
On the Security of Nova Recursive Proof System

Hyeonbum Lee and Jae Hong Seo ⋆

Department of Mathematics & Research Institute for Natural Sciences,
Hanyang University, Seoul 04763, Republic of Korea

{leehb3706, jaehongseo}@hanyang.ac.kr

Abstract. Nova is a new type of recursive proof system that uses a
folding scheme as its core building block. This brilliant idea of folding
relations can significantly reduce the recursion overhead. In this paper,
we study some issues related to Nova’s soundness proof, which relies on
the soundness of the folding scheme in a recursive manner.

First, due to its recursive nature, the proof strategy inevitably causes
the running time of the recursive extractor to expand polynomially for
each additional recursive step. This constrains Nova’s soundness model to
only logarithmically bounded recursive steps. Consequently, the sound-
ness proof in this limited model does not guarantee soundness for a linear
number of rounds in the security parameter, such as 128 rounds for 128-
bit security. On the other hand, there are no known attacks on the arbi-
trary depth recursion of Nova, leaving a gap between theoretical security
guarantees and real-world attacks. We aim to bridge this gap in two op-
posite directions. In the negative direction, we present a recursive proof
system that is unforgeable in a log-round model but forgeable if used
in linear rounds. This shows that the soundness proof in the log-round
model might not be applicable to real-world applications that require
linearly long rounds. In a positive direction, we show that when Nova
uses a specific group-based folding scheme, its knowledge soundness over
polynomial rounds can be proven in the Extended Algebraic Group Model
(EAGM), which is our novel computational model that lies between Al-
gebraic Group Model (AGM) and the Generic Group Model (GGM). To
the best of our knowledge, this is the first result to show Nova’s polyno-
mial rounds soundness.

Second, the folding scheme is converted non-interactively via the Fiat-
Shamir transformation and then arithmetized into R1CS. Therefore, the
soundness of Nova using the non-interactive folding scheme essentially re-
lies on the heuristic random oracle instantiation in the standard model. In
our new soundness proof for Nova in the EAGM, we replace this heuristic
with a new computational assumption for a cryptographic hash function,
called the General Zero-Testing assumption. We treat this hash assump-
tion as an independent subject of interest and expect it to contribute to
a deeper understanding of Nova’s soundness.
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1 Introduction

Incrementally Verifiable Computation (IVC) [55] and its generalization, Proof-
Carrying Data (PCD) [26] are cryptographic primitives that facilitate the gen-
eration of proofs that convince the accurate execution of lengthy computations.
These proofs enable efficient verification by a verifier for any prefix of the com-
putation. IVC schemes find applications in diverse domains, such as verifiable
delay functions (VDF) [7,41], succinct blockchains [12,27,11,39], and verifiable
state machines [46].

VDF schemes are one of the key tools for Ethereum’s consensus protocols,
and several studies have incorporated the IVC scheme into VDF [41]. VDF
involves recursive computation, and IVC enables efficient verification even when
the computation is computationally expensive.

There are also IVC-based succinct blockchain projects [12,27,11]. The IVC
scheme allows for avoiding the need to download the full history for verification.
Using the current state with IVC proof, a node can verify the validity of the
current state and all previous states. If the IVC scheme is applied to Ethereum,
which has a market capitalization of approximately hundreds of billions of dollars
and provides approximately 13.4 seconds for block generation times [30], it would
require approximately 6, 000 recursive computations per day. Therefore, the IVC
scheme for these applications should provide an appropriate level of security for
large recursive steps.

Although many proposals for IVC/PCD schemes [14,19,45] offer provable se-
curity, their knowledge soundness is proven only in a limited model with at most
O(log λ) recursive rounds, where λ is the security parameter. This is because
the common proof strategy applied in those proposals is to construct a recursive
extractor that blows up polynomially for each additional recursive step. Thus, re-
cursion can be performed only for O(log λ) rounds before the extractor’s running
time becomes super-polynomial in λ. In fact, there are PCD schemes achieving
polynomially-long chains [26,6,22], but those require additional strong assump-
tions such as hardware tokens or are relatively impractical compared to practical
constructions such as Nova [45], a new type of recursive proof system.

Nova uses a folding scheme as its core building block. This brilliant idea of
folding relations can significantly reduce the recursion overhead. Nova’s sound-
ness proof follows the common proof strategy of using a general recursive tech-
nique, and thus is also proven in the aforementioned limited model with O(log λ)
rounds. Therefore, Nova’s soundness proof does not guarantee soundness for lin-
ear rounds in the security parameter, for example, 128 rounds for 128 bit security,
which is too short to be used in various aforementioned applications. This limi-
tation of the current IVC model has been mentioned in several literature [45,50].
Nevertheless, there are no known attacks on arbitrary depth recursion, leaving
a gap between theoretical security guarantees and real-world attacks.

Our Contribution. Our contribution is threefold, and we summarize them in
the Table 1. First, we identify the gap between the theoretical security guaran-
tees achievable in a limited IVC model with O(log λ) recursive rounds and the
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knowledge soundness in an unrestricted IVC model without log-round bounds.
To address this, we introduce a variant of Nova, called Ephemeral-Nova, which
satisfies knowledge soundness in the limited IVC model with O(log λ) recursive
rounds, but becomes forgeable in the IVC model with a linear number of rounds
in λ. Thus, Ephemeral-Nova demonstrates the necessity for a stronger security
notion to account for poly-round bounds, leading us to propose a knowledge
soundness for poly-round bounds, named poly-depth knowledge soundness.

The second contribution is a new security proof for the poly-depth knowl-
edge soundness of Nova, derived from a group-based folding scheme, whereas
the previous proof in [45] only covered at most logarithmic-round IVC. Notably,
the folding scheme proposed in the Nova paper [45] is a group-based construc-
tion; therefore, we attempt to prove it using the algebraic group model (AGM)
as defined in [32] for straight-line extraction [33]. However, to apply AGM to
soundness proof, we need to clearly define the adversary’s capabilities. To ad-
dress this, we first introduce a new adversarial model, called extended algebraic
group model (EAGM), in a reasonable manner and complete the proof for the
poly-depth knowledge soundness of Nova. To the best of our knowledge, our
security proof is the first to demonstrate the knowledge soundness of Nova for
polynomial rounds and partially explains why there are no known attacks against
Nova for arbitrary-depth recursion.

Our final contribution is the introduction of computational assumption for
cryptographic hash function. This assumption is a more relaxed requirement
than the random oracle instantiability. In Nova’s construction, the non-interactive
folding scheme (NIFS) is derived by applying the Fiat-Shamir transformation to
its interactive version [45]. To construct Nova IVC from NIFS, it is arithmetized
into R1CS, making the random oracle instantiation accessible to the adversary.
In fact, many IVC schemes that use the Fiat-Shamir transformation rely on a
similar heuristic assumption. We introduce a new computational problem and
assumption for cryptographic hash functions, called a general zero-testing (GZT)
hash problem and assumption, respectively. We then use the GZT assumption in
our new soundness proof for Nova within the EAGM, without relying on random
oracle instantiation.

Our Idea for Designing Ephemeral-Nova. Together with an execution func-
tion F : Z ×W → Z and two values z0, zn ∈ Z, a IVC prover generates a suc-
cinct proof that proves the knowledge of ω0, . . . , ωn−1 that satisfy the relations
F (zi−1, ωi−1) = zi for i = 1, . . . , n. Nova’s idea for designing IVC is to use a
folding scheme, which allows to fold two instance-witness pairs into one pair,
on the R1CS relation for the augmented execution function F ′. Here, the aug-
mented function F ′ includes several necessary checks and computations, such as
the execution of F and the folding procedure.

Although it is necessary for the augmented function F ′ to include the neces-
sary procedures for soundness, such as the execution of F , we found that adding
some redundant procedure may not harm the knowledge soundness of the IVC
scheme. From this observation, we can try injecting a trigger into F ′ such that
it only becomes activated after a sufficiently large number of rounds. For this
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Security Notion KS (Def. 2,[45]) Poly-depth KS (Def. 3)

Model Adversary Standard EAGM (Def.7)
Hash RO instantiation GZT (Def.9)

Nova [45] ✓ ✗ ✓

Ephemeral-Nova (Sec.3) ✓ ✗ ✗

KS: knowledge soundness, EAGM: extended algebraic group model, GZT: general zero-
testing hash assumption, RO instantiation: random oracle instantiation that is acces-
sible to the adversary. The orange one represents a narrower and more limited notion
compared to the green one. This table presents the provability of two IVC schemes
under the given security notion in the model; ✓ indicates provability, while ✗ indicates
non-provability.

Table 1. Comparision of Provability

purpose, such a trigger should be controllable for the timing of activation and
also deterministic because the execution of F ′ should be arithmetized into R1CS.
For Ephemeral-Nova, we found an appropriate trigger that can be summarized
as the following recursive sequence:

Yn+1 := Y 2α
n ·An (mod q) and Y0 := 1,

where q is a prime with form α · 2k + 1, known as the Proth prime [13], for
k ≥ λ and odd arbitrary integer α and there are sufficient large Proth primes
used in the prime fields of elliptic curve parameter [21,16]. Suppose that each
An is either 1 or chosen from a uniform distribution. If n < k, then Yn+1 = 1 is
almost equivalent to the case in which all A0, . . . , An are ones. This equivalence
is maintained until n is sufficiently smaller than k, but is suddenly broken if n
exceeds k. This sequence contains a sudden transition in the equivalence, the
timing of which can be controlled by selecting q, and the uniform distribution
of An can be replaced with a deterministic procedure such as a cryptographic
hash function. Using this special sequence, we can construct an Ephemeral-Nova
whose behavior is almost equivalent to the original Nova before the linear round
and satisfies the knowledge soundness in the constrained IVC model with a log-
round bound, but is forgeable after the linear round due to the activated trigger.

The design of Ephemeral-Nova allows us to find that unnecessary steps in
F ′ may cause a problem that cannot be captured by a general recursive proof
strategy. Therefore, new knowledge soundness proof strategies are needed that
can investigate all unexpected effects, including the above trigger.

Our Idea for New Knowledge Soundness Proof for Polynomial Rounds.
Nova’s soundness proof relies on the soundness of the underlying folding scheme
and uses a recursive proof strategy to extract the witness ωi in reverse order.
Let Ei be an extractor to extract ωi, Ãi be an adversary for the folding scheme,
and Ẽi be an extractor for the folding scheme. Then, the recursive proof strategy
leads to an inequality between the running time:
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time(Ei) > time(Ẽi) + time(Ãi) > 2 · time(Ei+1), where the right inequality
holds if time(Ẽi) > time(Ãi). Therefore, the running time required to extract
all ωi increases exponentially in the final number of rounds.

To avoid recursive blowup, instead of relying on the extractor Ẽi for the
folding scheme, we directly prove the soundness of the IVC scheme. This requires
a direct procedure to extract all ωi from the attacker’s output (F, (z0, z,Π)) only,
where F is an execution function, z0 is an initial input of F , z is the final output
of F , and Π is a valid IVC proof. Indeed, the adversary’s output is too limited
to extract all intermediate ωi without an additional resource such as a folding
extractor.

Therefore, we move to an ideal model to observe a partial history of group-
related operations performed by the adversary until the final result is out-
put, where the underlying folding scheme is group-based. There are two well-
established ideal models for handling group operations: the generic group model
(GGM) [49,54,48] and algebraic group model (AGM) [32].

GGM is devised to demonstrate the hardness of group-based problems and
the security of cryptographic schemes against attackers who are constrained
not to use group descriptions. In the AGM, all group elements that the attack
algorithm outputs are derived from known group elements via group operations.

In order to analyze the security of the Nova IVC scheme, both GGM and
AGM have limitations. The GGM has the advantage of tracking the history
of group operations because of its interactive feature. However, in the Nova
IVC scheme, the folding verifier is arithmetized into R1CS, meaning that group
operations should be instantiated in R1CS, which is not allowed in GGM. A
similar situation occurs when we use the random oracle model in the analysis of
the non-interactive folding scheme. That is, the cryptographic hash functions are
modeled as the random oracle, but the hash function should also be instantiated
in R1CS when the folding verifier is arithmetized into R1CS. Heuristically, one
might assume that these are securely possible, but we avoid these heuristics as
much as possible. (We will revisit the random oracle model later.)

In the AGM, the adversary should output a representation vector whenever
a group element is output. Using the provided representation vector, we can
construct a straight-line extrator [33] using the algebraic adversary. However,
the AGM has other limitations.

First, the group elements for which the adversary should provide representa-
tion vectors are not clearly defined. What if the adversary outputs elements that
are not part of the group but are encodable as group elements? In the knowl-
edge soundness proof in Nova, the adversary provides an R1CS witness that
contains elements that can be encoded as group elements, even though they are
field elements, because the R1CS circuit includes group operations. In this case,
the original AGM cannot ensure that the adversary provides representations for
these group-encodable field elements.

Second, for direct extraction, we expect the representations provided by the
adversary to form an R1CS witness. In other words, we require the algebraic
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adversary to provide a specific representation, but AGM does not restrict the
form of the representation vectors provided by the adversary.

To circumvent these two limitations, we modify the AGM. We first let the
algebraic adversary provide representation vectors of some group-encodable out-
puts, not only explicitly group elements. Depending on the situation, part of the
adversary’s output ensures group encodability. In this case, the adversary may
obtain the group-encodable part by constructing the group element algebraically
and then converting it to a non-group form. In this sense, the adversary knows
the representation for the group-encodable part, so it is reasonable to let the
adversary provide it, even if the group-encodable element does not form a group
explicitly.

Second, we let the adversary output a representation satisfying specific con-
ditions, e.g., a committed relaxed-R1CS (CR-R1CS) witness. We may assume
that if the adversary can construct a CR-R1CS instance, it also knows the cor-
responding witness, which is a representation of the instance. This concept is
similar to the knowledge of exponent (KOE) assumption [29], which is covered
by the definition of AGM [32]. Similar to the KOE assumption, we require the
adversary to provide a specific representation depending on the group element.

Our Idea for Nova construction without Random Oracle Instantiation.
There are studies [23,22] that aim to remove heuristic instantiations of random
oracles by introducing new variants of random oracles. We propose a different
approach to avoid heuristic analysis, as we do not seek to modify the Nova IVC
construction but rather to provide a new soundness analysis.

To this end, we introduce a new plausible computational assumption for cryp-
tographic hash functions, such as SHA-256, that is sufficient for proving knowl-
edge soundness in the AGM. This assumption alone cannot fully replace random
oracles, as it lacks the ability to extract a witness by rewinding algorithms, which
is a key feature of random oracles. However, we utilize this assumption in con-
junction with the EAGM, which enables the extraction of certain values used
by the adversary. This extracted values can then be analyzed using the hash
function assumption to establish specific relations, ultimately proving that these
values serve as a witness for the R1CS.

Additional Related Works. A well-known approach for IVC is to recursively
utilize succinct non-interactive arguments of knowledge (SNARKs) [35,36] for
arithmetic circuits. In this approach [4], at each incremental step i, the prover
generates a SNARK proving the correct execution of F to the output of step i
and that the SNARK verifier, represented as a circuit, has accepted the SNARK
for step i − 1. However, SNARK-based approaches are considered impractical
because they require a cycle of pairing friendly elliptic curves. Furthermore,
this approach requires a trusted setup that inherits from SNARKs. To address
this issue, there are alternative approaches using NARKs [14,19] by deferring
expensive verification circuit per each step.



On the Security of Nova Recursive Proof System 7

Organization. The next section describes Nova IVC and its folding method,
which is the core building block of Nova. In Section 3, we propose a new IVC
scheme called Ephemeral-Nova that has knowledge soundness in log-bounded
rounds but is forgeable in linear rounds. In Section 4, we review idealized models
for group-based systems and propose a new idealized model, extended algebraic
group model (EAGM). In Section 5, we introduce a new computational problem
and assumption for hash functions and show how to use it in the AGM to replace
random oracles. In Section 6, we present a new knowledge soundness proof for
Nova from a group-based folding scheme in the EAGM. Finally, we provide
concluding remarks in Section 7.

2 IVC from Folding Scheme

Notation. We first define the notations used in this paper. [m] denotes the set
of the integers from 1 to m, i.e., [m] := {1, · · · ,m}.

Let Zp be the ring of integers modulo p. Uniform sampling is denoted by $←.

For instance, a $← Zp indicates that a is uniformly chosen from Zp.
We use bold font to represent vectors such as a. For two vectors a =

(a1, . . . aℓ), b = (b1, . . . , bℓ) ∈ Zℓ
p, we define three binary operations: concate-

nation a∥b = (a1, . . . , aℓ, b1, . . . , bℓ), Hadamard product a ◦ b = (a1b1, . . . , aℓbℓ),
and inner product ⟨a, b⟩ =

∑ℓ
i=1 aibi.

The symbol H denotes the cryptographic hash function whose range will be
specified in the context.

Definition 1 (Commitment Scheme). A commitment scheme is defined by
two PPT algorithms: the setup algorithm Setup and commitment algorithm Com.
Let M, R, and C be message space, random space, and commitment space, re-
spectively. Setup and Com are defined by:

– Setup(1λ, ℓ) → ck : On the input security parameter λ and dimension of
message space ℓ, sample commitment key ck

– Com(ck,m; r) → C : Take commitment key ck, message m ∈ M, and ran-
domness r ∈ R, output commitment C ∈ C

We call (Setup,Com) a commitment scheme if the following two properties hold:
[Binding]: For any expected PPT adversary A,

Pr

[
Com(ck,m0; r0) = Com(ck,m1; r1),

∧ m0 ̸= m1

∣∣∣∣ ck← Setup(1λ, ℓ),
(m0, r0,m1, r1)← A(ck)

]
≤ negl(λ)

[Hiding]: For any expected PPT adversary A = (A1,A2)∣∣∣∣∣∣∣∣Pr
b = b′

∣∣∣∣∣∣∣∣
ck← Setup(1λ, ℓ),

(m0,m1, state)← A1(ck),

b
$←{0, 1}, r $←R, C ← Com(ck,mb; r),

b′ ← A2(ck, C, state),

− 1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ)
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Let M, R, and C be efficiently computable (additive) groups. Then, we call
a commitment scheme (Setup,Com) homomorphic if the (Setup,Com) satisfying
the following homomorphic property.
[Homomorphic]: For any commitment key ck ← Setup(1λ, N) and pairs of
message-randomness (m0, r0), (m1, r1) ∈ M× R, the following equation holds:

Com(ck,m0; r0) + Com(ck,m1; r1) = Com(ck,m0 +m1; r0 + r1)

2.1 Definitions of IVC and (Refined) Folding Scheme

Definition 2 (IVC). An incrementally verifiable computation (IVC) scheme
is defined by four PPT algorithms: the generator G, key generation K, the prover
P, and the verifier V. We say that an IVC scheme (G,K,P,V) satisfies perfect
completeness if for any PPT adversary A

Pr

V(vk, i, z0, zi, Πi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
F, (i, z0, zi−1, ωi−1, Πi−1)← A(pp),

(pk, vk)← K(pp, F ),
zi = F (zi−1, ωi−1),

V(vk, i− 1, z0, zi−1, Πi−1) = 1,
Πi ← P(pk, i, z0, zi−1, ωi−1, Πi−1)

 = 1

where F is a polynomially efficient computable function. We say that an IVC
scheme satisfies knowledge-soundness if for any constant n, and expected poly-
nomial time adversaries P∗, there exists expected polynomial-time extractor E
such that for any input randomness ρ

Pr


zn ̸= z,

where zi ← F (zi−1, ωi−1)
∀i ∈ [n],

∧V(vk, n, z0, z,Π) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ),

F, (z0, z,Π)← P∗(pp; ρ),
(pk, vk)← K(pp, F ),

(ωi)
n−1
i=0 ← E(pp, z0, z; ρ)

 ≤ negl(λ) (1)

Finally, we say that an IVC scheme satisfies succinctness if the size of the IVC
proof Π is independent from the number of applications n.

As mentioned in [45], IVC based recursive techniques [45,14,25,19,9,43,44,17,50]
can cover at most logarithmically large n, i.e., n = O(log λ). For a polynomial
large n, e.g. n = poly(λ), the IVC schemes cannot provide PPT extractor E for
knowledge soundness because of exponential blow-up.

To cover knowledge soundness under the polynomial large number of ap-
plications n, we define poly-depth knowledge soundness by extending n to be
bounded by a polynomial function. In addditon, we refer to an IVC scheme
as log-bounded (poly-bounded) if the scheme satisfies knowledge soundness for
logarithmic n = O(log λ) (polynomial n = poly(λ), respectively).

Definition 3 (Poly-depth Knowledge Soundness of IVC). We say that
an IVC scheme (G,K,P,V) satisfies poly-depth knowledge soundness if for ar-
bitrary polynomial n = poly(λ), and expected polynomial time adversaries P∗,
there exists an expected polynomial-time extractor E such that for any input ran-
domness ρ, it satisfies the condition in Eq. (1).
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To define a folding scheme, we consider a special relation R over tuples con-
sisting of public parameters ppFS , structure s, instance u, and witness v. We
use the notation RppFS ,s to denote the subset consisting (ppFS , s, ·, ·) ∈ R if
ppFS and s are fixed. Informally, the folding scheme has, beyond two interac-
tive prover P and verifier V, additional algorithms G and K that specify the
first two terms of R, ppFS and s. After fixing ppFS and s, a folding scheme
allows two instance-witness pairs (u1, v1), (u2, v2) ∈ RppFS ,s to be folded into
one pair (u, v) ∈ RppFS ,s and the soundness of the folding scheme informally
states that if two instances u1 and u2 are folded and the folded instance-witness
pair (u, v) is included in RppFS ,s, then there are valid witness v1 and v2 satisfy-
ing (u1, v1), (u2, v2) ∈ RppFS ,s. The formal definition of folding scheme is given
below.

Definition 4 ((Refined) Folding Scheme). Consider a relation R over pub-
lic parameters, structure, instance, and witness tuples. A folding scheme for R
consists of three PPT algorithms, a generator G, a prover P and a verifier V,
and a deterministic key generation algorithm K, all defined as follows.

– G(1λ, N)→ ppFS: On input security parameter λ and the maximum size of
common structure N , samples public parameters ppFS

– K(ppFS , s) → pkFS: On input ppFS and a common structure s, of size N
between instances to be folded, outputs a prover key pkFS.

– P(pkFS , (u1, v1), (u2, v2))→ (u, v): On input two instance-witness pairs (u1, v1)
and (u2, v2), outputs a new instance-witness pair (u, v) of the same size and
folding proof Π to allow the verifier to update new instance.

– V(ppFS , u1, u2, Π) → u: On input two instances u1 and u2, outputs a new
instance u.

Although the final outputs of P and V are defined in the above description, both
are interactive algorithms; thus, the interactive procedure and the corresponding
transcript are denoted as follows.

(u, v)← ⟨P(pkFS , v1, v2),V(ppFS)⟩(u1, u2)

A folding scheme for R satisfies the following requirements.
1. Perfect Completeness: For all PPT adversaries A, we have that

Pr

 (ppFS , s, u, v) ∈ R

∣∣∣∣∣∣∣∣∣∣
ppFS ← G(1λ, N),

(s, (u1, u2), (v1, v2))← A(ppFS),
(ppFS , s, u1, v1), (ppFS , s, u2, v2) ∈ R,

pkFS ← K(ppFS , s),
(u, v)← ⟨P(pkFS , v1, v2),V(ppFS)⟩(u1, u2)

 = 1.

2.Knowledge Soundness : For any expected PPT adversary Ã = (A,P∗), there
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is an expected polynomial-time extractor E such that over all randomness ρ

Pr

 (ppFS , s, u1, v1) ∈ R,
(ppFS , s, u2, v2) ∈ R

∣∣∣∣∣∣
ppFS ← G(1λ, N),

(s, (u1, u2))← A(ppFS , ρ),
(v1, v2)← E(ppFS , ρ)

 c≈

Pr

 (ppFS , s, u, v) ∈ R

∣∣∣∣∣∣∣∣
ppFS ← G(1λ),

(s, (u1, u2))← A(ppFS , ρ),
pkFS ← K(ppFS , s),

(u, v)← ⟨P∗(pkFS , ρ),V(ppFS)⟩(u1, u2)


Definition 5 (Public Coin). A folding scheme (G,K,P,V) is called public coin
if all the messages sent from V to P are sampled from a uniform distribution.

Definitional Refinement for IVC design. In our refined definition of folding
scheme, the verifier V takes ppFS as input, unlike the prover P which takes pkFS

as input. In the original definition of folding scheme [45], V also takes vkFS as
input, where vkFS is generated by both ppFS and s. Our definition is a special
case of the original definition since vkFS can be set by ppFS . We argue that our
refinement is necessary if the folding scheme is used in the IVC design. Looking
at the use of folding scheme in the IVC design in [45], the folding verifier should
be a part of the augmented function F ′, which is arithmetized to the (committed
relaxed) R1CS. That is, the description of V should be contained in s and thus
V should not take s as input to avoid a circular contradiction. In particular, the
concrete group-based construction of folding scheme in [45] satisfies our refined
definition because its process does not require s.

Committed Relaxed R1CS. The committed relaxed R1CS is a variant of the
R1CS constraints system, which is widely used in proof system [53,20,24,19]. In
particular, the committed relaxed R1CS is a public parameter-dependent rela-
tion. Let us explain the committed relaxed R1CS in terms of the folding scheme.
The public parameter generator of the folding scheme G takes the size param-
eter N as the input. We specify N to have two positive integers m and ℓ with
ℓ + 1 < m. G outputs public parameter ppFS that consists of the commitment
keys of the homomorphic commitment scheme Com for committing vectors over
a finite field Zp. More precisely, ppFS = (ckw, cke), which are two commitment
keys of Com with dimensions m and m − ℓ − 1, respectively. The structure s
indicates the R1CS parameter matrices A,B,C ∈ Zm×m

p , where there are at
most Ω(m) non-zero entries in each matrix and they specify the R1CS relation
Ax ◦ Bx = Cx. Note that the dimensions of the matrices are already specified
in N .

The committed relaxed R1CS relation is the relation with parameter ppFS =
(ckw, cke) and structure s = (A,B,C) defined by

RppFS ,s =


(
(E,W, s, x); (e, re,w, rw)

)
:

E = Com(cke, e; re)
W = Com(ckw,w; rw)
z = (w, x, s)

Az ◦Bz = sCz + e

 , (2)
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where x is public inputs and outputs.
Note that if one adds conditions e = 0 and s = 1 in the above relation,

the resulting relation becomes equivalent to the R1CS relation specified by the
structure s.1

Non-Interactive Folding Scheme. Given a public-coin interactive folding
scheme can be transformed to a non-interactive folding scheme, defined below,
in the random oracle model via the Fiat-Shamir transform [31].

Definition 6 (Non-Interactive). We say that a folding scheme (G,K,P,V) is
non-interactive if the interaction between P and V consists of a single message
T from P to V. To clearly indicate the single message interaction, the input and
output of P and V can be rewritten as P(pkFS , (u1, v1), (u2, v2))→ (u,v), T and
V(ppFS , u1, u2, T )→ u.

In fact, the folding prover and verifier are implemented in the design of
Nova IVC; therefore, we must heuristically instantiate the random oracle us-
ing a cryptographic hash function. Therefore, we can only heuristically argue
for the security of the resulting non-interactive folding scheme in the standard
model. Recent existing IVC proposals in the standard model rely on the same
heuristics that require instantiating the random oracle with a cryptographic hash
function [45,43,44,17,50].

2.2 Nova: IVC from Folding Scheme

Given a function F , an IVC scheme iteratively invokes the computation of F
for each round. Nova [45] is an IVC scheme built from a folding scheme such
that the computation in each round is an augmented function F ′ that not only
invokes F but also folds two committed relaxed R1CS instances, where F ′ is
represented by the committed relaxed R1CS.

An informal description of the computation in each round is given in Figure 1,
where H is a cryptographic hash function and (u⊥, v⊥) is a trivial instance-
witness pair such that v⊥ is set by zeros. In addition, we define the trivial proof
Π0 = (u⊥, v⊥, u⊥, v⊥), which consists of two trivial instance-witness pairs.

Let NIFS = (G,K,P,V) be the non-interactive folding scheme for the com-
mitted relaxed R1CS of F ′. The formal descriptions of the augmented function
F ′ and Nova from NIFS are, respectively, provided in Figure 2 and Figure 3.
Here, trace is a compiler that converts an execution of F ′ on non-deterministic
advice (pp,Ui, ui, (i, z0, zi), ωi, T ) to the corresponding committed relaxed R1CS
instance-witness pair (ui+1, vi+1), where the advice is a part of vi+1 and the
output hash value of F ′ is only the public IO of ui+1, that is, ui+1.x.

1 In [45], the alphabet u is used instead of s in this paper. We changed it to avoid
confusion because ui is used to denote an instance of the relation. Similarly, we use
v to denote witness.
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Round-0

1. N/A
2. N/A
3. U1 := u⊥

(U1 : empty)
4. z1 := F (z0, ω0)

Relation: (u1, v1)

check

Fold

F -invoke

Round-1

1. U1, z1 ∈ v1
2. u1 : ordinary R1CS
3. U2 := U1△u1

(U2 : z0
F→ z1)

4. z2 := F (z1, ω1)

Relation: (u2, v2)

Round-2

1. U2, z2 ∈ v2
2. u2 : ordinary R1CS
3. U3 := U2△u2

(U3 : z0
F (2)
→ z2)

4. z3 := F (z2, ω2)

Relation: (u3, v3)

Round-i

1. Ui, zi ∈ vi
2. ui : ordinary R1CS
3. Ui+1 := Ui△ui

(Ui+1 : z0
F (i)
→ zi)

4. zi+1 := F (zi, ωi)

Relation: (ui+1, vi+1)

Each step of Round-i means

1. Check if ui.x = H(pp, i, z0, zi,Ui).
2. Check if (ui.E, u.s) = (u⊥.E, 1).
3. Ui+1 ← Folded instance between Ui and ui

(Ui+1 implies z0
F (i)
→ zi)

4. zi+1 is set by F (zi, ωi).

Fig. 1. Informal Description of Relation (u, v) for Each Round of Nova

F ′(pp,Ui, ui, (i, z0, zi), ωi, T )→ x:
If i is 0, output H(pp, 1, z0, F (z0, ωi), u⊥);
otherwise,
1. check that ui.x = H(pp, i, z0, zi,Ui), where ui.x is the public IO of ui
2. check that (ui.E, ui.s) = (u⊥.E, 1)
3. compute Ui+1 ← NIFS.V(pp,Ui, ui, T ), and
4. output H(pp, i+ 1, z0, F (zi, ωi),Ui+1).

Fig. 2. Augmented Function F ′

Theorem 1 (Nova-IVC [45]). If the non-interactive folding scheme NIFS
satisfies perfect completeness and knowledge soundness, then Nova in the Fig-
ure 3 is a log-bounded round IVC scheme satisfying perfect completeness and
knowledge soundness in Definition 2.

3 Ephemeral-Nova: A New Log-bounded round IVC

This section explores whether the security proof for the log-bounded round IVC
scheme can provide an appropriate level of soundness guarantees for a linear
number of rounds. In particular, we demonstrate that not all log-bounded round
IVC schemes are knowledge-sound for a linear number of recursive rounds. To
this end, we design a variant of Nova, called Ephemeral-Nova, that satisfies the
knowledge soundness in Definition 2 but is forgeable when used more than a
linearly large number of recursive rounds.
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G(1λ)→ pp: Output pp← NIFS.G(1λ, N).

K(pp, F )→ (pk, vk): 1. Run pkFS ← NIFS.K(pp, sF ′)
2. Output (pk, vk)← ((F, pkFS), (F, pp))

P(pk, (i, z0, zi), ωi, Πi)→ Πi+1:
Parse Πi as ((Ui,Vi), (ui, vi)) and then
1. if i is 0, compute (Ui+1,Vi+1, T )← (u⊥, v⊥, u⊥.E);

otherwise, compute (Ui+1,Vi+1, T )← NIFS.P(pk, (Ui,Vi), (ui, vi))
2. compute (ui+1, vi+1)← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, T )), and
3. output Πi+1 ← ((Ui+1,Vi+1), (ui+1, vi+1)).

V(vk, (i, z0, zi), Πi)→ {0, 1}:
If i is 0, check that z0 = zi;
otherwise,
1. parse Πi as ((Ui,Vi), (ui, vi)),
2. check if ui.x = H(vk, i, z0, zi,Ui),
3. check if (ui.E, ui.s) = (u⊥.E, 1), and
4. check if (Ui,Vi), (ui, vi) ∈ Rpp,s, the committed relaxed R1CS induced by F ′.

Fig. 3. Nova IVC

Our Idea for Ephemeral-Nova. Basically, the Ephemeral-Nova scheme should
be knowledge sound in the log-bounded round model, and thus, we begin by look-
ing at the original proof of knowledge-soundness of Nova. We first notice that
the polynomial time extractor in the original proof of the knowledge soundness
can extract the witness in the last O(log λ) number of rounds, where λ is the
security parameter, because the running time of the extractor blows up expo-
nentially at the number of rounds for each additional recursion round. From this
observation, we find that to design a linearly-faulty-and-logarithmically-provable
scheme, the verification procedure of the Ephemeral-Nova scheme should be in
such a way of

– [Faulty] pardon for misbehavior before last log number of rounds, but
– [Provable] correctly checking the validity of the last log number of rounds.
– [Compile] deterministic to be compiled into the committed relaxed R1CS.

Designing an IVC satisfying the above requirements is somewhat challenging
because the timing of the log number of rounds depends on the security param-
eter. Therefore, we need to devise a deterministic process of gradual change of
(un)soundness in the security parameter. To this end, we first devise a recursive
sequence with the above three features as follows.

Yn+1 := Y 2α
n ·An (mod q) and Y0 := 1, (3)

where q is a prime number of the form α · 2k +1, known as Proth prime [13], for
some k ≥ λ and odd integer α and An is selected from one of two distributions,
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either a constant 1 or uniform distribution on Zq. For values Ai, we consider Ai =
1 normal and all other values abnormal. To provide verifiability of Ai, we use
additional indicator Yi to check the normality of all previous values A0, . . . , Ai−1.
For example, for a given value Ai, if all intermediate values Ai+1, . . . , An are
normal and the i-th indicator Yi is 1, we obtain the following equation by the
recurrences of Eq. (3).

Yn+1 =

n∏
i=0

A
(2α)n−i

i (mod q). (4)

For time step n = O(log λ), if all previous Ai (i = 0, .., n) are normal, then we
have Yn+1 = 1. If at least one Ai is abnormal, then Yn+1 ̸= 1 except for the
negligible probability in λ since Ai is uniformly distributed over Zq with q > 2λ

but n is logarithmic O(log λ). Therefore, checking Yn+1 = 1 is a good verification
procedure for the normality of all previous Ai (i = 0, .., n). However, when time
step n becomes sufficiently large (e.g., n ≥ k), Yn+1 = 1 does not guarantee the
normality of all previous Ai. This is due to the shape of the prime number q and
the Fermat’s Little Theorem as follows.

Yn+1 =

n∏
i=0

A
(2α)n−i

i (mod q)

=

n∏
i=n−k+1

A
(2α)n−i

i (mod q) (by Fermat’s Little Theorem)

Therefore, checking Yn+1 = 1 is a good verification procedure for the normality
of only the last k − 1 values An, . . . , An−k+1, so that using this sequence and
the verification of Yn+1 = 1 is a good candidate having the first two condi-
tions for linearly-faulty-and-logarithmically-provable scheme. Ai’s uniform dis-
tribution can be replaced with the random oracle, and thus the above sequence
satisfies the last "deterministic" condition heuristically by using a cryptographic
hash function in the standard model.

Our Ephemeral-Nova Construction. Using the above idea for the recursive
sequence and the verification procedure, we now construct the Ephemeral-Nova
by slightly modifying the augmented function F ′ and the IVC procedure. As
shown in Figure 1 and Figure 2, the execution of F ′ in each round consists of
checking, folding, and invoking procedures. Although all these internal proce-
dures of F ′ are necessary for proving knowledge-soundness, adding some redun-
dant procedures may not affect knowledge-soundness. We extend F ′ to have two
modes, which are determined by an additional input bi ∈ {0, 1}. We call this
extended F ′ a trapdoor augmented function F ′ and sometimes use the notation
F ′bi to denote F ′(·, bi). According to bit bi, the trapdoor F ′bi sets

zi+1 :=

{
F (zi, ωi) if bi = 1

zi if bi = 0 // zi can be replaced with any value except F (zi, ωi).
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F ′
bi

:= F ′
tr(pp,Ui, ui, (i, z0, zi), ωi, T, Yi, bi )→ x:

Compute zi+1 :=

{
F (zi, ωi) if bi = 1

zi if bi = 0 // Any value except F (zi, ωi) can be used.

If i is 0, check if Y0 = 1. And then compute Y1 := bi+(1−bi)·H(pp, 0, z0, u⊥, Y0)

(mod q) and output H(pp, 1, z0, z1, u⊥, Y1 ); otherwise,

1. check if ui.x = H(pp, i, z0, zi,Ui, Yi ), where ui.x is the public IO of ui,
2. check if (ui.E, ui.s) = (u⊥.E, 1),
3. compute Ui+1 ← NIFS.V(pp,Ui, ui, T ), and
4. output H(pp, i+ 1, z0, zi+1,Ui+1, Yi+1 ), where

Yi+1 := Y 2α
i ·

(
bi + (1− bi) · ui.x

)
(mod q).

*We assume that appropriate deterministic encoding process is applied from the function value
H(·) into Zq for computing Yi+1.

** The box indicates the difference from the original augmented function F ′.

Fig. 4. Trapdoor Augmented Function F ′

for some prime number q of the form α · 2k + 1 for some k ≥ λ and odd integer
α. If bi = 1, this process is equivalent to the original F ′. Otherwise, F ′ skips
the execution of F . Therefore, we call the cases of bi = 1 and bi = 0 a normal
mode and a trapdoor mode, respectively. The trapdoor F ′bi additionally takes Yi

as input and F ′bi updates Yi according to the following rule.

Yi+1 := Y 2α
i ·

(
bi + (1− bi) · ui.x

)
(mod q) and Y0 := 1.

Let Ai =
(
bi+(1−bi) ·ui.x

)
. If bi = 1, then we have Ai = 1. Otherwise, Ai has a

uniform distribution heuristically since ui.x is a hash output. From the analysis
of the recursive sequence in Eq. (3), we know that Yi+1 = 1 could be a good
verification procedure for linearly-faulty-logarithmically-provable IVC scheme.
We provide a concrete description of the trapdoor augmented function F ′ and
the ephemeral-Nova in Figure 4 and Figure 5, respectively.

Choice of Prime Number q. The Proth prime q = α · 2k + 1 is essential for
constructing the ephemeral Nova. Using the prime number theorem, for fixed
k = O(λ), one can find α · 2k + 1 prime by adjusting α in O(log λ) times.

3.1 Ephemeral-Nova is (Log-Bounded Round) Knowledge-Sound

Now, we provide an intuition for the (log-bounded round) knowledge soundness
of the Ephemeral-Nova IVC scheme described in Figure 5. Notice that we regard
P1 and P0 in Figure 5 as the normal IVC prover and the abnormal IVC prover
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G(1λ)→ pp: Output pp← NIFS.G(1λ, N)

K(pp, F )→ (pk, vk): 1. Compute pkFS ← NIFS.K(pp, sF ′)
2. Output (pk, vk)← ((F, pkFS), (F, pp))

Pb(pk, (i, z0, zi), ωi, Πi, Yi )→ Πi+1:
Parse Πi as ((Ui,Vi), (ui, vi)) and then
1. if i is 0, set Y0 = 1 and compute (Ui+1,Vi+1, T )← (u⊥, v⊥, u⊥.E);

otherwise, compute (Ui+1,Vi+1, T )← NIFS.P(pk, (Ui,Vi), (ui, vi))

2. compute (ui+1, vi+1)← trace(F ′
tr, (vk,Ui, ui, (i, z0, zi), ωi, T, Yi, b )), and

3. output Πi+1 ← ((Ui+1,Vi+1), (ui+1, vi+1)).

V(vk, (i, z0, zi), Πi)→ {0, 1}:
If i is 0, check that z0 = zi;
otherwise,
1. parse Πi as ((Ui,Vi), (ui, vi)),
2. check if ui.x = H(pp, i, z0, zi,Ui, 1 ),
3. check if (ui.E, ui.s) = (u⊥.E, 1), and
4. check if (Ui,Vi), (ui, vi) ∈ Rpp,s, the committed relaxed R1CS induced by F ′.

* The box indicates the difference from the original augmented function F ′

** The instance-witness pair (ui+1, vi+1) from the trace in P should follow the setting:
(ui+1.E, ui+1.s) = (u⊥.E, 1), .

Fig. 5. Ephemeral-Nova IVC

of Ephemeral-Nova, respectively. Although both IVC provers, P1 and P0, are
described in Figure 5, the security proof focuses on the normal IVC prover, P1.

Theorem 2. The IVC scheme (G,K,P1,V) in Figure 5 satisfies perfect com-
pleteness and knowledge soundness (Definition 2) if the non-interactive folding
scheme NIFS satisfies perfect completeness and knowledge soundness.

Due to space limitations, the full proof of Theorem 2 is included in Ap-
pendix A. Instead, we here sketch the proof idea. The Ephemeral-Nova is de-
signed to be equivalent to Nova if the trigger is not activated. In particular, if
we set b = 1, the augmented function F ′1, the IVC prover P1, and verifier V
are essentially identical to the original Nova IVC, so the Ephmeral-Nova IVC
satisfies the completeness. For knowledge soundness, it would be sufficient to
show that passing the IVC verification guarantees that the trigger has not been
activated. If this is the case, all remaining proofs will be essentially equivalent
to the original knowledge-soundness proof by the design of the Ephemeral Nova.

Let us provide a brief idea about proving non-activation of the trigger. We
consider a log-round n ≤ λ

2 , where p is a λ-bit prime. We claim that if the IVC
verifier V accepts the proof Πn then the skipping trigger cannot be activated
during n-times computation F (n). When the trigger is activated (that is, b = 0)
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at i-th round, the additional indicator Yi is changed to an arbitrary value because
it is an output of H. On the other hand, to give an acceptance from V, the final
additional input Yn, which is an element in Πn, should be equal to 1. By the
construction of F ′bi and uniform distribution of H outputs, the additional value
Yi for all i ∈ [n] should be equal to 1 without negligible probability. (Refer to
Lemma 3 in Appendix A.) This means that the trigger has not been activated
during n times computation; therefore, we can rule out the case b = 0, and the
remaining soundness proof is equivalent to that of the original Nova.

3.2 Linear-round Ephemeral-Nova is Forgeable

Although Ephemeral-Nova satisfies knowledge soundness in Theorem 2, the un-
derlying trapdoor augmented execution (Figure 4) may intuitively cause security
issues. In this section, we present a specific linear round attack on the Ephemeral-
Nova IVC scheme in Figure 5, highlighting the necessity of enhancing knowledge
soundness for linear rounds.

We consider linearly large round, i.e. n = O(λ). Of course, this scenario is out
of scope in Definition 2 and thus our attack does not lead a contradiction with
the log-round knowledge soundness in Theorem 2. We construct adversary which
outputs function F , initial and final values (z0, z), and IVC proof Π satisfying the
following condition: zn ̸= z and V(vk, n, z0, z,Π) = 1, where zi ← F (zi−1, ωi−1).
(Refer to the format of the adversary’s outputs in Definition 2.)

For the sake of simplicity, we abuse the notation F (t)(zi, ωi) to denote an
output of t times F execution with t local inputs ωi, . . . , ωi+t−1 sequentially, i.e.,
F (t)(zi, ωi) = F (F (· · ·F (zi, ωi), ωi+1), · · · ), ωi+t−1). We consider the prime field
Zq where k = O(λ) and q = α ·2k+1. (If k is sublinear of λ, the soundness error
may not be negligible due to small field size.) Now we construct a PPT adversary
algorithm that generates an IVC proof of (k + 1)-th round, i.e., n = k + 1. (For
n ≥ k + 1, our approach can be used to forge the IVC proof.)

Let the adversary A choose the function F satisfying non-collision within
k + 1 steps. That is, for a given z0 and (ω0, . . . , ωk), F (k+1)(z0, ω0) ̸= zj for all
j ≤ k+1 where zi := F (i)(z0, ω0). And then, A creates a forgery Π̃n by running
Pb for each round in the following order (P0,P1, . . . ,P1)︸ ︷︷ ︸

n=k+1 steps

. That is, the trapdoor

mode F ′0 is used only in the first step and the normal mode F ′1 is used in all the
other steps. Finally, after the last step, the IVC verifier V verifies forged proof
Π̃n and the final output z.

It is clear that z is not equal to the correct value F (n)(z0, ω0) since P0

skipped the execution of F . Concretely, z = F (n−1)(z0, ω0) = F (k)(z0, ω0) is
the output of k-th step. By the non-collision property of F , z cannot be the
n-th outputs F (n)(z0, ω0) = F (k+1)(z0, ω0). Nevertheless, we argue that the IVC
verifier accepts the proof Π̃n = ((Ũn, Ṽn), (ũn, ṽn)). In fact, both the trapdoor
mode and the normal mode of F are correct executions of the augmented func-
tion F ′tr. Therefore, both (Ũk, Ṽk) and (ũk, ṽk) are correct committed relaxed
R1CS induced by F ′tr, where (Ũn, Ṽn) are also corrected folded by the fold-
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ing scheme for F ′. This allows Π̃k to pass the test in the third and fourth
lines of the IVC verifier procedure in Figure 5. Next, we check whether Yn is
equal to 1 or not. By the k times sequentially running P1, we can confirm that
Yn = Y

(2α)k

1 = (Y α·2k
1 )α

k−1

= 1 regardless of the value of Y1. Hence, the second
line of the IVC verifier procedure is passed.

Remark. From the construction of Ephemeral-Nova, we emphasize two points.
First, designing the augmented execution function F ′ may affect the forgeability
(in linear round) of the IVC scheme, even if the underlying folding scheme is
sound. That is, some redundant part of F ′ can be utilized for linear-round attack
as we did. Second, the definition of knowledge soundness described in Definition 2
is not sufficient to represent a secure linear-round IVC scheme. Therefore, the
IVC knowledge soundness should cover polynomial bounded rounds, as defined
in Definition 3.

4 Model for Security Analysis

In the previous section, we observed that an IVC satisfying Definition 2 may
not provide poly-depth knowledge soundness in Definition 3. However, to the
best of our knowledge, there is no known concrete forgery attack in the original
Nova IVC scheme [45]. The main reason that Nova cannot provide poly-depth
knowledge soundness is the construction of a polynomial time extractor.

To address this gap, we focus on how to prove the poly-depth knowledge
soundness of Nova IVC against restricted adversaries. First, we consider an ide-
alized model for a group-based scheme and then adapt the model on the poly-
depth knowledge soundness proof.

We first briefly review the features of popular idealized models for group-
based systems and then set up an appropriate model for security analysis of the
Nova IVC scheme.

Notation. We define notations for groups. Let G be an additive cyclic group of
prime order p. When the group generator G is fixed, we use the bracket notation
[a]G for a scalar a ∈ Zp to denote the group element a · G. If the generator is
clear from the context, we often omit the subscript G and write as [b] ∈ G. For
a = (a1, . . . aℓ) ∈ Zℓ

p and [b]G = ([b1]G, . . . , [bℓ]G) ∈ Zℓ
p, a multi-scalar addition

between a and [b]G is denoted by ⟨a, [b]G⟩ =
∑ℓ

i=1 ai · [bi]G.
Let h1, . . . ,hn ∈ Zℓ

p be representations of each component of group elements
H = (H1, . . . ,Hn) ∈ Gn over the basis G ∈ Gℓ, i.e., Hi = ⟨hi,G⟩ for all i ∈ [n].

Two Candidates: Generic Group Model and Algebraic Group Model
The generic group model (GGM) is an idealized model where all group operations
are carried out by making oracle queries [49,54,48,47]. This model is designed to
capture the behavior of natural general algorithms that operate independently of
any particular group descriptions. In fact, this model is divided by a way to han-
dle group elements. The adversary in Shoup’s model [54] gets random-encoded
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values of the additive group Zp which are considered as group elements, but
the adversary in Maurer’s model [48] cannot access the value directly but ob-
tains pointers indicating the line number in the oracle’s table. Recently, Zhandry
demonstrated the difference between these two models [56].

The algebraic group model (AGM), another idealized model proposed by
Fuchsbauer, Kiltz, and Loss, requires that whenever an algorithm outputs a
group element G, it also outputs a representation c such that ⟨c,G⟩ = G, where
G is a vector of group elements the algorithm took as input [32]. In particular,
a specific group description is fixed and known to all algorithms, and there is
no oracle query for group operations in the AGM. The intuition of the AGM is
to restrict algorithms to output a new group element G only by deriving it via
group operations from known group elements. In fact, the concept of algebraic
adversary has already been studied in several literature [10,28,51,15,34,2,1,5,42]
and the AGM of Fuchsbauer, Kiltz, and Loss [32] is the first formal framework
for security proofs with respect to algebraic adversaries.

GGM and AGM are the two most popular models for the analysis of group-
based systems. We now present some limitations of the two models, which have
been identified by either previous literature or our observations, and slightly
refine the definitions for setting up an appropriate model for our purpose.

Limitation of GGM. From the definition of GGM, it might cover a smaller
class of algorithms than those in the AGM because algorithms are not allowed
to use group descriptions. Another limitation of GGM, which is more critical to
our purpose, is that the ideal group oracle cannot be instantiated as an arith-
metic circuit. In Nova IVC, which uses a group-based folding scheme, the folding
process containing group operations is arithmetized, and the arithmetized group
operations are publicly accessible to all algorithms. In other words, the adver-
sary can access the specific group description from this arithmetization. In fact,
the same issue occurs when we use the arithmetized cryptographic hash func-
tion, which is modeled as a random oracle. Then, the resulting security analysis
should rely on the heuristic GGM instantiation in the standard model. We avoid
heuristic analysis as much as possible so that we could move on to the next
candidate, the AGM.

Usefulness of AGM. The AGM is proposed as a model lying between the
standard model and the GGM, and it is one of main reasons why the AGM
has received so much attention recently [38,3,40,8,37]. As mentioned above, the
adversary should provide a representation of the output group elements.

AGM is a useful model for constructing a straight-line extractor that pro-
cesses the output of an algebraic adversary [32,33]. In AGM, the extractor re-
ceives outputs along with their algebraic representations from the algebraic ad-
versary and extracts a witness from both the outputs and their representations.
In this scenario, the extractor does not need to rewind the adversary because the
provided outputs and their representation are sufficient for extracting a witness.

The main reason for the blow-up issue in the proof of Nova [45] is the necessity
to rewind a folding adversary at each step. To avoid this issue, we construct a
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straight-line extractor using the algebraic adversary P∗. Therefore, we modify
AGM to suit our purposes more effectively.

Limitation 1: Ambiguity of Group Elements. Fuchsbauer et al. pointed
out that the output group elements should be distinguishable from other inputs
syntactically [32]. However, in terms of the adversary against KS of Nova, the ad-
versary provides R1CS witness v, which contains group-convertible Zp-elements,
that correspond to NIFS.V inputs u,U. Syntactically, the group-convertible el-
ements in Zp are not group elements but can be regarded as group elements
following a publicly known conversion process. According to the AGM definition
in [32], it is unclear whether the algebraic adversary provides a representation
of group-convertible elements or not.

Modification 1: Representation of all Group-convertible Elements. Let
us consider group-convertible elements in R1CS for the augmented function F ′

(Figure 2). To construct F ′, one should instantiate the group operation over G
into a Zp-arithmetic circuit for the instantiation of the non-interactive folding
scheme NIFS.V. In this phase, the input and output group elements of NIFS.V
should be converted to Zp elements. Specifically, NIFS.V takes 4 group elements
Un−1.E, Un−1.W , un−1.E, and un−1.W , and outputs 2 group elements Un.E
and Un.W . To instantiate NIFS.V, one should convert these 6 group elements to
field elements.

If an algebraic algorithm outputs group-convertible elements, we let it pro-
vide representations of each group-convertible element, which are indeed group
elements generated from algebraic operations.

Limitation 2: Extracting Intermediate Representations. When using the
model, the AGM is rather cumbersome compared to the GGM because the AGM
allows us to extract only limited information—the representation of the group
element in the final output of the algorithm. In contrast, the GGM enables
tracking all group operation queries made by the adversary.

In the proof of IVC schemes, even if the adversary forges a proof at a partic-
ular time period, the definition of knowledge soundness requires extracting all
witnesses from previous time periods. Therefore, in the context of IVC, the AGM
is not suitable for extracting intermediate values computed by the adversary.

Notably, the GGM appears to be a better choice than the AGM in this
case because the GGM allows the extraction of intermediate values. However,
as we mentioned above, the GGM has another issue—the circuitization of group
operations. Consequently, we need a new model that lies somewhere between
the AGM and the GGM, one that enables the extraction of intermediate values
while avoiding the circuitization problem of group operations.

Modification 2: Extended Algebraic Algorithm with respect to Verifi-
cation. In many analyses using the GGM, the concept of an oracle is necessary
to track all intermediate group operations. In contrast, a key benefit of the AGM
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is that it hides all intermediate group-related operations, except for the repre-
sentation of the final output.

Our goal is to preserve this benefit of the AGM as much as possible while
still enabling the tracking of certain intermediate group operations that are
necessarily related to the final output—particularly without relying on oracles.

To achieve this, we first introduce the concept of verification to check whether
group elements appear in the adversary’s outputs, whether intermediate or final,
and refine the original AGM accordingly. Next, we develop a methodology to
determine whether an adversary’s intermediate results are necessarily related to
the final output. To establish this necessary relatedness, we use a conditional
probability that holds with overwhelming probability.

We provide a formal definition of Extended Algebraic Algorithm with respect
to verification as follows:

Definition 7 ((Extended) Algebraic Algorithm w.r.t. Verification). Let
pp be a public parameter and V(pp, ·) → 1/0 be an algorithm, which we call
verification, taking pp as input. We consider PPT algorithms AV(pp,·) that takes
pp as input and its goal is to output out such that V(pp, out) → 1.2 We call A
an (Extended) Algebraic Algorithm with respect to V(pp, ·) if it satisfies the
following algebraic requirements.

Basic If V specifies group elements included in out in the sense that V checks
group memberships of them, then A should additionally output the corre-
sponding representations rep.

Extended Let A be an extended algorithm, which is naturally induced from A,
to output out := (out, rep). If V implies another PPT verification algorithm
V(pp, ·) in the sense that

Pr[V(pp, out) = 1|V(pp, out) = 1] ≥ 1− negl(λ),

where λ is a security parameter and the probability goes over the randomness
used in generation of pp and out, then AV(pp,·)

should satisfy the above basic
requirement.

Additionally, we call an extended algebraic group model (EAGM) if all adver-
saries in it are modeled as extended algebraic algorithms.

It is clear that Definition 7 encompasses the original algebraic algorithm by
setting the verification algorithm to specify only the description of the input and
output of algebraic algorithms.

It is reasonable to claim that the representation rep is an intermediate value
that the basic algebraic algorithm computed to create the final output out. That
is, it is necessarily related to the final output.

V in the extended algebraic algorithm is designed to specify which part of
the intermediate value rep consists of group elements. Let us briefly consider
2 It does not require for A to successfully output 1 with high probability, but just

specifies its descriptions of input and output.
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what algorithms can be V. In fact, V can be a constant algorithm that constantly
outputs 1 since it satisfies the overwhelming conditional probability requirement.
However, the constant algorithm does not include any group membership test,
so it does not differ from basic algebraic algorithms.

Therefore, any meaningful V should include group membership tests. If rep
contains a group element, V can be the group membership test for it. Thus, V
serve as the group membership test for the intermediate values rep, and our
definition of extended algebraic algorithms requires the adversary to output the
representation of intermediate value rep along with the final output.

Similarly, we can repeatedly apply this approach to track any sequence of
intermediate values necessarily related to the final outputs. Note that this is not a
recursive process to extract the intermediate values the adversary computed, but
rather an analysis to determine what should be included in the representations
the adversary outputs along with out.

5 Zero-Testing Assumption

The group-based folding scheme in [45] is knowledge-sound under the DL as-
sumption and can be made non-interactive in the random oracle model using
the Fiat-Shamir transformation [31]. However, to use the non-interactive folding
scheme in Nova IVC, the folding verifier must be arithmetized, requiring the
random oracle to be instantiated in the standard model using a hash function.

There are studies [23,22] that aim to remove the heuristic instantiations of
random oracles by introducing new variants. We propose a different approach to
avoid heuristic analysis, as we do not seek to modify the Nova IVC construction
but rather to provide a new soundness analysis.

To this end, we introduce a new plausible computational assumption for
cryptographic hash functions, such as SHA-256, that is sufficient for proving
knowledge soundness in the AGM. This hash assumption alone cannot fully
replace random oracles, as it lacks the ability to extract a witness by rewinding
algorithms. However, our new assumption can be combined with the EAGM to
completely replace random oracles in the proof of Nova IVC.

5.1 Zero-Testing Problem over Hash Functions

In the context of proof systems, a polynomial is often used to prove several
relations at the same time. For example, to prove three equality ai = bi for
i = 0, 1, 2, one can claim that the polynomial p(X) =

∑
i(ai−bi)Xi is identical to

zero. In interactive protocols, the Schwartz-Zippel lemma enables to statistically
verify it; (1) Prover commits to the polynomial p(X), (2) a random challenge
r is chosen by the verifier, (3) check p(r)

?
= 0. In non-interactive protocols, the

Fiat-Shamir transformation is applied. The second step can be changed with
H evaluation and check if p(H(p))

?
= 0, where H is considered as the random

oracle. In the random oracle model, we can rewind the prover multiple times
with a fixed commitment. Therefore, p passing the test implies that p vanishes
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at multiple points larger than the degree of p, so that it is identical to zero.
Although this argument in the non-interactive protocol is well analyzed in the
random oracle model, we believe that even without the random oracle model, it
is still reasonable to expect that the cryptographic hash function also guarantees
this method of testing zero polynomial. We formalize this belief in Definition 8.
Let λ be the security parameter and H be a cryptographic hash function that
maps to Zp, where p is a prime of length O(λ).

Definition 8. (Zero-Testing Problem) Let H be a hash function whose output
length is of size λ, and p is a prime of size λ. We define the problem of finding a
nonzero polynomial p ∈ Zp[X] of degree at most poly(λ) that satisfies p(H(p)) = 0
(mod p) as the zero-testing problem over H.

Based on the Definition 8, we define a computational assumption called the
zero-testing assumption (over H). The zero-testing assumption states that there
is no PPT algorithms to solve the zero-testing problem over H.

In fact, the above zero-testing assumption is too simple to apply directly to
various cryptosystems. We provide this information to help readers understand
the intuition behind the following generalization of the zero testing problem

Definition 9. (General Zero-Testing problem) Let C : D → C be a binding
commitment and D : D → Zp[X] be an arbitrary deterministic function where D
is a domain set and Zp[X] is a set of polynomials of degree at most poly(λ). For
a hash function H, we define the problem of finding d ∈ D and auxiliary input τ
such that D(d) is a non-zero polynomial and D(d)(H(C(d), τ)) = 0 (mod p).

In the similar manner in the zero testing assumption, we define the general
zero-testing (GZT) assumption (over H, C, and D) as follows: there is no PPT
algorithms to solve the general zero-testing problem over H, C, and D.

Note that the general zero-testing problem is equivalent to the zero-testing
problem if we set D = Zp[X], both C and D to be identity maps, and τ = ∅.

We expect that cryptographic hash functions such as SHA-256 satisfy the
zero-testing assumption. Although we do not provide a concrete analysis of this
new assumption for hash functions, we can at least demonstrate that the (gen-
eral) zero-testing problem over a random oracle hash is hard, as shown in the
following lemmas. In particular, we emphasize that the proofs of these lemmas
do not rely on the programmability of the random oracle but instead use only the
uniform and independent distribution of the random oracle outputs. Therefore,
the zero-testing assumption is weaker than the random oracle model.

Lemma 1. Let p be a λ-bit prime and H : {0, 1}∗ → Zp be a hash function. If
H is random oracle, then the zero-testing problem over H is infeasible.

Proof. In the random oracle model, one can obtain hash outputs by querying
the random oracle. For each hash query p, the hash output H(p) is uniformly
random, so that the probability p(H(p)) = 0 (mod p) holds is at most deg(p)/p.
For q ≤ poly(λ) distinct queries, all query results are mutually independent; thus
the probability that at least one equality holds is bounded by the sum probability
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q deg(p)
p ≤ poly(λ)

2λ
, which is still negligible in λ. That is, the probability of solving

the zero-testing problem is negligible.

Lemma 2. Let p be a λ-bit prime and H : {0, 1}∗ → Zp be a hash function.
Let C be a Pedersen commitment with binding property and D be an arbitrary
deterministic function. Then, if H is random oracle, the general zero-testing
problem over H, C, and D is infeasible.

Proof. The basic proof strategy is identical to Lemma 1, except that we addi-
tionally require the ability that for each query (c, τ). In the similar manner in
the proof of Lemma 1, the probability that the random oracle output H(c, τ) as a
root of the polynomial D(d) is negligible. Furthermore, by the binding property,
it is infeasible to find collision pair d1, d2 such that c = C(d1) = C(d2). That is,
for a query (c, τ), the adversary know at most one d such that (c, τ) = (C(d), τ).
In other words, the probability to find the solution (d, τ) is at most the prob-
ability of finding a random oracle query (c, τ) that satisfies D(d)(H(c, τ)). The
probability of successfully finding such a query is negligible.

Remark. In [18], a similar concept, called zero-finding game, to our general zero-
testing problem was introduced. There is noticeably obvious differences between
two concepts because of the goal of proposals. Lemma 3.3 of [18] assumes a perfect
binding commitment and analyzes, from an information-theoretic perspective,
the probability of an adversary successfully winning the zero-finding game, given
access to random oracle and the ability to rewind. In contrast, we analyze the
difficulty of breaking the general zero-testing problem under the assumptions of
computational binding commitments and the AGM. Based on these assumptions,
we provide a tighter bound on the adversary’s success probability compared to
the one derived in [18]. In particular, the (general) zero-testing assumption is
proposed not to rely on the random oracles, contrary to [18].

5.2 Schnorr’s NIZK in the AGM

As a warm-up example to show the effectiveness of the zero-testing assumption,
we present a new knowledge-soundness proof of Schnorr’s NIZK protocol [52],
which is one of the simplest proof knowledge protocol; it proves that (G,H) is
an instance of the relation R = {(G, [x]G;x ∈ Zp)}, i.e., H = [x]G.

Prover
1. chooses k

$←Zp and computes K := [k]G.
2. computes e← H(G,H,K).
3. computes s = k + ex mod p and outputs (s,K).

Verifier accepts if,
given (s,K), [s]G

?
= K + [e]H holds, where e← H(G,H,K).
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Using the general zero-testing assumption, we can prove that Shnorr’s non-
interactive protocol is knowledge sound in the AGM. In particular, the extraction
is tight and random oracles are not required.

Theorem 3. Under the general zero-testing assumption over H, the Schnorr’s
non-interactive protocol satisfies the knowledge soundness in the AGM. In par-
ticular, the running time of the extractor is equivalent to that of the algebraic
prover, except for constant operations.

Proof. Given an arbitrary algebraic prover P∗, we construct an extractor E that
extracts the witness x. P∗ begins with taking a pair of (G,H) as input. Suppose
that P∗ outputs a proof (s,K) that passes verification; that is, the equality
[s]G = K+[e]H holds where e← H(G,H,K). Since P∗ is an algebraic adversary,
it should output the representation (k1, k2) of the group element K such that
K = [k1]G+[k2]H . Thus, we have [s−k1]G = [k2+e]H , so we obtain the discrete
logarithm of H as x = (s− k1) · (k2 + e)−1 (mod p) unless k2 + e = 0 (mod p).

Now, we argue that k2 ̸= −e (mod p). Suppose that k2 = −e (mod p). Then,
H(G,H, [k1]G − [e]H) is a solution of a polynomial e − X = 0 (mod p). Using
the notations d,C, and D in the general zero-testing problem in Definition 9, we
can set d = (k1,−e), where (G,H) is the commitment key of C, and D(k1,−e) =
e − X ∈ Zp[X], where D discards k1. Therefore, no PPT algorithm can find
d = (k1,−e) that satisfies D(d)(H(G,H,C(d))) = 0 (mod p) by the general zero-
testing assumption, so that k2 ̸= −e (mod p).

What the extractor did except running P∗ is only to compute constant op-
erations x = (s− k1) · (k2 + e)−1 (mod p).

6 New Soundness Analysis of Nova IVC with
Group-based Folding Scheme

Pedersen Commitment for Vectors. Pedersen commitment scheme is a ho-
momorphic commitment scheme with perfect hiding and computational bind-
ing properties under the discrete logarithm assumption. The setup algorithm
Setup(1λ, ℓ) takes the dimension variable ℓ and outputs the commitment key ck
consisting of a (ℓ+1)-dimensional vector Gℓ+1. The message x is an ℓ-dimensional
vector in Zℓ

p. The commitment to x with a random scalar r
$← Zp is computed

as a multi-scalar addition ⟨x∥r, ck⟩ ← Com(ck,x; r). The homomorphic property
is naturally induced by the characteristics of the cyclic group G.

Group-based Folding Scheme from [45]. In [45], the group-based non-
interactive folding scheme NIFS = (G,K,P,V) for the committed relaxed R1CS
relation RppFS ,s in Eq. (2) is proposed, where the public parameter ppFS is
generated by G and the common structure s is taken as an input of K. The
folding prover NIFS.P takes two committed relaxed R1CS instance-witness pairs
and outputs a folded instance-witness pair (u, v), with the prover’s transcript T .
The folding verifier NIFS.V takes two committed relaxed R1CS instances u1, u2,
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G(1λ, N = (m, ℓ))→ ppFS : Output commitment keys cke
$←Gm and ckw

$←Gm−ℓ−1.

K(ppFS , s = (A,B,C))→ pkFS : Output pkFS ← (ppFS , s).

NIFS.P(pkFS , (u1, v1), (u2, v2))→ (u, v), T :
1. For i = 1, 2, parse (ui, vi) = ((Ei, si,Wi, xi), (ei, rei ,wi, rwi)) and then set

zi = (wi, xi, si)
2. Compute t = Az1 ◦Bz2 +Az2 ◦Bz1 − s1 · Cz2 − s2 · Cz1.

3. Pick rt
$← Zp and compute T = ⟨(t, rt), cke⟩.

4. r ← H(u1, u2, T ).
5. Output T, u := (E, s,W, x) and v := (e, re,w, rw) where

E ←E1 + r · T + r2 · E2 W ←W1 + r ·W2 (5)
s←s1 + r · s2 x←x1 + r · x2 (6)

e←e1 + r · t+ r2 · e2 w ←w1 + r ·w2 (7)

re ←re1 + r · rt + r2 · re2 rw ←rw1 + r · rw2 (8)

NIFS.V(ppFS , u1, u2, T )→ u:
1. For i = 1, 2, parse ui = (Ei, si,Wi, xi)
2. r ← H(u1, u2, T )
3. Output u := (E, s,W, x) satisfying Eq. (5) and Eq. (6).

Fig. 6. Group-based Non-Interactive Folding Scheme in [43]

and T and then outputs a folded instance u. We have provided a full description
of this group-based folding scheme in Figure 6.

Looking at the Knowledge Soundness Proof of Nova [45]. In this para-
graph, we briefly review the knowledge soundness proof of Nova [45]. The premise
of the proof is the knowledge soundness of the internal non-interactive folding
scheme in the standard model, which assumes the existence of the extractor Ẽ
satisfying condition in Definition 4. To construct the IVC extractor E , which out-
puts (ω0, . . . , ωn−1), the proof follows a general recursive proof strategy. That is,
E inductively generates Ei that, given Ei+1, outputs (zi, . . . , zn−1), (ωi, . . . , ωn−1)
and Πn. In fact, Ei+1 directly implies an adversarial folding prover Ãi for the
i-th round and Ei can be constructed from Ãi. In the procedure of Ei, the fold-
ing extractor Ẽi of Ãi is additionally called, so that the inequality between the
running times of the algorithms is as follows:

time(Ei) > time(Ẽi) + time(Ãi) > 2 · time(Ei+1)

if time(Ẽi) > time(Ãi). Then, time(E) increases exponentially in n. The sound-
ness proof of the Nova paper relies on the assumption of the knowledge soundness
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of the non-interactive folding scheme in the standard model when the random
oracle is instantiated with a cryptographic hash function. Considering the cor-
responding interactive folding scheme (or non-interactive scheme in the random
oracle model), Ẽi uses the rewinding strategy with the forking lemma so that
time(Ẽi) > time(Ãi) holds. To avoid exponential growth, we do not apply the
folding scheme extractor to construct the IVC extractor, ensuring that time(Ei)
increases only incrementally without growing exponentially.

6.1 Knowledge Soundness of NIFS in the AGM

Before the proof of knowledge soundness Nova IVC based on the NIFS scheme
in Figure 6, we prove that NIFS with a general zero-testing hash satisfies knowl-
edge soundness in Definition 4. Although we avoid using the folding extractor
as a subroutine to construct the IVC extractor, we use the fact that the NIFS
scheme Figure 6 satisfies knowledge soundness in AGM to prove the knowledge
soundness of Nova IVC. In a nutshell, a representation provided by an extended
algebraic adversary is indeed a witness of the instance. Concretely, by the knowl-
edge soundness of NIFS, an IVC adversary outputting a valid pair u, v should
know the original pairs u1, v1 and u2, v2 beforehand. In the view of the adversary,
u1 and u2 are group-convertible elements; therefore, it should output their repre-
sentation, but it may not witness for the instance. However, knowledge soundness
guarantees that the adversary knows a witness so that if the adversary can obtain
a representation different from the witness, the adversary can know the discrete
relation of the CRS, which contradicts the DL assumption. Now, we prove the
knowledge soundness of NIFS under the AGM with DL assumption.

Theorem 4 (Knowledge Soundness of NIFS in AGM). Let H be a general
zero-testing hash function. Then, the group-based non-interactive folding scheme
NIFS = (G,K,NIFS.P,NIFS.V) in Figure 6 satisfies knowledge soundness in AGM
with DL assumption.

Proof Sketch. For the knowledge soundness proof, we construct an extractor
that outputs witnesses for the given folded instances u1 and u2 using an algebraic
adversary. The extractor is designed to output algebraic representations from the
adversary. Note that the general zero-testing hash assumption guarantees that
these representations are indeed valid witnesses without rewinding the adversary.
The complete proof is deferred to Appendix B.

6.2 Poly-depth Knowledge Soundness of Nova in EAGM

In this section, we prove the poly-depth KS (Definition 3) of the Nova IVC
scheme (Figure 3) in the EAGM (Definition 7).

Theorem 5. Let H be a cryptographic hash function. The Nova IVC scheme
(G,K,P,V) in Figure 3 combined with the group-based folding scheme NIFS based
on G and H in Figure 6 satisfies poly-depth knowledge soundness Definition 3
in the EAGM (Definition 7) under the DL assumption and general zero-test
assumption over H.
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Proof Outline. We consider extended algebraic adversaries A with respect to
the IVC verifier V. That is, A takes the time period n of polynomial size in
the security parameter λ and the public parameters pp of the Nova IVC, and
then outputs a tuple (F, z0, zn, Πn) of the target function F , a genesis value
z0, an n-th output zn, and a proof Πn. We construct an expected polynomial
time extractor E(pp, z0, zn; ρ)→ (ωi)

n−1
i=0 , where ρ is the randomness used by the

adversary. We will show that if the adversarial output passes the IVC verifier V,
then the extractor’s output, (ωi)

n−1
i=0 , satisfies ∀i ∈ [n], zi ← F (zi−1, ωi−1).

By Definition 7, the extended algebraic adversaries AV(pp,·) should output
the representations defined by not only V but also induced verification algo-
rithms V. That is, the extended algebraic adversary has a duty to output the
representations corresponding to the valid outputs passing V and V.

Our proof outline is as follows.

1. Look into adversarial outputs in terms of passing V: The IVC verifier V checks
the adversarial output outn is a valid pair of instance and witness of RNova

that consists of several Pedersen commitments and openings. Since every
group operation necessarily checks group membership checks, it is natural
to suppose that V specifies group-convertible elements. Therefore, A ad-
ditionally outputs the corresponding representations repn. Let outn−1 :=
(outn, repn). Looking into outn−1, we can find a candidate of the previous
round proof Πn−1 that contains ωn−1.

2. Define another verification algorithms V: We can define additional verifica-
tion algorithm V as checking the correctness of the extractor’s finding Πn−1.
That is, Πn−1 belongs to RNova.

3. Prove that V satisfies the extension requirement in Definition 7: By our hy-
pothesis given in the theorem statement, H is a general zero-testing hash
function and NIFS is the group-based folding scheme over the groups under
the DL assumption. Applying Theorem 4, NIFS has the knowledge sound-
ness under our hypothesis. We prove that the knowledge soundness of NIFS
implies an inequality

Pr[V(pp, outn−1) = 1|V(pp, outn) = 1] ≥ 1− negl(λ).

4. Repeat the processes 1. - 3. with V, instead of V. V checks the validity of the
proof Πn. That is, Πn is a belonging ofRNova. Similarly, V checks the validity
of Πn−1, a belonging of RNova. Therefore, due to a similar structure between
two algorithms, we can repeats the processes 1. - 3., by using V instead
of V. Note that these repeats are not a recursive process, but a process of
finding what A should include in the representations by finding appropriate
additional verification functions. That is, these repeats are just to define and
analyze additional verification algorithms and there is no recursive process
in E .

Full proof is deferred to Appendix C.
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Ephemeral Nova does not satisfy poly-depth knowledge soundness.
Using the above idea, we can construct extractor that covers linearly many
rounds. Furthermore, in Section 3.2, we provide a concrete linear-round attack
on Ephemeral Nova. In this case, the knowledge soundness adversary can forge
an IVC proof, making the adversary’s advantage (the probability in Eq.(1)) non-
negligible. By extending the definition of knowledge soundness, we can conclude
that Ephemeral Nova is not sound.

7 Concluding Remarks

In this paper, we showed that an unnecessary redundant procedure in the aug-
mented function F ′ may serve as a trigger for attacks that activate only at a
predetermined time. To investigate this type of attack on the Nova IVC scheme,
it is necessary to prove knowledge soundness for polynomially many rounds.

We presented the first provable security analysis of Nova IVC’s knowledge
soundness for polynomial rounds. In particular, our proof does not rely on heuris-
tic random oracle instantiation but instead on a newly introduced computational
assumption for hash functions, the general zero-testing assumption.

There are several interesting open questions. Many other IVC schemes have
soundness proofs only for logarithmic rounds, and studying their security in the
polynomial round setting would be valuable. In particular, our proposed EAGM
may be useful for group-based schemes. Additionally, finding an alternative se-
curity proof for Nova IVC in the standard model would be another interesting
direction for future research.
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A Proof for Theorem 2

Proof. (Completeness): We argue that the P’s output Πi+1 from the execu-
tion F with (i + 1, z0, zi+1, Πi) is valid proof if the i-th proof Πi is valid. Let
pp← G(1λ), F , and (pk, vk)← K(pp, F ′) be the public parameters, an IVC exe-
cution, and prover/verifier key, respectively. Now, we claim that the IVC proof,
which satisfies V(vk, i, z0, zi, Πi) = 1 and P(pk, i, z0, zi, ωi, Πi) → Πi+1, implies
V(vk, i, z0, zi+1, Πi+1) = 1, where zi+1 = F (zi, ωi). We consider two cases in
which the step index i is equal to 0 or not.
Case (i = 0): According to our premise, we know that Π0 is a trivial valid proof
((u⊥, v⊥), (u⊥, v⊥)). Now, we consider the validity of the updated proof Π1. Let
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P1 take the input (pk, (1, z0, z1, ω0, Π0, Y0) and then get Π1. From the P1 in
Figure 3, we obtain

Π1 = ((u⊥, v⊥), (u1, v1))

where (u1, v1) is R1CS instance-witness pair for F ′1 execution. Following the
execution F ′1 in Figure 4, we know

u1.x = H(vk, 1, z0, F (z0, ω0), u⊥, Y1) where Y1 = Y 2
0 = 1 (9)

(u1.E, u1.s) = (u⊥.E, 1) (10)

From Eq. (9) and Eq. (10), second and third verifier conditions in Figure 5
hold. To check the fourth condition, we only consider (u1, v1) ∈ RppFS ,sF′ be-
cause (U1,V1) = (u⊥, v⊥) is already belong in the relation. From the tracing
of F ′, (u1, v1) should belong to the committed relaxed R1CS relation. There-
fore, we can conclude that the IVC verifier accepts the following proof Π1,
V(pp, 1, z0, z,Π1) = 1.
Case (i ≥ 1): Suppose that Πi is a valid IVC proof for verification V and Πi+1

be a proof generated by P1 with input (pk, (i, z0, zi, ωi, Πi, Yi)
Based on the completeness of the underlying folding scheme and the premise

that (ui, vi) and (Ui,Vi) are satisfying instance-witness pairs of the relation,
we have (Ui+1,Vi+1) is a satisfying instance-witness pair of the relation, i.e.
(Ui+1,Vi+1) ∈ RppFS ,sF′ .

From the tracing of F ′ execution with input (Ui, ui, (i, z0, zi), ωi, T, Yi, 1), we
have that ui+1.x = H(pp, i + 1, z0, zi+1,Ui+1, Yi+1) where Yi+1 = Y 2

i = 1 and
(ui+1.E, ui+1.s) = (u⊥.E, 1). Therefore, the verifier V should accept the IVC
proof Πi+1 = ((Ui+1,Vi+1), (ui+1, vi+1)).

(Knowledge Soundness): For fixed step n, let the security parameter λ satisfy
the following inequality: λ

2 ≥ n and p be a λ-bit prime number. First, we claim
that if the IVC verifier accepts the proof Πn of n times execution F ′bi , then all
execution types of i-th step should be F ′1 with high probability.

Let j − 1 be the latest step of execution F ′ with the choice bit b = 0. In
this case, Yj = Y 2α

j−1 · ui.x can be viewed as a uniform random sample from Z∗p
because ui.x is an image of H. From our hypothesis regarding the latest step, Yn

can be described by the following equation:

Yn = Y
(2α)n−j

j (11)

Due to the premise of acceptance by V in Figure 5, the following relation holds:
un.x = H(pp, n, z0, zn,Un, 1). On the other hand, the R1CS relation for F ′ con-
strains that the last input of H is Yn. Therefore, Yn = 1 holds with overwhelming
probability. To claim that the probability of Y (2α)n−j

j = 1 is negl(λ), let us con-
sider the following Lemma 3.

Lemma 3. Let p = α · 2λ be a prime with odd integer α. If integer n satisfies
λ
2 ≥ n, then the following probability equation holds.

Pr
x

$←Z∗
p

[x(2α)n = 1] ≤ 2−
λ
2 (12)
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Proof. Since the multiplicative group Z∗p has order α ·2k, the αn-power subgroup
H := {xαn |x ∈ Z∗p} has 2k distinct elements. From the subgroup H, we can
describe the probability as:

Pr
x

$←Z∗
p

[x(2α)n = 1] = Pr
x

$←Z∗
p

[(xαn

)2
n

= 1] = Pr
y

$←H

[y2
n

= 1]

To get upper bound of the probability Pr
y

$←H

[y2
n

= 1], let us consider the upper

bound of total number of y ∈ H such that y2
n

= 1. If y ∈ H satisfies y2
n

= 1,
y should be a root of the polynomial X2n − 1 ∈ Zp[X]. By the fundamental
theorem of algebra, X2n −1 ∈ Zp[X] has at most 2n distinct roots, which means
that the number of ys is at most 2n. Therefore, the probability Pr

y
$←H

[y2
n

= 1] is

at most 2n

2λ
= 1

2λ−n ≤ 2−
λ
2

By Lemma 3 and our premise λ
2 ≥ n, we can conclude that the probability

of Y (2α)n−j

j = 1 is negligible. For this reason, the probability of the case b = 0
for any i-step is negl(λ). Then, we can consider that all execution types of i-th
step should be F ′1 with the exception of negligible probability.

Now, we only consider that augmented execution is F ′1. The following process
is similar to soundness proof of Nova-IVC [45].

Let pp ← G(1λ). Consider an expected polynomial-time adversary P∗ that
outputs a function F on input pp, and let (pk, vk) ← K(pp, F ). Suppose that,
for a constant n ≤ λ, P∗ outputs (z0, z,Π) such that

V(vk, n, z0, z,Π) = 1.

We must construct an expected polynomial-time extractor E that with input
(pp, z0, z), outputs (ω0, . . . , ωn−1) such that by computing for all i ≤ n

zi ← F (zi−1, ωi−1)

and zn = z with the exception of the probability negl(λ).
We show inductively that E can run an expected polynomial-time extractor

Ei(pp) that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi) such that for all j ∈ {i+
1, . . . n},

zj = F (zj−1, ωj−1)

and

V(vk, i, z0, zi, Πi) = 1 (13)

for zn = z with the exception of the probability negl(λ).
E run En first, and then using En, construct En−1 and repeat this process

until reaching E0.
First, En(pp, ρ) outputs (⊥,⊥, Πn), where Πn is the output of P∗(pp, ρ).

Assume that En succeeds to get valid proof Πn from IVC adversary P∗.
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For i ≥ 1, suppose E can construct an expected polynomial-time extractor Ei
that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1)), and Πi that satisfies the inductive
hypothesis. To construct an extractor Ei−1, E first constructs an adversary Ai−1
for the non-interactive folding scheme as follows:
Ãi−1(pp, ρ) :

1. Let ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi)← Ei(pp, ρ).
2. Parse Πi as ((Ui,Vi), (ui, vi)).
3. Parse vi to retrieve (Ui−1, ui−1, Ti−1).
4. Output (Ui−1, ui−1) and ((Ui,Vi), Ti−1).

By the inductive hypothesis, we have that V(vk, i, z0, zi, Πi) = 1, where Πi ←
Ei(pp) with the exception of negligible probability negl(λ). Therefore, by the
verifier’s checks we have that (ui, vi) and (Ui,Vi) are satisfying instance-witness
pairs, and that

ui.x = H(vk, i, z0, zi,Ui, Yi)

Because V ensures that (ui.E, ui.u) = (u⊥.E), 1), we have that vi is indeed a
satisfying assignment for F ′. Then, by the construction of F ′ and the binding
property of the hash function, we have that

Ui = NIFS.V(vk,Ui−1, ui−1, Ti−1)

with the exception of negligible probability negl(λ). Thus, A succeeds in produc-
ing an accepting folded instance-witness pair (Ui,Vi), for instances (Ui−1, ui−1),
with the exception of negl(λ). Thus, A succeeds in producing an accepting folded
instance-witness pair (Ui,Vi), for instances (Ui−1, ui−1) in expected polynomial-
time.

Given an expected polynomial-time Ãi−1 and an expected polynomial-time
folding scheme extractor Ẽi−1, E constructs an expected polynomial time Ei−1 as
follows
Ei−1(pp, ρ) :

1. ((Ui−1, ui−1), (Ui,Vi), Ti−1)← Ãi−1(pp, ρ)
2. Retrieve ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi) from the internal state of Ai−1
3. Parse Πi.vi to retrieve zi−1 and ωi−1
4. Let (vi−1,Vi−1)← Ẽi−1(pp, ρ).
5. Let Πi−1 ← ((Ui−1,Vi−1), (ui−1, vi−1))
6. Output ((zi−1, . . . , zn−1), (ωi−1, . . . , ωn−1), Πi−1)

We first reason that the output (zi−1, . . . , zn−1), and (ωi−1, . . . , ωn−1) are
valid. By the inductive hypothesis, we already have that for all j ∈ {i+1, . . . , n},

zj = F (zj−1, ωj−1),

and that V(vk, i, z0, zi, Πi) = 1 with the exception of negl(λ). Because V addi-
tionally checks that

ui.x = H(vk, i, z0, zi,Ui, Yi) (14)
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by the construction of F ′1 and the binding property of the hash function, we have

F (zi−1, ωi−1) = zi

with the exception of negl(λ). Next, we argue that Πi−1 is valid. Because (ui, vi)
satisfies F ′, and (Ui−1, ui−1) were retrieved from vi, by the binding property of
the hash function, and by Eq. (14), we have that

ui−1.x = H(vk, i− 1, z0, zi−1,Ui−1, Yi−1)

(ui−1.E, ui−1.s) = (u⊥.E, 1)

Additionally, in the case where i = 1, by the base case check of F ′1, we have
that zi−1 = z0. Because Ẽi−1 succeeds with the exception of negl(λ), we have
that

V(vk, i− 1, z0, zi−1, Πi−1) = 1

with the exception of at most negl(λ).

B Proof for Theorem 4

Proof. To prove knowledge soundness of NIFS, we construct extractor E which
outputs valid witnesses from the adversary output. Before the proof, we remind
the notation of instance and witness as following:

ui = (Ei, si,Wi, xi) ∈ G× Zp ×G× Zp

vi = (ei, rei ,wi, rwi) ∈ Zm
p × Zp × Zm−ℓ−1

p × Zp, for i = 1, 2

where m and ℓ is pre-designated input of G.
Let (A,P∗) be a pair of algebraic adversaries, that take ppFS = (cke∥ckw)

outputted by G, against folding knowledge soundness.
Assume that A outputs structure s and two instance u1, u2 with representa-

tions ẽ1, ẽ2, w̃1, w̃2 for the group elements u1.E, u2.E, u1.W, u2.W respectively.
And P∗ outputs updated witness v and folding proof T with a representation t̃.

Let the tuple (u1, u2, T, u, v) be a valid input and output of NIFS.V circuit.
That is, NIFS.V(ppFS , u1, u2, T ) = u, (u, v) ∈ RppFS ,s, and u1, u2 ∈ L(Rs,ppFS

).
We construct an extractor E that outputs 4 representations ẽ1, ẽ2, w̃1, w̃2 out-
putted by A.

Now we claim that (u1, ẽ1, w̃1), (u2, ẽ2, w̃2) ∈ RppFS ,s. By the Eq. (5) and
Eq. (6) in Figure 6, we know that the following relation holds.

E = E1 + rT + r2E2, s = s1 + rs2, W = W1 + rW2, x = x1 + rx2 (15)
E = ⟨e ∥ re, cke⟩, W = ⟨w ∥ rw, ckw⟩ where v = (e, re,w, rw) (16)

By algebraic relation between outputted group elements and their represen-
tations, we get the following equations:

E1 = ⟨ẽ1, cke∥ckw⟩, W1 = ⟨w̃1, cke∥ckw⟩,
E2 = ⟨ẽ2, cke∥ckw⟩, W2 = ⟨w̃2, cke∥ckw⟩
T = ⟨t̃, cke∥ckw⟩

(17)
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We denote v1 := (ẽ1, w̃1), v2 := (ẽ2, w̃2). Now we claim that the extracted
witnesses v1 and v2 are valid witness for the instances u1 and u2 respectively.
Combining Eq. (15), Eq. (16) with Eq. (17). By DL assumption, we obtain the
following linear relations.

⟨e ∥ re, cke⟩
(16)
= E

(15)&(17)
= ⟨ẽ1 + rt̃+ r2ẽ2, cke∥ckw⟩

DL
= ⟨ẽ1 + rt̃+ r2ẽ2, cke⟩,

⟨w ∥ rw, ckw⟩
(16)
= W

(15)&(17)
= ⟨w̃1 + rw̃2, cke∥ckw⟩

DL
= ⟨w̃1 + rw̃2, ckw⟩

Let the representation vectors parse to two parts as follows:

ẽi = ēi∥r̄ei , t̃ = t̄∥r̄t ∈ Zm
p × Zp, w̃i = w̄i∥r̄wi

∈ Zm−ℓ−1
p × Zp (18)

Then, we can rewrite Eq. (17) as the commitment forms:

E1 = Com(cke, ē1; r̄e1), W1 = Com(ckw, w̄1; r̄w1),
E2 = Com(cke, ē2; r̄e2), W2 = Com(ckw, w̄2; r̄w2).

To complete the claim (u1, v1), (u2, v2) ∈ Rpp,s, we showed the opening-checks
and the R1CS-like relation is remained. From the hypothesis (u, v) ∈ Rpp,s, we
can derive the following equality.

0 = Az ◦Bz − sCz − e

= A(z̄1 + rz̄2) ◦B(z̄1 + rz̄2)− (s1 + rs2)C(z̄1 + rz̄2)− (ē1 + rt̄+ r2ē2)

= Az̄1 ◦Bz̄1 − s1Cz̄1 − ē1 + r2(Az̄2 ◦Bz̄2 − s2Cz̄2 − ē2) + rδ(z̄1, z̄2, A,B)

where z = (w, x, s), z̄i = (w̄i, xi, si) for i ∈ {1, 2} and δ(z̄1, z̄2, A,B) is a re-
dundant term consisting z̄1, z̄2, A, and B. We argue that the general zero-
testing assumption over H guarantees that each coefficient of rj-term should be
zero without negligible probability; The last term of the above equation can be
considered as a degree-2 polynomial in r whose coefficients are determined by
d := (z̄1, ē1, z̄2, ē2, t̄) with A,B,C. We also know that r is the hash value of
ui−1,Ui−1 and Ti−1, which can be considered as commitments to d with binding
property.

Therefore, we finally obtain the following equation:

Az̄1 ◦Bz̄1 − s1Cz̄1 − ē1 = 0 = Az̄2 ◦Bz̄2 − s2Cz̄2 − ē2

and we can conclude (u1, v1), (u2, v2) ∈ Rpp,s.

C Proof for Theorem 5

Proof. To show poly-depth knowledge soundness (KS), for polynomially large
step n = poly(λ), we construct an extractor E that derives local inputs (ωi)

n−1
i=0

from the valid outputs with representations provided by the extended algebraic
adversary P∗ with respect to IVC verifier Vn := V. The verification Vn takes
outn := (z0, zn, Πn) and checks IVC proof Πn = ((Un,Vn), (un, vn)) belongs
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to the relation RNova = Rpp,s × R∗pp,s, outer product of the CR-R1CS relation
Rpp,s and the R1CS relation R∗pp,s. Since we consider (extended) algebraic ad-
versary, P∗ additionally outputs the corresponding representation repn of outn.
Let outn−1 := (outn, repn).

From the definition of Vn, we can see that a part of its input consists of
group elements. That is, Vn checks the structure of Πn; it first specifies group
elements not only in the instances Un and un but also in the witness vn. Note
that vn is the witness of R∗pp,s, the ordinary R1CS of F ′, where F ′ contains
group operations defined NIFS.V, so that Vn definitely checks group membership
of group-converted elements in vn. In addition, Vn also checks if Πn belongs to
RNova = Rpp,s×R∗pp,s, so that Vn and vn have openings of Pedersen commitments.

We will design another verification algorithm Vn−1(pp, outn−1) → 0\1 as
follows. Before describing Vn−1, let us first look into the shape of outn−1 =
(outn, repn), where outn = ((Un, un), (Vn, vn)). We argue that if Vn outputs
1(accept), then outn−1 includes Πn−1 := ((Un−1,Vn−1), (un−1, vn−1)), with over-
whelming probability. As aforementioned, R∗pp,s includes the folding process
NIFS.V and vn is the witness of this relation if Vn → 1. Thus, vn contains
both the instances Un−1 and un−1, the inputs of the folding verifier. Since
repn contains the representation of vn, it also contains the representation of
Un−1 and un−1, which are exactly equal to Vn−1 and vn−1. Therefore, Πn−1 :=
((Un−1,Vn−1), (un−1, vn−1)) is included in outn−1.

Now we are ready to describe Vn−1. As we shown, Πn−1 is included in the
input of outn−1. Vn−1 checks whether Πn−1 belongs to RNova = Rpp,s × R∗pp,s.
Next, we argue that the following inequality holds.

Pr[Vn−1(pp, outn−1) = 1|Vn(pp, outn) = 1] ≥ 1− negl(λ). (19)

The input of Vn contains (Un,Vn) and the IVC verifier Vn checks the valid-
ity of (Un,Vn) for the relation Rpp,s. If Vn’s output is 1, then the KS of NIFS
guarantees (Un−1,Vn−1) and (un−1, vn−1) are valid for the same relation Rpp,s.
Otherwise, using the extended algebraic IVC adversary, we can construct an ad-
versary against the KS of NIFS that generates the valid folded witness Vn from
the IVC adversary but neither Vn−1 nor vn−1 is the valid witness. Therefore, we
show that Πn−1 belongs to Rpp,s ×Rpp,s. Note that KS of NIFS holds by Theo-
rem 4 due to DL assumption. Finally, it is remained to show that (un−1, vn−1)
is a valid pair of not only Rpp,s but also R∗pp,s. The IVC verifier Vn additionally
checks (un, vn) for the relation R∗pp,s, which is the R1CS of the function F ′ de-
scribed in Fig. 2. We can see that un−1 is the input of F ′ and its shape is checked
in the second step in Fig. 2. Combining with the fact that un−1 is an instance
of Rpp,s, this process exactly guarantees that the relation is the ordinary R1CS
R∗pp,s. This proves that the equation 19 holds, where the negligible errors occurs
due to the KS error of NIFS.

Similarly, we can repeat to extract Πn−2 and define Vn−2. Let us review the
process until now; we showed that

1. algebraic adversary should output repn.
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2. if Vn(pp, outn)→ 1(accept), then, Vn−1(pp, outn−1)→ 1(accept), except neg-
ligible probability.

First, we argue that the algebraic adversary should output the representation
of outn−1, denoted by repn−1. From Eq. (19), we know that the requirement for
extended algebraic adversary in Def. 7 satisfies.

Next, suppose that Vn−1(pp, outn−1) → 1(accept). Looking at the input
outn−1, we know that it contains Πn−1 = (Un−1,Vn−1, un−1, vn−1) and vn−1 has
Un−2 and un−2. In fact, Un−2 and un−2 should be interpreted as arbitrary strings
unless Vn−1 recognizes it as group elements. Vn−1 checks if (Un−1,Vn−1) and
(un−1, vn−1) belong to the (CR-)R1CS relations, which includes group member-
ship test for group operations. Therefore, on our assumption that Vn−1(pp, outn−1)→
1(accept), Un−2 and un−2 are recognized as group elements, so that the corre-
sponding representations, Vn−2 and vn−2, can be found from repn−1. Therefore,
outn−2 := (outn−1, repn−1) contains Πn−2 := ((Un−2,Vn−2), (un−2, vn−2)). Sim-
ilar to Vn−1, Vn−2 is defined to check if Πn−2 belongs to RNova.

Since vn−1 is the witness of original R1CS relation R∗pp,s and NIFS has the
knowledge soundness, Vn−2 outputs 1, only except negligible error. In other
words, we can represent this situation as the following inequality.

Pr[Vn−2(pp, outn−2) = 1|Vn−1(pp, outn−1) = 1] ≥ 1− negl(λ). (20)

However, this inequality does not guarantee that Vn−2 is induced from Vn follow-
ing the Definition 7. More concretely, to let algbraic adversary provide rep2 by
the verification Vn−2 induced from Vn, we need to show the following inequality:

Pr[Vn−2(pp, outn−2) = 1|Vn(pp, outn) = 1] ≥ 1− negl(λ). (21)

To show Eq. (21), we introduce a useful statement regarding a probability in-
equality.

Lemma 4. Let λ be a security parameter and n = poly(λ) be a polynomially
large integer. If (Ei)i∈[n] be events satisfying Pr[Ei−1|Ei] ≥ 1 − ϵi−1(λ) and
Pr[En] is non-negligible in λ, where ϵi−1 is a negligible function of λ, for i =
2, . . . , n, then Pr[E1|En] ≥ 1− negl(λ).

Before proving Lemma 4, we first introduce another useful lemma about
probability inequality.

Lemma 5. Let E1, E2, and E3 be events satisfying Pr[Ei−1|Ei] ≥ 1− ϵi−1 for
i = 2, 3, where ϵi’s are positive. Then, Pr[E1|E3] ≥ 1− ϵ1+ϵ2

Pr[E3]
. Moreover, if ϵi’s

are negligible functions in a parameter λ and Pr[E3] is non-negligible in λ, then
we have Pr[E1|E3] ≥ 1− ϵ for some negligible function ϵ in λ.

Proof. We begin with showing the following inequalities:

Pr[¬Ei−1 ∧ Ei] ≤ ϵi−1 (22)
Pr[Ei−1 ∧ Ei] ≥ Pr[Ei]− ϵi−1 (23)
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These inequalities can be derived as follows:

Pr[Ei−1 ∧ Ei] = Pr[Ei−1|Ei] · Pr[Ei] ≥ Pr[Ei](1− ϵi−1) ≥ Pr[Ei]− ϵi−1,

where the first inequality comes from the hypothesis. This result directly shows
that Eq. (23) holds. Using the equality Pr[Ei]−Pr[Ei−1 ∧Ei] = Pr[¬Ei−1 ∧Ei],
we obtain Eq. (22).

Now we show the main statement Pr[E1|E3] ≥ 1 − ϵ1+ϵ2
Pr[E3]

. It is sufficient to
show that Pr[E1 ∧ E3] ≥ Pr[E3]− ϵ1 − ϵ2.

Pr[E1 ∧ E3] = Pr[E1 ∧ E3 ∧ E2] + Pr[E1 ∧ E3 ∧ ¬E2] discards right factor Pr[E1 ∧ E3 ∧ ¬E2]

≥ Pr[E2 ∧ E3]− Pr[E2 ∧ E3 ∧ ¬E1] Eq. (23)

≥ Pr[E3]− ϵ2 − Pr[E2 ∧ E3 ∧ ¬E1] discards event E3

≥ Pr[E3]− ϵ2 − Pr[¬E1 ∧ E2] Eq. (22)

≥ Pr[E3]− ϵ2 − ϵ1

Therefore, Pr[E1|E3] ≥ 1 − ϵ1+ϵ2
Pr[E3]

holds. This directly implies that if ϵi’s are
negligible in λ and Pr[E3] is non-negligible in λ, then we have Pr[E1|E3] ≥ 1− ϵ
for some negligible function ϵ.

By Lemma 5, Pr[En−2|En] ≥ 1−negl(λ) holds if Pr[En] is non-negligible. By
the mathematical induction, we can derive Pr[E1|En] ≥ 1−negl(λ) for any poly-
nomially large integer n. More precisely, combining Pr[En−2|En] ≥ 1 − negl(λ)
and Pr[En−3|En−2] ≥ 1 − negl(λ), applying Lemma 5 results Pr[En−3|En] ≥
1− negl(λ). We repeat this process polynomially many n-times, we finally have
Pr[E1|En] ≥ 1− negl(λ). This completes the proof of Lemma 4

We come back for proving Eq. (21). Before applying Lemma 4, let us consider
the scale of Pr[Vn(pp, outn) = 1]. Assume that Pr[Vn(pp, outn) = 1] is negligi-
ble. It means that adversary’s output outn is accepted by IVC verifier V with
negligible probability. In this case, constructing extractor is meaningless; for any
strategy of extraction, the probability in Eq. (1) is negligible. For this reason,
we assume that Pr[Vn(pp, outn) = 1] is not negligible.

With non-negligible Pr[Vn(pp, outn) = 1] and two inequalities, Eq. (19) and
Eq. (20), we directly have the inequality Eq (21) holds by applying Lemma 4.
Furthermore, Lemma 4 can be applied in general case for Vi. Thus, recursively
designed verifications Vi can be induced from the original verification Vn.

We now define (Vi)i∈[n] recursively as follows:

1. If Vi+1(pp, outi+1) = 1, then derive a pair of instances (Ui, ui) and a pair of
witness (Vi, vi) from outi+1 and repi+1, respectively. Otherwise, output 0.

2. Set outi := (outi+1, repi+1) and check Πi = ((Ui,Vi), (ui, vi)) ∈ RNova =
Rpp,s ×R∗pp,s.

Upon reaching V1, the IVC proof Π1 obtained from out1 does not contain any
meaningful instances. We no longer extend the verification V0. Specifically, the
first instance u1 is an artificial instance for the null-fold, where the input in-
stances to NIFS.V are empty.
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Now we claim that V1 is an induced verification from Vn. By design of Vi, we
get

Pr[Vi(pp, outi) = 1|Vi+1(pp, outi+1) = 1] ≥ 1− negl(λ).

for all i = 1, . . . , n− 1. By applying Lemma 4, we obtain

Pr[V1(pp, out1) = 1|Vn(pp, outn) = 1] ≥ 1− negl(λ).

Therefore, V1 is the verification induced from Vn, and the extended algebraic
adversary P∗ must output out1. Note that all the above process about recur-
sive design of Vi’s are not about the actual behavior of the extractor, but just
reasoning for what A should output along with the original output outn.

Now we construct the extractor E . The extended algebraic adversary P∗’s
overall output is out1. Furthermore, out1 contains all sequential outi for i =
2, . . . n. Let us feed out1 on E and define E as following:

EP∗(pp,ρ)(pp, z0, z; ρ)

1. Receive out1 from P∗
For i = 1, . . . , n− 1
(a) Derive vi from outi.
(b) Extract ωi−1 from vi.
(c) Parse outi to (outi+1, repi+1).

2. Extract ωn−1 from vn in outn.
3. Output (ωi)

n−1
i=0

E extracts local inputs (ωi)
n−1
i=0 by deriving ωi−1 from i-th R1CS witness vi,

which can be obtained by tracing outi. The fact that vi is a witness of R1CS
relation R∗pp,s guarantees F (zi−1, ωi−1) = zi. Furthermore, since E performs
at most O(n) times searching, the running time of E is poly(λ). Therefore, we
successfully construct extractor E from the extended algebraic adversary P∗ with
non-negligible success probability.
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