 0. Obfuscat-
ing point functions, or point obfuscation, can be easily achieved in the ROmodel by outputting the
value of the RO at the target point. Bitansky and Paneth [BP12] considered the presence of leakage
about the point x, introducing the notion of point obfuscation with auxiliary input (AIPO). Mat-
suda and Hanaoka [MH14] generalized the notion to multi-bit point obfuscation with auxiliary
input (MB-AIPO) where the function maps the string x to some valuem and all other strings to ⊥,
and showed how to use it to upgrade a CPA-secure public-key encryption into a CCA-secure one.

UCEsecurity. Universal computational extractors, introduced byBellare, Hoang, andKeelveedhi
(BHK, [BHK13]), enable instantiations of random oracles in various applications, e.g., universal
hardcore function, deterministic encryption, RSA-OAEP, etc. For a keyed function family H, UCE
security is defined by a two-stage game as follows. An adversary in this game is a pair of algo-
rithms (S,D), where S is called the source and D the distinguisher. S has access to an oracle HASH
that is either H.Eval(hk, ·) or a random oracle; D receives a message L from S and is given hk; D
has to guess to which oracle S has access to. The adversary wins if D guesses correctly.

Without any restrictions, we can easily design a winning adversary: S queries HASH on a ran-
dom point x and send L = (x, y) toD, where y is the oracle answer; thenD simply checks whether
H.Eval(hk, x) = y. Therefore, we restrict the source to be in some set S , and allow D to be any PPT
algorithm. H is said to be S-UCE-secure if for every S ∈ S and PPT D, the winning probability of
(S,D) in the UCE game is negligible.

BHK first considered the set of all computationally unpredictable sources, denoted by Scup.
Roughly speaking, S ∈ Scup if no PPT predictor, given L, can predict the queries made by S to
HASH. However, UCE security for computationally unpredictable sources Scup cannot be achieved
in the standardmodel, assuming indistinguishability obfuscation (iO) exists [BFM14]. Then, Brzuska
and Mittelbach (BM, [BM14b]) strengthened the restriction to be strongly computationally unpre-
dictable, meaning that the oracle answers to the source are also given to the predictor. Assum-
ing the existence of iO and AIPO, they constructed a UCE-secure function for sources that are (1)
strongly computationally unpredictable and (2) only make one query to HASH. We denote the set
of such sources as Sscup

1 .
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The status of MB-AIPO is similar to that of UCE. BM [BM14a] proved that MB-AIPO for all un-
predictable distributions does not exist, assuming iO; they also consider the relaxation to strongly
unpredictable distributions (strongly unpredictability roughly says given auxiliary information
and the valuem, it is computationally hard to guess the point x), and give a construction under the
same assumptions (iO plus AIPO).

As iO appears to be a much stronger primitive than UCE and MB-AIPO, a natural question
arises:

Can we construct UCE-secure functions and MB-AIPO without using iO (in the standard model)?

1.1 Our Results

In this paper, we give a simple construction ofSscup
1 -UCE-secure function andMB-AIPO (for strongly

computationally unpredictable distributions) from lattice assumptions based on the GGH15 en-
coding [GGH15], yielding other interesting primitives under the same assumptions as well. Our
main result is

Theorem 1.1. Under the subexponential LWE assumption and the private-coin evasive LWE assumption
for specific samplers, if there exists an AIPO in NC1, then there exist

• an Sscup
1 -UCE-secure function with input length ℓin,

• an MB-AIPO for strongly unpredictable distributions, and

• a PKE scheme that is IND-CPA secure in the presence of computationally uninvertible leakage on the
secret key.

Here, we need the existence of AIPO where the obfuscated program can be computed by a
circuit family in NC1, i.e., there exists k ∈ N such that on inputs of length n, the AIPO always
outputs a boolean circuit of depth at most k logn. Such AIPO exists assuming some non-standard
yet plausible variants of LWE or DDH, which we will explain later.

According to [BHK13], an Sscup
1 -UCE-secure function family is a universal hardcore function

family; that is, it is a hardcore for any one-way function.

Corollary 1.2. Under the same assumption as theorem 1.1, there exists a universal hardcore function family
that outputs a polynomial number of bits.

Among previous constructions of universal hardcore function, only the constructions due to
Zhandry avoid relying explicitly on iO: One [Zha16] uses extractable witness PRF, and the other
[Zha19] uses extremely lossy functions. Extractable witness PRF contains strong knowledge as-
sumptions and the only instantiation of extremely lossy functions is based on the exponential
hardness of DDH. Our construction is the first lattice-based one without using iO.

Another interesting byproduct is a ‘universal AIPO’ construction. This is an ‘iO-like’ property.
Let Px be a simple circuit computing the point function 1x. Consider padding Px to size s(|x|) and
then obfuscating the padded circuit using iO. This construction is an AIPO assuming the existence
of an AIPO that always outputs a circuit of size at most s(n) on the input of size n. Our result
achieves such an universal AIPO without using iO.
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Theorem 1.3 (Universal AIPO for NC1). Under the subexponential LWE assumption and the private-coin
evasive LWE assumption for specific samplers, there exists an explicit family of algorithms {AIPOk,s}k∈N,s∈poly
with the following property. (1) If there exists an AIPO such that on inputs of length n, it always outputs a
boolean circuit of depth at most k logn and size at most s(n), then AIPOk,s is an AIPO. (2) AIPOk,s runs
in time poly(nk, s(n)) on inputs of length n.

Since subexponential LWE is rather a standard assumption, we discuss the other two assump-
tions in what follows.

On the evasive LWE assumption. Evasive LWE is a new assumption proposed by Wee [Wee22].
Suppose that we have some joint distributions over matrices P,S and auxiliary information aux
sampled by some PPT sampler Samp. The evasive LWE assumption postulates that, for a uniformly
random (and secret) matrix B,

if
(
SB+ E,SP+ E′, aux

)
≈c

(
U,U′, aux

)
then

(
SB+ E,B−1(P), aux

)
≈c

(
U,B−1(P), aux

) (1)

where U,U′ are uniformly random matrices, and E,E′ are chosen from the LWE error distribution
with appropriate parameters. Essentially the above says that given SB+ E, getting the additional
component B−1(P) is nomore useful than just getting the product (SB+E) ·B−1(P) ≈ SP+E′. Eva-
sive LWE has proven to be useful in constructing advanced primitives such as witness encryption
[Tsa22, VWW22], attribute-based encryption [HLL23], and succinct non-interactive arguments of
knowledge [MPV24]. There are significant differences in the formulation of the evasive LWE as-
sumption in different works. Indeed, Brzuska, Ünal, and Woo gave counterexamples for some
formulations of evasive LWE [BÜW24], including the one in eq. (1), which they call private-coin eva-
sive LWE; ‘private-coin’ means that the randomness used by the sampler Samp is not included in
the distributions in the assumption. In light of these counterexamples, we view evasive LWE as a
heuristic and refrain from making general evasive LWE assumptions. Instead, we specify the class
of samplers relevant to our security proof and postulate that private-coin evasive LWE holds for
this specific class of samplers. We note that private-coin evasive LWE for the same class of samplers
is used in [VWW22] to construct witness encryption and null-iO. Formal definitions can be found
in section 5.2.

On the AIPO assumption. We consider a variant of point obfuscators. Loosely speaking, we
require the obfuscation of any point function to be indistinguishable from the obfuscation of the
all-zero function. Construction of AIPO in NC1 with statistically unpredictable auxiliary inputs
is known from standard LWE [GKPV10]. We conjecture that the same construction (with minor
changes in the parameters) is an AIPO for computationally unpredictable auxiliary inputs.

It is worth noting that the AIPO is only used in security proof; the constructions only involve
lattice computations. That is, we only need the existence of an AIPO in NC1. Therefore, regardless
of the status of the AIPO assumption, our construction is still a good candidate for UCE and MB-
AIPO in light of its simplicity.

1.2 Technical Overview

Weuse the construction of UCE as an example to demonstrate ourmain ideas. Our starting point is
the construction ofUCEbased on iO andAIPOdue to BM [BM14b]. Their construction ofUCEuses
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y∗ = F (msk, x∗)
hk = iO(F(msk, ·))

y∗ ← $
hk = iO(Px∗,y∗,kx∗ )

y∗ ← $
hk = iO(Ppx∗ ,y∗)

y∗ ← $
hk = iO(F(msk, ·))

Figure 1: Three major steps of the proof in [BM14b]. We only focus on the value y∗ (given to the
source) and hk (given to the distinguisher) in theUCEgame. The goal is to change y∗ into uniformly
random while keeping hk unchanged.

the iO of a puncturable pseudorandom function (PRF); that is, the hash key hk ← iO(F(msk, ·)) is
an obfuscated program, where F is a puncturable PRF andmsk is the master key of F. The security
proof essentially uses iO to privately switch the real PRF key to a punctured key that involves the
query information from the source. This hints that privately constrained PRFs (PCPRFs) [BLW17]
may be good candidates forUCEs, where the hash key hk is simply the constrained key for an empty
circuit. Given that there exist a few constructions of PCPRFs from lattice assumptions without
using iO (see e.g. [BKM17, CC17, BTVW17, PS18]), we might be able to construct a UCE without
iO using ideas from those PCPRFs.

We start with a recap explaining how BM proved that the iO of puncturable PRF is a UCE. We
assume readers have some familiarity of the iO and puncturable PRF methodology (for readers
who are not familiar with the iO and puncturable PRF methodology, [SW14, BM14b] are good
references). Suppose that the source S makes only one query, denoted by x∗, and receives the
oracle answer y∗ = F(msk, x∗). The proof comprises three major steps as shown in fig. 1.

1. First, switch y∗ to a uniformly random value, and meanwhile, hk is changed to iO(Px∗,y∗,kx∗ )
where kx∗ is the punctured key at point x∗ and Px∗,y∗,kx∗ (·) is the following program:

• On input x, if x = x∗, output y∗; otherwise, output F(kx∗ , x).

This step uses the pseudorandomness of F(x∗) given kx∗ .

2. Next, hk is changed while keeping y∗ uniformly random. AIPO is introduced in this step:
Instead of hardcoding x∗ into Px∗,y∗,kx∗ , it suffices to hardcode a point obfuscation of x∗ de-
noted by px∗ ← AIPO(x∗), because we only need to check whether x = x∗ or not. Moreover,
we can use msk instead of kx∗ , since F(kx∗ , x) = F(msk, x) for all x 6= x∗. More precisely, we
replace Px∗,y∗,kx∗ by

• Ppx∗ ,y∗ : On input x, if px∗(x) = 1, output y∗; otherwise, output F(msk, x).

3. Finally, hk is switched back to iO(F(msk, ·)). By the strong unpredictability of S and the
security of AIPO, it is hard to find x∗ given px∗ , y∗, and the message L sent by source. Note
that x∗ is the only input that F(msk, ·) and Ppx∗ ,y∗(·) differs. Then we can finish the proof
by a result from [BCP14] stating that iO for all circuits in P/poly is also a differing-inputs
obfuscator for circuits that differ on at most polynomially many inputs.

Nevertheless, if we wish to use a PCPRF G instead, we will get stuck even in the first step: In a
wishful thinking, wewant to first switch the key to the punctured key kx∗ while usingG(msk, x∗) as
the oracle answer in the first stage of UCE game; then, we can replace the oracle answer G(msk, x∗)
by a random value due to pseudorandomness. However, to switch frommsk (i.e., constrained key
for an empty circuit) to kx∗ relying on the constraint-hiding property, the adversary (for G) has no
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access to G(msk, x∗), and thus it cannot properly reply G(msk, x∗) to the query by the source. To
fix this issue, we conceive the following strategy:

• Imagine that the punctured key is generated by first sampling y∗ (uniformly at random) and
then producing a key kx∗ such that G(kx∗ , x∗) = y∗. This way, in the reduction from the
constraint-hiding property, the reduction can compute y∗ = G(kx∗ , x∗) and reply y∗ to the
source.

That is, wewant to program the value at x∗ to be y∗, a random value sampled before the generation
of the puncture key kx∗ .

Even if we manage to do such programming, the AIPO also causes a problem: In the second
step, we want to use px∗ ← AIPO(x∗) instead of x∗ to generate the key. Hence, we have to pro-
gram the value at x∗ to be y∗ without explicitly knowing x∗— we are only given px∗ , a circuit that
computes the point function 1x∗ . Therefore, we roughly require the following functionality:

• Given a circuit C that computes the point function 1x∗ and a value y∗, one can generate a
‘programmed key’ kC such that G(kC , x∗) = y∗.

This functionality is supported by the PCPRF constructed from iO [BLW17], but not by the exist-
ing lattice-based PCPRFs [BKM17, CC17, BTVW17, PS18]. This motivates our definition of a new
primitive called obliviously programmable function. By oblivious we mean that the programmed key
is generated only given a circuit C that computes 1x∗ , without explicitly knowing x∗.

Obliviously programmable function (OPF). Let C be a circuit class. An OPF OPF(·, ·) for C, like
PRFs, is a keyed function where the first input is viewed as the key. It provides an algorithm
OPF.Program(C, y) that takes as input a circuit C ∈ C and a value y, and outputs a programmed
key kC . The following properties are required.

• Correctness. If C computes the point function 1x, then OPF(kC , x) = y.

• Privacy. kC computationally hidesC if (1)C computes a point function or an all-zero function;
(2) the programmed value y is uniformly random.

• Value-Hiding for the all-zero function. If C computes the all zero function, kC computation-
ally hides the value y.

The value-hiding property intuitively says that if C computes the all-zero function, the value y has
no effect. In section 4, we shall prove that H(hk, x) def

= OPF(hk, x) is a UCE, with the following key
generation algorithm:

• The key generation algorithm H.Gen chooses a value y uniformly at random, and outputs
hk ← OPF.Program(C∅, y), where C∅ ∈ C is any (fixed) circuit that computes the all-zero
function.¹

Theorem 1.4. (Theorem 4.3, informally) Assume that there exists an AIPO that always outputs a circuit
in the circuit class C (e.g., NC1). If OPF is an OPF for C, then H defined above is Sscup

1 -UCE-secure.
¹Actually, by the value-hiding property, we can set y to be any fixed value.
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Realizing OPF via GGH15 encodings. We start with a brief introduction of GGH15 encodings.
In this framework, circuits are encoded as matrix branching programs (MBPs). A read-once MBP
Γ is specified by v ∈ {0, 1}w and

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}. On inputs x ∈ {0, 1}h, the output

of the MBP is 1 if v⊤Mx = 0 and otherwise 0, where Mx
def
=

∏
i∈[h] Mi,xi . To encode such a MBP, we

first construct
{
Ŝi,b

}
i∈[h],b∈{0,1}

:

Ŝ1,b =
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b =

(
In

Mi,b ⊗ Si,b

)
for i = 2, . . . , h,

where Sj,b ← Dn×n
σ . Then GGH15 encodings of such an MBP is given by

GGH.Encode({Ŝi,b}) =
{
Ŝ1,bA1
::::::

,A−11 (Ŝ2,bA2
::::::

), . . . ,A−1h−1(Ŝh,bAh
::::::

)

}
b∈{0,1}

,

where Ai ← Z(n+nw)×m
q for some m = Θ(nw log q) and

::::::
wavy

::::::::::
underline is put in place of noise

terms. Given the encoding and x ∈ {0, 1}h, we can approximate ŜxAh, where Ŝx
def
=

∏
i∈[h] Ŝi,xi .

Intuitively, to generate a programmed key for Γ, we let the encoding be the programmed key kΓ
and let OPF.Eval(kΓ, x) be the approximation of ŜxAh given by the encoding. But how to program
the value at x∗ (assuming Γ computes the point function 1x∗)?

Note that we add a seemingly useless In-track in the Ŝ-matrices. Remarkably, it is this modifi-
cation that allows us to program on the target point. To see this, observe that

OPF.Eval(kΓ, x) ≈ ŜxAh =
(
In | v⊤Mx ⊗ Sx

)
·Ah

= Ah + (v⊤Mx ⊗ Sx) ·Ah,
(2)

where Ah denotes the top n rows of Ah and Ah is the rest part. If Γ computes the point function
1x∗ , i.e., v⊤Mx∗ = 0, then OPF.Eval(kΓ, x) ≈ Ŝx∗Ah = Ah. Hence, we can program the value at x∗
by controlling Ah.

For privacy, we need to show the encoding computationally hides Γ provided that Γ computes a
point function or the all-zero function. This is reminiscent of witness encryption or null-iO, where
security is required only when the underlying circuit computes the all-zero function. In our case,
we need to show security also for circuits that compute point functions. To this end, we observe that
though [VWW22] aims at constructing witness encryption and null-iO, they in fact give a general
reduction assuming evasive LWE: In order to prove the encodings are pseudorandom (thus hiding
Γ), it suffices to show that the evaluated products

{
ŜxAh + Ex

}
x∈{0,1}h

are pseudorandom, where
Ex are independent noises. Continuing eq. (2), we have

ŜxAh + Ex = Ah + (v⊤Mx ⊗ I) · (I⊗ Sx) ·Ah + Ex

≈ Ah + (v⊤Mx ⊗ I) ·
pseudorandom︷ ︸︸ ︷
(I⊗ Sx) ·Ah
:::::::::::

.

Since there is at most one point x∗ with v⊤Mx∗ = 0, we have that

• the value at x∗ approximately equals to Ah so it is uniformly random as long as Ah is;
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• the value at x 6= x∗ is pseudorandom since (I⊗ Sx) ·Ah
:::::::::::

is pseudorandomand (v⊤Mx⊗I) 6= 0.

The value-hiding property follows from a similar argument. The difference is that we want
to show the programmed value Ah is computationally hidden, provided that Γ computes the all-
zero function. This is true because if Γ computes the all-zero function, then for all x ∈ {0, 1}h,
ŜxAh + Ex is randomized by (I⊗ Sx) ·Ah

:::::::::::

, hence the evaluated products are still pseudorandom

even if Ah is chosen and fixed by the distinguisher. Consequently, the encoding is pseudorandom
by the aforementioned reduction.

We can generalize the above proof strategy to work with a larger class called read-c MBPs for
any polynomial c. Any NC1 circuit can be translated into such MBPs; therefore, we get an OPF for
NC1:

Theorem 1.5. Assuming subexponential LWE and private-coin evasive LWE for specific samplers, there
exists an OPF for NC1.

Now the first item of theorem 1.1 follows from theorem 1.5 and theorem 1.4.

1.3 Discussion

OPF v.s. PCPRF. OPF is different from PCPRF in both syntax and security.

• Syntax. OPF has no master key, unlike PCPRF. The programmed circuit is chosen before key
generation.

• Security. The definition of OPF does not explicitly require an OPF to be a PRF when given
black-box access; it is more about programmability. It allows us to program an input-value
pair (x∗, y∗) into the function where x∗ is not explicitly known — only a circuit computing
the point function 1x∗ is given. Interestingly, though in our construction, the OPF is indeed
a PRF when programmed on the all-zero function, but it seems difficult to prove ‘every OPF
programmed on the all-zero function is a PRF’ from the definitions.

OurOPF construction is somewhat similar to the construction of PCPRFs byChen, Vaikuntanathan,
andWee (CVW, [CVW18]). TheCVWconstruction also uses a two-track structure in the Ŝ-matrices.
While we put all identity matrices in the top track to support programming, the CVW construc-
tion puts Si,b in the top track of Ŝi,b so that the value computed by the top track (i.e., SxAh) is the
evaluation of the constrained PRF with the master key.

We would like to emphasize that the OPF we construct from lattice assumptions is not a con-
strained PRF, in the sense that we do not support a general constraining algorithm. Constructing
an obliviously programmable constrained PRF without using iO remains an open problem.

Programming onmore points? Our result suggests that for a keyed functionH, if we can program
one point inH obliviously, then assumingAIPO,we show thatH behaves like anROwith one query.
It is conceivable that if we manage to program q points obliviously, then assuming obfuscation for
functions that take the value 1 on at most q values, we can prove H behaves like an RO with q-
queries, e.g., proving H is a UCE that supports q-queries. Indeed, this is realized in [BM14b] using
iO plus composable virtual grey box point obfuscators.
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Another direction is to construct OPF for larger circuit classes, e.g., P/poly, without using iO.
If we can do so then there is no need to restrict the AIPO to be in NC1. One potential approach is
to start from the PCPRFs in [BTVW17, PS18], which support P/poly constraints.

Remove the evasive LWE assumption? Another interesting open problem is proving our con-
struction of UCE is secure without using the evasive LWE assumption. Evasive LWE is a plausi-
ble but yet strong and unfalsifiable assumption. Let us briefly explain why we currently need to
assume evasive LWE by looking back to the previous applications of the GGH15 encoding. For
the constructions of PCPRFs and lockable obfuscations [CC17, GKW17, WZ17, CVW18] from the
GGH15 encoding, their security properties can be converted locally into each level of the GGH15
encoding, so they can be proven from standard LWE. For the constructions of witness encryption
[Tsa22, VWW22] from GGH15, the security property (i.e., there is no witness) is global, and it is
not clear how to convert it to local properties in GGH15, so they use evasive LWE instead. In our
proof, ‘the AIPO has only one input evaluated to 1’ is a global property, and we don’t know how
to convert it to each level of GGH15 since we don’t know which input evaluates to 1 in the AIPO,
so we can only argue security using evasive LWE. However, there might be a chance of finding a
smart proof technique that allows us to base UCE (and witness encrytion) from GGH15 encoding
on standard LWE, and we leave it as an open problem.

2 Preliminaries

Notation. We use lowercase bold symbols for vectors (e.g., v) and uppercase for matrices (e.g.,
A). In denotes the identity matrix of dimension n. For a set S, we use U(S) to denote the uniform
distribution over S. We use ← to denote sampling from a distribution or choosing an element
from a set uniformly at random. For two distributions χ1 and χ2, we write χ1 ≈s χ2 if χ1 and
χ2 are statistically close; and χ1 ≈c χ2 means that they are computationally indistinguishable. In
experiments or games, JEK equals 1 if the event E happens and otherwise 0; Expt ⇒ 1 means the
experiment Expt outputs 1. For x ∈ Zq, let bxep

def
=

⌊
x · pq

⌋
denote the rounding of x to Zp; and bAep

is the matrix resulting from rounding every entry ofA to Zp. For a function ν : N→ [0, 1], we write
ν = negl(λ) if for every c ∈ N, ν(λ) ≤ 1/(cλc) for sufficiently large λ.

2.1 Lattice Background

Gaussian. For σ > 0, we useDσ to denote theGuassian overZwith standard deviation σ, namely,
∀x ∈ Z,Dσ(x) ∝ e−πx/σ

2
.

Learning with Error. We recall the learning with errors problem.

Definition 2.1 (Decisional learning with errors (LWE) [Reg09]). For n,m ∈ N and modulus q ≥ 2,
distributions θ, π, χ over Zq for secret vectors, public matrices, and error vectors respectively. The
LWEn,m,q,θ,π,χ assumption states that

(s⊤A+ e⊤ mod q,A) ≈c (u⊤,A),

where s ← θn,A ← πn×m, e ← χm,u ← U(Zm
q ). The subexponential LWE assumption states

that for some δ > 0, the above indistinguishability holds against adversaries running in 2n
δ with
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advantage at most 2−nδ with the following parameters:

m = poly(n), θ = π = U(Zq), χ = Dσ, q ≤ 2n
δ · σ.

Lemma 2.2 ([BLMR13]). Subexponential LWE assumption with π = D2
√
n (and other parameters the

same) are implied by the subexponential LWE assumption (with π = U(Zq)).

Trapdoor and preimage sampling. We recall the background of lattice trapdoor and the capabil-
ity of using the trapdoor to sample a short preimage of the Ajtai function.

Lemma 2.3 ([Ajt99, AP09,MP12]). There is a PPT algorithmTrapSam(1n, 1m, q) that, given the modulus
q ≥ 2, dimensions n,m such thatm ≥ 2n log q, outputs A ≈s U(Zn×m

q ) with a trapdoor τ .

Given any A ∈ Zn×m
q , y ∈ Zn

q , σ > 0, we use A−1(y, σ) to denote the distribution of a vector d
sampled from Dm

σ conditioned on Ad = y (mod q). We sometimes suppress σ when the context
is clear.

Lemma2.4 ([GPV08]). There is a PPT algorithm that forσ ≥ 2
√
n log q, given (A, τ)← TrapSam(1n, 1m, q),

y ∈ Zn
q , outputs a sample from A−1(y, σ).

2.2 Matrix Branching Programs

Below we introduce the terminologies for matrix branching programs.

Definition 2.5 (Matrix branching program, MBP). A matrix branching program Γ with width w,
length h and input length ℓ consists of the following data:

Γ =
(
ι : [h]→ [ℓ], v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
.

Here, ι is called the index-to-inputmap, and it naturally defines an input-to-indexmapϖ : {0, 1}ℓ →
{0, 1}h by letting ϖ(x)i = xι(i), ∀i ∈ [h], x ∈ {0, 1}ℓ.

This branching program is computing the function fΓ : {0, 1}ℓ → {0, 1}, defined as

fΓ(x) =
{
0 if v⊤Mϖ(x) = v⊤

∏
i∈[h] Mi,xι(i)

6= 0;
1 if v⊤Mϖ(x) = v⊤

∏
i∈[h] Mi,xι(i)

= 0.

For simplicity, we write Γ(x) instead of fΓ(x) henceforth.
Write c

def
= h/ℓ. Γ is called a read-c matrix branching program if ϖ : {0, 1}ℓ → {0, 1}h outputs

c copies of x, namely, ϖ(x) = x|x| · · · |x︸ ︷︷ ︸
c times

. In this paper, we shall focus on read-once branching pro-

grams, i.e., c = 1 with ι,ϖ being the identity function, where we simply write Mx
def
=

∏
i∈[h] Mi,xi .

Definition 2.6. For ℓ, w, c ∈ N, let MBPc
ℓ,w denote the set of read-cmatrix branching programswith

input length ℓ and width w.
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Note that read-cMBPs are closely related to read-onceMBPs: Given a read-cMBP Γwith input
length ℓ, we can repeat the input c times then feed it into a read-once MBP Γ′, where Γ′ is the same
as Γ except that its index-to-input map is the identity function (so its input length is h). However,
the correctness is only about Γ′ on valid inputs, namely, inputs that are c-copies of an ℓ-bit string.
To generalize our result to read-c-branching programs, we need to ensure that Γ′(x′) = 0 (i.e.,
v⊤Mx 6= 0) for all invalid input x′. This is done by the following lemma, proven in appendix A.

Lemma 2.7. Let Γ be a read-c MBP with width w, length h, and input length ℓ = h/c. Let repeat(x) =
x|x| · · · |x︸ ︷︷ ︸

c times

. Then there exists a read-once MBP Γ′ with the following properties.

1. Γ′ has width h+ w and length h.

2. For all x ∈ {0, 1}ℓ ,Γ(x) = Γ′(repeat(x)).

3. For all invalid x′ ∈ {0, 1}h, i.e., x′ 6= repeat(x) for any x ∈ {0, 1}ℓ, it holds that Γ′(x′) = 0.

In particular, if Γ computes a point function or all-zero function, then so is Γ′.

2.3 Point Obfuscation

For a point x ∈ {0, 1}∗, define the point function 1x : {0, 1}|x| → {0, 1} as 1x(u)
def
=

{
1 if u = x

0 otherwise
.

We consider a variant of point function obfuscators. Loosely speaking, we require the obfuscation
of anypoint function to be indistinguishable from the obfuscation of the all-zero function. Note that
for many distributional VBB obfuscators for point functions or even evasive functions (e.g. [WZ17,
GKW17]) appeared in the literature, their simulators are essentially simulating an obfuscated null
circuit that is indistinguishable from the real obfuscated circuit, so those constructions immediately
satisfy our definition.

Formally, let us first define unpredictable distributions which are used in the definition of ob-
fuscators for point functions.

Definition 2.8 (Unpredictable distribution). A distribution ensemble onD = {Dλ = (Zλ, Xλ)}λ∈N
is computationally unpredictable if for every poly-size circuit family {Cλ}λ∈N and for all sufficiently
large λ, Pr(z,x)←Dλ

[Cλ(z) = x] = negl(λ).

Definition 2.9 (Auxiliary input point obfuscation for unpredictable distributions (AIPO)). A PPT
algorithm AIPO is a point obfuscator for computationally unpredictable distributions if it satisfies
the following properties.

• Correctness. On input x, it outputs a polynomial-size circuit that computes the point function
1x; on input (1λ, null), it outputs a polynomial-size circuit that computes the all-zero function
of input length λ, where null is a special symbol.

• Indistinguishability from a null program. For every (efficiently samplable) unpredictable dis-
tribution B1 over {0, 1}poly(λ) × {0, 1}λ and every PPT algorithm B2, it holds that∣∣∣∣Pr [AIPOAIPO,(B1,B2)(1

λ)⇒ 1
]
− 1

2

∣∣∣∣ = negl(λ),

where the experiment AIPOAIPO,(B1,B2)(1
λ) proceeds as follows.
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1. (z, x)← B1(1λ);
2. b← {0, 1};
3. C0 ← AIPO(x), C1 ← AIPO(1λ, null);
4. b′ ← B2(z, Cb); the experiment outputs 1 iff b = b′.

The circuit complexity of AIPO. Let C = {Cλ}λ∈N be a circuit class, where each C ∈ Cλ has input
length ℓin(λ). We say AIPO is in C if for all λ ∈ N, x ∈ {0, 1}ℓin(λ), AIPO(x) always output a circuit
in Cλ.

Candidate AIPO in NC1. Although we only need the existence of AIPO in NC1, let us men-
tion that concrete candidate constructions of AIPO in NC1 are known directly from the AI-DHI
assumption [Can97], or with reductions from other assumptions such as deterministic public-key
encryption [BS16], some of which are computable in NC1 (e.g. [BS14, XXZ12]])

Let us also mention another candidate AIPO in NC1 from a variant of the LWE assumption.
The construction is very simple: To obfuscate a point s ∈ {0, 1}n, we treat s as an LWE secret, and
outputsA ∈ Zn×m

q , y = A⊤s+e mod q as the point obfuscation for s, where q is a prime in poly(n),
m ≥ 20n log q, e ∈ Zm satisfies ‖e‖∞ < B for some bound B such that 1/10 < B/q < 1/5. The
evaluation algorithm takes a point x ∈ {0, 1}n, outputs 1 iff ‖A⊤x − y mod q‖∞ < B. For certain
statistical unpredictable auxiliary inputs, finding the secret is hard based on standard LWE [BD20].
Furthermore, we conjecture the security holds when (s, z), where z is the auxiliary input, is sam-
pled from a computationally unpredictable distribution. We don’t know how to prove (via a reduc-
tion from the standard LWE) the hardness of LWE with a computationally unpredictable source,
but we are not aware of any counterexamples either. Note that we choose B/q ∈ O(1) since a
smaller ratio would lead to an attack that succeeds with super-polynomial advantage slightly bet-
ter than guessing; more details could be found in appendix B.

Let us also remark that even if the underlying AIPO is only secure against a certain subclass
of computational unpredictable source C (instead of all computational unpredictable sources),
our result will imply UCE and MB-AIPO for corresponding strongly computational unpredictable
sources.

2.4 Multi-Bit Point Obfuscation

For a point x ∈ {0, 1}∗ and value m ∈ {0, 1}∗, the point function with multi-bit output (MBPF)

px,m is defined as px,m(u)
def
=

{
m if u = x

⊥ otherwise
. Obfuscating such functions is a natural extension

of point obfuscation. Here, we also consider the presence of auxiliary input.

Definition 2.10 (Strongly unpredictable distribution). Adistribution ensemble onD = {Dλ = (Zλ, Xλ,Mλ)}λ∈N
is strongly computationally unpredictable if for every poly-size circuit family {Cλ}λ∈N and for all
sufficiently large λ, it holds that Pr(z,x,m)←Dλ

[Cλ(z,m) = x] = negl(λ).

Definition 2.11 (Multi-Bit AIPO (MB-AIPO)). Let ℓ be a length function. A PPT algorithm AIPO
is an ℓ-bit point obfuscator for (strongly) unpredictable distributions if it satisfies the following
properties.
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• Correctness. On input (x,m) ∈ {0, 1}λ × {0, 1}ℓ(λ), it outputs a polynomial-size circuit that
computes the function px,m.

• Value-hiding. For every efficiently samplable (strongly) unpredictable distribution B1 over
{0, 1}poly(λ) × {0, 1}λ × {0, 1}ℓ(λ) and every PPT algorithm B2,∣∣∣∣Pr [MBAIPOMBAIPO,(B1,B2)(1

λ)⇒ 1
]
− 1

2

∣∣∣∣ = negl(λ),

where the experiment MBAIPOAIPO,(B1,B2)(1
λ) proceeds as follows.

1. (z, x,m0)← B1(1λ);
2. b← {0, 1} ,m1 ← {0, 1}ℓ(λ);
3. C ← MBAIPO(x,mb);
4. b′ ← B2(z, C); the experiment outputs 1 iff b = b′.

3 Obliviously Programmable Functions (OPF)

Syntax. Let ℓin = ℓin(λ) be a length function. Let C = {Cλ}λ∈N be a circuit class such that every
circuit C ∈ Cλ has input length ℓin(λ), namely, C : {0, 1}ℓin(λ) → {0, 1}. C is called a point circuit if
|C−1(1)| def

=
∣∣∣{x ∈ {0, 1}ℓin(λ) : C(x) = 1

}∣∣∣ ≤ 1. We assume that there is a simple representation of

point functions in Cλ, i.e., for every x ∈ {0, 1}ℓin(λ), there exists a simple and explicit Px ∈ Cλ that
computes 1x.

Anobliviously programmable function (OPF) for C consists of two algorithmsΠ = (Program,Eval)
and specifies a codomainR = {Rλ}λ∈N.

1. Program(1λ, C, y) 7→ kC . The programming algorithm Program takes as input a point circuit
C ∈ Cλ and y ∈ Rλ, outputs a key kC .

2. Eval(k, x) 7→ y. The evaluation algorithm Eval, on input a key k and a point x ∈ {0, 1}ℓin(λ),
outputs y = Eval(k, x) ∈ Rλ.

Correctness. There exists a negligible function ν such that for all λ ∈ N, C ∈ Cλ and y ∈ Rλ, if C
computes the point function 1x∗ , then

Pr
kC←Π.Program(1λ,C,y)

[Eval(kC , x∗) = y] ≥ 1− ν(λ).

The security of OPF consists of the following two features.

Privacy. We require kC ← Π.Program(C, y) computationally hides C if (1) C is a point circuit and
(2) y is chosen uniformly at random. Concretely, for every PPT adversary A,∣∣∣Pr [PrivΠ,A(1

λ)⇒ 1
]
− 1/2

∣∣∣ = negl(λ),

where the experiment PrivΠ,A(1
λ) is defined as follows:
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1. On input 1λ, A submits two point circuits C0, C1 ∈ Cλ to the challenger.

2. The challenger samples b← {0, 1} , y ←Rλ, and send k∗ := Π.Program(1λ, Cb, y) back to A.

3. On receiving k∗, A outputs b′; the experiment output 1 iff b = b′.

Value-Hiding (whenprogrammingon the all-zero function). Werequire that k ← Π.Program(C, y)
computationally hides the value y whenever C computes the all-zero function. Formally, for every
PPT adversary A, ∣∣∣Pr [VHΠ,A(1

λ)⇒ 1
]
− 1/2

∣∣∣ = negl(λ),

where the experiment VHΠ,A(1
λ) is defined as follows:

1. On input 1λ, A submits (C, y0, y1) to the challenger, where y0, y1 ∈ Rλ and C computes the
all-zero function.

2. The challenger samples b← {0, 1}, and sends k∗ := Π.Program(1λ, C, yb) back to A.

3. On receiving k∗, A outputs b′; the experiment outputs 1 iff b = b′.

4 Constructions from OPF and AIPO

This section presents several constructions from OPF plus AIPO.

4.1 UCE

UCE is a security notion defined for a keyed function family. We first recall its syntax. A keyed
function familyH =

{
Hλ : Kλ × {0, 1}H.ℓin(λ) →Rλ

}
λ∈N

consists of a pair of algorithms (H.Gen,H.Eval)
with the following syntax.

• Gen(1λ) 7→ hk ∈ Kλ. The key generation algorithm Gen outputs a key hk on input security
parameter 1λ.

• Eval(hk, x) 7→ y ∈ Rλ. When hk ← Gen(1λ), x ∈ {0, 1}H.ℓin(λ), the evaluation algorithm out-
puts a value y ∈ Rλ.

The UCE security is defined by a two-stage game. The first player has access to an oracle HASH
that is either H.Eval(hk, ·) or a random oracle. The second player receives a message from the first
player and is given hk; it has to guess to which oracle the first player has access.

Definition 4.1. Let (S,D) be an adversary, where S is called the source, and D is called the dis-
tinguisher. We associate them with the game in fig. 2. Define the advantage as Advuce

H,(S,D)(λ)
def
=∣∣∣Pr [UCEH

S,D(λ)⇒ 1
]
− 1

2

∣∣∣ .We say H is S-UCE-secure, denoted by H ∈ UCE[S], if for every source
S ∈ S and PPT D, Advuce

H,(S,D)(λ) = negl(λ).
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UCEH
S,D(λ)

1 : β ← {0, 1} , hk← H.Gen(1λ)
2 : L← SHASH

3 : β′ ← D(L, hk)
4 : return Jβ = β′K

HASH(x)
1 : if x /∈ Q then
2 : Q← Q ∪ {x}
3 : if β = 0 then T [x]←Rλ

4 : else T [x]← H(hk, x)endif
5 : endif
6 : return T [x]

Figure 2: Games for defining UCE security.

PredS
P (λ)

1 : hk← H.Gen(1λ)
2 : L← SHASH

3 : x← P (L)

4 : return Jx ∈ QK

SPredS
P (λ)

1 : hk← H.Gen(1λ)
2 : L← SHASH

3 : x← P (L, T.values)
4 : return Jx ∈ QK

HASH(x)
1 : if x /∈ Q then
2 : Q← Q ∪ {x}
3 : T [x]←Rλ

4 : endif
5 : return T [x]

Figure 3: Games for defining unpredictable sources. Here, T.values denote the set of all oracle
answers (not query-answer pairs).

Definition 4.2. Consider the games in fig. 3. We say S is unpredictable if for every PPT predictor
P ,

∣∣∣Pr [PredS
P (λ)⇒ 1

]
− 1

2

∣∣∣ = negl(λ). Moreover, S is called strongly unpredictable if for every
PPT predictor P , ∣∣∣∣Pr [SPredS

P (λ)⇒ 1
]
− 1

2

∣∣∣∣ = negl(λ).

Define Scup and Sscup as the sets of unpredictable and strongly unpredictable sources, respec-
tively. Furthermore, given a number q ∈ N and a class of sources S , let

Sq
def
= {S ∈ S : S makes at most q queries to HASH} .

Construction 1. Let Π = (Π.Program,Π.Eval) be an OPF for circuit class C with input length ℓin =
ℓin(λ) and codomain {Rλ}λ∈N. Consider the following construction of a keyed function family
H = (H.Gen,H.Eval):

• H.Gen(1λ) 7→ hk: y ← Rλ, k∅ ← Π.Program(C∅, y), where C∅ denotes the all-zero function;
output hk := k∅.

• H.Eval(hk, x) 7→ y: output y := Π.Eval(hk, x).

Theorem 4.3. Suppose there exists an OPF for some circuit class C where there exists an AIPO computable
in C; let Π be such an OPF and H be the construction in construction 1. Then H ∈ UCE[Sscup

1 ].

Proof. Let S ∈ Sscup
1 be a source and D be a PPT distinguisher. We start with Game0, as shown in

fig. 4, which is exactly the UCE game UCEH
S,D when the hidden bit β is fixed to 1 (i.e., HASH returns
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the real hash value). Since S only queries HASH once, we use a variable x∗ to record this query.
Our goal is to replace y∗ := H.Eval(hk, x) by y∗ ←Rλ (as in the last game Game5) via a sequence of
undetectable change.

Game0,Game5
1 : x∗ := ⊥

2 : hk← H.Gen(1λ)
1 : y ←Rλ

2 : k∅ ← Π.Program(1λ, C∅, y)

3 : hk := k∅

3 : L← SHASH

4 : β′ ← D(hk, L)
5 : return J1 = β′K

HASH(x)
1 : x∗ := x

2 : y∗ := H.Eval(hk, x∗) // Game 0

3 : y∗ ←Rλ // Game 5

4 : return y∗

Figure 4: Game0 and Game5.

Game0
1 : x∗ := ⊥
2 : L← SHASH

3 : hk := k∅

4 : β′ ← D(hk, L)
5 : return J1 = β′K

Game1
1 : x∗ := ⊥
2 : L← SHASH′

3 : hk := kx∗

4 : β′ ← D(hk, L)
5 : return J1 = β′K

Game2
1 : x∗ := ⊥
2 : L← SRO

3 : kx∗ ← Π.Program(1λ,AIPO(x∗), y∗))

4 : hk := kx∗

5 : β′ ← D(hk, L)
6 : return J1 = β′K

Game3
1 : x∗ := ⊥
2 : msk ← Π.Gen(1λ)
3 : L← SRO

4 : k∅ ← Π.Program(msk,AIPO(null), y∗)
5 : hk := k∅

6 : β′ ← D(hk, L)
7 : return J1 = β′K

Game4
1 : x∗ := ⊥
2 : msk ← Π.Gen(1λ)
3 : L← SRO

4 : y ←Rλ

5 : k∅ ← Π.Program(msk,AIPO(null), y)
6 : hk := k∅

7 : β′ ← D(hk, L)
8 : return J1 = β′K

Game5
1 : x∗ := ⊥
2 : msk ← Π.Gen(1λ)
3 : L← SRO

4 : y ←Rλ

5 : k∅ ← Π.Program(msk,C∅, y)

6 : hk := k∅

7 : β′ ← D(hk, L)
8 : return J1 = β′K

HASH(x)
1 : x∗ := x

2 : y ←Rλ

3 : k∅ ← Π.Program(1λ, C∅, y)

4 : y∗ := Π.Eval(ku, x∗)

5 : return y∗

HASH′(x)
1 : x∗ := x

2 : y ←Rλ

3 : kx∗ ← Π.Program(1λ,AIPO(x∗), y))

4 : y∗ := Π.Eval(kx∗ , x∗)

5 : return y∗

RO(x)

1 : x∗ := x

2 : y∗ ←Rλ

3 : return y∗

Figure 5: Games in the proof of theorem 4.3.

1. Game0 in fig. 5 is the same as fig. 4, but we move the generation of k∅ into HASH, which is just
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Game0 Game1 Game2

Privacy

Game3 Game4 Game5

Correctness
of OPF

AIPO
& strong

unpredictability
PrivacyValue-Hiding

UCE game with real hash
value

(β = 1)

≡ ≡

UCE game with random
value

(β = 0)

Figure 6: Outline of the proof.

a conceptual change.

2. Game1. Game1 is identical to Game0 except that

• hk := kx∗ where kx∗ ← Π.Program(1λ,AIPO(x∗), y).

Game0 ≈c Game1 readily follows from the privacy of Π.

3. Game2. Game2 is identical to Game1 except that HASH directly returns the programmed value
instead of computingΠ.Eval(kx∗ , x∗). Also, wemove the generation of kx∗ out of the oracle, so
that the oracle behaves exactly as a random oracle. By the correctness ofΠ, Game1 ≈c Game2.

4. Game3. Game3 is identical toGame2 except that hk is replaced by k∅ ← Π.Program(msk,AIPO(null), y∗).
We shall prove Game2 ≈c Game3 via the security of AIPO and the assumption that S is
strongly unpredictable.

5. Game4. Game4 is identical to Game3 except that k∅ ← Π.Program(1λ,AIPO(null), y), where
y ← Rλ is a fresh random value (like in Game0). Note that when programming on the all-
zero function, the value y is hidden by the programmed key. Therefore, Game3 ≈c Game4
readily follows from the value-hiding property of Π.

6. Game5. Finally, Game5 is identical to Game4 except that hk = k∅ is generated in the original
way (k∅ ← Π.Program(msk,C∅, y)), removing AIPO. The two programmed keys are indis-
tinguishable according to the privacy of Π, which is similar to Game1 ≈c Game0. Hence,
Game4 ≈c Game5

Note that Game5 is exactly the UCE game with β = 0; hence we conclude that Advuce
H,(S,D)(λ) is

negligible.
The full proof of the game-hoppings can be found in appendix C due to limited space. See fig. 6

for an outline.

4.2 MB-AIPO and Universal AIPO

We construct an MB-AIPO for strongly unpredictable distribution assuming OPF and the existence
of AIPO. The same notion of MB-AIPO was constructed from iO and the existence of AIPO in
[BM14a].
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Construction 2. Let ℓ be a length function. Let Π = (Π.Program,Π.Eval) be an OPF for circuit class
C with input length λ and codomain {0, 1}ℓ(λ), and let AIPO be an AIPO in C. Define an algorithm
MBAIPO as follows: On input (x,m) ∈ {0, 1}λ × {0, 1}ℓ,

1. sample r ← {0, 1}ℓ and generate C ← AIPO(x);

2. generate k ← Π.Program(1λ, C, r);

3. output the program P [k, r ⊕m,C] described below.

Program P [k,w,C]

• Hardwired: A key k, w ∈ {0, 1}ℓ, and a circuit C.
• Input: x ∈ {0, 1}λ.
• Operations: If C(x) = 1, output Π.Eval(k, x)⊕ w; otherwise, output ⊥.

Theorem4.4 (MB-AIPO for strongly unpredictable distribution). Suppose there exists anOPF for some
circuit class C such that there exists an AIPO computable in C, then Construction 2 is an ℓ-bit MB-AIPO
for strongly unpredictable distributions.

The proof of theorem 4.4 can be found in appendix C.

Application: LeakageResilient Public-key Encryption. Observe that in construction 2, MBAIPO
can generate the obfuscated program P [k,w,C] using C ← AIPO(x) alone, without knowing x
explicitly. Therefore, by an argument similar to [BM14a], we have the following PKE construction.
The formal security definition and proof are in appendix C.

Construction 3. Let ℓ,Π,AIPO be the same as in construction 2. DefinePKE = (PKE.Gen,PKE.Enc,PKE.Dec)
as follows.

• PKE.Gen(1λ): Choose a secret key x ← {0, 1}λ uniformly at random, and output C ←
AIPO(x) as public key.

• PKE.Enc(C,m): On input public key C and message m ∈ {0, 1}ℓ, sample r ← {0, 1}ℓ and
generate k ← Π.Program(1λ, C, r); output (k, r ⊕m) as ciphertext.

• PKE.Dec(x, (k, z)): On input a secret key s and a ciphertext (k, z), output Π.Eval(k, x)⊕ z.

Theorem 4.5. Suppose there exists an OPF for some circuit class C such that there exists an AIPO com-
putable in C, then Construction 3 is IND-CPA secure in the presence of computationally uninvertible leakage
on the secret key.
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Universal AIPO. If the OPF ensures the evaluation is equal to the programmed value y∗ only at
the programmed point x∗, we can check whether x = x∗ by checking whether the value at x is
equal to y∗. This gives a construction of AIPO, assuming the existence of AIPO. The construction
itself does not use AIPO; only the security proof relies on the existence of AIPO. This makes the
construction, in some sense, universal.

Definition 4.6. Let Π be an OPF for circuit class C with codomain R. We say Π satisfies value
uniqueness if there exists a negligible function ν such that for all λ ∈ N, C ∈ Cλ, y ∈ Rλ, if C
computes the point functions 1x∗ , then

Pr
kC←Π.Program(1λ,C,y)

[∀x 6= x∗ Π.Eval(x) 6= y] ≥ 1− ν(λ).

Construction 4. Let Π = (Π.Program,Π.Eval) be an OPF for circuit class C with input length λ and
codomain {0, 1}ℓ. Suppose thatΠ satisfies value uniqueness. Define an algorithm AIPO as follows:
On input x ∈ {0, 1}λ,

1. Sample r ← {0, 1}2λ and generate k ← Π.Program(1λ, Px, r), where Px ∈ C is a simple circuit
computing 1x.

2. Output the program P [k, r] described below.

Program P [k, r]

• Hardwired: A key k and r ∈ {0, 1}ℓ.
• Input: x ∈ {0, 1}λ.
• Operations: If Π.Eval(k, x) 6= r, output ⊥; otherwise, output 1.

Theorem 4.7 (Universal AIPO from OPF). Let C be the circuit class in construction 4. If there exists an
AIPO in C, then construction 4 is an AIPO.

Proof. The correctness follows from the correctness and value uniqueness of Π. The security proof
is similar to that of theorem 4.4.

5 Obliviously Programmable Function from Lattice Assumptions

In this section, we present a construction of OPF based on GGH15 encodings [GGH15]. We draw
on LWE with subexponential hardness and evasive LWE assumption to prove the security of our
construction.

Theorem 5.1. Let λ be the security parameter and ℓin(λ), w(λ) = λO(1). Assume subexponential LWE
and private-coin evasive LWE with respect to specific samplers (defined in section 5.2). Then there exists an
OPF with input length ℓin for MBP1

ℓin,w, where MBP1
ℓin,w =

{
MBP1

ℓin(λ),w(λ)

}
λ∈N

. (Recall that MBP1
ℓ,w

denotes the set of read-once matrix branching programs with input length ℓ and width w.) Moreover, the
construction satisfies value uniqueness (definition 4.6).
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We formally state the evasive LWE assumption in section 5.2 and use it to prove the security
property of GGH 15 encodings we need.

Our construction can be generalized to any read-c (matrix) branchingprograms (see appendixA
for more detail).

Theorem 5.2. Let λ be the security parameter and ℓin(λ), c(λ), w(λ) = λO(1). Under the same assumption
as in theorem 5.1, there exists an OPF with input length ℓin for MBPc

ℓin,w (satisfying value uniqueness).

Such branching programs can represent the NC1 circuit class. Together with theorem 4.3, the-
orem 4.4, and theorem 4.5, we have our main theorem (theorem 1.1). Theorem 1.3 follows from
theorem 5.2 and theorem 4.7.

5.1 OPF Construction Based on GGH15 Encodings

GGH15 encodings. Wefirst describe generalizedGGH15 encodings, following [GGH15, CVW18,
VWW22].

Construction 5 (GGH15 encodings). The randomized algorithm GGH.Encode takes the following
inputs

• parameters 1λ, h,m, q, n̂0, n̂ ∈ N and Gaussian parameters σ1, σ2, σ3, σ4,

• matrices
{
Ŝ1,b ∈ Zn̂0×n̂

q , Ŝ2,b, . . . , Ŝh,b ∈ Zn̂×n̂
q

}
b∈{0,1}

,Ah ∈ Zn̂×m
q ,

and proceeds as follows.

1. Sample (Ai, τi)← TrapGen(1λ, q) for i ∈ [h− 1].

2. Sample E1,b ← Dn̂0×n̂
σ1

and E2,b, . . . ,Eh,b ← Dn̂×n̂
σ4

for i = 2, . . . h, b ∈ {0, 1}.

3. Compute
Cb := Ŝ1,bA1 + E1,b and Di,b := A−1i−1(Ŝi,bAi + Ei,b, σ3)

for i = 2, . . . , h, b ∈ {0, 1}, where A−1i−1(·, σ3) is computed using trapdoor τi−1.

4. Outputs C0,C1, {Di,b}i=2,...,h,b∈{0,1}.

The functionality ofGGH15 encodings allowsus to approximate ŜxAh byCx1 ·
∏h

i=2 D1,xi , which
is stated formally in the next lemma.

Lemma 5.3 (Correctness of GGH15 encodings, see, e.g., [CVW18], Lemma 5.3). Let Ah ∈ Zn̂×m
q .

For all x ∈ {0, 1}h, with high probability over

C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah),

it holds that∥∥∥∥∥Cx1 ·
h∏

i=2

D1,xi −
h∏

i=1

Ŝi,xi ·Ah

∥∥∥∥∥
∞

≤ h · σ1 ·
(
(σ3 + σ4)m · max

i∈[h],b∈{0,1}

∥∥∥Ŝi,b

∥∥∥
∞

)h

,

where
∥∥∥Ŝi,b

∥∥∥
∞

is the largest absolute value among all entries of Ŝi,b.
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The OPF construction. For simplicity, we present the construction for read-onceMBPs. The con-
struction can be generalized to read-c MBPs, which is presented in appendix A.

Construction 6. Π = (Π.Program,Π.Eval). Input length ℓin = h and codomain Rλ = Zn×m
2 . Let

n̂0
def
= n, n̂

def
= n + nw. For a matrix U ∈ Zn̂×t

q , we use U ∈ Zn×t
q to denote the top n rows of U and

U ∈ Znw×t
q the bottom nw rows.

• Program(1λ, C,Y ∈ Zn×m
2 ) 7→ kC .

1. Parse C as a read-once MBP Γ = (v, {Mi,b}i∈[h],b∈{0,1}).

2. Sample Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1} and set

Ŝ1,b =
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b =

(
In

Mi,b ⊗ Si,b

)
,

for i = 2, . . . , h, b ∈ {0, 1}.
3. Sample Ah ← Zn̂×m

q conditioned on
⌊
Ah

⌉
2
= Y and output

kC := C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah).

• Eval(kC , x ∈ {0, 1}h) 7→ Y ∈ Zn×m
2 . Parse kC = C0,C1, {Di,b}i=2,...,h,b∈{0,1} and output Y :=⌊

Cx1

∏h
i=2 Di,xi

⌉
2
.

Parameter setting. Our parameter setting is similar to that of [VWW22]. The adversary runs
in time poly(λ). We rely on 2n

δ -hardness for LWE. We have the following requirements for our
parameters:

2n
δ
> max

{
2hλ

2
, q/σ4

}
LWE hardness

σ2 = λh · σ4 · λω(1), σ1 = σ2 · λω(1) noise flooding
q ≥ λω(1) ·B where B = h · σ1 · ((σ3 + σ4)m · λ

√
n)h correctness

σ3 = 2
√
n(w + 1) log q, m = 2n(w + 1) log q trapdoor sampling

A possible setting satisfying the constraints above is

n =
(
h2λ

)1/δ
, q = 2n

δ
= 2h

2λ, σ4 = Θ(n), m = 2n(w + 1) log q,

and consequently B = (poly(λ, h))h.

Correctness. Correctness of construction 6 readily follows from the correctness of GGH15 encod-
ing and the parameter setting above. Suppose that

kC = C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← Π.Program(1λ, C,Y).
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With overwhelming probability, we have maxi∈[h],b∈{0,1}
∥∥∥Ŝi,b

∥∥∥
∞
≤ λ
√
n,Hence, by lemma 5.3, for

all x ∈ {0, 1}h, it holds (with high probability) that

C1,x1

h∏
i=2

Di,xi ≈ ŜxAh =
(
In | v⊤Mx ⊗ Sx

)
·Ah = Ah + (v⊤Mx ⊗ Sx) ·Ah,

where the ≈ is up to an additive factor of B = h · σ1 · ((σ3 + σ4)m · λ
√
n)h.

If C(x) = 1, meaning that v⊤Mx = 0, we get

Eval(kC , x) =
⌊
Cx1

h∏
i=2

Di,xi

⌉
2

(∗)
=

⌊
Ah + (v⊤Mx ⊗ Sx) ·Ah

⌉
2
=

⌊
Ah

⌉
2
, (3)

where (*) holds with probability 1− negl(λ) since we set q ≥ λω(1)B. In the running of Program, it
is guaranteed that

⌊
Ah

⌉
2
= Y, and hence we have Eval(kC , x) = Y as required.

5.2 Security of GGH15 Encodings from Evasive LWE

We now prove the pseudorandomness of GGH15 encoding with respect to the distributions of{
Ŝi,b

}
i∈[h],b in{0,1}

,Ah involved in our construction: lemma 5.4 and lemma 5.5.
We start by formally stating the private-coin evasive LWE assumption.

Private-coin evasive LWE. Let the parameters

param = (q, n,m,mP , t, σB, σP , σ)

be paramatrized by λ. Let Samp be a PPT algorithm that on input 1λ, outputs

S ∈ Zt×n
q ,P ∈ Zn×mP

q , aux ∈ {0, 1}∗ .

Define the following advantage functions (for adversaries A0,A1):

Advpre
A0

(λ)
def
=

∣∣∣Pr [A0( SB+ E , SP+ E′ , aux) = 1
]
− Pr [A0(C,C′, aux) = 1]

∣∣∣ ,
Advpost

A1
(λ)

def
=

∣∣∣Pr [A1( SB+ E ,D, aux) = 1
]
− Pr [A1(C,D, aux) = 1]

∣∣∣ ,
where

(S,P, aux)← Samp
(
1λ
)
,

B← Zn×m
q ,E← Dt×m

Z,σB
,E′ ← Dt×mP

Z,σP
,

C← Zt×m
q ,C′ ← Zt×mP

q , D← B−1(P, σ).

The EvLWEpriv
param,Samp assumption states that there exists some polynomial p(·) such that for every

PPT A1, there exists another PPT A0 satisfying

Advpre
A0

(λ) ≥ Advpost
A1

(λ)/p(λ) + negl(λ) and time(A0) ≤ time(A1) · p(λ).
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We consider the same class of samplers used in [VWW22]. Fix parameters q, n,m, h, n̂, σ1, σ2, σ3, σ4
in GGH15 encodings. For j = 2, 3, . . . , h, let

paramj
def
= (q, n,m, 2m, 2j−1n̂, σ1, σ2, σ3),

and the sampler SampVWW,j outputs the following:

S :=
{
Ŝx

}
x∈{0,1}j−1

∈ Z2j−1n̂×m
q ,

P :=
(
Ŝj,0Aj + Ej,0‖Ŝj,1Aj + Ej,1

)
∈ Zn̂×2m

q

aux :=
{
A−1i−1

(
Ŝi,bAj + Ei,b, σ3

)}
i≥j+1,b∈{0,1}

,
{
Ŝi,b

}
i∈[h],b∈{0,1}

,

where

• Ŝi,b for i ∈ [h], b ∈ {0, 1} are arbitrary matrices (which in our context represents a branching
program), and

{
Ŝx

}
x∈{0,1}j−1

denotes stacking the 2j−1 matrices vertically;

• Ei,b ← Dn̂×m
σ4

for all i ≥ j and b ∈ {0, 1};

• Ai for i ≥ j are uniformly random matrices.

Let EvLWEpriv
VWW denote the assumption that ‘EvLWEpriv

paramj ,SampVWW,j
holds for all j ∈ {2, 3, . . . , h}

and all choices of
{
Ŝi,b

}
i∈[h],b∈{0,1}

’—this is the precise assumption we use.
The pseudorandomness of GGH15 encodings in our constructions is captured by the following

two lemmas.

Lemma 5.4. Let Γ =
(
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
be a read-once MBP such that

|Γ−1(1)| ≤ 1. Let C0,C1, {Di,b}i=2,...,h,b∈{0,1} be generated as follows.

1. Sample Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1}, Ah ← Zm̂×m

q and set

Ŝ1,b :=
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b :=

(
In

Mi,b ⊗ Si,b

)
,

2. Output C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah).

Then, assuming subexponential LWE and EvLWEpriv
VWW, we have

{Cb}b∈{0,1} , {Di,b}i=2,...,h,b∈{0,1} ≈c

{
U(Zn×m

q )
}
b∈{0,1} ,

{
Dm×m

σ3

}
i=2,...,h,b∈{0,1} .

Lemma 5.5. Fix Ah ∈ Zn×m
q . Let Γ =

(
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
be a read-once

MBP that computes the all-zero function. Let C0,C1, {Di,b}i=2,...,h,b∈{0,1} be generated as follows.
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1. Sample Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1}, Ah ← Znw×m, and set

Ŝ1,b :=
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b :=

(
In

Mi,b ⊗ Si,b

)
,Ah :=

(
Ah

Ah

)
.

2. Output C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← (
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah).

Then, assuming subexponential LWE and EvLWEpriv
VWW, we have

{Cb}b∈{0,1} , {Di,b}i=2,...,h,b∈{0,1} ,Ah

≈c

{
U(Zn×m

q )
}
b∈{0,1} ,

{
Dm×m

σ3

}
i=2,...,h,b∈{0,1} ,Ah.

The proofs of the two lemmas above follow the proof structure of [VWW22].

1. First, relying on evasive LWE, proving the pseudorandomness of GGH15 encodings

C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah)

is reduced to proving that all the evaluation products
{
Ŝx′Aj + Ex′

}
j∈[h],x′∈{0,1}j

are pseudo-

random. Here, Ex′ are independent errors andAj ← Zn×m
q for j ∈ [h−1], but the distribution

of Ah could be tailored. This is done by lemma 5.6, which is directly from [VWW22].

2. It remains to show that all the evaluation products are indeed pseudorandom; we call this a
‘precondition’. The only difference between lemma5.4 and lemma5.5 is thatwehavedifferent
distributions for Ah. Hence, we verify the preconditions respectively in the two claims at the
end of this subsection.

The reduction step is by the following lemma.

Lemma 5.6 (Lemma 5.1 in [VWW22]). Fix some distributions for
{
Ŝi,b

}
i∈[h],b∈{0,1}

and let E be an

efficiently samplable (and publicly known) distribution over Zn̂×m
q . Suppose that for all j ∈ [h], we have{

Ŝx′Aj + Ex′

}
x′∈{0,1}j

,
{
Ŝi,b

}
i∈[h],b∈{0,1}

≈c

{
U(Zn̂0×m

q )
}
x′∈{0,1}j ,

{
Ŝi,b

}
i∈[h],b∈{0,1}

(4)

where Ex′ ← Dn̂0×m
σ1

, Aj ← Zn̂×m
q for j ∈ [h − 1], and Ah ← E . Then, assuming subexponential LWE

and EvLWEpriv
VWW, we have

{Cb}b∈{0,1} , {Di,b}i=2,...,h,b∈{0,1} ,≈c

{
U(Zn×m

q )
}
b∈{0,1} ,

{
Dm×m

σ3

}
i=2,...,h,b∈{0,1} ,

where

{Cb}b∈{0,1} , {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah),Ah ← E .
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Remark 5.7. A few comments are in order regarding lemma 5.6.

1. It is required that the precondition eq. (4) holds with hardness 2h2λ, namely, any adversary
running within 2h

2λ times has advantage at most 2−h2λ.

2. For parameters in the proof of this lemma, it is also required that σ1 = σ2 · λω(1) and σ2 =
λh · σ4 · λω(1) for noise flooding.

The following two claims verify the preconditions for two different distributions of Ah.

Claim 5.8 (Precondition 1). Fix a MBP

Γ =
(
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
such that |Γ−1(1)| ≤ 1. Let

Ŝ1,b :=
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b :=

(
In

Mi,b ⊗ Si,b

)
.

where Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1}. Then, by the LWE assumption, for every j ∈ [h] we have{

Ŝx′Aj + Ex′

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1}

≈c

{
U(Zn×m

q )
}
x′∈{0,1}j , {Si,b}i∈[h],b∈{0,1} ,

(5)

where Ex′ ← Dn×m
σ1

,Aj ← Zn̂×m
q for j ∈ [h].

Proof. Fix an arbitrary j ∈ [h]. For all x′ ∈ {0, 1}j , we have

F (x′) def
= Ŝx′Aj + Ex′ =

(
In | v⊤Mx′ ⊗ Sx′

)
·Ah + Ex′

= Ah + (v⊤Mx′ ⊗ Sx) ·Ah + Ex′

= Ah + (v⊤Mx′ ⊗ In) · (Iw ⊗ Sx′) ·Ah + Ex′

≈s Ah + (v⊤Mx′ ⊗ In) ·
(
(Iw ⊗ Sx′) ·Ah +Dnw×m

σ2

)︸ ︷︷ ︸
def
=G(x′)

+Ex′ ,

where the last step is by noise flooding (σ1 = σ2 · λω(1)). Next, by the security of the BLMR PRF
[BLMR13], G(x′) is pseudorandom, i.e.,{

(Iw ⊗ Sx′) ·Ah +Dnw×m
σ2

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1}

≈c

{
U(Znw×m

q )
}
x′∈{0,1}j , {Si,b}i∈[h],b∈{0,1} .

This relies on ((Iw ⊗ S)A+ E,S) ≈c

(
U(Znw×m

q ),S
)
, which follows from LWE via a simple reduc-

tion to the case of lemma 2.2.

• j ∈ [h− 1]. Since |Γ−1(1)| ≤ 1, we have v⊤Mx′ 6= 0 for all x′ ∈ {0, 1}j . Therefore, (v⊤Mx ⊗
In) ·G(x′) ≈c U(Znw×m

q ) and hence {F (x′)}x′∈{0,1}j ≈c

{
U(Znw×m

q )
}
x′∈{0,1}j .
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• j = h. If Γ computes the all-zero function, the argument in the first item still goes for j = h.
Now assume that Γ−1(1) = {x∗}. Then

F (x) =
{
Ah + Ex if x = x∗

Ah + (v⊤Mx ⊗ In) ·G(x) + Ex if x 6= x∗

Since Ah is uniformly distributed and (v⊤Mx ⊗ In) · G(x) ≈c U(Znw×m
q ) for all x 6= x∗, we

have {F (x)}x∈{0,1}h ≈c

{
U(Znw×m

q )
}
x∈{0,1}h , proving eq. (5) for j = h.

Claim 5.9 (Precondition 2). Fix Ah ∈ Zn×m
q . Let

Γ =
(
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
be an MBP that computes the all-zero function and let

Ŝ1,b :=
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b :=

(
In

Mi,b ⊗ Si,b

)
,Ah :=

(
Ah

Ah

)
,

where Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1} ,Ah ← Zn̂×m

q . Then, by the LWE assumption, for every j ∈ [h]

we have {
Ŝx′Aj + Ex′

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1} ,Ah

≈c

{
U(Zn̂0×m

q )
}
x′∈{0,1}j , {Si,b}i∈[h],b∈{0,1} ,Ah,

(6)

where Ex′ ← Dn×m
σ1

,Aj ← Zn̂×m
q for j ∈ [h− 1].

Proof. For j ≤ h− 1, the proof is the same as that of the previous claim (Precondtion 1). For j = h,
note that when v⊤Mx 6= 0 for all x ∈ {0, 1}h, so F (x) is completely randomized byG(x), and hence
knowing Ah is not helpful.

Proving the pseudorandomness of GGH15 encodings: lemma 5.4 and lemma 5.5.

Proof of lemma 5.4. Since |Γ−1(1)| ≤ 1, by the first claim (Precondition 1), the precondition of lemma5.6
holds with E being the uniform distribution over Zn̂×m

q . Then the lemma follows from lemma 5.6.

Proof of lemma 5.5. The second claim (Precondition 2) shows that the precondition of lemma 5.6
holds for the assumed distribution of

{
Ŝi,b

}
i∈[h],b∈{0,1}

and Ah. Note that E is publicly known and

hence Ah can be given to the distinguisher. Then the lemma follows from lemma 5.6.

5.3 Security Proof of Our OPF Construction

Finally, we show that construction 6 is indeed an OPF, proving theorem 5.1.
Theorem 5.10 (Security of construction 6). Under subexponential LWE assumption and evasive LWE
assumption, construction 6 is an obliviously programmable function for MBP1

ℓin,w.

Proof. Correctness is proven in section 5.1. The proof of value uniqueness is omitted and can be
found in appendix C. Here we prove that the two security properties of OPF are satisfied.
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Privacy. Note that when Y ← Zn×m
2 , Ah sampled in Π.Program(1λ,Γ,Y) is also uniformly dis-

tributed, and thus satisfies the condition of lemma 5.4. By lemma 5.4, for any Γ ∈ MBP1
ℓin,w,

if |Γ−1(1)| ≤ 1, then kΓ ← Π.Program(1λ,Γ,Y) is pseudorandom, where Y ← Zn×m
2 . There-

fore, for arbitrary (Γ0,Γ1) with |Γ−10 (1)| ≤ 1, |Γ−11 (1)| ≤ 1, no PPT adversary can distinguish
kΓ0 ← Π.Program(1λ,Γ0,Y) from kΓ1 ← Π.Program(1λ,Γ1,Y) for Y← Zn×m

2 .

Value-Hiding when programming on the all-zero function. Let Γ∅ be a MBP that computes the
all-zero function. Note that Y =

⌊
Ah

⌉
2
is a deterministic function of Ah. By lemma 5.5, for any

fixed Y, kΓ ← Π.Program(1λ,Γ,Y) is pseudorandom even if the adversary knows Y. Therefore,
for arbitrary (Y0,Y1), no PPT adversary can distinguish k0 ← Π.Program(1λ,Γ∅,Y0) from k1 ←
Π.Program(1λ,Γ∅,Y1).
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A Generalization to Read-c MBPs

Wefirst prove the lemma that allows us to represent a read-cMBP by a read-onceMBP and ensures
all invalid inputs are evaluated to zero.
Lemma A.1 (lemma 2.7 restated). Let Γ be a read-c MBP with width w, length h, and input length
ℓ = h/c. Let repeat(x) = x|x| · · · |x︸ ︷︷ ︸

c times

. Then there exists a read-once MBP Γ′ with the following properties.

1. Γ′ has width h+ w and length h.

2. For all x ∈ {0, 1}ℓ ,Γ(x) = Γ′(repeat(x)).

3. For all invalid x′ ∈ {0, 1}h, i.e., x′ 6= repeat(x) for any x ∈ {0, 1}ℓ, it holds that Γ′(x′) = 0.

In particular, if Γ computes a point function or all-zero function, then so is Γ′.

Proof. Let Γ =
{
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

}
be a read-cMBP (and thus we omit ι).

Let

V(0) def
=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0


,V(1) def

=



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


∈ {0, 1}c×c .

Claim A.2. For all z ∈ {0, 1}c,
∏

i∈[c] V(zi) = 0 if and only if z is all-zero or all-one.

For i ∈ [h], j ∈ [ℓ], b ∈ {0, 1}, define Ui,b,j ∈ {0, 1}c×c as follows.

Ui,b,j =

{
Vb, if i ≡ j (mod ℓ);
Ic, otherwise.

,

For i ∈ [h], b ∈ {0, 1}, set

M′i,b = diag(Ui,b,1,Ui,b,2, . . . ,Ui,b,ℓ,Mi,b) ∈ {0, 1}(h+w)×(h+w) .

Let v′ = (1 . . . 1|v) ∈ {0, 1}h+w. We claim that the read-once MBP

Γ′ =

{
v′,

{
M′i,b ∈ {0, 1}

(h+w)×(h+w)
}
i∈[h],b∈{0,1}

}
satisfies the said properties.

Note that (v′)⊤M′x′ = (1⊤U(1)| · · · |1⊤U(ℓ)|v⊤Mx′), where U(j) def
=

∏
i∈[h] Ui,x′

i,j
. And for all

j ∈ [ℓ]

U(j) =
∏
i∈[h]

Ui,x′
i,j

=
∏

i∈[h]:i≡j (mod ℓ)

Ui,x′
i,j

=
c∏

k=1

V(x′
(k−1)c+j

)
.

Therefore, by the claim above, 1⊤U(j) = 0 if and only if

x′j = x′j+ℓ = x′j+2ℓ = · · · = x′j+(c−1)ℓ.

Since this holds for all j ∈ [ℓ], we have the desired properties.

31



Construction 7. Π = (Π.Program,Π.Eval). Input length ℓin and codomain Rλ = Zn×m
2 . Let h def

=

c · ℓin, w′
def
= w + h, n̂0

def
= n, n̂

def
= nw′ + n.

• Program(1λ, C,Y ∈ Zn×m
p ) 7→ kC

1. Parse C as a read-c MBP Γ. Let Γ′ = (v′,
{
M′i,b

}
i∈[h],b∈{0,1}

) be the read-once MBP rep-
resentation of Γ given by lemma 2.7.

2. Sample Si,b ← Dn×n
2
√
n1

for i ∈ [h], b ∈ {0, 1} and set

Ŝ1,b =
(
In | (v′)⊤M′1,b ⊗ S1,b

)
, Ŝi,b =

(
In

M′i,b ⊗ Si,b

)
,

for i = 2, . . . , h, b ∈ {0, 1}.
3. Sample Ah ← Zn̂×m

q conditioned on
⌊
Ah

⌉
2
= Y and output

kc := C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah).

• Eval(kC , x ∈ {0, 1}h) 7→ Y ∈ Zn×m
2 . Parse kC = C0,C1, {Di,b}i=2,...,h,b∈{0,1} and let x′ =

repeat(x) ∈ {0, 1}h. Output

Y :=

⌊
Cx′

1

h∏
i=2

Di,x′
i

⌉
2

.

Analysis.

• Correctness. Since for all x ∈ {0, 1}ℓin and x′ = repeat(x) ∈ {0, 1}h, we have

Γ(x) = 1 ⇐⇒ Γ′(x′) = 1 ⇐⇒ (v′)⊤M′x′ = 0.

Hence, correctness follows from the same calculation as in section 5.1.

• Security. Note that Γ′−1(1) = Γ−1(1), and thus lemma 5.4, lemma 5.5 works perfectly for Γ′.
Therefore, the argument in the proof of theorem 5.10 still goes, with Γ being replaced by Γ′.

• Efficiency. The only efficiency loss is that we need to augment the width from w to w′ =

w+ c · ℓin, which is still polynomial in λ. In the setting of parameters, we shall use w′ in place
of w.

B The Dual Attack for LWE

In this section, we recall the dual attack [BG14] for solving LWE with binary secret for certain
parameters with slightly super-polynomial advantage than guessing. More concretely, suppose
the modulus q is polynomial in n, A ∈ Zr×m

q , the secret is sampled from {0, 1}r, and the error
bound is qc for some c < 1, say c = 1/2. If we use BKZ with block-size log(n) to find a short kernel
of A, then we can compute a r = (logn)2/ log logn dimensional secret in poly(n) time. This gives
a poly(n) time attack for LWE where the secret space is slightly super-polynomial in n.

For BKZ to work, we choose a subset of m′ LWE samples where
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1. δ is the approximate root Hermite factor of BKZ with blocksize β = logn. It satisfies log δ =
Θ(logβ/β) = Θ(log logn/ logn).

2. m′ =
√

r log q/ log δ.

3. 22
√

r log q log δ � q(1−c), so that the m′-dimensional vector obtained by BKZ, denoted by v,
satisfies | 〈v, e〉 | < q/4, where e represents the LWE error term.

4. δr � q(1−c) so that r-dimension LWE (with the same secret/error bound) can be solved by
BKZ.

All conditions are satisfied with the choice r = k log q/ log δ for some small constant k. This
gives r = k log q/ log δ ≈ (logn)2/ log logn.

One way of avoiding the attack is to set the error bound to be very large, say |e| ∈ O(q) for each
entry. This is the bound we choose for our candidate AIPO.

C Missing Proofs

C.1 UCE

Here we present the complete proof of theorem 4.3.

TheoremC.1 (Theorem 4.3 restated). LetΠ,H be as in construction 1. Assume that there exists an AIPO
in C, then H ∈ UCE[Sscup

1 ].

Let S ∈ Sscup
1 be a source and D be a PPT distinguisher. Consider the following sequence of

games with full description in fig. 5.

1. Game0. Game0 is the UCE game UCEH
S,D when the hidden bit β is fixed to 1. We have moved

the generation of k∅ into HASH, which is just a conceptual change.

2. Game1. Game1 is identical to Game0 except that

• hk := kx∗ where kx∗ ← Π.Program(1λ,AIPO(x∗), y).

Game0 ≈c Game1 readily follows from the privacy of Π (lemma C.2).

3. Game2. Game2 is identical to Game1 except that HASH directly returns the programmed value
instead of computing Π.Eval(kx∗ , x∗). Also, we move the generation of kx∗ out of the oracle,
so that the oracle behaves exactly as a random oracle. By the correctness of Π,

|Pr [Game2 ⇒ 1]− Pr [Game1 ⇒ 1]| = negl(λ).

4. Game3. Game3 is identical to Game2 except that hk is replaced by

k∅ ← Π.Program(msk,AIPO(null), y∗).

We shall prove Game2 ≈c Game3 via the security of AIPO (lemma C.3).
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5. Game4. Game4 is identical to Game3 except that

k∅ ← Π.Program(1λ,AIPO(null), y),

where y ←Rλ is a fresh random value (like in Game0). Note that when programming on the
all-zero function, the value y is hidden by the programmed key. Therefore, Game4 ≈c Game3
readily follows from the value-hiding property of Π (lemma C.4).

6. Game5. Finally, Game5 is identical to Game4 except that hk = k∅ is generated in the original
way, removing AIPO:

k∅ ← Π.Program(msk,C∅, y).

The two programmed keys are indistinguishable according to the privacy ofΠ, which is sim-
ilar to is similar to Game1 ≈c Game0. Hence,

|Pr [Game5 ⇒ 1]− Pr [Game4 ⇒ 1]| = negl(λ).

Note that Game5 is exactly the UCE game with β = 0. It remains to prove the following lemmas on
game-hopping.

Lemma C.2. By the privacy of Π, |Pr [Game1 ⇒ 1]− Pr [Game0 ⇒ 1]| = negl(λ).

Proof. Consider the following adversary A that aims to break the privacy of Π.

1. Simulate S(·) until S issues the oracle query x∗.

2. Submit the challenge (C0 = C∅, C1 = AIPO(x∗)) and receive k∗ from the challenger where k∗
is generated in the following way: b← {0, 1} , y ←Rλ, k

∗ ← Π.Program(1λ, Cb, y).

3. Forward y := Π.Eval(k∗, x∗) to SHASH and get L.

4. Simulate D(hk = k∗, L), and let β′ denote the output of D.

5. Output b′ := β′.

When b = 0, A simulates Game0; when b = 1, A simulates Game1. Therefore,

|Pr [Game1 ⇒ 1]− Pr [Game0 ⇒ 1]| = 2
∣∣∣PrivΠ,A(1

λ)− 1/2
∣∣∣ = negl(λ).

Lemma C.3. By strong unpredicatbility of S and the security of AIPO,

|Pr [Game3 ⇒ 1]− Pr [Game2 ⇒ 1]| = negl(λ).

Proof. Consider the adversary B = (B1,B2) that aims to break the security of AIPO, as shown in
fig. 7. The output of B1 is an unpredictable ensemble since S is an unpredictable source. Recall
that the AIPO experiment AIPOAIPO,B(1

λ) proceeds as follows:

1. (x, z)← B1(1λ);

2. b← {0, 1};
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3. C0 ← AIPO(x), C1 ← AIPO(null)

4. b′ ← B2(z, Cb); the experiment outputs 1 iff b = b′.
By the assumption that S is strongly unpredictable, B1 is computationally unpredictable, and

hence the security of the AIPO guarantees that∣∣∣Pr [AIPOAIPO,B(1
λ)⇒ 1

]
− 1/2

∣∣∣ = negl(λ).

Note that conditioned on b = 0, the AIPO game is exactly Game2, and conditioned on b = 1, it is
exactly Game3. Therefore,

|Pr [Game3 ⇒ 1]− Pr [Game2 ⇒ 1]| ≤ 2
∣∣∣Pr [AIPOAIPO,B(1

λ)⇒ 1
]
− 1/2

∣∣∣
= negl(λ).

B1(1λ)
1 : y∗ ←Rλ

2 : Simulate SHASH with y∗ as oracle answer
3 : let x∗ and L be the query and output of S respectively.
4 : return (x∗, z = (L, y∗))

B2(z, C)

1 : Parse z = (L, y∗)

2 : kC ← Π.Program(1λ, C, y∗)

3 : return D(hk = kC , L)

Figure 7: Adversary B for AIPO.

Lemma C.4. By the value-hiding property of Π,

|Pr [Game4 ⇒ 1]− Pr [Game3 ⇒ 1]| = negl(λ).

Proof. Consider the following adversary A that aims to break the value-hiding property of Π.
1. Simulate S(·) until S issue the oracle query x∗ and reply with y0 ← Rλ. Let L be the output

of S.

2. Samples y1 ← Rλ and C ← AIPO(null). Submit the challenge (C, y0, y1) and receive k∗ from
the challenger where k∗ is generated as follows: b← {0, 1} , k∗ ← Π.Program(1λ, C, yb).

3. Simulate D(hk = k∗, L), and let β′ denote the output of D.

4. Output b′ := β′.
When b = 0, A simulates Game3; when b = 1, A simulate Game4. Therefore,

|Pr [Game3 ⇒ 1]− Pr [Game4 ⇒ 1]| = 2
∣∣∣VHΠ,A(1

λ)− 1/2
∣∣∣ = negl(λ).
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C.2 MB-AIPO

Theorem C.5 (Theorem 4.4 restated). Construction 2 is an ℓ-bit MB-AIPO for strongly unpredictable
distributions.

Proof. We start with proving correctness. Let (k,w,C) be the output of MBAIPO(x,m). By the cor-
rectness ofAIPO, foru 6= x, thenC(u) = 0 andhenceP [k,w,C](u) = ⊥. Meanwhile,P [k,w,C](x) =
Π.Eval(k, x)⊕ w = m by the correctness of Π and the relation w = Π.Eval(k, x)⊕m.

Next, we prove MB-AIPO is value-hiding. Let B = (B1,B2) be an admissible adversary for
MB-AIPO, i.e., B1 is a sampler for some strongly unpredictable distribution. We start with Game0
in fig. 9, which is the experiment MBAIPOMBAIPO,B when the hidden bit b is fixed to 0. Game6 is the
experiment MBAIPOMBAIPO,B when the hidden bit b is fixed to 1. We shall prove Game0 ≈c Game6
via a sequence of game-hoppings.

1. Game1. Game1 is identical to Game0 except that we generate k by programming on C ′ where
C ′ is output by a fresh execution of AIPO(x). We have Game0 ≈c Game1 by the privacy of Π.
Formally, Consider the following adversary A attacking the privacy of Π.

• A runs (z, x,m)← B1(1λ), C,C ′ ← AIPO(x) and submits (C,C ′) to the challenger.
• A either receives kβ , where k0 ← Π.Program(1λ, C, r), k1 ← Π.Program(1λ, C ′, r) for

some r ← {0, 1}ℓ, and β ← {0, 1} is the challenge bit.
• Then, it can retrieve r′ = Π.Eval(k, x) and forwards β′ ← B2(z, P [k, r′ ⊕ m,C]) as its

guess of β.

By the correctness of Π, r = r′ with overwhelming probability. Conditioned on r = r′, if
β = 0, A perfectly simulate Game0; if β = 1, A perfectly simulate Game1. Hence,

|Pr [Game1 ⇒ 1]− Pr [Game0 ⇒ 1]| = 2

∣∣∣∣PrivΠ,A(1
λ)− 1

2

∣∣∣∣ = negl(λ).

2. Game2. Game2 is identical to Game1 except that C ′ is generate by C ′ ← AIPO(1λ, null). We
prove Game1 ≈c Game2 using the security of AIPO in lemma C.6.

3. Game3. Game2 is identical to Game1 except that the programmed value is switched to a fresh
random value m′. We have Game2 ≈c Game3 by the value-hiding property of Π. Specifically,
Consider the following adversary A′ attacking the value-hiding property of Π.

• A′ generates C ′ ← AIPO(1λ, null), samples r, r′ ← {0, 1}ℓ, and submits (C ′, r, r′) to the
challenger.

• A′ receives kβ , where k0 ← Π.Program(1λ, C, r), k1 ← Π.Program(1λ, C ′, r) for some
r ← {0, 1}ℓ, and β ← {0, 1} is the challenge bit.

• A′ forwards β′ ← B2(z, P [k, r ⊕m,C]) as its guess of β.

If β = 0, A′ perfectly simulate Game2; if β = 1, A′ perfectly simulate Game3. Hence,

|Pr [Game3 ⇒ 1]− Pr [Game2 ⇒ 1]| = 2

∣∣∣∣VHΠ,A′(1λ)− 1

2

∣∣∣∣ = negl(λ).
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4. Game4. Game4 is identical to Game3 except that C ′ is generate by C ′ ← AIPO(x). Analogous
to Game1 ≈c Game2, we have Game3 ≈c Game4.

5. Game5. Game5 is identical to Game4 except that we generate k by programming on C. We
have Game4 ≈c Game5 by the privacy of Π, similar to Game0 ≈c Game1.

6. Game6. Game6 is identical to Game5 up to renaming variables: To get Game6 from Game5, one
first replace r by m′ and rename r′ to be r.

It remains to prove the following lemma on game-hopping.

Lemma C.6. By the security of AIPO, we have

|Pr [Game1 ⇒ 1]− Pr [Game2 ⇒ 1]| = negl(λ).

Proof. Consider the adversary D = (D1,D2) that aims to break the security of AIPO as shown in
fig. 8. we first show D is an admissible AIPO adversary, i.e., D1 is an unpredictable distribution.
Since B1 = (Zλ, Xλ,Mλ) is strongly unpredictable, by definition, E def

= (Z ′λ = (Zλ,Mλ), Xλ) is
unpredictable. Note that D1 is obtained by adding AIPO(Xλ) to the auxiliary input of E . By the
following claim, we assert that D1 is unpredictable.

Claim C.7. Let E = (Z ′λ, X
′
λ) be an unpredictable distribution. If we augment the auxiliary input in E by

adding C ← AIPO(X ′λ) to Z ′λ, then the resulting distribution, denoted by Ê , is still unpredictable.

Note that if the challenge bit b in the experiment AIPOAIPO,D is 0, then C ′ is output by AIPO(x),
and hence D perfectly simulate Game1; otherwise, D perfectly simulate Game2. Therefore,

|Pr [Game1 ⇒ 1]− Pr [Game2 ⇒ 1]| ≤ 2
∣∣∣Pr [AIPOAIPO,D(1

λ)⇒ 1
]
− 1/2

∣∣∣
= negl(λ).

It remains to prove the claim above.

Proof of Claim. Let P be a PPT adversary for breaking the unpredictability of Ê . Let

advP(λ) def
= Pr

(z′,x)←Êλ

[
P(z′) = x

]
= Pr

(z,x)←Eλ,C←AIPO(x)
[P(z, C) = x] .

Consider the adversary T = (T1 = E , T2) for AIPO with T2 acts as follows: On input auxiliary
information z and C, run P(z, C) and let x′ be the output; if C(x′) = 1, outputs 0; otherwise,
output 1. Since T1 = E is unpredictable, T is an admissible adversary. Note that

Pr
[
AIPOAIPO,T (λ)⇒ 1

]
=

1

2
· advP(λ) +

1

2
.

This is because if the challenge bit in the game AIPOAIPO,T (λ) is 0, T2 receives C ← AIPO(x) from
the challenger, and it guesses the challenge bit correctly (i.e., output 0) with probability advP(λ); in
the other case, it receives C ← AIPO(1λ, null) outputs 1 with probability 1. Hence, by the security
of AIPO, it must be that advP(λ) = negl(λ).
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D1(1
λ)

1 : (z, x,m)← B1(1λ);
2 : C ← AIPO(x);

3 : y∗ ←Rλ;

4 : z′ := (z,m,C);

5 : return (z′, x)

D2(z
′, C ′)

1 : Parse z′ = (z,m,C)

2 : r ← {0, 1}ℓ ;
3 : k ← Π.Program(1λ, C ′, r)

4 : return B2(z, P [k, r ⊕m,C])

Figure 8: Adversary D for AIPO.

Game0 Game6
1 : (z, x,m)← B1(1λ);

2 : r,m′ ← {0, 1}ℓ ;
3 : C ← AIPO(x);

4 : k ← Π.Program(1λ, C, r);

5 : b′ ← B2(z, P [k, r ⊕m,C]);

6 : b′ ← B2(z, P [k, r ⊕m′, C]) ;

7 : return J1 = b′K

Game1
1 : (z, x,m)← B1(1λ);

2 : r ← {0, 1}ℓ ;
3 : C ← AIPO(x);

4 : C ′ ← AIPO(x);

5 : k ← Π.Program(1λ, C ′, r);

6 : b′ ← B2(z, P [k, r ⊕m,C]);

7 : return J1 = b′K

Game2
1 : (z, x,m)← B1(1λ);

2 : r ← {0, 1}ℓ ;
3 : C ← AIPO(x);

4 : C ′ ← AIPO(1λ, null);
5 : k ← Π.Program(1λ, C ′, r);

6 : b′ ← B2(z, P [k, r ⊕m,C]);

7 : return J1 = b′K
Game3
1 : (z, x,m)← B1(1λ);

2 : r, r′ ← {0, 1}ℓ ;
3 : C ← AIPO(x);

4 : C ′ ← AIPO(1λ, null);
5 : k ← Π.Program(1λ, C ′, r′)

6 : b′ ← B2(z, P [k, r ⊕m,C]);

7 : return J1 = b′K

Game4
1 : (z, x,m)← B1(1λ);

2 : r, r′ ← {0, 1}λ

3 : C ← AIPO(x);

4 : C ′ ← AIPO(x);

5 : k ← Π.Program(1λ, C ′, r′);

6 : b′ ← B2(z, P [k, r ⊕m,C]);

7 : return J1 = b′K

Game5
1 : (z, x,m)← B1(1λ);

2 : r, r′ ← {0, 1}λ ;
3 : C ← AIPO(x);

4 : k ← Π.Program(1λ, C, r′);

5 : b′ ← B2(z, P [k, r ⊕m,C]);

6 : return J1 = b′K
Figure 9: Games in the proof of theorem 4.4.

C.3 Leakage-Resilient PKE

Definition C.8. Let PKE = (Gen,Enc,Dec) be a PKE scheme encrypting ℓ-bit message. For adver-
sary A = (A0,A1,A2), consider the experiment Exptaux-ind-cpa

PKE,A defined in fig. 10. A is admissible if
for all PPT inverter I,

Pr
(pk,sk)←Gen(1λ),z←A0(sk)

[I(z) = sk] = negl(λ).

We say Π is IND-CPA secure with hard-to-invert key-leakage if for all admissible PPT adversary
A, it holds that ∣∣∣∣Pr [Exptaux-ind-cpa

PKE,A (λ)⇒ 1
]
− 1

2

∣∣∣∣ = negl(λ).
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Exptaux-ind-cpa
PKE,A (λ)

1 : (pk, sk)← Gen(1λ)
2 : z ← A0(sk)
3 : (m0, st)← A1(pk, z)
4 : m1 ← {0, 1}ℓ(λ)

5 : b← {0, 1} , c← Enc(pk,mb)

6 : b′ ← A2(pk, st, c)
7 : return Jb = b′K

Figure 10: Experiment defining IND-CPA security under key leakage.

TheoremC.9 (Theorem4.5 restated). Construction 3 is IND-CPA secure with hard-to-invert key-leakage.

Proof. We reduce the security to the security of MBAIPO in construction 2. LetA = (A0,A1,A2) be
an admissible adversary. We construct an adversary B = (B1,B2) for MBAIPO as shown in fig. 11.
First, Note that B1 is unpredictable since A is admissible and the claim in the proof of lemma C.6;

B1(1λ)
1 : x← {0, 1}ℓ

2 : z ← A0(x);

3 : C ′ ← AIPO(x)

4 : (m, st)← A1(C
′, z)

5 : return (z′ = (z, st), x,m)

B2(P [k,w,C], z′ = (z, st))
1 : b′ ← A2(st, c = (k,w));

2 : return b′

Figure 11: Adversary D for MB-AIPO.

hence, B is an admissible adversary for MBAIPO. The gameMBAIPOMBAIPO,B(λ) perfect simulates
the experiment Exptaux-ind-cpa

PKE,A (λ), except that the pk = C ′ given to A1 and the C that is used for
encryption are two independent outputs of AIPO(x). Here, we are in the same situation as in
the proof of theorem 4.4 (i.e., from Game0 to Game1), and the proof is the same. Therefore, the
advantage of A translates to the advantage of B against MBAIPO, and thus the advantage of A
must be negligible.

C.4 Value Uniqueness of Construction 6

We use A[i, j] and A[i :] to denote the (i, j) entry and the i-th row of A respectively.

Lemma C.10. Construction 6 satisfies value uniqueness provided thatm ≥ 2n log q.

Proof. We will use the following lemma and prove it later.

Lemma C.11. Let n ∈ N and let q > n be a prime. For all h ≥ 1, it holds that

Pr
Si,b←Dn×n

2
√
n

for i ∈ [h], b ∈ {0, 1}

[
∀x ∈ {0, 1}h Sx mod q 6= 0

]
≥ 1− 2h+1 · n1−n/2.
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Suppose that

kC = C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← Π.Program(1λ, C,Y).

For all x ∈ {0, 1}h, it holds (with high probability) that if C(x) = 0,

Eval(kC , x) =
⌊
Cx1

h∏
i=2

Di,xi

⌉
2

=
⌊
Ah + (v⊤Mx ⊗ Sx) ·Ah

⌉
2
.

Recall that the programmed value is
⌊
Ah

⌉
2
, and thus it suffices to show for any fixed Ah, with

overwhelming probability over the choice of Si,b and Ah, it holds that

∀x ∈ {0, 1}h v⊤Mx 6= 0 mod q =⇒ bWe2 6=
⌊
Ah

⌉
2
, (7)

where W def
= Ah + (v⊤Mx ⊗ Sx) · Ah. Fix x ∈ {0, 1}h such that z def

= v⊤Mx 6= 0. WLOG, say
z1 6= 0 mod q. For i ∈ [w], letA(i) ∈ Zn×m

q be the ((i−1)w+1)-th to the (iw)-th rows ofAh ∈ Zwn×m
q .

Then W = Ah + z1SxA(1) + · · · + zwSxA(w). By lemma C.11, Sx 6= 0 mod q with overwhelming
probability. WLOG, say Sx[1, 1] 6= 0. Then W[1, 1] = Sx[1, 1]A(1)[1, 1] + v for some v ∈ Z that is
independent of A(1)[1, 1]. Thus

Pr
A(1)[1,1]←Zq

[
bW[1, 1]e2 =

⌊
Ah[1, 1]

⌉
2

]
≤ 2/3.

Note that W[1, 1], . . . ,W[1,m] are independent and the above argument applies to each W[1, j].
Hence,

Pr
A(1)

[
bW[1 :]e2 =

⌊
Ah[1 :]

⌉
2

]
≤

(
2

3

)m

≤
(
3

2

)2n log q
≤ q−1.16n.

Finally, by a union bound over all x, eq. (7) holds for at most 2h · q−1.16n fraction of Ah, which is a
negligible probability in our parameter setting. This finishes the proof.

Proof of lemma C.11. Call a matrix good if every row is non-zero modulo q. It suffices to show that
for all h ≥ 1,

Pr{
Si,b←Dn×n

2
√
n

}
i∈[h],b∈{0,1}

[
∀x ∈ {0, 1}h ,Sx is good

]
≥ 1− 2h+1 · n1−n/2. (8)

We shall prove eq. (8) by induction on h. The following claim is the crux of the proof.

Claim C.12. Let T ∈ Zn×n be a good matrix. Then

Pr
S←Dn×n

2
√
n

[TS is not good] ≤ n1−n/2.

Proof of claim. WriteU def
= TS. SinceT is good, then there exists τ : [n]→ [n] such thatT[i, τ(i)] mod

q 6= 0 for all i ∈ [n].
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Fix i ∈ [n]. For all j ∈ [n],

Pr
S←Dn×n

2
√
n

[U[i, j] mod q = 0]

= Pr
S←Dn×n

2
√

n

∑
k∈[n]

T[i, k]S[k, j] mod q = 0


= Pr

S←Dn×n
2
√
n

T[i, τ(i)]S[τ(i), j] ≡ − ∑
k ̸=τ(i)

T[i, k]S[k, j] (mod q)


= E

s1,...,sτ(i)−1,sτ(i)+1,...,sn←D2
√
n

D2
√
n

T[i, τ(i)]−1 ·

− ∑
k ̸=τ(i)

T[i, k]sk

+ qZ


≤ 1√

n
.

where T[i, τ(i)]−1 is the multiplicative inverse in Zq. Here, the last inequality uses the fact that for
all a ∈ Z, D2

√
n(a+ qZ) ≤ 1√

n
. Since U[i, 1], . . . ,U[i, n] are independent, we have

Pr
S←Dn×n

2
√
n

[U[i :] mod q = 0] ≤ 1√
n
n .

The claim follows from a union bound for all i ∈ [n].

For h = 1, we apply the claim with T = In to get

Pr
S1,0,S1,1←Dn×n

2
√
n

[S1,0,S1,1 is good] ≥ 1− 2n1−n/2.

Now assume h ≥ 2. For any fixed {Si,b}i∈[h−1],b∈{0,1} such that Sx′ is good for all x′ ∈ {0, 1}h−1, by
the claim and union bound over x′ ∈ {0, 1}h−1, we have

Pr
Sh,0,Sh,1←Dn×n

2
√

n

[
∀x ∈ {0, 1}h ,Sx is good

]
≥ 1− 2h · n1−n/2. (9)

Let Wh denote the event ‘Sx is good for all x ∈ {0, 1}h’. We have

Pr [Wh] = Pr [Wh |Wh−1]Pr [Wh−1] ≥ (1− 2h · n1−n/2) · (1− 2h · n1−n/2)

≥ 1− 2h+1 · n1−n/2,

where the probability is over Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1}. Here, the first inequality follows

from eq. (9) and the induction hypothesis that Pr [Wh−1] ≥ 1 − 2h · n1−n/2. This completes the
proof.
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