
LatticeFold: A Lattice-based Folding Scheme and its

Applications to Succinct Proof Systems

Dan Boneh and Binyi Chen

Stanford University

May 27, 2025

Abstract

Folding is a recent technique for building efficient recursive SNARKs. Several ele-
gant folding protocols have been proposed, such as Nova, Supernova, Hypernova, Proto-
star, and others. However, all of them rely on an additively homomorphic commitment
scheme based on discrete log, and are therefore not post-quantum secure and require a
large (256-bit) field. In this work we present LatticeFold, the first lattice-based folding
protocol based on the Module SIS problem. This folding protocol naturally leads to
an efficient recursive lattice-based SNARK and an efficient PCD scheme. LatticeFold
supports folding low-degree relations, such as R1CS, as well as high-degree relations,
such as CCS. The key challenge is to construct a secure folding protocol that works
with the Ajtai commitment scheme. The difficulty is ensuring that extracted witnesses
are low norm through many rounds of folding. We present a novel technique using the
sumcheck protocol to ensure that extracted witnesses are always low norm no mat-
ter how many rounds of folding are used. Since LatticeFold can operate over a small
(64-bit) field, our evaluation of the final proof system suggests that it is as performant
as Hypernova, while providing plausible post-quantum security. Moreover, LatticeFold
operates over the same module structure used by fully homomorphic encryption (FHE)
and lattice signatures schemes, and can therefore benefit from software optimizations
and custom hardware designed to accelerate these lattice schemes.
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1 Introduction

In recent years we have seen tremendous progress in the design of succinct non-interactive
arguments of knowledge (SNARKs). They have become an important enabling technology
for scaling blockchains, bridging between chains [Xie+22], authenticating media [NT16;
DB22; KHSS22], verifiable delay functions [BBBF18], and much more. Some SNARKs are
monolithic and generate the entire proof at once, while others break the task of constructing
a proof into small steps and prove each step separately. The latter approach is called
incrementally verifiable computation (IVC) [Val08] or proof carrying data (PCD) [CT10].
This approach eliminates the high memory needs of a monolithic SNARK. It can also
provide more opportunities for parallelizing the prover.

Historically, IVC and PCD were built from a recursive SNARK [Val08; BCTV14].
However, this requires embedding the SNARK verifier inside the statement being proved
at every step, and this introduces a considerable overhead. A new approach called ac-
cumulation or folding was recently introduced in Halo [BGH19] and further developed
in [BCMS20; Bün+21; BDFG21] and Nova [KST22]. The idea is to “fold” the SNARK
verification work at every step into the SNARK verification of all previous steps. The
final folded statement is verified at the end of the computation. The benefit is that now
the recursive statement being proved at every step only needs to ensure that folding was
performed correctly, which is far simpler than running a full SNARK verifier. Since folding
was introduced, many elegant ideas appeared to further optimize this technique [KS22;
KS23b; BC23; RZ22; KS23a; KP23; Moh23; NBS23].

To explain folding in more detail we find it convenient to use the language of reductions
of knowledge introduced by Kothapalli and Parno [KP23] (see Section 2.5 for details). Let
R1 and R2 be two instance-witness relations. A reduction of knowledge from R1 to R2 is
a protocol Π between a prover and verifier. The verifier takes as input an instance x1 for
R1, interacts with the prover, and outputs an instance x2 for R2 at the end of the protocol.
The key requirement is that if the prover can present a witness w2 for x2, then it is possible
to extract from the prover a witnesses w1 for x1. Hence, knowledge of a valid witness for x2
proves knowledge of a valid witness for x1.

A folding scheme is a reduction of knowledge from a product relation Racc ×Rcomp to
Racc. That is, two instances (xacc, xcomp) are folded to a single instance x′acc of Racc. By
repeatedly folding in this way, the prover can accumulate many steps of a computation into
a single instance of an accumulation relation Racc. Eventually, the prover proves knowledge
of a witness for the final Racc instance, and this proves knowledge of a valid witness for
every step of the computation. When Racc and Rcomp are different, this type of folding is
sometimes called multi-folding [KS23b]. The relation Racc is typically a simple extension
of Rcomp.

The Hypernova system [KS23b], for example, is a folding scheme for proving validity
of a multi-step computation where the computation step relation Rcomp is expressed as
a customizable constraint system (CCS) [STW23a]. CCS supports high-degree gates and

3



generalizes the Plonkish, R1CS, and AIR formats for a computation trace. By repeatedly
folding, Hypernova enables the prover to accumulate many CCS steps into a single instance
of a closely related relation Racc.

The folding schemes discussed above make use of an additively homomorphic commit-
ment scheme based on discrete log to commit to the various witnesses. The commitments
are part of the instances xacc and xcomp. Due to the reliance on discrete log, the derived
SNARKs are unsound in the presence of a large fault-tolerant quantum computer. More-
over, committing to a long vector with a discrete log commitment scheme, such as Pedersen,
leads to significant work for the prover.

Our contributions. We construct LatticeFold, the first lattice-based folding scheme,
whose security depends on the Module Short Integer Solution (MSIS) problem [LS15;
PR06; LM06]. This problem is believed to be post-quantum secure. A key component
of LatticeFold is a new batched proof-of-knowledge protocol for short pre-images of linear
maps (See Section 3), which may be of independent interest.

A natural starting point for a lattice-based folding scheme is to replace the discrete-log
commitment in existing folding schemes with the Ajtai commitment scheme [Ajt96], which
is additively homomorphic. We describe the scheme as it operates in a module Rm defined
over a suitable number ring R. As usual, for a prime q we let Rq := R/qR. The Ajtai
commitment scheme works as follows (see Section 2.3):

• The public parameters contain a random matrix A ∈ Rκ×m
q where κ < m,

• The commitment to a vector x⃗ ∈ Rm is cm := Ax⃗ ∈ Rκ
q .

If the Module SIS (MSIS) problem is hard, then the commitment is binding for the set of
vectors x⃗ ∈ Rm whose norm ∥x⃗∥∞ is at most some bound B. Throughout the paper we
always use the L∞ norm on Rm, as defined in Section 2.

But one immediately runs into trouble. Folding two witnesses into one is done by taking
a random linear combination of the two witnesses, using verifier randomness. Consequently,
the norm of the committed vector in the folded instance increases the more times we fold.
Eventually the norm exceeds the norm bound B, at which point the commitment scheme
is no longer binding. One can try to avoid norm growth by using a folding tree [RZ22], so
that the folding depth is logarithmic in the size of the computation. However, long folding
chains are required in applications, such as PCD, and Ajtai commitments are simply not
compatible with that. The challenge is to use Ajtai commitments while controlling the
norm growth as folding takes place.

Our approach to keeping the witness norm below B is to break the folding protocol
into three steps: expansion, decomposition, and folding. The first step has to do with
the mechanics of folding; it expands the given instance xcomp of Rcomp to an instance of

Racc. The second, and more important step, decomposes a committed witness f⃗ ∈ Rm of
bounded norm B into a tuple of vectors f⃗0, . . . , f⃗k−1 ∈ Rm of lower norm b := ⌈B1/k⌉. This
decomposition works by writing every entry of f⃗ in base b, so that the original f⃗ satisfies
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f⃗ = f⃗0 + b · f⃗1 + . . . + bk−1 · f⃗k−1, and each of the k vectors has norm less than b. When
folding two committed witnesses of bounded norm B, this decomposition leaves us with 2k
vectors of lower bounded norm b. Our third step, called folding, now folds all 2k vectors
into a single witness for the accumulator relation Racc. The folding is done by computing
a random linear combination of the 2k vectors using a random vector of weights ρ⃗ sampled
as ρ⃗ ←$ C2ksmall. Here Csmall ⊆ Rq contains only ring elements of low norm so that the final

folded witness f⃗ ′ :=
∑2k

i=1 ρi⃗fi has norm at most B. This gives a reduction of knowledge
fromRacc×Rcomp toRacc where the final committed witness satisfies the same norm bound
as the original committed witnesses. There is no norm growth.

Unfortunately, this decomposition approach is insufficient: given a witness for the folded
instance x′acc ofRacc we cannot extract low-norm witnesses for the two instances (xacc, xcomp)
that we started with. The problem is that the extractor uses the inverses of elements
c1 − c2 ∈ Rq where c1, c2 ∈ Csmall. This forces us to ensure that Csmall is a strong sampling
set, meaning that for all c1, c2 ∈ Csmall, the difference c1 − c2 is invertible in Rq. The
ring Rq contains an exponential size strong sampling set (Lemma 2.3), and therefore the
challenge space is sufficiently large. However, the norm of 1/(c1−c2) inRq can be large, and
consequently the extractor might end up extracting a high norm witness, which is invalid.
One way to solve this problem (e.g., as in [ACK21]) is to ensure that these inverses always
have small norm. However, as noted in [AL21], that severely limits the size of the challenge
set Csmall and harms the soundness of the folding protocol. In comparison, we highlight that
our protocol incurs no slack in witness extraction and avoids using subtractive sets [AL21].

Our core idea is to enhance the folding protocol, and have the prover convince the
verifier that it has 2k valid witnesses whose norm is less than b. This is sufficient to extract
low norm witnesses from the prover. Roughly speaking, the prover can convince the verifier
that a vector f⃗ ∈ Rm has norm less than b, by proving that every component u of f⃗ is
in the set [−b, b]. This is done by proving that g(u) = 0, where g(X) is the polynomial
g(X) := X

∏
i∈[b](X − i)(X + i). The set of zeroes of this polynomial g is exactly the set

[−b, b], and therefore g(u) = 0 if and only if u is in [−b, b]. By encoding the components
of f⃗ as the evaluations of a function h on the Boolean hypercube {0, 1}ℓ, the prover can
use the sumcheck protocol [LFKN92] on the ℓ-variate polynomial g(h(·)) to convince the
verifier that f⃗ has norm less than b. In other words, the sumcheck protocol is the key
tool that enables to prove that f⃗ has bounded norm. The complete details are provided in
Section 3.

We note that choosing the norm bound b is an interesting optimization problem. On
the one hand, a small value of b results in a decomposition of f⃗ into many fragments, and
this will slow down the folding process because more witnesses need to be folded. On the
other hand, choosing a small b reduces the degree of the polynomial g(X) in the norm
bound test, making that test faster. The optimal b needs to balance these two effects to
minimize the overall running time. We calculate optimal values in our evaluation section.

Finally, we point out that our techniques are generic, and can be used to build folding
schemes from any binding commitment that requires norm bounds on the committed vector.
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Here we use Ajtai commitments, but other schemes can also be used.

Paper organization. We begin in Section 3 by using the techniques outlined above to
construct a folding scheme for the relation RB

cm that captures the fact that the prover has
an opening x⃗ ∈ Rm to an Ajtai commitment cm ∈ Rκ

q , where ∥x⃗∥∞ < B. This folding
scheme leads to a batched proof-of-knowledge protocol for short pre-images of linear maps.
It also demonstrates all the essential tools needed to build a folding-based IVC and PCD
from the MSIS assumption. However, a relation such as RB

cm that proves knowledge of
a committed value is not enough to implement an IVC or PCD. One would also need to
incorporate into RB

cm a computation checking relation, such as verifying a witness for an
R1CS relation. We do so in Section 4 by extending RB

cm to include such a check.
As an optimization of our folding schemes, we show in Section 3.3 how to adapt the

folding scheme for RB
cm to support relations defined over a small modulus q, say on the

order of 264. This makes arithmetic faster since Zq now fits into the native 64-bit registers
of a CPU or GPU. Moreover, a small modulus is advantageous for encoding computations
that operate on binary values, since a small q reduces the encoding overhead. The problem
is that a small q limits the size of the challenge space and harms soundness. We show that
with a suitable use of extensions fields we can enlarge the challenge space while supporting
relations over a small modulus.

Next, in Section 4 we generalize our basic folding technique to support circuits with
high degree gates. In particular we show how to fold a customizable constraint system
(CCS) relation [STW23a]. This generalization adds an additional sumcheck step before
decomposition to linearize the high degree relation. This is needed to avoid cross terms
that would arise if decomposition were applied to a relation involving high degree gates.
Hypernova [KS23b] uses a similar approach to avoid cross terms. In Section 4.3, we present
an optimized scheme that batch the sumchecks from both the linearization and folding steps
into one, further improving efficiency.

Evaluation. In Section 5 we provide a concrete evaluation of the resulting system. A
recent implementation by Nethermind [Gar24] suggests that LatticeFold’s performance is
comparable with Hypernova, a pre-quantum system.

One reason LatticeFold performs well is that all the vectors that it uses lie in a single
ring: the domain and range of the Ajtai commitment is the same ring Rq. In contrast,
for Pedersen commitments the domain is Zq while the range is some other cyclic group.
This forces Hypernova to implement elliptic curve scalar multiplications and non-native
field arithmetic in the relation, which increases the folding complexity. Furthermore, Lat-
ticeFold uses a small 64-bit field, whereas Hypernova uses a 256-bit field due to the use
of Pedersen commitments. However, Ajtai commitments adds additional complexity as
explained earlier.

Finally, we note that LatticeFold is especially well suited for computations that make
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use of operations in the ring Rq. For example, suppose that the RELU function in a deep
neural net (DNN) can be replaced by a similar function that can be expressed as a simple
circuit using Rq operations. Then LatticeFold would be especially well suited for proving
correct inference using the resulting DNN. The point is that a ring operation is a richer
building block than simple arithmetic, and that can simplify some SNARK circuits.

1.1 Additional related work

Hypernova [KS23b] and Protostar [BC23] are two folding schemes that supports CCS
relations. In Section 5 we compare the performance of LatticeFold to both schemes. Pro-
toGalaxy [EG23] is a further optimization of Protostar. The linearization step (from Sec-
tion 4.2.1) that reduces a high-degree relation to a linear relation is inspired by Hypernova.
However, fully adapting the folding techniques from Hypernova to the lattice setting incurs
challenges. First, we need to guarantee that witness norms never go out of range after fold-
ing and prove that all intermediate witnesses have small norms. This is why we introduce
the decomposition and the range proof techniques. Second, we need to adapt everything
from a field to a ring in which not all elements are invertible. Finally, with decomposition,
the random combination step must fold more than two witnesses into one using independent
and small-norm challenges. This makes the security analysis significantly harder.

Several post-quantum SNARKs were constructed from hash-based Merkle commit-
ments. Some examples include Stark [BBHR18b], Ligero [AHIV17], Aurora [Ben+19],
Brakedown [Gol+23], BaseFold [ZCF24], and Blaze [Bre+24]. Their proof sizes scale sublin-
early with the witness size, but in practice they produce relatively large proofs, and require
a significant amount of memory when proving a large statement. In recent years, several
elegant lattice-based proof systems with sublinear proof size were constructed [Bau+18a;
BLNS20; Alb+22; BCS23]. However, these systems are not competitive with the hash
based systems listed above. Other post-quantum proof systems, such as [ENS20; LNP22;
Bau+23], perform well for small statements, but their proof size is linear in the size of the
witness.

LaBRADOR [BS23] is an elegant succinct lattice-based proof system, with a linear time
verifier. LaBRADOR is a recursive proof system based on the MSIS assumption. Thanks
to the use of recursion, the resulting proofs are shorter than those obtained from the
hash-based systems. LaBRADOR faces many of the same challenges as in this paper, but
the proposed solutions are quite different. For example, LaBRADOR uses the method of
random projection to prove a norm bound on a committed vector. We explain in Section 6
why this approach would not lead to an efficient folding scheme in our settings. Instead,
our approach to proving a norm bound on a committed vector is based on the sumcheck
protocol.

Concurrent to LatticeFold, Greyhound [NS24] built upon LaBRADOR and proposed
a new polynomial commitment scheme (PCS) with square-root verification time, how-
ever, with similar reasons as LaBRADOR, it is not clear how to extend it to folding.
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Cini et al. [CMNW24] recently introduced a new lattice-based PCS from Bulletproof/FRI-
like techniques [BBHR18a; Bün+18]. Their approach achieves better control over witness
norm/slack blowup than previous works. However, their scheme incurs norm blowup/slack
at each step, limiting it to supporting only a logarithmic number of folding steps. In con-
trast, our construction (i) provides folding for general NP statements, and (ii) supports
polynomially many folding steps for NP statements, as needed for PCD/IVC. It is unclear
how to extend the PCS techniques from [CMNW24] to construct PCD/IVC.

Recently Bünz et al. [BMNW24a; BMNW24b] introduced an alternative approach to
constructing folding schemes purely from hashing. Additionally, they introduced a new
compiling technique to build efficient PCD/SNARKs from any folding schemes, which
can be applied to LatticeFold as well. Compared to LatticeFold, the complexity of the
recursive folding verifier is higher in their scheme because of the need to perform more hash
operations. Moreover, in LatticeFold, the time and memory to compute the commitments
scales with the number of non-zero entries in the committed witness, whereas in the hash-
based scheme, it is always proportional to the witness length. This makes LatticeFold
advantageous for sparse witnesses.

Subsequent work. A number of subsequent works have built on LatticeFold after it was
first posted. LatticeFold+ [BC25] improves the performance of LatticeFold by designing a
more efficient range proof. Neo [NS25] suggests a better approach for embedding field ele-
ments into the cyclotomic polynomial ring used in LatticeFold. Lova [FKNP24b; FKNP24a]
replaces the module-based Ajtai commitments and the ℓ∞-norm used in LatticeFold, with
integer-based Ajtai commitments and the ℓ2-norm. Finally, Klooß et al. [KLNO24b;
KLNO24a] suggest another approach to ℓ2-norm range proofs that can apply to LatticeFold.

2 Preliminaries

Notation. Let λ denote the security parameter. For n ∈ N let [n] be the set {1, 2, . . . , n};
for l, r ∈ N let [l, r) denote the set {l, l + 1, . . . r − 1}. A function f(λ) is poly(λ) if there
exists a c ∈ N such that f(λ) = O(λc). If f(λ) = o(λ−c) for all c ∈ N, we say f(λ) is in
negl(λ) and is negligible. A probability that is 1 − negl(λ) is overwhelming. A vector
is always a column vector by default. For vectors u⃗, v⃗ of the same dimension we let ⟨u⃗, v⃗⟩
denote the inner product of u⃗ and v⃗. Throughout the paper when we refer to a ring we will
always mean a commutative ring. For a ring R̄, we use R̄[X1, . . . , Xµ] to denote the set of
µ-variate polynomials over R̄, and use R̄≤d[X1, . . . , Xµ] to denote the set of polynomials
where the degree of each variable is at most d.

Modules and module homomorphisms. Let R̄ be an arbitrary ring. An R̄-module
M can be understood as a “vector space” over ring R̄, that is, it allows to be scaled
by elments in R̄. More precisely, M has an identity element 1 and for all r, s ∈ R̄ and
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x, y ∈ M , we have (i) r · (x + y) = r · x + r · y (ii) (r + s) · x = r · x + s · x, (iii)
(rs) · x = r · (s · x), and (iv) 1 · x = x. Moreover, M is commutative, i.e., r · x = x · r.
An R̄-module homomorphism ϕ : M → N between R̄-modules M and N is a function
that preserves additions and scalar multiplications. More precisely, for every x, y ∈M and
r ∈ R̄ we have (i) ϕ(x+ y) = ϕ(x) + ϕ(y), and (ii) ϕ(r · x) = r · ϕ(x).

Cyclotomic rings. Let R := Z[X]/(Xd + 1) where d is a power of two. Let t ∈ N
be a divisor of d and q be a prime such that q ≡ 1 + 2t (mod 4t). Therefore Zq has t
primitive 2t-th root of unity {ζj}j∈[t] such that Xd + 1 ≡

∏t
j=1(X

d/t− ζj) (mod q), where

(Xd/t−ζj) is irreducible for all j ∈ [t]. By the Chinese Remainder Theorem, Rq := R/qR =
Zq[X]/(Xd + 1) can be split to the product of t quotient rings, that is,

Rq
∼=

t∏
j=1

Zq[X]/(Xd/t − ζj) ∼= Ft
qd/t

.

For a polynomial f ∈ Rq, the Number Theoretic Transform (NTT) of f is defined as

NTT(f) :=
[
f̂1, . . . , f̂t

]⊤
∈ Ft

qd/t

where f̂j := f mod (Xd/t − ζj). In the special case where t = d, the prime q splits com-
pletely in R and

Rq
∼=

d∏
j=1

Zq[X]/(X − ζj) ∼= Zd
q . (1)

Coefficient embedding. For an element a =
∑d

i=1 aiX
i−1 ∈ Rq, we use Coef(a) :=

[a1, . . . , ad]⊤ ∈ Zd
q to denote the coefficient vector of a and denote Coefi(a) := ai for every

i ∈ [d]. For a vector a⃗ := [a1, . . . ,am]⊤ ∈ Rm
q , we use Coef(a⃗) to denote the matrix

Coef(a⃗) :=

Coef1(a1) . . . Coefd(a1)
...

. . .
...

Coef1(am) . . . Coefd(am)

 ∈ Zm×d
q (2)

and FCoef(a⃗) ∈ Zdm
q denotes the concatenation of Coef(a⃗)’s row vectors. For every i ∈ [d],

we define Coefi(a⃗) := [Coefi(a1), . . . ,Coefi(am)]⊤ ∈ Zm
q as the i-th column of Coef(a⃗).

Define Rot(a) := (Coef(a),Coef(X · a), . . . ,Coef(Xd−1 · a)) ∈ Zd×d
q . We observe that

Coef(a · b) = Rot(a)× Coef(b) (3)
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for every a,b ∈ Rq. More generally, for a matrix A ∈ Rκ×m
q , we define the rotation matrix

Rot(A) as

Rot(A) :=

Rot(A1,1) . . . Rot(A1,m)
...

. . .
...

Rot(Aκ,1) . . . Rot(Aκ,m)

 ∈ Zκd×md
q . (4)

Note that FCoef(Af⃗) = Rot(A)× FCoef (⃗f) for any A ∈ Rκ×m
q and f⃗ ∈ Rm

q .

Fix a ring Rq
∼= Fd/τ

qτ , given a ∈ Rq and the coefficient embeddings of ring elements
b1, . . . ,bτ , the following lemma shows that the coefficient embeddings of a · b1, . . . ,a · bτ

can be obtained through straightforward linear operations.

Lemma 2.1. Let Rq
∼= Fd/τ

qτ for some τ ∈ N where τ | d. Given a ∈ Rq and B⃗ :=

[B1, . . . , Bd]⊤ ∈ Fd
qτ , we define function RotSum : Rq × Fd

qτ → Fd
qτ as

RotSum(a, B⃗) :=

d∑
i=1

Bi · Coef(Xi−1a) , (5)

where · : Fqτ × Zd
q → Fd

qτ denotes scalar multiplication between Fqτ and Zd
q . Then:

1. For every a ∈ Zq and b ∈ Rq, we have that Coef(a · b) = a · Coef(b).

2. For every a,b ∈ Rq (where Coef(b) ∈ Zd
q ⊆ Fd

qτ ), we have that

RotSum(a,Coef(b)) = Coef(a · b) .

3. For a,b1, . . . ,bτ ∈ Rq, define

B⃗ :=
τ∑

j=1

Coef(bj) · Y j−1 = [B⃗1, . . . , B⃗d]⊤ ∈ Fd
qτ

where B⃗i :=
∑τ

j=1 Coefi(bj) · Y j−1 ∈ Fqτ for every i ∈ [d]. Then

RotSum(a, B⃗) =
τ∑

j=1

Coef(a · bj) · Y j−1 ∈ Fd
qτ .

Proof. The 1st claim is clear as Rq is a Zq-module. The 2nd claim holds because

RotSum(a,Coef(b)) = Rot(a)× Coef(b) = Coef(a · b)

by definition of Rot(a) and by Eq. (3).
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Next, we prove the last claim. For every i ∈ [d], note that B⃗i =
∑τ

j=1 Coefi(bj) ·Y j−1 ∈
Fqτ and the i-th column of Rot(a) is [Rot(a)]i = Coef(Xi−1a) ∈ Zd

q . Thus

RotSum(a, B⃗) :=

d∑
i=1

 τ∑
j=1

Coefi(bj) · Y j−1

 · [Rot(a)]i =

τ∑
j=1

(
d∑

i=1

Coefi(bj) · [Rot(a)]i

)
· Y j−1

=
τ∑

j=1

RotSum(a,Coef(bj)) · Y j−1 =
τ∑

j=1

Coef(a · bj) · Y j−1 .

The 1st and the 3rd equality is by definition of RotSum; the last equality follows by the
2nd claim of the lemma.

Norms. Let R := Z[X]/(Xd + 1). For a polynomial f :=
∑d−1

i=0 fiX
i ∈ R, the ℓ2-norm

and ℓ∞-norm of f are

∥f∥2 :=

(
d−1∑
i=0

f2i

) 1
2

, ∥f∥∞ :=
d−1
max
i=0

(|fi|) .

For a vector of polynomials f⃗ := (f1, . . . , fk) ∈ Rk, its ℓ2-norm and ℓ∞-norm are

∥⃗f∥2 :=

(
k∑

i=1

∥fi∥22

) 1
2

, ∥⃗f∥∞ :=
k

max
i=1

(∥fi∥∞) .

We note that ∥⃗f∥2 ≤
√
dk∥⃗f∥∞ for all f⃗ ∈ Rk.

Remark 2.1 (Norms of Rq-elements). Let Rq := R/qR. For a vector f⃗ := (f1, . . . , fk) ∈
Rk

q , we abuse the notation ∥⃗f∥∞ to indicate the norm of f⃗ after lifting to Rk. The lifting

works by mapping the Zq-coefficients of f⃗ to the interval (−q/2, q/2] ⊆ Z.

2.1 Sampling Sets

We review the definition of sampling sets from [CCKP19].

Definition 2.1. For an arbitrary ring R̄, a subset C of R̄ is a sampling set if the
difference of any two distinct elements in C is not a zero divisor. C is further a strong
sampling set if the difference is also invertible.

Example: Set R̄ := Rq where q is a prime. Then Zq ⊆ Rq is a strong sampling set as the
difference of any two distinct elements in this set is invertible in Rq.
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Sometimes we need a strong sampling set Csmall ⊆ Rq such that for every ρ ∈ Csmall and
any v̂ ∈ R, the norm of ρv̂ will not increase much compared to ∥v̂∥∞. To quantify this
property, we define the expansion factor of Csmall ⊆ Rq as

∥Csmall∥op := sup
ρ∈Csmall,v̂∈R

∥ρ× v̂∥∞
∥v̂∥∞

. (6)

Here, the multiplication ρ× v̂ is performed over the ring R where we lift ρ ∈ Rq to R as
in Remark 2.1. The lemma below shows that a set with small norm elements has small
expansion factors.

Lemma 2.2 (Prop. 2 of [AL21]). In R := Z[X]/(Xd + 1), for all u, v̂ ∈ R, we have that

∥uv̂∥∞
∥v̂∥∞

≤ d · ∥u∥∞ .

The following lemma shows that an element inRq is invertible if its norm (after lifting to
R) is small. Combining with Lemma 2.2, it implies that we can find large strong sampling
sets in Rq with small expansion factors. This is because the difference between any two
distinct small elements (with norm less than q/4) remains small (as there is no modulus
overflow) and is therefore invertible.

Lemma 2.3 (Corollary 1.2 of [LS18]). Let d ≥ t > 1 be a power-of-two and q ≡ 1 + 2t

(mod 4t) be a prime. Then every y ∈ Rq := Zq[X]/(Xd + 1) where 0 < ∥y∥∞ < q1/t√
t

is

invertible. Here ∥y∥∞ denotes y’s norm after lifting to R.

2.2 Module SIS

We recall the Module Short Integer Solution (MSIS) problem [LS15; PR06; LM06].

Definition 2.2 (Module SIS). Let R := Z[X]/(Xd+1) and Rq := R/qR. Given a random
matrix A ←$ Rκ×m

q , the goal of the MSISqκ,m,BSIS
problem is to find a non-zero x⃗ ∈ Rm

such that ∥x⃗∥2 < BSIS and Ax⃗ = 0⃗ over Rq.

The MSIS-algorithm from Micciancio and Regev [MR09] can output an MSIS solution

with ℓ2-norm BSIS ≈ min(q, 22
√

log2(δ)dκ log q) where δ is the root Hermite factor of the lattice

reduction algorithm. In practice, setting δ ≈ 1.0045 and letting q/2 > 22
√

log2(δ)dκ log q is
believed to lead to an MSIS problem that has 128 bits of security [Esg+19; APS15]. We will
focus on the ℓ∞-norm. Thus we also review a variant of the MSIS problem that replaces
the ℓ2-norm with ℓ∞-norm. It is clear that MSIS∞,q

κ,m,B is at least as hard as MSISq
κ,m,

√
dmB

.

Definition 2.3 (Module SIS with ℓ∞-norms [ACK21]). Let R := Z[X]/(Xd + 1) and
Rq := R/qR. On input A ←$ Rκ×m

q , the goal of the MSIS∞,q
κ,m,B problem is to find a

non-zero x⃗ ∈ Rm such that ∥x⃗∥∞ < B and Ax⃗ = 0⃗ over Rq.
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2.3 The Ajtai Compact Commitment

A commitment scheme CM consists of a setup algorithm Setup that generates a public
parameter pp; and a deterministic commit algorithm Commit that takes as input pp, a
message x⃗ and randomness r, and outputs a commitment cm. We say that CM is compact
if the commitment cm is shorter than the committed message x⃗. We say CM is binding
if it is hard to find a commitment cm and two different openings (x⃗1, r1), (x⃗2, r2) such
that cm = Commit(pp, x⃗1, r1) = Commit(pp, x⃗2, r2). We say that CM is hiding if cm is
statistically independent of x⃗ over the choice of randomness r.

We review a variant of the Ajtai commitment scheme [Ajt96; PR06; LM06] whereas
the messages are ring elements with small norms. For brevity, we present the construction
(i.e., the Ajtai collision resistant hash function) that achieves only the binding property.
It can be extended to support hiding by appending a small random vector to the message.

Construction 2.1 (Ajtai Compact Commitments). Let R := Z[X]/(Xd + 1) and Rq :=
R/qR where q ∈ N is a prime. The commitment CMκ,m,B works as follows:

• Setup(κ,m)→ A: sample a random matrix A←$Rκ×m
q .

• Commit(A, x⃗)→ cm: given x⃗ ∈ Rm as input, where ∥x⃗∥∞ < B, and no randomness,
output cm := Ax⃗ mod q ∈ Rκ

q .

It is clear that CMκ,m,B satisfies the binding property for inputs ∥x⃗∥∞ < B assuming
that the MSIS problem MSIS∞,q

κ,m,2B is hard. Suppose not, that is, an adversary can open
a commitment cm to two different openings x⃗1, x⃗2 (with ℓ∞-norm less than B), then
x⃗1 − x⃗2 ̸= 0 is a solution to the MSIS∞,q

κ,m,2B problem where ∥x⃗1 − x⃗2∥∞ < 2B.
The analysis of our protocol also needs a relaxed notion of the binding property [ALS20;

ACK21]. Let C ⊂ Rq be a strong sampling set with expansion factor T . We say that the
pair (∆, x⃗) ∈ (C − C) × Rm is a B-weak opening of cm if ∆ · cm = Ax⃗ mod q and
∥x⃗∥∞ < B. We say that the commitment scheme is B-relaxed binding if it is infeasible
to find two B-weak openings (∆1, x⃗1), (∆2, x⃗2) for the same commitment cm such that
∆1x⃗2 ̸= ∆2x⃗1. It is clear that the Ajtai commitment is B-relaxed binding if MSIS∞,q

κ,m,4TB

is hard. Suppose not, i.e., for cm, we can find two weak openings (∆1 := (ρ1 − ρ′1), x⃗1),
(∆2 := (ρ2 − ρ′2), x⃗2) where ρ1, ρ

′
1, ρ2, ρ

′
2 ∈ C, ∆1x⃗2 ̸= ∆2x⃗1 and ∥x⃗1∥∞, ∥x⃗2∥∞ < B. Then

(ρ2 − ρ′2) · x⃗1 − (ρ1 − ρ′1) · x⃗2 ̸= 0 is a solution to MSIS∞,q
κ,m,4TB with norm at most 4TB.

2.4 Sum-Checks and Multilinear Extensions over Rings

Generalized Schwartz-Zippel Lemma. We recall a generalization of the Schwartz-
Zippel lemma to the commutative ring setting, where each challenge is picked from a
sampling set.

Lemma 2.4 (Generalized Schwartz-Zippel [BCPS18]). Let f ∈ R̄≤d[X1, . . . , Xµ] be a µ-
variate nonzero polynomial over a ring R̄ with per-variable degree at most d. Let C ⊆ R̄
be a sampling set. Then we have Pr⃗r←$ Cµ [f (⃗r) = 0] ≤ dµ

|C| .
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Sum-check over rings. Given Lemma 2.4, the famous sum-check protocol [LFKN92]
can be naturally extended to work over a ring R̄ with the modification that the challenges
are sampled from a strong sampling set.

Lemma 2.5 (Generalized Sum-Check [CCKP19]). Let f ∈ R̄≤d[X1, . . . , Xµ] be a µ-variate
polynomial over a ring R̄ with per-variable degree at most d. Let C ⊆ R̄ be a strong
sampling set. The protocol below for checking s =

∑
b⃗∈{0,1}µ f(b⃗) has soundness error µd

|C| .

1. In the i-th (1 ≤ i ≤ µ) round,

• Upon receiving the challenges r1, . . . , ri−1 from the previous rounds, the prover
sends the univariate polynomial

hi(X) :=
∑

b⃗∈{0,1}µ−i

f(r1, . . . , ri−1, X, b⃗) ∈ R̄[X] .

More specifically, it sends d+ 1 evaluations of hi at d+ 1 points in C.
• Denote h0(r0) := s for notational convenience. The verifier checks that hi(0) +

hi(1)
?
= hi−1(ri−1) and sends a random challenge ri ←$ C. (The verifier can do

Lagrange interpolation to evaluate hi−1(⃗ri−1) given the d+1 evaluations sent by
the prover, as the differences of distinct evaluation points are invertible.)

2. The verifier checks that hµ(ri)
?
= f(r1, . . . , rµ).

Proof. See the proof of Theorem 2 in [CCKP19].

Multilinear extensions over rings. We define the multilinear extensions over rings.

Definition 2.4 (Multilinear Extensions over Rings). Let R̄ be an arbitrary ring with zero
0 and identity 1. Given a function f : {0, 1}µ → R̄, we define the multilinear extension
mle [f ] ∈ R̄≤1[X1, . . . , Xµ] of f as

mle [f ] (X⃗) :=
∑

b⃗∈{0,1}µ
f(b⃗) · eq(b⃗, X⃗)

where eq(b⃗, X⃗) is defined as eq(b⃗, X⃗) :=
∏µ

i=1

[
(1− b⃗i)(1− X⃗i) + b⃗iX⃗i

]
.

2.5 Reduction of Knowledge

Intuitively, a reduction-of-knowledge protocol Π (from R1 to R2) allows a prover to con-
vince a verifier on input x1 to obtain an output x2, such that from anyone who knows a
witness w2 where (x2,w2) ∈ R2, one can extract a witness w1 where (x1,w1) ∈ R1. We
adapt the definition from [KP23].

14



Definition 2.5 (Reduction of knowledge [KP23]). Consider ternary relations R1 and R2

consisting of public parameters, statement and witness tuples. Let ⟨P,V⟩ denote an inter-
active protocol between a prover P and a verifier V. A reduction of knowledge protocol Π
from relation R1 to R2 consists of the following PPT algorithms/protocols:

• Setup(1λ)→ pp: on input security parameter λ outputs public parameters pp.

• ⟨P(pp, x1,w1),V(pp, x1)⟩ → (x2,w2): on input public parameters pp and a shared in-
stance x1 for R1, the prover P (which also has a witness w1 for R1) and the verifier V
run an interactive protocol. At the end of the protocol, the verifier outputs an instance
x2 for R2 or x2 := ⊥; and the prover additionally outputs a witness w2 for R2. We
let (x2,w2) denote the output of the interaction.

The protocol satisfies the following properties:

Completeness. For every PPT adversary A that adaptively chooses an instance-witness
pair (x1,w1)← A(pp) for R1 after observing the public parameter pp← Setup(1λ). If
(pp, x1,w1) is in R1, then the output (x2,w2) of the execution ⟨P(pp, x1,w1),V(pp, x1)⟩
is also in R2.

Knowledge soundness. We say that the protocol is knowledge sound with knowledge
error κ(λ), if there exists an expected polynomial time extractor Ext such that for any
expected polynomial time adversary (A,P∗), if

Pr

 (pp, x2,w2) ∈ R2

∣∣∣∣∣∣
pp← Setup(1λ)
(x1, st)← A(pp)

(x2,w2)← ⟨P∗(pp, x1, st),V(pp, x1)⟩

 = ϵ(λ) > κ(λ)

where ϵ(λ) ≥ 1
poly(λ) ,

1 then with probability at least ϵ(λ)− κ(λ), the extractor ExtA,P∗

outputs a witness w1 such that (pp, x1,w1) ∈ R1.

Public reducibility. There is a deterministic poly-time algorithm f such that for any
PPT adversary A and expected poly-time adversary P∗, given

pp← Setup(1λ), (x1, st)← A(pp), and (x2,w2)← ⟨P∗(pp, x1, st),V(pp, x1)⟩

with transcript tr, we have that f(pp, x1, tr) = x2.

Π is public-coin if the verifier only sends uniformly random challenges in each round. Note
that a public-coin protocol can be made non-interactive via the Fiat-Shamir transformation.

As noted by [KP23], the reduction of knowledge protocols can be composed.

1In standard definitions, the requirement for ϵ(λ) to be non-negligible is typically omitted. Our con-
structions also meet the stronger standard definition, though possibly with a slightly weaker bound.
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Theorem 2.1 (Sequential Composition, Theorem 5 of [KP23]). Let R1, R2, R3 be three
ternary relations. Given a reduction of knowledge Π1 from R1 to R2 and a reduction of
knowledge Π2 from R2 to R3, the composed protocol Π2 ◦ Π1 is a reduction of knowledge
from R1 to R3.

Theorem 2.2 (Parallel Composition, Theorem 6 of [KP23]). Let R1,R2,R3,R4 be ternary
relations. Given a reduction of knowledge Π1 from R1 to R2 and a reduction of knowledge
Π2 from R3 to R4, the protocol Π1 × Π2 is a reduction of knowledge from R1 × R3 to
R2 ×R4, where Π1 ×Π2 denotes the protocol that runs Π1 and Π2 in parallel.

Remark 2.2. The knowledge soundness defined in Definition 2.5 should hold for expected
polynomial-time adversaries and extractors. This requirements is necessary for proof of
composition theorems. Looking ahead, this implies that the MSIS hardness assumption in
Definition 2.3 must also hold for expected poly-time adversaries. This is without loss of
generality because the MSIS assumption is falsifiable. As shown in [LPS24] (Appendix A),
if a falsifiable assumption holds for strict PPT adversaries (i.e., probabilistic adversaries
that always run in polynomial time), it also holds for expected poly-time adversaries.

Remark 2.3 (Folding schemes as reductions of knowledge). We note that the folding
schemes introduced in Hypernova [KS23b] is a special case of reduction of knowledge, where
for a computation relation Rcomp and its expanded accumulation relaton Racc, the goal is
to reduce the relation Racc ×Rcomp to the relation Racc.

3 A Folding Scheme for Ajtai Commitment Openings

In this section, we develop a folding scheme for the Ajtai commitment opening relation.
In Section 3.1, we define an algebraic relation RB

cm that captures the commitment opening
relation, and then extend it to a relation RB

eval suitable for folding. In Section 3.2, we
construct a reduction of knowledge from RB

eval ×RB
cm to RB

eval, leading to a folding scheme
for the Ajtai commitment opening relation. In Section 3.3, we describe an optimization
that allows the selection of a small prime modulus q for improved efficiency.

Designing a folding scheme for the relation RB
cm is the core challenge in constructing a

IVC/PCD scheme based on Ajtai commitments. This folding scheme also leads to a batch
proof-of-knowledge for short pre-images of linear maps: it allows us to fold k statements
(each of size n) into a single statement using a binary folding tree. This reduces the verifier
complexity to Õ(k + n) instead of complexity Θ(kn) if knowledge of each pre-image was
proved on its own.

This folding scheme for RB
cm, by itself, is insufficient for an IVC/PCD. The relation

RB
cm needs to be augmented to facilitate the verification of a local computation step, either

expressed as a R1CS statement or, more generally, a CCS statement. We come back to
this in Section 4 where we build an extended relation RB

cmccs in Eq. (33) that is adequate
for use in IVC/PCD.
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3.1 The Relation for Commitment Openings

In this section, we reformulate the Ajtai commitment opening relation for efficient folding.
The core idea, inspired and adapted from [BLS19], is to interpret the norm bound constraint
as a Hadamard product over rings.

Recall that Rq := R/qR where R := Z[X]/(Xd + 1) and q is a prime. Given pp :=
(κ,m,B,A) where A ∈ Rκ×m

q and B < q/2 is the norm bound, the relation RB
MSIS∞ for

Ajtai commitment openings (Section 2.3) is

RB
MSIS∞ :=

{
(pp, cm ∈ Rκ

q ; x⃗ ∈ Rm) : (cm = Ax⃗ mod q) ∧ ∥x⃗∥∞ < B
}
.

Since B < q/2, we can uniquely represent x⃗ as a vector in Rm
q and denote ∥x⃗∥∞ as the

norm after lifting x⃗ to Rm (See Remark 2.1). Then we rewrite RB
MSIS∞ as

RB
MSIS∞ :=

{
(pp, cm ∈ Rκ

q ; x⃗ ∈ Rm
q ) : (cm = Ax⃗) ∧ ∥x⃗∥∞ < B

}
.

Let us define an equivalent relation RB
SIS∞ over Zq. Let Ā := Rot(A) be the rotation

matrix of A (as in Eq. (4)) and denote by x⃗ := FCoef(x⃗) ∈ Zmd
q the row concatenation of

Coef(x⃗) ∈ Zm×d
q . Then the coefficient embedding of cm = Ax⃗ is exactly c̄m = Āx⃗. Thus

we can define the instance-witness relation RB
SIS∞ as

RB
SIS∞ :=

{
(pp, c̄m ∈ Zκd

q ; x⃗ ∈ Zmd
q ) : (c̄m = Āx⃗) ∧ ∥x⃗∥∞ < B

}
.

Equivalently, we write ∥x⃗∥∞ < B < q/2 as a Hadamard product relation RB
SISProd over Zq:

RB
SISProd :=

{
(pp, c̄m ∈ Zκd

q ; x⃗ ∈ Zmd
q ) :

(c̄m = Āx⃗)∧(
x⃗ ◦
[
⃝B−1

i=1 (x⃗− i⃗) ◦ (x⃗+ i⃗)
]

= 0⃗
) } (7)

where i⃗ ∈ Zmd
q is i multiplied by the identity vector Imd := (1, . . . , 1) ∈ Zmd

q . Clearly the
Hadamard product in (7) is zero if and only if ∥x⃗∥∞ < B, as required.

The final step involves replacing the Hadamard product relation over Zq with a Hadamard
product relation over Rq. For brevity, we assume that q ≡ 1 mod 2d as in Eq. (1). In Sec-
tion 3.3 we will explain how to generalize to other primes. Note that q ≡ 1 mod 2d implies
that Rq

∼= Zd
q .

There are two ways to interpret x⃗ ∈ Zmd
q . We alternatively view x⃗ ∈ Zm×d

q as an m-by-d

Zq-matrix in its natural form. First, x⃗ can be the coefficient embeddings of some f⃗ ∈ Rm
q ,

so that Coef (⃗f) = x⃗. Alternatively, it can be understood as the NTT representations of
some f̂ ∈ Rm

q , that is, NTT(f̂) = Coef (⃗f) = x⃗. Moreover, the Hadamard product between
the NTT slots of two ring elements can map to the multiplication of the two ring elements.
In other words, x⃗ ◦ x⃗ = NTT(f̂) ◦ NTT(f̂) = NTT(f̂ ◦ f̂), which maps to f̂ ◦ f̂ via the NTT
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isomorphism. Here x⃗ ◦ x⃗ is a Hadamard product over Zq, while f̂ ◦ f̂ is over Rq. Thus, we
can rewrite RB

SISProd from (7) as the following instance-witness relation RB
cm over Rq:

RB
cm :=

{
(pp, cm ∈ Rκ

q ; f⃗ ∈ Rm
q ) :

(cm = Af⃗)∧(
f̂ ◦
[
⃝B−1

i=1 (f̂ − î) ◦ (f̂ + î)
]

= 0̂
) } . (8)

Here î ∈ Rm
q is the ring vector such that i⃗ = NTT(̂i) where i⃗ ∈ Zm×d

q is the element i ∈ Zq

copied md times. Note that each element in î is the constant polynomial i ∈ Zq, so that
î is in Zm

q .

Proving knowledge of a witness f⃗ ∈ Rm
q for the RB

cm statement (pp, cm) proves knowl-
edge of a low-norm opening of the Ajtai commitment cm ∈ Rκ

q .

The expanded relation. To construct a folding scheme for RB
cm, we augment RB

cm to
a new relation RB

eval with an evaluation statement. Looking ahead, in our folding scheme,
the verifier runs a sum-check to reduce the norm bound constraint in RB

cm to an evaluation
statement. Thus, it is necessary to incorporate such an evaluation statement into the
accumulated relation. For simplicity, we assume that m is a power of two. The relation
RB

eval is defined as follows:

RB
eval :=

{(
pp, x := (⃗r, v̂, cm) ∈ Rlogm

q ×Rq ×Rκ
q ; f⃗ ∈ Rm

q

)
:

(pp, cm; f⃗) ∈ RB
cm

∧mle
[
f̂
]

(⃗r) = v̂

}
,

(9)

where mle
[
f̂
]
∈ R≤1

q [X1, . . . , Xlogm] is the multilinear extension (Definition 2.4) of f̂ ∈ Rm
q .

Recall that

NTT(f̂) =

NTT(f̂1)
⊤

...

NTT(f̂m)⊤

 =

Coef (⃗f1)
⊤

...

Coef (⃗fm)⊤

 = Coef (⃗f) ∈ Zm×d
q .

3.2 A Generic Framework for Folding

In this section, we describe a folding scheme for Racc := RB
eval and Rcomp := RB

cm, or
equivalently, a reduction of knowledge (Definition 2.5) from RB

eval × RB
cm to RB

eval. This
gives us a folding scheme for the Ajtai commitment opening relation. Our construction is
highly modular and generic, and consists of three steps.

Step 1: Expansion. First, the relation RB
eval × RB

cm is reduced to RB
eval × RB

eval via a
reduction of knowledge Πcm from RB

cm to RB
eval shown in Figure 1.
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Step 2: Decomposition. Next, using a decomposition protocol Πdec shown in Figure 2,
we reduce the relation RB

eval ×RB
eval to

(Rb
eval)

2k := Rb
eval × · · · × Rb

eval︸ ︷︷ ︸
2k

where b < B is a norm bound smaller than B such that exists an integer k > 1
for which bk = B. Here b and k are parameters that can be chosen dynamically
depending on the relation being proved. We describe an optimization for choosing b
and k in Remark 5.1.

Step 3: Folding. Finally, we reduce the relation (Rb
eval)

2k back to RB
eval using a folding

protocol Πfold shown in Figure 3.

By the composition theorems for reductions of knowledge (Theorem 2.1, Theorem 2.2), the
composed protocol Πmfold := Πfold ◦Πdec ◦Πcm is a reduction of knowledge from RB

eval×RB
cm

to RB
eval as desired. We state the result in Theorem 3.1.

Theorem 3.1. Let Rq
∼= Fd/τ

qτ for some τ ∈ N where τ | d and 1/qτ is in negl(λ). Let
Csmall ⊆ Rq be a strong sampling set for which 1/|Csmall| is in negl(λ), and the expansion
factor T := ∥Csmall∥op ≤ c (Definition 6) for some c ∈ N. Let C be the strong sampling set
as in Eq. (31). Let pp := (κ,m,A, B < q/2) be public parameters such that MSIS∞,q

κ,m,8TB is

hard. Set b, k such that 2kc(b− 1) < B and bk = B. Let Πcm, Πdec, Πfold be the protocols
specified in Figure 1, Figure 2 and Figure 3, respectively. Then the composed protocol
Πmfold := Πfold ◦ Πdec ◦ Πcm is a public-coin reduction of knowledge from RB

eval × RB
cm to

RB
eval.

Proof. The protocol is public-coin as Πcm and Πdec are non-interactive and Πfold is public-
coin. For the case where Rq

∼= Zd
q , the Theorem follows from Lemma 3.1, Lemma 3.3,

Theorem 3.2 and the knowledge composition theorems (Theorem 2.1 and Theorem 2.2).

The proof for the general case where Rq
∼= Fd/τ

qτ naturally follows from the argument in
Section 3.3.

Setup and notation. Before describing the protocols Πcm, Πdec, Πfold, let us recall the
common setup. Rq is the ring Rq := R/qR where R := Z[X]/(Xd + 1) and q is a prime.

Note thatRq
∼= Fd/τ

qτ for some τ ∈ N where τ | d. The public parameter is pp := (κ,m,B,A)
where B < q/2, m is a power-of-two, and A ∈ Rκ×m

q is the sampled MSIS matrix. For

a vector f⃗ ∈ Rm
q , we use f̂ := (f̂1, . . . , f̂τ ) ∈ Rm×τ

q to denote the ring vector such that

NTT(f̂) := (NTT(f̂1), . . . ,NTT(f̂τ )) ∈ Fm×d
qτ equals the coefficient embedding matrix of f⃗ ,

that is, Coef (⃗f) ∈ Zm×d
q as in Eq. (2).

In what follows, for ease of exposition, we assume that the prime q satisfies q ≡ 1 mod 2d
so that Rq

∼= Zd
q and τ = 1. In Section 3.3, we generalize to arbitrary prime modulus.
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3.2.1 Expansion: the reduction from RB
eval ×RB

cm to RB
eval ×RB

eval

By the parallel composition theorem (Theorem 2.2), in order to reduce from RB
eval ×RB

cm

to RB
eval × RB

eval, it suffices to reduce RB
cm (Eq. (8)) to RB

eval (Eq. (9)). We describe the
protocol Πcm in Figure 1.

Input: (x; w) := (cm ∈ Rκ
q ; f⃗ ∈ Rm

q ).

Output: (xo; wo) :=
(
(0logm, v̂ ∈ Rq, cm); f⃗

)
.

The protocol ⟨P(pp, x; w),V(pp, x)⟩:
1. P→ V : P sends V the evaluation v̂ := mle

[
f̂
]

(0logm).

2. V outputs xo := (0logm, v̂, cm). P outputs wo := f⃗ .

Figure 1: The protocol Πcm that reduces RB
cm to RB

eval.

Lemma 3.1. Πcm is a reduction of knowledge from RB
cm to RB

eval for any B ∈ N.

Proof. Public reducibility: Given instance x = cm and transcript v̂, one can output xo =

((0logm, v̂, cm)).

Completeness: Given (pp, cm; f⃗) ∈ RB
cm, the honest prover can compute and send v̂ :=

mle
[
f̂
]

(0logm) such that ((0logm, v̂, cm); f⃗) ∈ RB
eval. The honest verifier will output instance

(0logm, v̂, cm) and the honest prover will output f⃗ .

Knowledge soundness: By definition of RB
eval (Eq. (9)), given any ((⃗r, v̂, cm); f⃗) ∈ RB

eval, we

can extract witness (cm; f⃗) that is in the relation RB
cm.

3.2.2 Decomposition: The reduction from (RB
eval)

2 to (Rb
eval)

2k

Intuitively, the decomposition step splits the two witness vectors, each with a norm less
than B, into 2k witness vectors with a much smaller norm b. (Typically, b is only 2 or 4 in
practice.) This allows them to be folded back later (in the folding step) into a vector with
a norm less than B.

By Theorem 2.2, it suffices to construct a protocol Π∗
dec that reduces RB

eval to (Rb
eval)

k,
and the reduction of knowledge from RB

eval ×RB
eval to (Rb

eval)
2k is Πdec := Π∗

dec ×Π∗
dec that

runs two instances of Π∗
dec in parallel.

More generally, we construct a reduction of knowledge from a relation RB
hom to (Rb

hom)k.
Let L be an Rq-module homomorphism from Rm

q to an Rq-module Y. We treat L as a

part of the public parameter pp := (Rq,m,B < q/2,L). Here RB
hom is a generalization of
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RB
eval from (9) defined as

RB
hom :=

{
(pp, x := (⃗r ∈ Rlogm

q , v̂ ∈ Rq, y ∈ Y); f⃗ ∈ Rm
q ) :

y = L(⃗f) ∧ ∥⃗f∥∞ < B

∧mle
[
f̂
]

(⃗r) = v̂

}
,

(10)
Clearly, RB

eval from (9) is a special case of RB
hom where L(⃗f) := Af⃗ and Y := Rκ

q .

For a positive integer B < q/2, choose b, k such that bk = B. For notational conve-
nience, for an m-vector f⃗ ∈ Rm

q where ∥⃗f∥∞ < B, we use splitb,k (⃗f) to denote the algorithm

that decomposes f⃗ into an m× k matrix F⃗ := (⃗f0, . . . , f⃗k−1) ∈ Rm×k
q , such that the coeffi-

cients of each Rq-element in F⃗ has absolute value less than b and

f⃗ = F⃗ ·
[
1, b, b2, . . . , bk−1

]⊤
=

k−1∑
i=0

bi · f⃗i . (11)

For example, for k = 2 and m = 1, assume that b :=
√
B is an integer. Given a polynomial

f = a0 + a1X ∈ Rq where |a0|, |a1| < B, we decompose it to splitb,k(f) = (f0, f1) =
(c0 + c1X, d0 + d1X), where ci := ai mod b and di := ⌊ai/b⌋ for i ∈ {0, 1}. Then

∣∣ci∣∣ < b
and

∣∣di∣∣ < b, and f = f0 + bf1.

Input: x := (⃗r ∈ Rlogm
q , v̂ ∈ Rq, y ∈ Y) and w := f⃗ ∈ Rm

q

Output: [xi = (⃗r, v̂i, yi),wi = f⃗i]
k−1
i=0

The protocol ⟨P(pp, x; w),V(pp, x)⟩:
1. P→ V : Let F⃗ := (⃗f0, . . . , f⃗k−1) := splitb,k (⃗f). P sends V the values [yi, v̂i]

k−1
i=0 where

yi := L(⃗fi) , v̂i := mle
[
f̂i

]
(⃗r)

2. V checks that
∑k−1

i=0 b
i · yi

?
= y, and

∑k−1
i=0 b

i · v̂i
?
= v̂.

3. V outputs [xi := (⃗r, v̂i, yi)]
k−1
i=0 . P outputs [wi := f⃗i]

k−1
i=0 .

Figure 2: The protocol Π∗
dec that reduces RB

hom to (Rb
hom)k.

With this notation in place, we describe the protocol Π∗
dec in Figure 2. Before proving

that Π∗
dec is a reduction of knowledge, we state a useful lemma. Informally, it states that

a linear combination of instance-witness pairs will be in the relation if every individual
instance-witness pair is in the relation. It’s important to note that the combiners [ρi]

ℓ
i=1

can be arbitrary elements in Rq. This generalization extends beyond the decomposition
case where the combiners bi are in Zq ⊆ Rq. Looking ahead, this generalization is useful
later in the folding protocol (Figure 3).
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Lemma 3.2. Fix a power-of-two m ∈ N, let r⃗ ∈ Zlogm
q be a vector and let L : Rm

q → Y be

an Rq-module homomorphism. Fix ℓ ∈ N. For any [ρi]
ℓ
i=1 ∈ Rℓ

q and [v̂i, yi; f⃗i]
ℓ
i=1 such that

yi = L(⃗fi) and mle
[
f̂i

]
(⃗r) = v̂i for all i ∈ [ℓ]. Set v̂o, yo, f⃗o such that

NTT(v̂o) =

ℓ∑
i=1

RotSum(ρi,NTT(v̂i)) , yo :=

ℓ∑
i=1

ρi · yi , f⃗o :=

ℓ∑
i=1

ρi · f⃗i ,

where RotSum is defined in Lemma 2.1. Then yo = L(⃗fo) and mle
[
f̂o

]
(⃗r) = v̂o.

Proof. First,

L(⃗fo) = L

(
ℓ∑

i=1

ρi · f⃗i

)
=

ℓ∑
i=1

ρi · L(⃗fi) =
ℓ∑

i=1

ρi · yi = yo

where the 2nd equality holds by the homomorphic property of L.
For ease of exposition, we define v̄o, v̄1, . . . , v̄ℓ ∈ Rq as the values such that NTT(v̂o) =

Coef(v̄o) and NTT(v̂i) = Coef(v̄i) for all i ∈ [ℓ]. We have that

Coef(v̄o) = NTT(v̂o) =

ℓ∑
i=1

RotSum(ρi,NTT(v̂i))

=
ℓ∑

i=1

RotSum(ρi,Coef(v̄i)) =
ℓ∑

i=1

RotSum
(
ρi,
〈
Coef (⃗fi), tensor(⃗r)

〉)
=

ℓ∑
i=1

〈
RotSum(ρi,Coef (⃗fi)), tensor(⃗r)

〉
=

ℓ∑
i=1

〈
Coef(ρi · f⃗i), tensor(⃗r)

〉
=

〈
Coef

(
ℓ∑

i=1

ρi · f⃗i

)
, tensor(⃗r)

〉
=
〈
Coef (⃗fo), tensor(⃗r)

〉
,

where the 4th equality holds because

Coef(v̄i) = NTT(v̂i) = mle
[
Coef (⃗fi)

]
[⃗r] =

〈
Coef (⃗fi), tensor(⃗r)

〉
by Lemma A.1 and the facts that mle

[
f̂i

]
(⃗r) = v̂i, NTT(f̂i) = Coef (⃗fi) and NTT(⃗r) =

(⃗r, . . . , r⃗)︸ ︷︷ ︸
d

. The 5th equality holds by rearranging the terms and by the property of inner

products; the 6th equality holds because RotSum(a,Coef(b)) = Coef(a·b) for any a,b ∈ Rq

(2nd claim in Lemma 2.1); the 7th equality is by additivity of inner products and coefficient
embedding. Therefore, by Lemma A.1, we have that

v̂o = NTT−1(Coef(v̄o)) = NTT−1
(〈

Coef (⃗fo), tensor(⃗r)
〉)

= mle
[
f̂o

]
(⃗r)

as required.
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Remark 3.1 (Supporting general r⃗.). Lemma 3.2 requires r⃗ to be in Zlogm
q . However, with

a minor modification, the proof naturally extends to the case where r⃗ is in Clogm where C
is defined as in Eq. (31). This is useful in the folding protocol (Figure 3) to support small
modulus q while preserving negligible sumcheck soundness error. We defer the details to
Section 3.3.

Next we show that Π∗
dec is a reduction of knowledge.

Lemma 3.3. Fix Rq
∼= Zd

q . For any B < q/2 and any b, k such that bk = B, Π∗
dec is a

reduction of knowledge from RB
hom to (Rb

hom)k.

The proof follows from Lemma 3.4 and Lemma 3.5. Again, we emphasize that the proof

naturally extends to the case where Rq
∼= Fd/τ

qτ . More details are deferred to Section 3.3.

Lemma 3.4. Π∗
dec satisfies public reducibility and completeness.

Proof. Public reducibility: Given instance x = (⃗r, v̂, y) and transcript [yi, v̂i]
k−1
i=0 , output

[xi := (⃗r, v̂i, yi)]
k−1
i=0 if the verifier checks pass and ⊥ otherwise.

Completeness: Let (x = (⃗r, v̂, y); w := f⃗) ← A(pp) denote adversary A’s chosen input

for R1 := RB
hom where pp := (Rq,m,B < q/2,L) ← Setup(1λ) is the public parameter.

WLOG we assume that (pp, x; w) is in RB
hom. The protocol execution ⟨P(pp, x,w),V(pp, x)⟩

proceeds as follows:

1. P computes F⃗ := (⃗f0, . . . , f⃗k−1) ← splitb,k (⃗f), and sends yi = L(⃗fi), v̂i = mle
[
f̂i

]
(⃗r)

for every i ∈ [0, k).

2. V checks that y
?
=
∑k−1

i=0 b
i · yi and v̂

?
=
∑k−1

i=0 b
i · v̂i. It outputs ⊥ and halts if the

check fails.

3. P outputs [⃗fi]
k−1
i=0 . V accepts and outputs [⃗r, v̂i, yi]

k−1
i=0 .

We show that V accepts in the honest execution. First,

k−1∑
i=0

bi · yi =

k−1∑
i=0

bi · L(⃗fi) = L

(
k−1∑
i=0

bi · f⃗i

)
= y

where the 1st equality is by definition of yi; the 2nd equality follows from the properties
of the Rq-module homomorphism L; the last equality holds because f⃗ =

∑k−1
i=0 b

i · f⃗i as in

Eq. (11) and L(⃗f) = y by the assumption that (pp := (Rq,m,B < q/2,L), x; w) ∈ RB
hom.

Similarly, we have that

k−1∑
i=0

bi · v̂i =
k−1∑
i=0

bi ·mle
[
f̂i

]
(⃗r) = mle

[
f̂
]

(⃗r) = v̂ .
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The 1st equality is by definition of v̂i; the 2nd equality holds because (i) the map gr⃗(f) :=
f (⃗r) satisfies that gr⃗(a · f1 + b · f2) = a · gr⃗(f1) + b · gr⃗(f2) for any multilinear polynomials
f1, f2 and a, b ∈ Zq; and (ii) f̂ =

∑k−1
i=0 b

i · f̂i given that

NTT(f̂) = Coef (⃗f) = Coef

(
k−1∑
i=0

bi · f⃗i

)
=

k−1∑
i=0

bi·Coef
(⃗
fi

)
=

k−1∑
i=0

bi·NTT(f̂i) = NTT

(
k−1∑
i=0

bi · f̂i

)
.

The last equality holds because (pp, x; w) ∈ RB
hom by assumption. Thus, V accepts in the

honest execution.
Next, we show that (pp, [(⃗r, v̂i, yi); f⃗i]

k−1
i=0 ) is in R2 := (Rb

hom)k. For every i ∈ [0, k),

recall that yi = L(⃗fi) and v̂i = mle
[
f̂i

]
(⃗r). Moreover, by definition of splitb,k (⃗f) (Eq. (11)),

we have that ∥⃗fi∥∞ < b. Therefore, (pp, (⃗r, v̂i, yi); f⃗i) ∈ Rb
hom and completeness holds.

Lemma 3.5. Π∗
dec satisfies knowledge soundness.

Proof. Let (x := (⃗r, v̂, y); state) ← A(pp) denote adversary A’s chosen input instance for
R1 := RB

hom, where pp := (Rq,m,B < q/2,L) ← Setup(1λ) is the public parameter. The
extractor Ext proceeds as follows:

1. Simulate the protocol ⟨P∗(pp, x, state),V(pp, x)⟩ where P∗ is the malicious prover.

2. Output ⊥ if V rejects. Otherwise let (xo,wo) := [(⃗r, v̂i, yi); f⃗i]
k−1
i=0 be the protocol

output. (Note that r⃗ is the same with that in the input instance x to pass the
verification check.) The extractor outputs witness

w := f⃗ :=

k−1∑
i=0

bi · f⃗i . (12)

Next, we show that if V accepts and the output satisfies that (pp, xo,wo) is in R2 :=
(Rb

hom)k, then the extracted witness f⃗ satisfies that (⃗r, v̂, y; f⃗) ∈ R1 := RB
hom. Since V

accepts, we have that y =
∑2k−1

i=0 bi · yi and v̂ =
∑2k−1

i=0 bi · v̂i. Recall that yi = L(⃗fi) and

v̂i = mle
[
f̂i

]
(⃗r) for all i ∈ [0, k) by assumption, thus by Lemma 3.2, we have that y = L(⃗f)

and v̂ = mle
[
f̂
]

(⃗r). Moreover, note that ∥⃗fi∥∞ < b for all i ∈ [0, k) because (⃗r, v̂i, yi; f⃗i) is

in Rb
hom by assumption. Since bk = B < q/2 and f⃗ =

∑k−1
i=0 b

i · f⃗i, we have

∥⃗f∥∞ = ∥
k−1∑
i=0

bi · f⃗i∥∞ ≤
k−1∑
i=0

bi · ∥⃗fi∥∞ ≤
k−1∑
i=0

bi · (b− 1) < bk = B .

In summary, y = L(⃗f), v̂ = mle
[
f̂
]

(⃗r) and ∥⃗f∥∞ < B and thus (⃗r, v̂, y; f⃗) ∈ RB
hom.
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3.2.3 Folding: The reduction from (Rb
eval)

2k to RB
eval

We now describe the core protocol Πfold that folds 2k instance-witness pairs ofRb
eval from (9)

into a single instance-witness pair in RB
eval. More generally, the protocol is a reduction of

knowledge from (Rb
hom)2k from (10) to RB

hom with a further restriction that the public
parameter, the sampled homomorphism L, is relaxed binding as in Section 2.3. This
relaxed binding property, defined for bound 2B and the challenge space Csmall, ensures the
hardness of finding two distinct weak openings for a commitment cm. Recall that a 2B-
weak opening (ρ ∈ Csmall − Csmall, x⃗) of cm satisfies that ρ · cm = Ax⃗ mod q with the norm
constraint ∥x⃗∥∞ < 2B. Thus, RB

eval from (9) is a special case of RB
hom where the sampled

homomorphism L is given by L(⃗f) := Af⃗ , and the 2B-relaxed binding property follows
from the hardness of MSIS∞,q

κ,m,8TB where T = ∥Csmall∥op is the expansion factor of Csmall.
Our protocol folds the 2k witness vectors (with norm less than b) into a witness vector

of norm less than B (where b < B < q/2), using small random scalars [ρi]
2k
i=1 sampled

from a strong sampling set Csmall ⊆ Rq. Additionally and crucially, Πfold runs a sum-check
protocol to enable extractions of the 2k witness vectors with small norms. The sum-check
is for a polynomial g(x⃗) :=

∑2k
i=1(αig1,i(x⃗) + µig2,i(x⃗)) with random scalars [αi, µi]

2k
i=1.

Informally, we can understand it as a batch of 4k separate sum-checks for polynomials
[g1,i, g2,i]

2k
i=1, respectively. The sum-check for g1,i (defined in Eq. (15)) is used to verify

that the evaluation statement mle
[
f̂i

]
(⃗ri) = v̂i holds for all i ∈ [2k]. For every i ∈ [2k],

the sum-check for g2,i (defined in Eq. (16)) is used to verify that

b−1∏
j=−(b−1)

(
mle

[
f̂i

]
(x⃗)− j

)
= 0 for all x⃗ ∈ {0, 1}logm

This is the same as the Hadamard product check (the norm bound check)

f̂i ◦
[
⃝b−1

j=1(f̂i − ĵ) ◦ (f̂i + ĵ)
]

= 0̂,

in the relation Rb
cm from (8).

We describe the protocol Πfold in Figure 3. We now see why the relation RB
cm from (8)

had to be expanded to the related RB
eval from (9). Protocol Πfold reduces the claimed

properties about the 2k input instances to verifying that mle
[
f̂o

]
(⃗ro) = v̂o, where (⃗ro, v̂o)

is part of the output folded instance. Adding this evaluation check to the relation RB
eval

forces the prover to output a folded statement that satisfies this equality. The verifier
cannot check this relation itself as part of Πfold because it does not have access to f⃗o.

The following lemma shows that the protocol Πfold in Figure 3 is a reduction of knowl-
edge from (Rb

hom)2k to RB
hom assuming that L is a relaxed binding.
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Parameters: Strong sampling sets C, Csmall ⊆ Rq where C is defined as in Eq. (31) and
Csmall has expansion factor ∥Csmall∥op ≤ c ∈ N as in (6).

Input: [xi := (⃗ri, v̂i, yi) ∈ Rlogm
q ×Rq × Y]2ki=1 and [wi := f⃗i ∈ Rm

q ]2ki=1

Output: xo := (⃗ro, v̂o, yo), wo := f⃗o
The protocol ⟨P(pp, x; w),V(pp, x)⟩ where x = [xi]2ki=1 and w = [wi]

2k
i=1:

1. V→ P : V sends P challenges [αi, µi]
2k
i=1 ←

$ (C × C)2k and β⃗ ←$ Clogm.
2. V↔ P : P and V run a sum-check protocol for the claim

∑
b⃗∈{0,1}logm

g(b⃗) =

2k∑
i=1

αiv̂i , (13)

where the polynomial g(x⃗) ∈ R≤2b
q [X1, . . . , Xlogm] is defined as

g(x⃗) := geval(x⃗) + gnorm(x⃗) , (14)

geval(x⃗) :=

2k∑
i=1

αi · g1,i(x⃗) where g1,i(x⃗) := eq(⃗ri, x⃗) ·mle
[
f̂i

]
(x⃗) , (15)

gnorm(x⃗) :=
2k∑
i=1

µi · g2,i(x⃗) where g2,i(x⃗) := eq(β⃗, x⃗) ·
b−1∏

j=−(b−1)

(
mle

[
f̂i

]
(x⃗)− j

)
(16)

The sumcheck protocol reduces checking (13) to checking the evaluation claim

g(⃗ro)
?
= s, where s ∈ Rq and r⃗o ←$ Clogm is a sum-check challenge sampled by V.

3. P→ V : P sends V values
[
θi := mle

[
f̂i

]
(⃗ro)

]2k
i=1

.

4. V computes [ei := eq(⃗ri, r⃗o)]
2k
i=1 and e∗ := eq(β⃗, r⃗o) and checks that

s
?
=

2k∑
i=1

αieiθi + µie
∗ ·

b−1∏
j=1−b

(θi − j)

 .
5. V→ P : V sends P random challenge [ρi]

2k
i=1 ←

$ C2ksmall.
6. V outputs xo := (⃗ro, v̂o, yo) wherea

NTT(v̂o) =

2k∑
i=1

RotSum(ρi,NTT(θi)) , yo :=

2k∑
i=1

ρiyi .

7. P further outputs wo := f⃗o =
∑2k

i=1 ρi · f⃗i.
aIf Rq

∼= Fd/τ
qτ for some τ > 1, the value v̂o is replaced with V̂o ∈ Rτ

q and verifier check is modified as
in Eq. (32).

Figure 3: The protocol Πfold that reduces (Rb
hom)2k to RB

hom.26



Theorem 3.2. Let Rq
∼= Fd/τ

qτ for some τ ∈ N where τ | d and 1/qτ is in negl(λ). Let
Csmall ⊆ Rq be a strong sampling set for which 1/|Csmall| is in negl(λ), and the expansion
factor ∥Csmall∥op ≤ c (Definition 6) for some c ∈ N. Let C be the strong sampling set as
in Eq. (31). Let pp := (m,B < q/2,L) be the public parameters where the sampled Rq-
module homomorphism L : Rm

q → Y is a 2B-relaxed binding (Section 2.3) for challenge
space Csmall. For any b, k where 2kc(b−1) < B, the protocol Πfold is a reduction of knowledge
from (Rb

hom)2k to RB
hom.

Remark 3.2. Πfold (Figure 3) uses two different sampling sets C, Csmall where C is for
sumcheck and Csmall is for folding. We set C as in Eq. (31) for two reasons:

1. Sumcheck efficiency: By Eq. (31), for every ai ∈ C, NTT(ai) = (i, . . . , i) where
i ∈ Fqτ is the embedding of ai in Fqτ . So C lets us treat the sumcheck over Rq as
d/τ parallel sumchecks over Fqτ that share the same sumcheck challenge vector over

Flogm
qτ , and no NTT transformation is needed when running the sumcheck. Note that

the removal of the NTT transform also improves the circuit size of the sumcheck
verifier.

2. Completeness: As discussed in Remark 3.1 and Section 3.3, Lemma 3.2 still holds
when C is set as in Eq. (31). This is essential for the folding protocol to support small
modulus q.

For the special case Rq
∼= Zd

q , the proof follows from Lemma 3.6 and Theorem 3.3 below.
As discussed in Section 3.3, with a minor modification to the protocol, the proof naturally

extends to the case where Rq
∼= Fd/τ

qτ .

Lemma 3.6. Πfold satisfies public reducibility and completeness.

Proof. Public reducibility: Given input instances [⃗ri, v̂i, yi]
2k
i=1 and the transcript that in-

cludes the challenge r⃗o, evaluations [θi]
2k
i=1 and folding challenges [ρi]

2k
i=1. The algorithm

outputs xo := (⃗ro, v̂o, yo :=
∑2k

i=1 ρi · yi) where NTT(v̂o) =
∑2k

i=1 RotSum(ρi,NTT(θi)) if
the verification passes. Otherwise, it outputs ⊥.

Completeness: Let (x,w) := [xi = (⃗ri, v̂i, yi),wi = f⃗i]
2k
i=1 ← A(pp) denote adversary A’s

chosen input for R1 := (Rb
hom)2k, where pp := (Rq,m,B < q/2,L) ← Setup(1λ) is the

public parameter. WLOG we assume that (pp, xi,wi) ∈ Rb
hom for all i ∈ [2k]. The protocol

⟨P(pp, x,w),V(pp, x)⟩ proceeds as follows:

1. P and V honestly run the sum-check and P sends the correct evaluations [θi :=

mle
[
f̂i

]
(⃗ro)]

2k
i=1.

2. V outputs ⊥ and halts if the check at Step 4 fails.
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3. Otherwise, let [ρi]
2k
i=1 be verifier’s last folding challenges. P outputs wo := f⃗o :=∑2k

i=1 ρi · f⃗i and V outputs xo := (⃗ro, v̂o, yo) where r⃗o is V’s sum-check challenges and
(v̂o, yo) are defined such that

NTT(v̂o) =
2k∑
i=1

RotSum(ρi,NTT(θi)) , yo :=
2k∑
i=1

ρi · yi .

We first show that V accepts, i.e., the check at Step 4 passes. This follows by definition of
the polynomial g (Eq. (14)) and by definition of P’s sent evaluations.

It remains to argue that the protocol output (xo,wo) satisfies that (pp, xo,wo) ∈ R2 :=
RB

hom (Eq. (10)). First, because (pp, xi,wi) ∈ Rb
hom for all i ∈ [2k], by Lemma 3.2, it holds

that L(⃗fo) = yo and mle
[
f̂o

]
(⃗ro) = v̂o. Moreover,

∥⃗fo∥∞ = ∥
2k∑
i=1

ρi · f⃗i∥∞ ≤
2k∑
i=1

∥ρi · f⃗i∥∞ ≤
2k∑
i=1

c · ∥⃗fi∥∞ ≤
2k∑
i=1

c · (b− 1) < B .

The first inequality holds because for any a, b ∈ Rm
q where ∥a∥∞ + ∥b∥∞ < B < q/2, we

have that ∥a+ b∥∞ ≤ ∥a∥∞ + ∥b∥∞. (The norm ∥a∥∞ for an element a in Rq is defined
in Remark 2.1.) The 2nd inequality holds as ρi ∈ Csmall and Csmall has expansion factor at
most c; the 3rd inequality holds because ∥⃗fi∥∞ < b for all i ∈ [2k] by the assumption that
(pp, xi; f⃗i) ∈ Rb

hom; the last inequality holds as 2kc(b − 1) < B < q/2 by the premise of
Theorem 3.2. Thus (pp, xo,wo) is in RB

hom from (10) as required.

Theorem 3.3. Let pp := (Rq
∼= Zd

q ,m,B < q/2,L)← Setup(1λ) denote the public param-
eters and let C, Csmall ⊆ Rq be the strong sampling sets defined in Theorem 3.2. Assume
that the Rq-module homomorphism L : Rm

q → Y is 2B-relaxed binding for challenge space
Csmall with binding error ϵbind. There exists an extractor Ext such that for any expected
polynomial time adversary (A,P∗) with success probability ϵfold(A,P∗) = 1/poly(λ), the
extractor ExtA,P∗

outputs valid witnesses (for input instances) in relation (Rb
hom)2k with

probability at least ϵfold(A,P∗)− κ(λ) where

κ(λ) :=
2k

|Csmall|
+ ϵbind +

(2b+ 1) logm+ 4k

|C|
.

The expected running time of ExtA,P∗
is at most

Text :=

(
1 +

1

ϵfold(A,P∗)− 2k
|Csmall|

)
· (1 + 2k) = poly(λ) .

Proof. As noted by Remark 1 of [AF22], it is without loss of generality to assume that
(A,P∗) are deterministic algorithms. For ease of notation, we assume that P∗ outputs ⊥
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when it fails the verification or its output is not a valid witness for the output instance.
We can always transform a prover to satisfy this requirement without affecting the success
probability. To simplify the notation in the proof we introduce the following symbols:

• set k∗ := 2k,

• the folding challenge space is denoted S := Ck∗small,

• the remaining challenge space is denoted Ψ := C2k∗+2 logm.

Let us first give some intuition for the extraction strategy. Adversary A begins by gener-
ating some k∗ instances xi = (⃗ri, v̂i,yi) for i ∈ [k∗]. The prover P∗ then takes as input a
sequence of random challenges from the verifier. These challenges define a folded statement
xo = (⃗ro, v̂o,yo) and P∗ outputs a valid witness f⃗ for xo with non-negligible probability.
Our extractor needs to use such a P∗ to output valid witnesses f⃗i for xi = (⃗ri, v̂i,yi) for
all i ∈ [k∗]. Let us see how to extract f⃗1; the other witnesses are extracted similarly. The
high level approach to extract f⃗1 is to sample two related folding challenge vectors

c0 := (ρ1, ρ2, . . . , ρk∗) and c1 := (ρ′1, ρ2, . . . , ρk∗) from S := Ck∗small

with ρ1 ̸= ρ′1. Then run P∗ once on c0 and once on c1. All other random challenges from
the verifier are the same on both runs. We show that with non-negligible probability, the
prover P∗ will return two valid witness w⃗0 and w⃗1. If P∗ were honest then

w⃗0 = ρ1f⃗1 +
k∗∑
i=2

ρi⃗fi and w⃗1 = ρ′1f⃗1 +
k∗∑
i=2

ρi⃗fi

from which it follows that (w⃗0 − w⃗1) = (ρ1 − ρ′1)⃗f1. We can now calculate f⃗1 because
ρ1 − ρ′1 is invertible in Rq (since Csmall is a strong sampling set). However, P∗ can be
malicious. Fortunately, our analysis will show that a slightly enhanced strategy will either
extract a valid witness f⃗1 for x1 with non-negligible probability, or break the 2B-relaxed
binding property of L. In particular, in Claim 3.7 below we show that the sumcheck in
protocol Πfold, combined with the relaxed binding property of L, ensures that the extracted

witnesses f⃗i have norm at most b and that the evaluations of mle
[
f̂i

]
at r⃗i are correct.

The Extractor. We describe the complete extractor ExtA,P∗
in Figure 4. The extractor

invokes two sub-procedures. The algorithm IGA samples the input instances. The algorithm
SubExtP

∗
(inst, ψ), given randomness ψ := ([αi, µi]

k∗
i=1, β⃗, r⃗o), tries to recover weak openings

to the input instances in inst by rewinding P∗ multiple times. We emphasize that each run
of SubExtP

∗
(inst, ψ) and SubExtP

∗
(inst, ψ′) uses fresh internal randomness for challenges

(c0, c1, . . . , ck∗).
Let [xi := (⃗ri, v̂i,yi)]

k∗
i=1 denote the input instances. For any list of length-m ring

29



SubProcedure IGA(1λ): // sample as instance

1. pp← Setup(1λ)
2. Return inst := ([xi]k

∗
i=1, state)← A(pp)

SubProcedure SubExtP
∗
(inst, ψ ∈ Ψ): // attempt to extract a witness for inst

1. c0 := (ρ1, . . . , ρk∗)←$ S
2. w⃗0 ← P∗(inst, c0, ψ)
3. If w⃗0 = ⊥ return (open, out) := (⊥,⊥)
4. For i = 1, . . . , k∗:

Do: // loop until a good folding randomness ρ′i is found
(a) ρ′i ←

$ Csmall \ {ρi} without replacement
(b) ci := (ρ1, . . . , ρi−1, ρ

′
i, ρi+1, . . . , ρk∗)

(c) w⃗i ← P∗(inst, ci, ψ)
Repeat until w⃗i ̸= ⊥; return (⊥,⊥) if all ρ′i have been tried

5. For i = 1, . . . , k∗: set openi := (ρi − ρ′i, w⃗0 − w⃗i) and f⃗i := (ρi − ρ′i)−1(w⃗0 − w⃗i)

6. Return open := [openi]
k∗
i=1 and out := [⃗fi]

k∗
i=1

The extractor ExtA,P∗
(1λ):

1. inst← IGA(1λ)
2. Do: // loop until a good tuple of challenges ψ is found

(a) ψ := ([αi, µi]
k∗
i=1, β⃗, r⃗o)←

$ Ψ // sample fresh challenges

(b) (open1, out1)← SubExtP
∗
(inst, ψ) // attempt to extract a witness using ψ

Repeat until out1 ̸= ⊥
3. ψ′ := ([α′

i, µ
′
i]
k∗
i=1, β⃗

′, r⃗′o)←
$ Ψ // sample fresh challenges

4. (open2, out2)← SubExtP
∗
(inst, ψ′), abort if out2 = ⊥ or out1 ̸= out2

5. Parse out1 = out2 = [⃗fi]
k∗
i=1

6. Abort if Φvalid([xi, f⃗i]k
∗

i=1) = 0, where [xi]k
∗

i=1 are the input instances in inst

7. Return [⃗fi]
k∗
i=1

Figure 4: The extractor for Πfold using the validity predicate Φvalid from (18).
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vectors [⃗fi]
k∗
i=1 ∈ (Rm

q )k
∗
, and i ∈ [k∗], define the multilinear polynomial

pi(x⃗) :=
∑

b⃗∈{0,1}logm

eq(x⃗, b⃗) ·
b−1∏

j=1−b

(
mle

[
f̂i

]
(b⃗)− j

)
. (17)

Note that pi(x⃗) = 0 implies that
∏b−1

j=1−b

(
mle

[
f̂i

]
(b⃗)− j

)
= 0 for every b⃗ ∈ {0, 1}logm,

which in turn implies ∥⃗fi∥∞ < b from the discussion in Section 3.1. The predicate
Φvalid([xi, f⃗i]k

∗
i=1) is true if and only if

∀i ∈ [k∗] :
(
mle

[
f̂i

]
(⃗ri) = v̂i

)
∧ (L(⃗fi) = yi) ∧ (pi(x⃗) = 0) . (18)

Hence, Φvalid([xi, f⃗i]k
∗

i=1) = 1 if and only if [⃗fi]
k∗
i=1 are valid witnesses for [xi]k

∗
i=1, that is,

[xi, f⃗i]k
∗

i=1 ∈ (Rb
hom)k

∗
. Thus, given the check at Step 6, the extractor always outputs a valid

witness if it does not abort.

Running time. We adapt the proof of Lemma 7.1 in [FMN23] to analyze the expected
running time of the extractor. We first analyze the expected running time of each execu-
tion of SubExtP

∗
. Fix any input (inst, ψ), we denote by C0 := (Σ1, . . . ,Σk∗) the random vari-

able for the folding challenges c0 := (ρ1, . . . , ρk∗). We define event Γ := (P∗(inst, C0, ψ) ̸=
⊥).

Let T be the number of calls to P∗ in SubExtP
∗
(inst, ψ). For i ∈ [k∗], let Ti be the number

of calls to P∗ made during the i-th iteration of the loop. We have E[T ] = 1 +
∑k∗

i=1 E[Ti]
by linearity of expectation.

Define the random variable

Xi :=
∣∣{x ∈ Csmall : P∗(inst, C(x), ψ) ̸= ⊥}

∣∣ (19)

where C(x) := (Σ1, . . . ,Σi−1, x,Σi+1, . . . ,Σk∗). Let N := |Csmall|, we have that

E[Ti] =

N∑
j=0

E[Ti | Xi = j] · Pr[Xi = j] .

Also note that Ti = 0 when Γ = 0, thus for any j ≥ 0, we have that

E[Ti|Xi = j] = Pr[Γ = 1 | Xi = j] · E[Ti | (Γ = 1) ∧Xi = j]

where Pr[Γ = 1 | Xi = j] = j/N and E[Ti | (Γ = 1)∧Xi = j] is the expectation of a negative
hypergeometric distribution, that is, challenges ρ′i are drawn without replacement from a set
of size N − 1 that contains j − 1 correct responses. Hence, E[Ti | (Γ = 1) ∧Xi = j] ≤ N/j
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and therefore E[Ti|Xi = j] ≤ j/N · (N/j) = 1. In sum, for all i ∈ [k∗], we have that
E[Ti] ≤

∑N
j=0 1 · Pr[Xi = j] = 1, and therefore

E[T ] = 1 +

k∗∑
i=1

E[Ti] ≤ 1 + k∗ .

Next, we analyze the success probability of each independent run of SubExtP
∗
. Since

A, P∗ are deterministic, we have that the event Γ := (P∗(inst, C0, ψ) ̸= ⊥) happens with
probability ϵfold(A,P∗) over the randomness of ψ and C0. Define E as the event that a
fresh call of SubExtP

∗
(inst, ψ) does not return ⊥. We have that

Pr[E] = Pr[Γ = 1 ∧ (∧k∗i=1Xi ≥ 2)] (20)

= Pr[Γ = 1]− Pr[Γ = 1 ∧ (∨k∗i=1Xi = 1)]

≥ Pr[Γ = 1]−
k∗∑
i=1

Pr[Γ = 1 ∧Xi = 1]

≥ Pr[Γ = 1]− k∗

|Csmall|

≥ ϵfold(A,P∗)− k∗

|Csmall|
.

In sum, the expected number of calls to P∗ in the extractor is at most (E[T ]/Pr[E])+E[T ] =(
1 + 1/

(
ϵfold(A,P∗)− 2k

|Csmall|

))
· (1 + 2k) = poly(λ).

Success probability. Towards analyzing the extractor’s success probability, we define
the following events.

• Eext: the extractor recovers the witnesses out1, out2 ̸= ⊥, and, out1 = out2.

• Evalid: Eext occurs and the extracted witness is valid, i.e., Φvalid([xi, f⃗i]k
∗

i=1) = 1 for the

input instances [xi]k
∗

i=1 and the interpolated witness [⃗fi]
k∗
i=1.

Eext ∧ Evalid implies that the extractor returns a valid witness for the input instances.
Moreover,

Pr[Eext ∧ Evalid] = Pr[Eext]− Pr[Eext ∧ Evalid] ,

thus it suffices to lower-bound Pr[Eext] and upper-bound Pr[Eext ∧ Evalid].

Claim 1. Pr[Eext] ≥ ϵfold(A,P∗)− k∗

|Csmall| − ϵbind.
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Proof. We define E′
ext as the event that the last call of SubExtP

∗
, on input (inst, ψ′), does

not return ⊥. By Eq. (20), we have that

Pr[E′
ext] ≥ ϵfold(A,P∗)− k∗

|Csmall|

because (i) A is deterministic, and (ii) ψ′ and the randomness in SubExtP
∗
(inst, ψ′) are

freshly sampled.
Suppose E′

ext occurs. Let (open1, out1), (open2, out2) be the output of SubExtP
∗
(inst, ψ)

and SubExtP
∗
(inst, ψ′) respectively. We next show that out1 = out2 (and thus Eext holds)

with high probability. For every i ∈ [k∗], let open1,i := (∆, w⃗) and open2,i := (∆′, w⃗′).
Recall the assumption that P∗ produces an output only when the witness is valid for the
folded instance. Therefore, the interpolated witnesses w⃗, w⃗′ output by SubExtP

∗
must

satisfy that L(w⃗) = ∆yi and L(w⃗′) = ∆′yi. Suppose for contradiction that out1,i =
∆−1w⃗ ̸= (∆′)−1w⃗′ = out2,i, then ∆′w⃗ ̸= ∆w⃗′, and (open1,i, open2,i) is a pair of distinct
2B-weak openings that breaks the 2B-relaxed binding property of L. Specifically, L(w⃗) =
∆yi and L(w⃗′) = ∆′yi; ∥w⃗∥∞, ∥w⃗′∥∞ < 2B because w⃗ and w⃗′ are the subtractions of
two vectors with norm less than B; and ∆, ∆′ are non-zero differences in the set Csmall.
Moreover, the extractor is an expected polynomial time algorithm. Thus, by the relaxed
binding property of L, we have that

Pr
[
E′

ext ∧ (out1 ̸= out2)
]
≤ ϵbind .

Therefore, we have that

Pr[Eext] = Pr[E′
ext]− Pr

[
E′

ext ∧ (out1 ̸= out2)
]

≥ Pr[E′
ext]− ϵbind

≥ ϵfold(A,P∗)− k∗

|Csmall|
− ϵbind ,

which completes the proof.

Next, we upper-bound the probability of Eext∧Evalid – the event that extractor recovers
witnesses out1 = out2 but the extracted witness is invalid.

We first reduce Pr[Eext∧Evalid] to the probability of a different event that is easier to an-
alyze. Let inst denote A’s output that includes the input instances [xi := (⃗ri, v̂i, yi)]

k∗
i=1. Let

ψ′ := ([α′
i, µ

′
i]
k∗
i=1, β⃗

′, r⃗′o) be the last sampled randomness. We consider the sub-extraction
call SubExtP

∗
(inst, ψ′): Let c0 := (ρ1, . . . , ρk∗) denote the initial folding challenge, and let

[θ′i]
k∗
i=1 denote the claimed evaluations in the transcript of P∗(inst, c0, ψ

′). Let [⃗fi]
k∗
i=1 de-

note the interpolated vectors when Eext occurs, and let [pi(x⃗)]k
∗

i=1 be the corresponding
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polynomials specified in Eq. (17). Define events Ehom, Eeval, Ebad as

Ehom := Eext ∧ (∀i ∈ [k∗] : L(⃗fi) = yi) , (21)

Eeval := Eext ∧ (∀i ∈ [k∗] : mle
[
f̂i

]
(⃗r′o) = θ′i) , (22)

Ebad := Eext ∧ (∃i ∈ [k∗] :
(
mle

[
f̂i

]
(⃗ri) ̸= v̂i

)
∨ (pi(x⃗) ̸= 0)) . (23)

Informally, Eeval implies that the reduced evaluation claim holds after running the sum-
check; Ebad implies that the extracted witness is invalid.

Claim 2. Pr[Eext ∧ Evalid] = Pr[Eeval ∧ Ebad].

Proof. Assume that Eext =⇒ (Ehom ∧ Eeval) holds (which we will prove later), we argue
that Eext ∧ Evalid occurs if and only if Eeval ∧ Ebad occurs.

We recall the definitions of Eext, Evalid, Ehom (Eq. (21)), Eeval (Eq. (22)) and Ebad

(Eq. (23)). Informally, Eext means that the witnesses out1, out2 ̸= ⊥ recovered by the
extractor are the same. Evalid means that the recovered witness is valid. Ehom means that
the interpolated witness satisfies the homomorphism relation, i.e., L(⃗fi) = yi for every
i ∈ [k∗]. Eeval means that the reduced evaluation checks (after sumcheck) pass for the

interpolated witness, i.e., mle
[
f̂i

]
(⃗r′o) = θ′i for every i ∈ [k∗]. Finally, Ebad means that the

input evaluation claims or the norm constraint do not hold for the interpolated witness.
Suppose Eext ∧ Evalid occurs. By the assumption that Eext =⇒ (Ehom ∧ Eeval) holds,

Eeval and Ehom must also occur. Moreover, if Ehom occurs while Evalid does not, it must be
the case that Ebad occurs. Therefore, Eeval ∧ Ebad will occur.

Conversely, suppose Eeval ∧ Ebad occurs. Then Eext certainly occurs. However, Evalid

cannot occur because Ebad occurs, and thus Eext ∧ Evalid occurs.
Now it suffices to show that Eext =⇒ (Ehom ∧ Eeval). Suppose Eext occurs. Let

[ci, w⃗i]
k∗
i=0 denote the tuples collected in SubExtP

∗
(inst, ψ′) where c0 := (ρ1, . . . , ρk∗) and

ci := (ρ1, . . . , ρi−1, ρ
′
i, ρi+1, . . . , ρk∗) .

For every i ∈ [k∗], since w⃗0, w⃗i ̸= ⊥ are valid witnesses, we have that

L(w⃗0) = ρ1y1 + · · ·+ ρi−1yi−1 + ρiyi + ρi+1yi+1 + · · ·+ ρk∗yk∗ ,

L(w⃗i) = ρ1y1 + · · ·+ ρi−1yi−1 + ρ′iyi + ρi+1yi+1 + · · ·+ ρk∗yk∗ ,

thus

L(⃗fi) = L((w⃗0 − w⃗i) · (ρi − ρ′i)−1)

= (ρi − ρ′i)−1 · L(w⃗0 − w⃗i)

= (ρi − ρ′i)−1 · (L(w⃗0)− L(w⃗i))

= (ρi − ρ′i)−1 · (ρi − ρ′i) · yi = yi ,
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which implies that Ehom occurs.
Similarly, since the prover P∗ needs to output [θ′j ]

k∗
j=1 before receiving the folding chal-

lenges, the claimed evaluations {θ′j} in the executions of P∗(inst, c0, ψ
′) and P∗(inst, ci, ψ

′)
are the same. Define

v̂(0)
o := mle [ŵ0] (⃗r′o) , v̂(i)

o := mle [ŵi] (⃗r′o) .

Note that

NTT(v̂(0)
o ) := mle [Coef(w⃗0)] (⃗r′o) , NTT(v̂(i)

o ) := mle [Coef(w⃗i)] (⃗r′o) .

Since P∗ outputs valid witnesses for the output instances, we have that

NTT(v̂(0)
o ) =

k∗∑
j=1

RotSum(ρj ,NTT(θ′j)) ,

NTT(v̂(i)
o ) =

∑
j∈[k∗],j ̸=i

RotSum(ρj ,NTT(θ′j)) + RotSum(ρ′i,NTT(θ′i)) ,

which implies that

NTT(v̂(0)
o − v̂(i)

o ) = RotSum(ρi,NTT(θ′i))− RotSum(ρ′i,NTT(θ′i)) . (24)

Let ∆o, θ̄
′
i be the values such that Coef(∆o) = NTT(v̂

(0)
o − v̂

(i)
o ) and Coef(θ̄′i) = NTT(θ′i).

By Lemma 2.1, we have that

RotSum(ρi,NTT(θ′i)) = Coef(ρi · θ̄′i) , RotSum(ρ′i,NTT(θ′i)) = Coef(ρ′i · θ̄′i) .

Then by Eq. (24), we have that Coef(∆o) = Coef((ρi − ρ′i) · θ̄′i) and thus Coef((ρi − ρ′i)−1 ·
∆o) = Coef(θ̄′i). By definition of f⃗i, we have that

mle
[
Coef (⃗fi)

]
(⃗r′o) = mle

[
Coef((w⃗0 − w⃗i) · (ρi − ρ′i)−1)

]
(⃗r′o)

= (ρi − ρ′i)−1 ·mle [Coef(w⃗0 − w⃗i)] (⃗r′o)

= (ρi − ρ′i)−1 · (mle [Coef(w⃗0)] (⃗r′o)−mle [Coef(w⃗i)] (⃗r′o))

= (ρi − ρ′i)−1 · (NTT(v̂(0)
o )− NTT(v̂(i)

o ))

= (ρi − ρ′i)−1 · NTT(v̂(0)
o − v̂(i)

o )

= (ρi − ρ′i)−1 · Coef(∆o)

= Coef((ρi − ρ′i)−1 ·∆o)

= Coef(θ̄′i) = NTT(θ′i) .

By Lemma A.1 and because NTT(f̂i) = Coef (⃗fi), this implies that mle
[
f̂i

]
(⃗r′o) = θ′i. There-

fore, Eeval occurs, which finishes the proof.
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Therefore, to analyze Pr[Eext∧Evalid], it suffices to analyze the probability of Eeval∧Ebad.

Lemma 3.7. Pr[Eeval ∧ Ebad] ≤ (2b+1) logm+2k∗

|C| .

Proof. Let [xi := (⃗ri, v̂i,yi)]
k∗
i=1 and [⃗fi]

k∗
i=1 denote the input instances and the extracted

witness vectors, respectively. For every i ∈ [k∗], let pi(x⃗) denote the multilinear polynomial
specified in Eq. (17), with respect to f⃗i. Let ψ′ := ([α′

i, µ
′
i]
k∗
i=1, β⃗

′, r⃗′o) be the input random-
ness used in the last call SubExtP

∗
(inst, ψ′), namely on line 4 of the extractor. Define

polynomial h as

h([Xi, Yi]
k∗
i=1) :=

k∗∑
i=1

(
v̂i −mle

[
f̂i

]
(⃗ri)
)
·Xi +

k∗∑
i=1

pi(β⃗
′) · Yi . (25)

We define the following events:

E1 := Eext ∧ (∃i ∈ [k∗] : pi(x⃗) ̸= 0) ∧
(
pi(β⃗

′) = 0∀i ∈ [k∗]
)

E2 := Eext ∧ (h([α′
i, µ

′
i]
k∗
i=1) = 0) ∧

(
∃i ∈ [k∗] :

(
mle

[
f̂i

]
(⃗ri) ̸= v̂i

)
∨ (pi(β⃗

′) ̸= 0)
)

E3 := Eeval ∧ (h([α′
i, µ

′
i]
k∗
i=1) ̸= 0)

Intuitively, we “split” the event Eeval ∧ Ebad into three parts E1, E2, E3, so that we can
reduce Pr[Eeval ∧ Ebad] to the probability of breaking sumcheck soundness. In particular,
E3 implies that the reduced evaluation claim holds (i.e., Eeval holds), while the sumcheck
claim is false (i.e., h([α′

i, µ
′
i]
k∗
i=1) ̸= 0).

We first show that (Eeval ∧ Ebad) =⇒ (E1 ∨ E2 ∨ E3). Note that Eeval ∧ Ebad implies
that Eext occurs and [⃗fi]

k∗
i=1 are well-defined. Moreover, if E1 doesn’t occur, then E1 ∧Ebad

occurs, that is,

∃i ∈ [k∗] :
(
mle

[
f̂i

]
(⃗ri) ̸= v̂i

)
∨ (pi(β⃗

′) ̸= 0) ,

which implies that E2 ∨ E3 occurs. Thus, (Eeval ∧ Ebad) =⇒ (E1 ∨ E2 ∨ E3) and

Pr[Eeval ∧ Ebad] ≤ Pr[E1 ∨ E2 ∨ E3] ≤ Pr[E1] + Pr[E2] + Pr[E3] . (26)

Now, it suffices to bound the probabilities Pr[E1], Pr[E2], Pr[E3].

Claim 3. Pr[E1] ≤ logm/|C|.

Proof. Consider a mental experiment Exp1 that simulates ExtA,P∗
until Step 3. Exp1 out-

puts 1 if and only if

(∃i ∈ [k∗] : pi(x⃗) ̸= 0) ∧
(
pi(β⃗

′) = 0∀i ∈ [k∗]
)

where [pi(x⃗)]k
∗

i=1 are derived from [⃗fi]
k∗
i=1 output by SubExtP

∗
(inst, ψ). It is clear that

Pr[Exp1 = 1] ≥ Pr[E1]. Moreover, let i∗ ∈ [k∗] be the first index such that pi∗(x⃗) ̸= 0. Since
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[⃗fi]
k∗
i=1 in Exp1 is independent of ψ′, by the Generalized Schwartz Lemma (Lemma 2.4), the

probability that pi∗(β⃗′) = 0 is at most logm
|C| (over the randomness β⃗′). Thus Pr[E1] ≤

Pr[Exp1 = 1] ≤ logm
|C| .

Claim 4. Pr[E2] ≤ 2k∗/|C|.

Proof. Consider a mental experiment Exp2 that that simulates ExtA,P∗
until Step 3. Exp2

outputs 1 if and only if

(h([α′
i, µ

′
i]
k∗
i=1) = 0) ∧

(
∃i ∈ [k∗] :

(
mle

[
f̂i

]
(⃗ri) ̸= v̂i

)
∨ (pi(β⃗

′) ̸= 0)
)

where h is specified in Eq. (25), and [pi(x⃗)]k
∗

i=1 are defined given the witness [⃗fi]
k∗
i=1 de-

rived from SubExtP
∗
(inst, ψ). It is clear that Pr[Exp2 = 1] ≥ Pr[E2]. Moreover, since

[⃗fi]
k∗
i=1 in Exp2 is independent of ψ′, by the Generalized Schwartz Lemma (Lemma 2.4),

the probability that h([α′
i, µ

′
i]
k∗
i=1) = 0 is at most 2k∗

|C| (over the choice of [α′
i, µ

′
i]
k∗
i=1). Thus

Pr[E2] ≤ Pr[Exp2 = 1] ≤ 2k∗

|C| .

Claim 5. Pr[E3] ≤ 2b logm/|C|.

Proof. Consider a mental experiment Exp3 that simulates ExtA,P∗
until Step 3. Addition-

ally, it simulates P∗(inst,⊥, ψ′) to obtain claimed evaluations {θ′j} in the partial transcript
without providing folding challenges. Exp3 outputs 1 if and only if the verification at Step 4
passes and

(h([α′
i, µ

′
i]
k∗
i=1) ̸= 0) ∧ (∀i ∈ [k∗] : mle

[
f̂i

]
(⃗r′o) = θ′i) ,

where h is specified in Eq. (25) and [⃗fi]
k∗
i=1 are obtained from SubExtP

∗
(inst, ψ).

We show that Pr[Exp3 = 1] ≥ Pr[E3]. Recall that E3 implies that Eext occurs, which im-
plies that [⃗fi]

k∗
i=1 computed from SubExtP

∗
(inst, ψ) is identical to that from SubExtP

∗
(inst, ψ′).

Moreover, E3 implies that Eeval occurs, i.e., the evaluation check in the execution SubExtP
∗
(inst, ψ′)

passes. Since the witness [⃗fi]
k∗
i=1 extracted from SubExtP

∗
(inst, ψ′) is the same as that from

SubExtP
∗
(inst, ψ), we have that mle

[
f̂i

]
(⃗r′o) = θ′i for all i ∈ [k∗]. Therefore, with the same

randomness, if E3 happens, then Exp3 will output 1. Thus Pr[Exp3 = 1] ≥ Pr[E3].
Now, it suffices to bound Pr[Exp3 = 1]. For every i ∈ [k∗], we define pi(x⃗) from f⃗i

according to Eq. (17). We can rewrite pi(β⃗
′) as

pi(β⃗
′) =

∑
b⃗∈{0,1}logm

eq(β⃗′, b⃗) ·
b−1∏

j=1−b

(
mle

[
f̂i

]
(b⃗)− j

)
=

∑
b⃗∈{0,1}logm

g2,i(b⃗) , (27)

where g2,i is specified in Eq. (16). Similarly, we can rewrite mle
[
f̂i

]
(⃗ri) as

mle
[
f̂i

]
(⃗ri) =

∑
b⃗∈{0,1}logm

eq(⃗ri, b⃗) ·mle
[
f̂i

]
(b⃗) =

∑
b⃗∈{0,1}logm

g1,i(b⃗) , (28)
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where g1,i is specified in Eq. (15). Recall that g in Eq. (14) is defined as

g(b⃗) :=
k∗∑
i=1

[
α′
ig1,i(b⃗) + µ′ig2,i(b⃗)

]
.

By plugging-in Eq. (27) and Eq. (28), we have that

∑
b⃗∈{0,1}logm

g(b⃗) =
k∗∑
i=1

α′
i ·mle

[
f̂i

]
(⃗ri) +

k∗∑
i=1

µ′i · pi(β⃗′) . (29)

Therefore, the sumcheck statement

∑
b⃗∈{0,1}logm

g(b⃗) =
k∗∑
i=1

αiv̂i

holds if and only if h([α′
i, µ

′
i]
k∗
i=1) = 0. Recall that Exp3 = 1 implies that h([α′

i, µ
′
i]
k∗
i=1) ̸= 0,

i.e., the sumcheck statement does not hold. Meanwhile, note that the random evaluation
statement for g holds because

∀i ∈ [k∗] : mle
[
f̂i

]
(⃗r′o) = θ′i

and the verification at Step 4 passes. By the Generalized Sum-Check Theorem (Lemma 2.5),
Pr[E3] ≤ Pr[Exp3] ≤ 2b logm/|C| (over the randomness of r⃗′o).

In summary, we have that

Pr[Eeval ∧ Ebad] ≤ Pr[E1] + Pr[E2] + Pr[E3] ≤
logm

|C|
+

2k∗

|C|
+

2b logm

|C|
,

which finishes the proof of Lemma 3.7.

Thus, the success probability of the extractor is at least

Pr[Eext ∧ Evalid] ≥ ϵfold(A,P∗)− k∗

|Csmall|
− ϵbind −

(2b+ 1) logm+ 2k∗

|C|
,

which finishes the proof of Theorem 3.3.

Remark 3.3. Theorem 3.3 is applicable only when Πfold is instantiated as an interactive
protocol. In practice, Πfold can be converted into a non-interactive protocol using the Fiat-
Shamir transform. The knowledge analysis of the Fiat-Shamir transformed version of Πfold

is left as future work.
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3.3 Supporting Small Prime Modulus

In the protocol Πfold (Figure 3), if Rq
∼= Zd

q , the size of the strong sampling set C := Zq

is only q. This is the best we can hope for: Assume for contradiction that exists C where
|C| > q, by the pigeonhole principle, there exist two elements a,b in C ⊆ Rq

∼= Zd
q that

share the same value at the 1st slot of their NTT representation. Hence the 1st slot of
NTT(a−b) is zero, and a−b is a zero-divisor as c ·(a−b) = 0 for the element c ̸= 0 whose
NTT representation is (1, 0, . . . , 0). This contradicts with the fact that C is a sampling set.

To achieve 128-bit security, we need to use at least a 128-bit prime modulus in Πfold. In
practice, however, it would be significantly more efficient to use a smaller modulus, say a
32-bit prime, which is a good fit for GPUs that operate on 32-bit data types, or for CPUs
that operate on 32 or 64-bit integer types.

In this section, we describe an optimization that extends Πfold to support a small prime
modulus q. The key idea is to use q where Rq

∼= Ft
qτ for some τ > 1 such that qτ ≈ 2128.

Here Fqτ is an extension field of Fq. We note, however, that q cannot be too small since
we must preserve the hardness of the MSIS problem.

Let t ∈ N be a divisor of d and denote τ := d/t. Let q be a prime such that q ≡ 1 + 2t
(mod 4t) and qτ ≈ 2128. Recall from Section 2 that we have Rq

∼= Ft
qτ via the NTT

isomorphism. Thus we can rewrite the commitment opening relation RB
cm (Eq. (8)) as

Rτ,B
cm :=

(pp, cm ∈ Rκ
q ; f⃗ ∈ Rm

q ) :

(cm = Af⃗)∧
∀j ∈ [τ ] :(

f̂j ◦
[
⃝B−1

i=1 (f̂j − î) ◦ (f̂j + î)
]

= 0̂
)
 ,

here f̂ := (f̂1, . . . , f̂τ ) ∈ Rm×τ
q is the vector such that

NTT(f̂) := (NTT(f̂1), . . . ,NTT(f̂τ )) ∈ Fm×d
qτ

equals the coefficient embedding matrix of f⃗ (which is in Zm×d
q ), that is, NTT(f̂) = Coef (⃗f).

Given Rτ,B
cm , we can similarly generalize the expanded commitment opening relation RB

eval

(Eq. (9)) to Rτ,B
eval defined as

Rτ,B
eval :=

{
(pp, (⃗r, [v̂j ]

τ
j=1, cm) ∈ Rlogm

q ×Rτ
q ×Rκ

q ; f⃗ ∈ Rm
q ) :

(pp, cm; f⃗) ∈ RB
cm∧(

∀j ∈ [τ ] : mle
[
f̂j

]
(⃗r) = v̂j

) } ,
(30)

The reduction of knowledge from (Rτ,b
eval)

2k to Rτ,B
eval is almost identical to Πfold (Figure 3)

except for 2 modifications below.

• We define the challenge space C ⊆ Rq as the set of elements whose NTT repre-
sentation equals i multiplying the identity vector It := (1, . . . , 1) ∈ Ft

qτ (where i is
enumerated over Fqτ ), that is,

C := {ai ∈ Rq : NTT(ai) = i · It}i∈Fqτ
. (31)
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This ensures that C is a strong sampling set with size qτ ≈ 2128, because the difference
of any two distinct elements in C maps to a · It for some a in F×

qτ through the NTT
isomorphism, which has inverse a−1 · It. Thus we can achieve 128-bit security even if
q is significantly smaller than 2128 (given τ is large enough so that qτ ≈ 2128).

• We argue that all proofs in Section 3.2 will still be valid. Let [ρi]
2k
i=1 be the last

folding challenges (in Figure 3). For every i ∈ [2k], let Θi := [θi,j ]
τ
j=1 ∈ Rτ

q where
{θi,j ∈ Rq} are the claimed evaluations in the protocol execution. We denote by
NTT(Θi) := (NTT(θi,1), . . . ,NTT(θi,τ )) ∈ Fd

qτ . The folding verifier computes V̂o :=

[v̂o,j ]
τ
j=1 ∈ Rτ

q such that NTT(V̂o) ∈ Fd
qτ satisfies that

NTT(V̂o) =
2k∑
i=1

RotSum(ρi,NTT(Θi)) , (32)

where RotSum is defined in Lemma 2.1. Therefore, by Lemma A.1, we can extend

Lemma 3.2 to the case where Rq
∼= Fd/τ

qτ and the folding verifier can still verify the
folding proof. Moreover, by the 3rd claim in Lemma 2.1, we can extend Eq. (24) to

a more general setting where Rq
∼= Fd/τ

qτ . In this setting, the single linear equation
(over Rq) in Eq. (24) is extended to τ linear equations. Given this extension, all
proofs in Section 3.2 naturally follow.

4 A Lattice-based Folding Scheme for CCS

In this section, we construct a folding scheme for customizable constraint systems (CCS)
as introduced in [STW23a]. CCS is a generalization of Rank-1 Constraint Systems (R1CS)
that supports high-degree custom gates, enabling better expressiveness and applicability.
As discussed at the beginning of Section 3, this folding scheme enables us to build IVC/PCD
from Ajtai commitments. Our approach is highly modular and generic. We begin by
adapting the definition of customizable constraint systems [STW23a] to the ring setting.

Definition 4.1 (CCS over rings). Let pp := (nr, nc, t, ns, deg, ℓin) be the integer public
parameters2 and let R̄ be an arbitrary ring. Let i be an index that consists of (i) t matrices
M1, . . . ,Mt ∈ R̄nr×nc with O(nr + nc) non-zero entries; (ii) ns multisets S1, . . . , Sns ⊆ [t]
such that |Si| ≤ deg for all i ∈ [ns]; and (iii) ns scalars c1, . . . , cns ∈ R̄.

We denote by ppccs := (pp, i) the index-specific parameters. Given a tuple (ppccs, x ∈
R̄ℓin ; w ∈ R̄nc−ℓin−1) and let z⃗ := (x, 1,w) ∈ R̄nc. We say (ppccs, x; w) is in the relation Rccs

(over ring R̄) if and only if

ns∑
i=1

ci · ⃝j∈Si (Mj · z⃗) = 0nr .

2Informally, nr denotes the number of constraints, nc denotes the extended witness size and deg is the
custom gate degree.
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Here ⃝ denotes the Hadamard product between vectors. And 0 (and 1) is the additive (and
multiplicative) identity in R̄ respectively.

Remark 4.1 (Packing multiple CCS field constraints). If the ring R̄ is isomorphic to
Fk for a field F, we can pack k instance-witness pairs for the CCS relation over F into a
single instance-witness pair for the CCS relation over R̄. More precisely, a set of k tuples
((pp, ii), xi,wi)

k
i=1, are all in the relation Rccs over F if and only if the transformed tuple

((pp, i∗), x∗,w∗) is in the relation Rccs over R̄. Each entry e ∈ R̄ in (i∗, x∗,w∗) is set
such that NTT(e) = (e1, . . . , ek), where ei ∈ F is the corresponding entry in (ii, xi,wi) for
1 ≤ i ≤ k.

4.1 Lattice-based Committed CCS

Next, we introduce the lattice-based committed CCS relation RB
cmccs that extends the

commitment opening relation RB
cm in Eq. (8) to the CCS setting. A folding scheme for

RB
cmccs would allow us to build an IVC/PCD scheme.

Intuitively, a witness of the committed CCS relation consists of a pair (⃗f , w⃗), and the
relation checks that (i) w⃗ is a valid witness for the CCS instance xccs, (ii) f⃗ is a low-norm
opening of the Ajtai commitment cm, and (iii) f⃗ is the gadget decomposition of the witness
w⃗, meaning w⃗ = G× f⃗ for the gadget G. We formally define the relation below.

Definition 4.2 (Lattice-based committed CCS relation). Let Rq := Zq[X]/(Xd+1) where
q is a prime and d is a power of two. Let pp := (ppcm, ppccs) be the public parameters
where ppcm = (κ,m,B < q/2,A) is the public parameter for RB

cm (Eq. (8)) and ppccs =
(nr, nc, t, ns, deg, ℓin, i) (defined in Definition 4.1) is for Rccs (over Rq).

Set ℓ := m/nc ∈ N such that Bℓ ≥ q/2. Let G := Inc ⊗ [1, B, . . . , Bℓ−1] ∈ Znc×m
q be the

gadget matrix. The indexed relation RB
cmccs is defined as

RB
cmccs :=

{ (
pp, x := (cm ∈ Rκ

q , xccs ∈ Rℓin
q ); w := (⃗f ∈ Rm

q ,wccs ∈ Rn−ℓin−1
q )

)
s.t.

(ppcm, cm; f⃗) ∈ RB
cm ∧ (ppccs, xccs; wccs) ∈ Rccs ∧ (zccs = G× f⃗)

}
,

(33)
where zccs := (xccs, 1,wccs) ∈ Rnc

q .

Remark 4.2. The constraint zccs = G × f⃗ is used to capture that f⃗ is the “base-B” rep-
resentation of the original witness zccs in CCS. Crucially, consider a witness (⃗f ,wccs) for
instance (cm, xccs). We know that f⃗ is a low-norm opening for the Ajtai binding commit-
ment cm given that (cm, f⃗) is in RB

cm. This implies that wccs is also bound to cm because
the equation (xccs, 1,wccs) = G× f⃗ holds.

Remark 4.3. We set (xccs, 1,wccs) = G × f⃗ only for ease of exposition. Note that the
integrity of xccs is already guaranteed by the verifier checks. Thus it suffices to decompose
wccs to f⃗ and check the statement wccs = G× f⃗ .
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The expanded relation. Similar to the paradigm in Section 3.1, to construct a folding
scheme for Rcomp := RB

cmccs, we introduce a new relation Racc := RB
evalccs that augments

RB
cmccs with a multilinear evaluation statement. Note that in RB

evalccs, we replace the
high-degree custom gate relation RB

cmccs with a linearized relation Rlccs. Like the lineariza-
tion framework from Hypernova [KS23b], this adjustment is necessary because our folding
scheme runs sum-checks to reduce the norm constraints and the high-degree custom gate
constraints in RB

cmccs into linearized statements. Hence, we must modify the accumulated
relation accordingly. Notably, RB

evalccs extends RB
eval from Eq. (9).

Definition 4.3 (Lattice-based linearized CCS relation). Let pp := (ppcm, ppccs) be the
public parameters in Definition 4.2 where ℓ := m/nc ∈ N and Bℓ ≥ q/2. Without loss of
generality3, we assume that the number of rows nr in CCS matrices equals to the committed
witness length m.

We define the linearized CCS relation Rlccs as the set of tuples

(ppccs, x := (⃗r ∈ Rlogm
q , [uj ]

t
j=1 ∈ Rt

q, xccs ∈ Rℓin
q ,h ∈ Rq); w := wccs ∈ Rnc−ℓin−1

q )

such that for all j ∈ [t]:

uj =
∑

b⃗∈{0,1}lognc

mle [Mj ] (⃗r, b⃗) ·mle [zccs] (b⃗) . (34)

Here mle [Mj ] ∈ R≤1
q [X1, . . . , Xlognr+lognc ] and mle [zccs] ∈ R≤1

q [X1, . . . , Xlognc ] are the
multilinear extensions of matrix Mj ∈ Rnr×nc

q and zccs := (wccs,h, xccs) ∈ Rnc
q respectively.

RB
evalccs is defined as

RB
evalccs :=



(
pp, x := (⃗r, cm, v̂, [uj ]

t
j=1, xccs,h);

w := (⃗f ∈ Rm
q ,wccs)

)
s.t.

(zccs = Gf⃗) ∧ (ppcm, (cm, r⃗, v̂); f⃗) ∈ RB
eval

∧(ppccs, (⃗r, [uj ]
t
j=1, xccs,h); wccs) ∈ Rlccs

 , (35)

where G := Inc ⊗ [1, B, . . . , Bℓ−1] ∈ Znc×m
q and RB

eval is defined in Eq. (9).

4.2 A Generic Folding Scheme for CCS

In this section, we construct a folding scheme for Racc := RB
evalccs and Rcomp := RB

cmccs, or
equivalently, a reduction of knowledge (Definition 2.5) fromRB

evalccs×RB
cmccs toRB

evalccs. The
scheme is presented for modularity and illustration purposes. In Section 4.3, we introduce
an optimized version with better efficiency.

Similar to the strategy in Section 3.2, the construction consists of three steps.

3We can always pad dummy constraints/witnesses to enforce nr = m.
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Step 1: Linearization. First, we reduce the relationRB
evalccs×RB

cmccs toRB
evalccs×RB

evalccs

via a protocol Πccs (Figure 5) that reduces RB
cmccs to RB

evalccs. The protocol Πccs runs
a sum-check to reduce the high-degree custom gates check to a degree-1 check (e.g.,
a multilinear evaluation check). Similar to the expansion step in Section 3.2, the
linearization step reduces to a linear relation with evaluation-like statements.

Step 2: Decomposition. Next, using a protocol Πccsdec (Figure 6), we reduce the rela-
tion RB

evalccs ×RB
evalccs to a relation

(Rb
evalccs)

2k := Rb
evalccs × · · · × Rb

evalccs︸ ︷︷ ︸
2k

where b, k are chosen such that bk = B. We note that Πccsdec is an adaptation to
Πdec (Figure 2) with similar analysis.

Step 3: Folding. Finally, we reduce (Rb
evalccs)

2k back to RB
evalccs using a protocol Πccsfold

(Figure 7). Note that Πccsfold is an adaptation to Πfold (Figure 3) with similar analysis.

By the composition theorems for reductions of knowledge (Theorem 2.1, Theorem 2.2),
the composed protocol Πmccsfold := Πccsfold ◦Πccsdec ◦Πccs is a reduction of knowledge from
RB

evalccs ×RB
cmccs to RB

evalccs as desired. We formally state the result in Theorem 4.1.

Theorem 4.1. Let Rq
∼= Fd/τ

qτ for some τ ∈ N where τ | d and 1/qτ is in negl(λ).
Let Csmall ⊆ Rq be a strong sampling set for which 1/|Csmall| is in negl(λ), and the ex-
pansion factor T := ∥Csmall∥op ≤ c (Definition 6) for some c ∈ N. Let C be the strong
sampling set as in Eq. (31). Let ppcm := (κ,m,A, B < q/2) and ppccs := (nr :=
m,nc, t, ns, deg, ℓin, [Mj ]

t
j=1, [Si, ci]

ns
i=1) be the public parameters such that Bm/nc ≥ q/2 and

MSIS∞,q
κ,m,8TB is hard. Set b, k such that 2kc(b − 1) < B and bk = B. Let Πccs, Πccsdec,

Πccsfold be the protocols in Figure 5, Figure 6 and Figure 7, respectively. The composed
protocol Πmccsfold := Πccsfold ◦ Πccsdec ◦ Πccs is a public-coin reduction of knowledge from
relation RB

evalccs ×RB
cmccs to RB

evalccs.

Proof. The protocol is public-coin as the three subprotocols are all public-coin. For the
case where Rq

∼= Zd
q , the Theorem follows from Lemma 4.1, Lemma 4.2, Theorem 4.2 and

the knowledge composition theorems (Theorem 2.1 and Theorem 2.2). For the case where

Rq
∼= Fd/τ

qτ , the same optimization in Section 3.3 can be used to extend Theorem 4.1 to
support small modulus q.

4.2.1 Linearization: The reduction from RB
cmccs to RB

evalccs

By Theorem 2.2, to reduce from RB
evalccs × RB

cmccs to RB
evalccs × RB

evalccs, it suffices to con-
struct a protocol that reduces RB

cmccs (Eq. (33)) to RB
evalccs (Eq. (35)). We describe the
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Parameters: A strong sampling set C := Zq ⊆ Rq (Definition 2.1)

Input: x := (cm, xccs) ∈ Rκ
q ×Rℓin

q and w := (⃗f ,wccs) ∈ Rm
q ×Rnc−ℓin−1

q

Output: xo := (⃗ro ∈ Rlogm
q , v̂ ∈ Rq, cm, [uj ∈ Rq]

t
j=1, xccs, 1) and wo := (⃗f ,wccs)

The protocol ⟨P(pp, x; w),V(pp, x)⟩:
1. V→ P: V sends P a random vector β⃗ ←$ Clogm.
2. P↔ V: Let zccs := (xccs, 1,wccs) and let deg denote the CCS gate degree, define the

polynomial g ∈ R≤deg+1
q [X1, . . . , Xlogm]

g(x⃗) := eq(β⃗, x⃗) ·

 ns∑
i=1

ci ·

∏
j∈Si

 ∑
b⃗∈{0,1}lognc

mle [Mj ] (x⃗, b⃗) ·mle [zccs] (b⃗)

 .

P and V run a sum-check protocol for the claim
∑

b⃗∈{0,1}logm g(b⃗) = 0.

Let r⃗o ←$ Clogm be the sum-check challenge vector. The protocol reduces to a

random evaluation check g(⃗ro)
?
= s for some s ∈ Rq.

3. P → V: P sends V the values (v̂, [uj ]
t
j=1) where v̂ := mle

[
f̂
]

(⃗ro) and for every

j ∈ [t], uj is computed as

uj :=
∑

b⃗∈{0,1}lognc

mle [Mj ] (⃗ro, b⃗) ·mle [zccs] (b⃗) .

4. V computes e := eq(β⃗, r⃗o) and checks that

e ·

 ns∑
i=1

ci ·
∏
j∈Si

uj

 ?
= s .

5. V outputs xo := (⃗ro, v̂, cm, [uj ]
t
j=1, xccs, 1). P outputs wo := (⃗f ,wccs).

Figure 5: The protocol Πccs that reduces RB
cmccs to RB

evalccs.
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protocol Πccs in Figure 5. The protocol is inspired by the linearization technique from Hy-
pernova [KS23b]. Intuitively, it runs a sum-check to reduce the high-degree CCS relation
to a multilinear evaluation relation that has degree 1.

Lemma 4.1. Πccs is a reduction of knowledge from RB
cmccs to RB

evalccs for any bound B ∈ N.

Proof. We defer the proof to Appendix B.1.

4.2.2 Decomposition: The reduction from (RB
evalccs)

2 to (Rb
evalccs)

2k

Next, we describe the decomposition step that splits the witnesses and reduces the norms.
By Theorem 2.2, it suffices to construct a protocol Π∗

ccsdec that reducesRB
evalccs to (Rb

evalccs)
k,

and the reduction of knowledge from RB
evalccs×RB

evalccs to (Rb
evalccs)

2k is Πccsdec := Π∗
ccsdec×

Π∗
ccsdec that runs two instances of Π∗

ccsdec in parallel.
More generally, we construct a reduction of knowledge from a relation RB

ccshom to
(Rb

ccshom)k. Here RB
ccshom is a generalization of RB

evalccs (Definition 35) where we generalize
Ajtai commitments and gadget matrix multiplications to arbitrary Rq-module homomor-
phisms. Let U := Rt

q for some t ∈ N. Let M ∈ U (n+nin)×m denote a matrix over module U .
Let L : Rm

q → Y and Lw : Rm
q → Rn+nin

q denote some Rq-module homomorphisms. We

define the relation RB
ccshom as

RB
ccshom :=



pp := (L,Lw,M),

x := (⃗r ∈ Rlogm
q , v̂ ∈ Rq,u ∈ U , y ∈ Y, xw ∈ Rnin

q );

w := (⃗f ∈ Rm
q , w⃗ ∈ Rn

q ) s.t.

(L, (⃗r, v̂, y); f⃗) ∈ RB
hom∧

(z = Lw (⃗f)) ∧ (u =
〈
M × tensor(⃗r), z

〉
)


, (36)

where RB
hom is defined in Eq. (10), z := (xw||w⃗) ∈ Rnin+n

q and

tensor(⃗r) :=

logm⊗
i=1

(⃗ri, 1− r⃗i) ∈ Rm
q (37)

is the tensor product of {(⃗ri, 1− r⃗i)}logmi=1 .

Remark 4.4. RB
evalccs is a special case of RB

ccshom where RB
hom := RB

eval; Lw (⃗f) := Gf⃗
(where G is the gadget matrix); U := Rt

q; xw := (xccs,h); andM := (M1, . . . ,Mt), i.e., each

entry (e1, . . . , et) ∈ U ofM maps to the entries (ei)
t
i=1 in matricesM1, . . . ,Mt respectively.

We describe the protocol Π∗
ccsdec in Figure 6. The differences from Π∗

dec (Figure 2) are
highlighted in red , which are for computing the u-values and the CCS instances.

Lemma 4.2. Fix Rq
∼= Zd

q . For any B < q/2 and any b, k such that bk = B, Π∗
ccsdec is a

reduction of knowledge from RB
ccshom to (Rb

ccshom)k.

Proof. The proof is similar to that for Lemma 3.3. We defer the proof to Appendix B.2.
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Input: x := (⃗r, v̂, y,u, xw) and w := (⃗f , w⃗)
Output: [xi = (⃗r, v̂i, yi,ui, xw,i),wi = (⃗fi, w⃗i)]

k−1
i=0

The protocol ⟨P(pp, x; w),V(pp, x)⟩:
1. P computes (⃗f0, . . . , f⃗k−1)← splitb,k (⃗f) (Eq. (11)).

2. P→ V : P sends V the values [yi, v̂i,ui, xw,i]
k−1
i=0 where

yi := L(⃗fi) , v̂i := mle
[
f̂i

]
(⃗r) ,

ui :=
〈
M × tensor(⃗r),Lw (⃗fi)

〉
, xw,i := Lw (⃗fi)[1, nin]

3. V checks that
∑k−1

i=0 b
i · [yi, v̂i,ui, xw,i]

?
= [y, v̂,u, xw].

4. V outputs [xi = (⃗r, v̂i, yi,ui, xw,i)]
k−1
i=0 . P outputs [wi = (⃗fi,Lw (⃗fi))]

k−1
i=0 .

Figure 6: The protocol Π∗
ccsdec that reduces RB

ccshom to (Rb
ccshom)k.

4.2.3 Folding: The reduction from (Rb
evalccs)

2k to RB
evalccs

Finally, we describe the core protocol Πccsfold that folds 2k instance-witness pairs of Rb
evalccs

into a single instance-witness pair in Racc := RB
evalccs.

Similar to the treatment in Section 3.2.3, in the following, we assume that the homo-
morphism L in the public parameter is 2B-relaxed binding (Section 2.3) for challenge
space Csmall. For example, RB

evalccs is a special case of RB
ccshom by Remark 4.4 and the ho-

momorphism L(⃗f) := Af⃗ is 2B-relaxed binding given the hardness of MSIS∞,q
κ,m,8TB where

T = ∥Csmall∥op.
We describe the protocol Πccsfold in Figure 7, which reduces from (Rb

ccshom)2k toRB
ccshom.

The approach is similar to that in Section 3.2.3, where we fold the witnesses using small
random scalars from a strong sampling set, and run sum-check to enable extractions of
small-norm witnesses. For brevity, we assume that U := Rq, hence t = 1 and the matrix

M = M1 ∈ R(n+nin)×m
q . The protocol naturally extends to the case when U := Rt

q for
t > 1: we set {ui, ηi} to be elements over Rt

q, sample challenges {ζi} over Ct and replace
the multiplications between ζi and ui (and ηi) with inner product operations.

Theorem 4.2. Let Rq
∼= Zd

q . Let C, Csmall be strong sampling sets where 1/|C|, 1/|Csmall| =
negl(λ) and Csmall has expansion factor at most c (Definition 6). Let pp := (m,n, nin, B,L,Lw)
be the public parameter where the homomorphism L is 2B-relaxed binding (Section 2.3) for
challenge space Csmall. For any b, k such that 2kc(b − 1) < B, Πccsfold is a reduction of
knowledge from (Rb

ccshom)2k to RB
ccshom.

Proof. The proof is similar to that for Theorem 3.2. We defer the proof to Appendix B.3.
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Parameters: c ∈ N, C := Zq ⊆ Rq and a strong sampling set Csmall with ∥Csmall∥op ≤ c
Input: x := [xi := (⃗ri, v̂i, yi,ui, xw,i)]

2k
i=1 and w := [wi := (⃗fi, w⃗i)]

2k
i=1

Output: xo := (⃗ro, v̂o, yo,uo, xw,o), wo := (⃗fo, w⃗o)
The protocol ⟨P(pp, x; w),V(pp, x)⟩:

1. V→ P : V sends P [αi, µi, ζi]
2k
i=1 ←

$ (C × C × C)2k and β⃗ ←$ Clogm.
2. V↔ P : P and V run a sum-check protocol for the claim

∑
b⃗∈{0,1}logm

g(b⃗) =
2k∑
i=1

(αiv̂i + ζiui) .

Here the polynomial g(x⃗) ∈ R≤2b
q [X1, . . . , Xlogm] is defined as

g(x⃗) :=
2k∑
i=1

[αig1,i(x⃗) + µig2,i(x⃗)+ζig3,i(x⃗)] , (38)

where for all i ∈ [2k],

g1,i(x⃗) := eq(⃗ri, x⃗) ·mle
[
f̂i

]
(x⃗) , g2,i(x⃗) := eq(β⃗, x⃗) ·

b−1∏
j=−(b−1)

(
mle

[
f̂i

]
(x⃗)− j

)
,

g3,i(x⃗):= eq(⃗ri, x⃗) ·

 ∑
b⃗∈{0,1}log (n+nin)

mle [M1] (x⃗, b⃗) ·mle [zi] (b⃗)

 .

Here zi := (xw,i||w⃗i) for all i ∈ [2k]. The protocol reduces to check the evaluation

claim g(⃗ro)
?
= s where r⃗o ←$ Clogm is the sum-check challenge sampled by V.

3. P→ V : P sends V values
[
θi := mle

[
f̂i

]
(⃗ro), ηi

]
2k
i=1, where for all i ∈ [2k],

ηi :=
∑

b⃗∈{0,1}log (n+nin)

mle [M1] (⃗ro, b⃗) ·mle [zi] (b⃗) .

4. V computes [ei := eq(⃗ri, r⃗o)]
2k
i=1 and e∗ := eq(β⃗, r⃗o) and checks that

s
?
=

2k∑
i=1

αieiθi + µie
∗ ·

b−1∏
j=1−b

(θi − j) +ζieiηi

 .
5. V→ P : V sends P random challenges [ρi]

2k
i=1 ←

$ C2ksmall.

6. V output xo := (⃗ro, v̂o, yo,uo, xw,o) where NTT(v̂o) =
∑2k

i=1 RotSum(ρi,NTT(θi))

and [yo,uo, xw,o] :=
∑2k

i=1 ρi · [yi, ηi, xw,i].

7. P outputs f⃗o =
∑2k

i=1 ρi · f⃗i and w⃗o := Lw (⃗fo)[nin + 1, nin + n] .

Figure 7: The protocol Πccsfold that reduces (Rb
ccshom)2k to RB

ccshom. The Rq-module U is
set to U := Rq for brevity.
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4.3 An Optimized Folding Scheme for CCS

Recall that the folding scheme in Section 4.2 requires two sequential sumcheck executions.
The first sumcheck is in the linearization protocol Πccs (Figure 5) that reduces RB

cmccs to
RB

evalccs; the second sumcheck is in the folding protocol Πccsfold (Figure 7) that reduces
(Rb

evalccs)
2k to RB

evalccs. Note that a decomposition protocol (Figure 6) for witness norm
deduction is executed in the middle, thus it is unclear how to batch the two sumchecks
into one given that the witnesses of the two sumchecks are quite different.

Fortunately, with a simple trick, we build a folding scheme for CCS that executes
sumcheck only once. If the CCS gate degree deg and the range parameter b are set such
that deg ≈ 2b, both the prover time and verifier complexity can be improved by a factor of
two. Moreover, the prover saves the computation of an Ajtai commitment to the witness.

The core observation is that we can decompose the witness before running the lin-
earization protocol. Recall that in the committed CCS relation RB

cmccs in Definition 4.2,
the instance consists of a CCS public input xw and a commitment cm, and the witness is
a pair of vectors (⃗f , w⃗) such that

• (xccs, w⃗) is in the CCS relation,
• f⃗ is an opening of cm with norm less than B, and
• w⃗ = G× f⃗ where G is the gadget matrix.

Instead of transforming the CCS relation to RB
cmccs, we consider a variant of RB

cmccs called
splitted committed CCS relations. Set parameter b, k ∈ N such that bk = B. The instance
now consists of k vectors [xw,i]

k
i=1 and k commitments [cmi]

k
i=1, the witness is ([⃗fi]

k
i=1, w⃗)

such that
• (xccs :=

∑k
i=1 b

i−1 · xw,i, w⃗) is in the CCS relation,

• For every i ∈ [k], f⃗i is an opening of cm with norm less than b, and
• w⃗ = G× f⃗ where G is the gadget matrix and f⃗ :=

∑k
i=1 b

i−1f⃗i.
We provide the formal definition below.

Definition 4.4 (Splitted committed CCS relation). Let Rq := Zq[X]/(Xd + 1), pp :=
(ppcm, ppccs) be the parameters defined in Definition 4.2 where ppcm = (κ,m,B < q/2,A)
and ppccs = (nr, nc, t, ns, deg, ℓin, i). Set ℓ := m/nc ∈ N where Bℓ ≥ q/2. Let G :=
Inc ⊗ [1, B, . . . , Bℓ−1] ∈ Znc×m

q and set b, k ∈ N such that bk = B. The indexed relation

Rb,k
splitccs is defined as

Rb,k
splitccs :=


(
pp, x := [cmi, xccs,i]ki=1; w := (wccs, [⃗fi]

k
i=1)

)
s.t.

∀i ∈ [k] : (ppcm, cmi; f⃗i) ∈ Rb
cm∧

zccs := (xccs :=
∑k

i=1 b
i−1 · xccs,i, 1,wccs) = G× (

∑k
i=1 b

i−1 · f⃗i)
∧(ppccs, xccs; wccs) ∈ Rccs

 . (39)

Set b, k ∈ N such that bk = B. It is clear that if ([xw,i, cmi]
k
i=1, ([⃗fi]

k
i=1, w⃗)) is in the

splitted committed CCS relation Rb,k
splitccs, then ([xw, cm], (⃗f , w⃗)) is in relation RB

cmccs, where
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[xccs, cm] :=
∑k

i=1 b
i−1 · [xw,i, cmi] and f⃗ :=

∑k
i=1 b

i−1f⃗i. Hence, there is a straightforward

reduction from RB
cmccs to Rb,k

splitccs. Therefore, to build a folding scheme for CCS, it suffices

to set Rcomp := Rb,k
splitccs and Racc := RB

evalccs and construct a reduction of knowledge from
Rcomp ×Racc to Racc. The construction consists of two steps.

Step 1: Decomposition. Run protocol Π∗
ccsdec (Figure 6), to reduce Racc := RB

evalccs to

(Rb
evalccs)

k := Rb
evalccs × · · · × Rb

evalccs︸ ︷︷ ︸
k

.

Step 2: Batch Folding. Reduce Rb,k
splitccs × (Rb

evalccs)
k back to RB

evalccs by running the
protocol Πbatch below.

4.3.1 Batch Folding: The reduction from Rb,k
splitccs × (Rb

evalccs)
k to RB

evalccs

Using the techniques from previous sections, we can perceive all of the following statements
(underlying Rb,k

splitccs and Rb
evalccs) as sumcheck statements:

• The multilinear evaluation statements underlying (Rb
evalccs)

k;
• The linearized CCS statements (i.e. Rlccs from Definition 4.3) underlying (Rb

evalccs)
k;

• The range proof statements (with norm b) underlying Rb,k
splitccs and (Rb

evalccs)
k;

• The high-degree CCS gate-check (i.e. Definition 4.1) underlying Rb,k
splitccs.

Intuitively, the protocol Πbatch runs a sumcheck protocol to reduce all statements above
into a folded statement in RB

evalccs. We formally describe the protocol below. To make the
notation consistent with the folding protocol Πccsfold (Figure 7), we denote L and Lw as
the module homomorphisms L(⃗f) := Af⃗ and Lw (⃗f) := Gf⃗ (where G is the gadget matrix),
and we set nin := ℓin + 1 and n := nc.

The protocol Πbatch that reduces Rb,k
splitccs × (Rb

evalccs)
k to RB

evalccs:

Parameters: c ∈ N, strong sampling sets4 C := Zq ⊆ Rq and Csmall with ∥Csmall∥op ≤ c
Input:

• x :=
(

[xi := (⃗ri, v̂i, yi, [u
j
i ]
t
j=1, xw,i)]

k
i=1 , x

′ := [xccs,i, y′i]
k
i=1

)
and

• w :=
(

[wi := (⃗fi, w⃗i)]
k
i=1 ,w

′ := (wccs, [⃗f
′
i ]
k
i=1)

)
Output: xo := (⃗ro, v̂o, yo, [u

j
o]tj=1, xw,o), wo := (⃗fo, w⃗o)

The protocol ⟨P(pp, x; w),V(pp, x)⟩:
1. V→ P : V sends P

β⃗ ←$ Clogm, γ ←$ C, [αi, µi, µ
′
i]
k
i=1 ←

$ (C × C × C)k, [ζji ←
$ C]i∈[k],j∈[t] .

4C can be any strong sampling sets, we set C := Zq for efficiency reasons.
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2. V↔ P : P and V run a sum-check protocol for the claim

∑
b⃗∈{0,1}logm

g(b⃗) =
k∑

i=1

αiv̂i +
k∑

i=1

t∑
j=1

ζji u
j
i .

Let d := max(2b, deg + 1). The polynomial g(x⃗) ∈ R≤d
q [X1, . . . , Xlogm] is defined as

g(x⃗) := γg′ccs(x⃗) +

k∑
i=1

[
αig

i
eval(x⃗) + µig

i
rg(x⃗)

]
+

k∑
i=1

t∑
j=1

ζji g
i,j
lccs(x⃗) +

k∑
i=1

µ′ig
′i
rg(x⃗) .

(40)

Set xccs :=
∑k

i=1 b
i−1xccs,i and let zccs := (xccs, 1,wccs). The polynomial g′ccs is

g′ccs(x⃗) := eq(β⃗, x⃗) ·

 ns∑
i=1

ci ·

∏
j∈Si

 ∑
y⃗∈{0,1}logn+nin

mle [Mj ] (x⃗, y⃗) ·mle [zccs] (y⃗)

 .

(41)
For all i ∈ [k],

gieval(x⃗) := eq(⃗ri, x⃗) ·mle
[
f̂i

]
(x⃗) ,

girg(x⃗) := eq(β⃗, x⃗) ·
b−1∏

j=−(b−1)

(
mle

[
f̂i

]
(x⃗)− j

)
,

g
′i
rg(x⃗) := eq(β⃗, x⃗) ·

b−1∏
j=−(b−1)

(
mle

[
f̂ ′i

]
(x⃗)− j

)
.

For all i ∈ [k], j ∈ [t], denote zi := (xw,i||w⃗i) = Lw (⃗fi),

gi,jlccs(x⃗) := eq(⃗ri, x⃗) ·

 ∑
y⃗∈{0,1}log (n+nin)

mle [Mj ] (x⃗, y⃗) ·mle [zi] (y⃗)

 .

The protocol reduces to check the evaluation claim g(⃗ro)
?
= s where r⃗o ←$ Clogm is

the sum-check challenge sampled by V.
3. P→ V : P sends V values[

θi := mle
[
f̂i

]
(⃗ro); θ

′
i := mle

[
f̂ ′i

]
(⃗ro)

]k
i=1

;

For all i ∈ [k], j ∈ [t], denote by zi := Lw (⃗fi) and z′i := Lw (⃗f ′i). P send V

ηi,j :=
∑

y⃗∈{0,1}log (n+nin)

mle [Mj ] (⃗ro, y⃗) ·mle [zi] (y⃗) ,
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and
ηi,j∗ :=

∑
y⃗∈{0,1}log (n+nin)

mle [Mj ] (⃗ro, y⃗) ·mle
[
z′i
]

(y⃗) .

4. V computes [ei := eq(⃗ri, r⃗o)]
k
i=1 and e∗ := eq(β⃗, r⃗o) and checks that

s
?
=

k∑
i=1

αieiθi + µie
∗

b−1∏
j=1−b

(θi − j)

+
k∑

i=1

t∑
j=1

ζji eiη
i,j

+

k∑
i=1

µ′ie
∗

b−1∏
j=1−b

(
θ′i − j

)
+ γe∗

 ns∑
i=1

ci ·
∏
j∈Si

(
k∑

ℓ=1

ηℓ,j∗ bℓ−1

)
5. V→ P : V sends P random challenges [ρi]

k
i=1 ←

$ Cksmall and [ρ′i]
k
i=1 ←

$ Cksmall.

6. V output xo := (⃗ro, v̂o, yo, [u
j
o]tj=1, xw,o) where

NTT(v̂o) =

k∑
i=1

RotSum(ρi,NTT(θi)) +

k∑
i=1

RotSum(ρ′i,NTT(θ′i))

yo =

k∑
i=1

ρi · yi +

k∑
i=1

ρ′i · y′i

∀j ∈ [t] : ujo =
k∑

i=1

ρiη
i,j +

k∑
i=1

ρ′iη
i,j
∗

xw,o =
k∑

i=1

ρixw,i + ρ′1 · [xccs,1, 1] +
k∑

i=2

ρ′i · [xccs,i, 0] .

7. P outputs f⃗o =
∑k

i=1 ρi · f⃗i +
∑k

i=1 ρ
′
i · f⃗ ′i and w⃗o := Lw (⃗fo)[nin + 1, nin + n].

Lemma 4.3. Let Rq := Zq[X]/(Xd+1) ∼= Zd
q , pp := (ppcm, ppccs) be the parameters defined

in Definition 4.2 where ppcm = (κ,m,B < q/2,A) and ppccs = (nr = m,nc, t, ns, deg, ℓin, i)
such that Bm/nc ≥ q/2. Let C, Csmall be strong sampling sets where 1/|C|, 1/|Csmall| =
negl(λ) and Csmall has expansion factor T := ∥Csmall∥op ≤ c (Definition 6). Assume that
MSIS∞,q

κ,m,8TB is hard. For any b, k such that 2kc(b − 1) < B and bk = B, Πbatch is a

reduction of knowledge from Rb,k
splitccs × (Rb

evalccs)
k to RB

evalccs.

Proof. We defer the proof to Appendix B.4.

By Lemma 4.3 and Lemma 4.2 and the knowledge composition theorem (Theorem 2.1),
we obtain the theorem below.
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Theorem 4.3. Let Rq, C, Csmall, ppcm = (κ,m,B,A), ppccs = (nr, nc, t, ns, deg, ℓin, i),
and b, k be defined as in Lemma 4.3. Πbatch ◦ Πccsdec is a reduction of knowledge from
Rb,k

splitccs ×R
B
evalccs to RB

evalccs.

Remark 4.5 (Supporting small prime modulus). The optimization in Section 3.3 can be
used to extend Theorem 4.3 to support small modulus q, i.e., Theorem 4.3 still holds when

Rq
∼= Fd/τ

qτ for any τ ∈ N that divides d.

IVC proof compression. In the final step of IVC/PCD, the final IVC verifier needs to
check witnesses for two statements, one in Rcomp and one in Racc. A naive approach is
letting the prover send the statement witnesses, and the verifier checks the statements in
the clear. We can further improve the verifier complexity by generating another SNARK
(e.g., Stark or LaBRADOR) that proves the correctness of the two final statements. Then
the verifier only needs to check the SNARK proof.

However, in the optimized folding scheme for CCS, the statement in Rcomp := Rb,k
splitccs

is more expensive to prove, as it involves checking the openings of k (rather than 1)
commitments. Fortunately, we observe that in the last IVC step, there is no need to
translate the online IVC statement into a committed CCS relation statement, because
the committed CCS relation is only helpful when you need to fold the statement further.
Instead, it is sufficient to translate the IVC statement as a CCS relation statement. The
SNARK only needs to prove the IVC statement (plus the statement in the accumulated
relationRacc) without checking additional commitment openings inside the SNARK circuit.

Alternatively, one can also fold the last two statements, one in Rcomp and one in Racc,
into a statement in Racc, so the SNARK only needs to prove a single statement in Racc

(plus the folding verification logic). There is no need to prove any logic related to Rcomp.
Additionally, we can make the final SNARK proof zero knowledge, thereby hiding secret
information.

5 Performance Estimates

We specify the complexity of the folding schemes in Table 1. For CCS relations, we
consider the optimized folding scheme in Section 4.3. Recall that τ denote the extension
field degree such that Rq

∼= Fqτ , κ is the rank of the MSIS matrix. (nr, nc, t, ns, deg, ℓin)
is the parameter where nr, nc are the number of rows and columns of the CCS matrices,
t is the number of matrices in the CCS relation, ns is the number of sub-gates per CCS
constraint, and ℓin is the public input length.

Each instance consists of τ + κ+ t+ ℓin + 1 Rq-elements for the values [v̂i]
τ
i=1, [uj ]

t
j=1,

commitment cm ∈ Rκ
q and public input xw; additionally it takes logm field elements for

the challenge vector r⃗ in the strong sampling set C ∼= Fqτ .
Recall that b, k are the parameters such that bk equals the norm bound B. The prover

takes O(mk(κ+ t)) Rq multiplications to compute the commitments and u-values for the
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decomposed witness (Figure 6); and it takes O(mD log2D) Rq multiplications to run the
sum-check in protocol Πbatch (Section 4.3.1), where D := max(2b, deg).

We split the verifier into three phases:

• It takes k · (κ+ τ + t+ ℓin + 1) Rq multiplications to check the correctness of decom-
position in Figure 6;

• It takes ns deg +k(τ + t + 4bτ) Rq multiplications to check the high-degree random
evaluation claims and takes 2D logm Rq multiplications5 to run the sumcheck veri-
fiers in Figure 5. Additionally, it takes 2(k+1) logm field multiplications to compute
the k + 1 of eq values.6

• It 2k · (κ + τ + t + ℓin + 1) Rq multiplications to fold the decomposed instances in
Πbatch (Section 4.3.1).

• Besides, the Fiat-Shamir transform takes ≈ 2kκ hashes to absorb the inputs and the
decomposed commitments, and it takes ≈ 2k logm hashes to compute the sumcheck
verifier challenges.

To highlight its practicality, we consider the following example instantiation.

Relation Ajtai CCS

Instance
Rq : τ + κ
Fqτ : logm

Rq : τ + κ+ t+ ℓin + 1
Fqτ : logm

Prover
Rq-mul : O(mkκ)+

O(mb log2(b))
Rq-mul : O(mk(κ+ t))+

O(mD log2(D))

Verifier

Rq-mul : 4k · (κ+ τ)
4kbτ + 4b logm

F-mul : (4k + 2) logm
H : ≈ 2kκ+ 2b logm

Rq-mul : 3k · (κ+ τ + t+ ℓin + 1)+
ns deg +k(τ + t+ 4bτ)+

2D logm
F-mul : (2k + 2) logm
H : ≈ 2kκ+D logm

Table 1: The complexity of our folding schemes. Rq
∼= Fd/τ

qτ for some τ, d ∈ N where
τ | d. κ is the number of Rq-elements in the Ajtai commitment; (t, ns, ℓin, deg) are the CCS
parameters in Definition 4.1. Let B be the norm bound of the committed witness and b, k
are the parameters such that bk = B and D := max(2b, deg). Rq-mul and F-mul denote

multiplications over Rq
∼= Fd/τ

qτ and Fqτ respectively; H denotes a hash from R2
q to Rq.

5Note that each univariate random evaluation takes ≈ 2D multiplication in Rq, where D is the degree
of the univariate polynomial.

6The sum-check over Rq can be understood as batching d/τ sum-checks over field Fqτ ; thus the verifier
can simulate all sum-check operations over Fqτ without any NTT inversions.
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Instantiation. We set κ := 16, d := 64 and use a 64-bit prime q such that Rq
∼= Fd/4

q4
.

Assign the last challenge set Csmall as the set of elements in Rq with coefficients −1, 0,
1 or 2. Since d = 64, we have that |Csmall| = 464 = 2128. Moreover, Csmall is a strong
sampling set, because the difference of any two distinct elements has infinite norm at most

3 < q1/16√
16

= 4 and thus is invertible by Lemma 2.3. By Lemma 2.2, Csmall has expansion

factor at most 2d = 128. By the MSIS hardness bound in Section 2.2, we can achieve
128-bit security if

0.5 · (logm+ log d) + log(8∥Csmall∥op ·B) ≈ 2
√

log2(1.0045)dκ log q ,

which holds if logB ≤ 29− 0.5 · logm.
For simplicity, we set the CCS parameters (t, ns, ℓin) where ℓin = 0, t = ns = 1. Assume

that the number of CCS constraints (overRq) in the IVC/PCD recursive circuit is m ≤ 226.
We set B := 216 so that logB ≤ 29− 0.5 · logm ≤ 16. We emphasize that by Remark 4.1,
m constraints over Rq can be used to pack md/4 = 16m constraints over Fq4 , so an upper
bound m ≤ 226 leads to an upper bound 230 on the number of constraints over Fq4 , which
is more than enough.

Let’s see the concrete instance size, prover cost and verifier circuit size. We set b := 2
and k := 16 so that bk = 216 = B and 2kc(b− 1) = 2 · 16 · 128 · 1 < B = 216 as required in
Theorem 4.2.

The instance size is τ + κ+ t+ ℓin + 1 = 22 Rq-elements and logm Fqτ -elements. E.g.,
for m := 226, this is ≈ 12KB. The recursive folding verifier takes

|V| ≈ (1648 + (2D + 2) · logm) · |Rq|+ (2kκ+D logm) · |H|

CCS constraints. Here |Rq| denotes the number of constraints for a single Rq multiplica-
tion, |H| denotes the number of constraints for simulating a two-to-one hash. Note that
|Rq| ≤ 1 as it takes at most one contraint to simulate an Rq multiplication; by [Bou+23],
we can set |H| ≤ 100. The number of constraints is dominated by the Fiat-Shamir circuit,
which takes ≈ 50K constraints.

Remark 5.1. After fixing the parameter b, instead of setting k such that bk = B, we can
set k∗ as the minimal integer such that bk

∗ ≥ 2k∗(b − 1)∥Csmall∥op where ∥Csmall∥op is the
expansion factor of Csmall. In each folding step, we decompose the folded witness to k∗ ≤ k
parts, leading to an efficiency improvement. This works because after each folding step, the
norm of the folded witness is always less than 2k∗(b−1)∥Csmall∥op ≤ bk

∗
. This also indicates

that we can use different decomposition factors k∗, k for relations Racc and Rcomp.

Remark 5.2 (Supporting non-power-of-two cyclotomic rings). Our current analysis re-
quires R := Z[X]/(Xd + 1) to be a cyclotomic ring where d is a power-of-two. We conjec-
ture that the scheme remains secure when using a non-power-of-two cyclotomic ring and
leave the formal analysis for future work.
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6 Discussion of an Alternative Approach

In this section we discuss another technique for proving a norm bound on a committed
vector, called random projection. We explain why this approach, which may at first seem
appealing, does not seem to work in the context of folding.

Suppose we aim to fold 2k instance-witness pairs [xi,wi]
2k
i=1 of an Ajtai commitment-

based relation (e.g., Rb
eval from Eq. (9)) to a single instance-witness pair (xo,wo) in a

related relation (e.g., RB
eval where B > b). To extract knowledge of [wi]

2k
i=1 (with ∥wi∥∞ < b

for all i ∈ [2k]) from a folding prover P∗ that outputs correct witness in RB
eval, the most

naive approach is to have the prover directly transmit [wi]
2k
i=1 and let the verifier check

that [wi]
2k
i=1 have small norms and are consistent with the folded instance. This certainly

does not work as the verifier has complexity linear to the witness size while constructing a
IVC/PCD requires folding verifiers to be sublinear. Alternatively, the prover could generate
a proof demonstrating that each element of [wi]

2k
i=1 has a small norm, but this method is

excessively costly due to the requirement for Θ(m) range-check circuits, where m is the
witness length.

To circumvent these challenges, a natural idea is to leverage the random projection
technique from LaBRADOR [BS23]: The verifier samples and sends a random matrix
Π ∈ Zλd×md

q with small norms, where λ is the security parameter and m is the size of

w⃗ := [wi]
2k
i=1. Subsequently, the prover sends v⃗ := Πw⃗ ∈ Zλd

q and the verifier checks
that ∥v⃗∥∞ is small and v⃗ is computed honestly. Notably, the size of v⃗ is independent of
the witness size. Additionally, if ∥v⃗∥∞ has a small norm, by the Johnson-Lindenstrauss
Lemma [WL84; GHL22; BS23], the original witnesses also have small norms with high
probability (over the random choice of Π). Nonetheless, several challenges arise in the
context of folding schemes.

First, the size of the matrix Π is large, making it impractical for the verifier to gen-
erate Π itself. A potential solution involves having the verifier generate a short random
seed s, which the prover then uses to generate Π and subsequently proves the correctness
of Π’s generation. However, this approach introduces significant complexity in terms of
circuit size, as simulating PRG computations in circuits for a large output is prohibitively
expensive.

Second, how does the verifier check that v⃗ was computed honestly? It’s impractical
for the verifier to directly receive w⃗ and verify its correctness, as this would result in a
linear-sized verifier. An alternative approach could be to have the prover generate another
instance-witness pair (x′,w′) for proving v⃗ = Πw⃗ and then fold it together with the original
instances. However, this leads to a chicken-and-egg problem: how do we check that the
committed witness in w′ has a small norm? The most viable solution appears to involve
the prover computing a post-quantum secure SNARK π for proving that v⃗ = Πw⃗ and
Π = PRG(s) (where s is the short random seed), with the verifier subsequently verifying
the correctness of π. Concretely, this solution is inefficient due to the high complexity of the
SNARK verifier circuit. Furthermore, since we can already construct IVC/PCD directly
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from SNARKs [BCCT13; BCTV14], employing folding in conjunction with SNARKs serves
little purpose.

Even if we manage to overcome the aforementioned challenges, we still encounter an
inherent obstacle: the random projection idea cannot guarantee perfect completeness: Even
if the prover is honest and provides input witnesses with genuinely small norms, there
remains a small probability that the random projection v⃗ = Πw⃗ would yield large norms,
resulting in rejection by the verifier. We note that perfect completeness is essential for
constructing an IVC/PCD [Bün+21], and it appears inherently difficult to construct a
folding scheme that achieves perfect completeness using the random projection approach.

7 Conclusion, open problems, and future work

We presented LatticeFold, the first lattice folding scheme based on the Module SIS problem.
Our folding protocol ensures that the witnesses extracted from a folded statement always
satisfy the required norm bounds. This is done by requiring the prover to prove that
its starting witnesses are all low norm. This proof is done efficiently using the sumcheck
protocol.

There are many directions for future work. First, it is not difficult to extend the scheme
to support the Lasso [STW23b; ST23] lookup argument. This is because the sumcheck used
by Lasso is compatible with the sumchecks in LatticeFold. Second, it remains to implement
LatticeFold and experiment with its real-world performance. We estimate that LatticeFold
is competitive with the best pre-quantum folding schemes. It is likely to be the most
performant folding system for computations using high-degree CCS. LatticeFold could be
an example where (plausible) post-quantum security leads to better performance.

Finally, it would be interesting to explore the performance of LatticeFold using other
lattice-based additively homomorphic commitments schemes, for example, ones based on
SIS rather MSIS. In addition, recall that much of the work in the design of LatticeFold is due
to the fact that the Ajtai commitment scheme [Ajt96] is binding only when the committed
vector is low norm. If we had a lattice-based linearly homomorphic commitment that
was binding for arbitrary vectors, irrespective of their norm, then one could more directly
use that commitment scheme in the Hypernova [KS23b] or Protostar [BC23] systems.
Such commitment schemes exist (e.g., [Bau+18b]), however they are not succinct: the
commitment string is quite long. Using them would result in a SNARK with poor prover
performance and long proofs. Designing a succinct lattice-based linearly homomorphic
commitment scheme for committing to vectors of arbitrary norm is an interesting area for
further research.
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A Multilinear Evaluation Mapping Lemma

We derive a lemma from the fact that every ring homomorphism ϕ : R → S induces
a natural homomorphism ϕ′ : R[X] → S[X] over the polynomial rings. In the special
case where Rq

∼= Zd
q , consider a vector f⃗ ∈ Rm

q and a vector f̂ ∈ Rm
q such that NTT(f̂) =

Coef (⃗f). Let f1, . . . , fd be the multilinear extensions of the columns of Coef (⃗f) ∈ Zm×d
q . The

lemma asserts that a multilinear evaluation of mle
[
f̂
]

can be mapped to the evaluations

of f1, . . . , fd (over Zq) through the NTT isomorphism. This lemma helps maintain the

invariant of the evaluation statement v̂ = mle
[
f̂
]

(⃗r) after folding the witness f⃗ , even if the

evaluation point r⃗ ∈ Rlogm
q changes after the folding.

Lemma A.1. Let Rq
∼= Fd/τ

qτ for some τ ∈ N where τ | d. Let m ∈ N be a power of

two. For any f⃗ ∈ Rm
q , let f̂ := (f̂1, . . . , f̂τ ) ∈ Rm×τ

q denote the vector such that NTT(f̂) =

Coef (⃗f) ∈ Zm×d
q . Let r⃗ ∈ Rlogm

q and denote (⃗r∗1, . . . , r⃗
∗
d/τ ) ∈ (Flogm

qτ )d/τ the columns of

NTT(⃗r). For every i ∈ [τ ], we have that mle
[
f̂i

]
(⃗r) ∈ Rq is mapped to(

mle
[
Coef1+(i−1)·d/τ (⃗f)

]
(⃗r∗1), . . . ,mle

[
Coefi·d/τ (⃗f)

]
(⃗r∗d/τ )

)
∈ Fd/τ

qτ

by the NTT isomorphism. Recall that mle [·] denotes multilinear extensions (Definition 2.4)
and Coefj (⃗f) ∈ Zm

q is the jth (1 ≤ j ≤ d) column of Coef (⃗f).

Proof. By definition of f̂ , we have that

NTT(f̂) =
[
NTT(f̂1), . . . ,NTT(f̂τ )

]
=
[
Coef1(⃗f), . . . ,Coefd(⃗f)

]
. (42)
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Also observe that

(
mle

[
f̂1

]
(⃗r), . . . ,mle

[
f̂τ

]
(⃗r)
)

=

(〈
f̂j ,

logm⊗
i=1

(⃗ri, 1− r⃗i)

〉)τ

j=1

(43)

where
⊗

denotes tensor product over Rq. By the Chinese Remainder Theorem, the NTT
map is an isomorphism, and the lemma follows from the properties of an isomorphism.

B Deferred Proofs

B.1 Proof of Lemma 4.1

Proof. Public reducibility: Given input instance x = (cm, xccs) and transcript that includes
(⃗ro, v̂, [uj ]

t
j=1), the algorithm f outputs xo = (⃗ro, v̂, cm, [uj ]

t
j=1, xccs, 1) if the verifier check

passes; and ⊥ otherwise.

Completeness: Let (x; w) :=
(

(cm, xccs); (⃗f ,wccs)
)
← A(pp) denotes adversary A’s out-

put for R1 := RB
cmccs, where pp ← Setup(1λ) is the public parameter. WLOG, we as-

sume that (pp, x; w) ∈ RB
cmccs (where RB

cmccs is specified in Definition 4.2). The protocol
⟨P(pp, x,w),V(pp, x)⟩ proceeds as follows:

1. After running the sum-check and receiving the challenge vector r⃗o ∈ Clogm, P sends

V the value v̂ := mle
[
f̂
]

(⃗ro). Moreover, let zccs := (xccs, 1,wccs), for every j ∈ [t], P

sends uj :=
∑

b⃗∈{0,1}lognc mle [Mj ] (⃗ro, b⃗) ·mle [zccs] (b⃗).

2. V outputs ⊥ and halts if the check at Step 4 fails.

3. P outputs wo := w = (⃗f ,wccs). V outputs xo := (⃗ro, v̂, cm, [uj ]
t
j=1, xccs, 1).

First, by definitions of [uj ]
t
j=1, we have that V passes the check at Step 4 and accepts.

Next we argue that the protocol’s output (pp, xo; wo) is in the relation R2 := RB
evalccs

(Eq. (35)) and completeness holds. It suffices to check that zccs = Gf⃗ and certain state-
ments are in RB

eval and Rlccs respectively. We argue them one by one:

1. zccs = Gf⃗ because (pp, x; w) ∈ RB
cmccs by assumption.

2. (pp, (⃗ro, v̂, cm); f⃗) is in RB
eval because (i) v̂ = mle

[
f̂
]

(⃗ro) and (ii) (pp, cm, f⃗) is in RB
cm

by the assumption that (pp, x; w) is in R1 := RB
cmccs.

3. (ppccs, (⃗ro, [uj ]
t
j=1, xccs,h); wccs) is in Rlccs by the assignments of [uj ]

t
j=1.

Knowledge soundness: Let (x := (cm, xccs), state) ← A(pp) denote adversary A’s chosen

input for R1 := RB
cmccs, where pp← Setup(1λ) is the public parameter. The extractor Ext

proceeds as follows:
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1. Simulate the protocol ⟨P∗(pp, x, state),V(pp, x)⟩ where P∗ is the malicious prover.

2. Abort and output ⊥ if V rejects.

3. Otherwise, let (xo,wo) be the protocol output where xo := (⃗ro, v̂, cm, [uj ]
t
j=1, xccs, 1)

and wo := (⃗f ,wccs). Abort and output ⊥ if (pp, xo,wo) /∈ RB
evalccs (Eq. (35)).

4. Otherwise, if (pp, xo,wo) ∈ RB
evalccs , the extractor outputs w := (⃗f ,wccs).

Let Ebad denote the bad event that (i) V accepts and the protocol’s output (xo,wo) satisfies
that (pp, xo,wo) ∈ R2 := RB

evalccs but (ii) (pp, x; w) is not in R1 := RB
cmccs (Eq. (33)). To

prove knowledge soundness, it suffices to argue that Pr[Ebad] ≤ (2b+1) logm
|C| .

Note that if (pp, xo,wo) is in R2 := RB
evalccs (Eq. (35)), the following hold: (i) (zccs =

Gf⃗), (ii) (pp, cm; f⃗) is in RB
cm, and (iii) (ppccs, (⃗ro, [u]ti=1, xccs, 1); wccs) is in Rlccs (Eq. (34)).

From (i) and (ii), the sumcheck polynomial g is fixed before sampling r⃗o, as the witness
zccs is bound to cm. Additionally, from (iii) and because the verifier check at Step 4 passes,

the sum-check random evaluation g(⃗ro)
?
= s passes. Therefore, if

∑
b⃗∈{0,1}logm g(b⃗) ̸= 0,

by sumcheck soundness, the probability that (pp, xo,wo) ∈ RB
evalccs is at most 2b logm

|C| (over

the sum-check challenges).
Next we argue that if (ppccs, xccs; wccs) /∈ Rccs, then

∑
b⃗∈{0,1}logm g(b⃗) ̸= 0 with high

probability. Define multilinear polynomial p(x⃗) as

p(x⃗) :=
∑

b⃗∈{0,1}logm

eq(x⃗, b⃗) ·

 ns∑
i=1

ci ·
∏
j∈Si

 ∑
y⃗∈{0,1}lognc

mle [Mj ] (b⃗, y⃗) ·mle [zccs] (y⃗)

 .

By definition of g, it’s clear that
∑

b⃗∈{0,1}logm g(b⃗) = 0 if and only if p(β⃗) = 0. Moreover,

(ppccs, xccs; wccs) /∈ Rccs (Definition 4.1) implies that p(x⃗) ̸= 0 for some x⃗ ∈ {0, 1}logm and
p(x⃗) is not a zero polynomial. Since β⃗ ←$ Clogm is uniformly chosen from the sampling
set C (Defn 2.1), by the Generalized Schwartz-Zippel Lemma (Lemma 2.4), the probability
that p(x⃗) ̸= 0 while p(β⃗) = 0 is at most logm/|C|.

In summary, the probability that Ebad occurs is at most logm
|C| + 2b logm

|C| , which finishes
the proof.

B.2 Proof of Lemma 4.2

Proof. Public reducibility: Given instance x = (⃗r, v̂, y,u, xw) and transcript [v̂i, yi,ui, xw,i]
k−1
i=0 ,

one outputs [xi := (⃗r, v̂i, yi,ui, xw,i)]
k−1
i=0 if the verifier checks pass; otherwise it outputs ⊥.

Completeness: Let (x,w) :=
(

(⃗r, v̂, y,u, xw), (⃗f , w⃗)
)
← A(pp) denote adversary A’s chosen

instance-witness pair for R1 := RB
ccshom (Eq. (36)), where pp := (L,Lw,M) ← Setup(1λ)
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is the public parameter. WLOG we assume that (pp, x; w) is in RB
ccshom. The protocol

⟨P(pp, x,w),V(pp, x)⟩ proceeds as follows:

1. P computes F⃗ := (⃗f0, . . . , f⃗k−1) := splitb,k (⃗f) (Eq. (11)) and sends V values

yi := L(⃗fi) , v̂i := mle
[
f̂i

]
(⃗r) ,

ui :=
〈
M × tensor(⃗r),Lw (⃗fi)

〉
, (xw,i||w⃗i) := Lw (⃗fi) .

for every i ∈ [0, k).

2. V outputs ⊥ and halts if the check
∑k−1

i=0 b
i · [yi, v̂i,ui, xw,i]

?
= [y, v̂,u, xw] fails.

3. P outputs [⃗fi, w⃗i]
k−1
i=0 . V outputs [xi := (⃗r, v̂i, yi,ui, xw,i)]

k−1
i=0 .

We first show that if V accepts, then the protocol’s output satisfies that for all i ∈ [0, k),

(pp, (⃗r, v̂i, yi,ui, xw,i); (⃗fi, w⃗i)) ∈ Rb
ccshom .

This follows given how [yi, v̂i,ui, xw,i]
k−1
i=0 are computed, and because ∥⃗fi∥∞ < b for all

i ∈ [0, k) by the property of the algorithm splitb,k (⃗f).

It remains to argue that V will accept, that is, the check
∑k−1

i=0 b
i · [yi, v̂i,ui, xw,i]

?
=

[y, v̂,u, xw] passes. By Lemma 3.4, we have that

k−1∑
i=0

bi · yi = y ,

k−1∑
i=0

bi · v̂i = v̂ .

Since Lw is an Rq-module homomorphism, by the same argument for proving
∑k−1

i=0 b
i ·yi =

y, it also holds that
∑k−1

i=0 b
i · xw,i = xw. Finally, we have that

k−1∑
i=0

bi · ui =
k−1∑
i=0

bi ·
〈
M × tensor(⃗r),Lw (⃗fi)

〉
=

〈
M × tensor(⃗r),

k−1∑
i=0

bi · Lw (⃗fi)

〉

=

〈
M × tensor(⃗r),Lw

(
k−1∑
i=0

bi · f⃗i

)〉
=
〈
M × tensor(⃗r),Lw (⃗f)

〉
= u .

The 1st equality is by definition of [ui]
k−1
i=0 ; the 2nd equality is by the property of in-

ner products; the 3rd equality holds because Lw is an Rq-module homomorphism; the
4th equality is by definition of decomposition (Eq. (11)); the last equality holds because
(pp, x; w) is in R1 := RB

ccshom (Eq. (36)) by assumption, whereas RB
ccshom checks that〈

M × tensor(⃗r),Lw (⃗f)
〉

= u. Therefore, V will accept and thus completeness holds.

Knowledge soundness: Let (x := (v̂, y,u, xw), state) ← A(pp) denote adversary A’s chosen

input instance for R1 := RB
ccshom, where pp := (L,Lw,M) ← Setup(1λ) is the public

parameter. The extractor Ext proceeds as follows:
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1. Simulate the protocol ⟨P∗(pp, x, state),V(pp, x)⟩ where P∗ is the malicious prover.

2. Output ⊥ if V rejects. Otherwise let (xo,wo) := [(⃗r, v̂i, yi,ui, xw,i); (⃗fi, w⃗i)]
k−1
i=0 be the

protocol output (note that r⃗ is the same as that in the input instance x to pass the
verification check). The extractor outputs witness w := (⃗f , w⃗) where

f⃗ :=
k−1∑
i=0

bi · f⃗i , w⃗ :=
k−1∑
i=0

bi · Lw (⃗fi)[nin + 1, nin + n] . (44)

To prove knowledge soundness, it suffices to show that if V accepts and the output (xo,wo)
satisfies that (pp, xo,wo) ∈ R2 := (Rb

ccshom)k, then the extracted witness w satisfies that
(pp, x,w) ∈ R1 := RB

ccshom.

By Lemma 3.5, we have that (⃗r, v̂, y; f⃗) ∈ RB
hom if [(⃗r, v̂i, yi); f⃗i]

k−1
i=0 is in (Rb

hom)k. By
definition of RB

ccshom (Eq. (36)), it remains to argue that

zi := (xw,i||w⃗i) = Lw (⃗fi) ∀i ∈ [0, k) =⇒ z := (xw||w⃗) = Lw (⃗f) ; (45)

ui =
〈
M × tensor(⃗r), zi

〉
∀i ∈ [0, k) =⇒ u =

〈
M × tensor(⃗r), z

〉
. (46)

We first prove Eq. (45). By the verifier check
∑k−1

i=0 b
i · xw,i = xw and by Eq. (44), we have

that z =
∑k−1

i=0 b
i · zi. Since Lw is an Rq-module homomorphism, Eq. (45) holds by the

same argument as in Lemma 3.2 for proving y = L(⃗f) (where we replace y,L with z,Lw
respectively).

Similarly, Eq. (46) holds because

u =
k−1∑
i=0

bi · ui =
k−1∑
i=0

bi ·
〈
M × tensor(⃗r), zi

〉
=

〈
M × tensor(⃗r),

k−1∑
i=0

bi · zi

〉
=
〈
M × tensor(⃗r), z

〉
where the 1st equality is by the verifier check; the 2nd equality follows from the premise
in Eq. (46); the 3rd equality follows from the linearly homomorphic property of inner
products; the last equality holds as we’ve proved previously that z =

∑k−1
i=0 b

i · zi.
In summary, (⃗r, v̂, y; f⃗) is in RB

hom and Eq. (45), Eq. (46) hold true. Therefore, con-

ditioned on that (pp, [(⃗r, v̂i, yi,ui, xw,i); (⃗fi, w⃗i)]
k
i=0) is in R2 := (Rb

ccshom)k, the extracted

witness (⃗f , w⃗) will satisfy that (pp, (⃗r, v̂, y,u, xw); (⃗f , w⃗)) is in R1 := RB
ccshom, which com-

pletes the proof.

B.3 Proof of Theorem 4.2

Proof. Public reducibility: Given input instances [⃗ri, v̂i, yi,ui, xw,i]
2k
i=1 and the transcript

that includes challenges r⃗o, evaluations [θi]
2k
i=1, values [ηi]

2k
i=1, and folding challenges [ρi]

2k
i=1.
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The algorithm f outputs xo := (⃗ro, v̂o, yo,uo, xw,o) such that

NTT(v̂o) =

2k∑
i=1

RotSum(ρi,NTT(θi)) , [yo,uo, xw,o] :=

2k∑
i=1

ρi · [yi, ηi, xw,i]

if the verifier checks pass; and output ⊥ otherwise. (RotSum defined in Lemma 2.1.)

Completeness: Let

(x,w) := [xi = (⃗ri, v̂i, yi,ui, xw,i),wi = (⃗fi, w⃗i)]
2k
i=1 ← A(pp)

denote adversary A’s chosen instance-witness pair for R1 := (Rb
hom)2k, where pp :=

(L,Lw,M = M1) ← Setup(1λ) is the public parameter. WLOG we assume that (pp, x,w)
is in R1 := (Rb

ccshom)2k. The protocol ⟨P(pp, x,w),V(pp, x)⟩ proceeds as follows:

1. P and V honestly run the sum-check and P sends values [θi, ηi]
2k
i=1 honestly such that

for every i ∈ [2k],

ηi :=
〈
M × tensor(⃗ro), (xw,i||w⃗i)

〉
, θi := mle

[
f̂i

]
(⃗ro) . (47)

Here tensor(·) is defined in Eq. (37) and r⃗o is the sum-check challenge vector.

2. V outputs ⊥ and halts if the check at Step 4 fails.

3. Otherwise, let [ρi]
2k
i=1 be verifier’s last folding challenges. Set (v̂o, yo,uo, xw,o, f⃗o, w⃗o)

such that

NTT(v̂o) =
2k∑
i=1

RotSum(ρi,NTT(θi))

and

[yo,uo, f⃗o, (xw,o||w⃗o)] :=

2k∑
i=1

ρi · [yi, ηi, f⃗i, (xw,i||w⃗i)] . (48)

4. P outputs wo := (⃗fo, w⃗o). V outputs xo := (⃗ro, v̂o, yo,uo, xw,o).

First, we show that V accepts, meaning the verifier check at Step 4 will pass. This follows
from the definition of polynomial g (Eq. (38)) and the definitions of (ηi, θi)

2k
i=1.

It remains to argue that the protocol output (xo,wo) satisfies that (pp := (L,Lw,M), xo; wo) ∈
R2 := RB

ccshom (Eq. (36)). First, by Lemma 3.6, we have that (L, (⃗ro, v̂o, yo); f⃗o) ∈
RB

hom. Let zo := (xw,o||w⃗o). It remains to prove that (i) zo = Lw (⃗fo) and (ii) uo =〈
M × tensor(⃗ro), zo

〉
. Note that (i) holds true because

zo := (xw,o||w⃗o) =

2k∑
i=1

ρi · (xw,i||w⃗i) =

2k∑
i=1

ρi · Lw (⃗fi) = Lw (⃗fo) .
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The 1st equality follows from Eq. (48); the 2nd equality holds because Lw (⃗fi) = (xw,i||w⃗i)
for all i ∈ [2k], given the premise that (pp, x,w) ∈ (Rb

ccshom)2k; the last equality holds due

to the fact that f⃗o =
∑2k

i=1 ρi · f⃗i and by the homomorphic property of Lw.
Similarly, (ii) holds true because

uo =
2k∑
i=1

ρi · ηi =
2k∑
i=1

ρi ·
〈
M × tensor(⃗ro), (xw,i||w⃗i)

〉
=
〈
M × tensor(⃗ro), zo

〉
.

The 1st equality is by the definition of uo; the 2nd equality follows from the definition of
ηi in Eq. (47); the last equality holds given the assignment of zo := (xw,o||w⃗o) in Eq. (48)
and the homomorphic property of inner products.

In sum, (pp, xo,wo) is in R2 := RB
ccshom (Eq. (36)) and the completeness holds.

Knowledge soundness: The extractor ExtA,P∗
and the running time analysis are almost

identical to the proof of Theorem 3.3. The only difference is that the extractor ExtA,P∗
,

besides outputting [⃗fi]
2k
i=1, also outputs [w⃗i := Lw (⃗fi)[nin + 1, nin + n]]2ki=1.

Let Eext denote the event defined in the proof of Theorem 3.3, indicating that the
extractor recovers two identical witnesses out1, out2 ̸= ⊥ using two good sets of randomness
ψ and ψ′. To argue the success probability of extraction, we replace the events Ehom

(Eq. (21)) and Eeval (Eq. (22)) with E∗
hom and E∗

eval defined as follows.

E∗
hom := Eext ∧

(
∀i ∈ [2k] : (L(⃗fi) = yi) ∧

(
(xw,i||w⃗i) = Lw (⃗fi)

))
, (49)

E∗
eval := Eext ∧

(
∀i ∈ [2k] :

(
mle

[
f̂i

]
(⃗r′o) = θ′i

)
∧
(
η′i =

〈
M · tensor(⃗r′o), (xw,i||w⃗i)

〉))
.

(50)

Moreover, we redefine the event Ebad (Eq. (23)) as E∗
bad such that E∗

bad holds if and only
Eext = 1 and there exists i ∈ [2k] such that

ui ̸=
〈
M · tensor(⃗ri), (xw,i||w⃗i)

〉
or mle

[
f̂i

]
(⃗ri) ̸= v̂i or pi(x⃗) ̸= 0 . (51)

To reuse the proof of Theorem 3.3, it suffices to prove the following claims.

Claim 6. If Eext occurs, then E
∗
hom∧E∗

eval occurs. That is, for all i ∈ [2k], we have that (i)

L(⃗fi) = yi, (ii) mle
[
f̂i

]
(⃗r′o) = θ′i, (iii) (xw,i||w⃗i) = Lw (⃗fi), and (iv) η′i =

〈
M · tensor(⃗r′o), (xw,i||w⃗i)

〉
.

Proof. The equations (i), (ii) holds given the proof of Claim 2. To prove (iii), since w⃗i =
Lw (⃗fi)[nin + 1, nin +n] by definition, it suffices to show that xw,i = Lw (⃗fi)[1, nin]. Then (iii)
follows by replacing L, yi with Lw(·)[1, nin], xw,i everywhere respectively and reusing the
argument for (i).

To argue (iv), we observe that the map ϕ(·) :=
〈
M · tensor(⃗r′o), (·)

〉
, and the map Lw are

both Rq-module homomorphisms; thus, the composition Φ := ϕ ◦Lw is also an Rq-module

homomorphism. Note that if (iii) holds, then (iv) also holds if η′i = Φ(⃗fi), which follows by
replacing L, yi with Φ, η′i everywhere respectively and reusing the argument for (i).
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Claim 7. Pr[E∗
eval ∧ E∗

bad] ≤ (2b+1) logm+6k
|C| .

Proof. The proof is similar to that of Claim 3.7. The difference is that we redefine the
polynomial h in Eq. (25) to

h([Xi, Yi, Zi]
2k
i=1) :=

2k∑
i=1

(
v̂i −mle

[
f̂i

]
(⃗ri)
)
·Xi+

2k∑
i=1

pi(β⃗
′)·Yi+

2k∑
i=1

(〈
M · tensor(⃗ri), zi

〉
− ui

)
·Zi .

Note that the sumcheck statement holds if and only if h([αi, µi, ζi]
2k
i=1) = 0. This follows

from the fact that for all i ∈ [2k], let zi := (xw,i||w⃗i), we have that

∑
b⃗∈{0,1}logm

g3,i(b⃗) =
∑

b⃗∈{0,1}logm

eq(⃗ri, b⃗) ·

 ∑
y⃗∈{0,1}log(nin+n)

mle
[
M
]

(b⃗, y⃗) ·mle [zi] (y⃗) .


=

∑
y⃗∈{0,1}log(nin+n)

mle
[
M
]

(⃗ri, y⃗) ·mle [zi] (y⃗)

=
〈
M · tensor(⃗ri), zi

〉
.

Therefore, we can redefine the events E2 and E3 in the proof of Claim 3.7 as

E2 := Eext ∧ (h([α′
i, µ

′
i, ζ

′
i]
2k
i=1) = 0)∧(

∃i ∈ [2k] :
(
mle

[
f̂i

]
(⃗ri) ̸= v̂i

)
∨ (pi(β⃗

′) ̸= 0) ∨
(
ui ̸=

〈
M · tensor(⃗ri), (xw,i||w⃗i)

〉))
E3 := E∗

eval ∧ (h([α′
i, µ

′
i, ζ

′
i]
2k
i=1) ̸= 0)

and the same argument used in the proof of Claim 3.7 can be applied here.

B.4 Proof of Lemma 4.3

Proof. Public reducibility: Given instances ([xi]ki=1, x
′), transcripts that includes [θi, θ

′
i, ρi, ρ

′
i]
k
i=1,

[ηi,j , ηi,j∗ ]i∈[k],j∈[t] and sumcheck challenge r⃗o, if the folding verifier accepts, the algorithm
outputs the folded instance according to Step 6 of Πbatch, and outputs ⊥ otherwise.

Completeness: Given adversarily chosen statements that are in the corresponding relations,
we need to argue that the verifier will accept in an honest execution and the folded state-
ment is in the output relation. The argument for latter is identical to that in the proof
of Theorem 4.2. The argument for the verification check at Step 4 is also similar, but we
need to further show that for all j ∈ [t],

k∑
ℓ=1

bℓ−1ηℓ,j∗ =
∑

y⃗∈{0,1}log(n+nin)

mle [Mj ] (⃗ro, y⃗) ·mle [zccs] (y⃗) , (52)
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where zccs := (xccs, 1,wccs). This follows from the facts below. First, for all i ∈ [k], let f⃗ ′i
denote the i-th low-norm witness vector in x′. For all j ∈ [t], by definition we have that

ηi,j∗ =
∑

y⃗∈{0,1}log (n+nin)

mle [Mj ] (⃗ro, y⃗) ·mle
[
Lw (⃗f ′i)

]
(y⃗) .

Moreover, for all y⃗ ∈ {0, 1}log (n+nin), we have

k∑
ℓ=1

bℓ−1mle
[
Lw (⃗f ′i)

]
(y⃗) = mle

[
k∑

ℓ=1

bℓ−1Lw (⃗f ′i)

]
(y⃗) = mle

[
Lw

(
k∑

ℓ=1

bℓ−1f⃗ ′i

)]
(y⃗) = mle [zccs] (y⃗) .

Therefore, Eq. (52) holds and completeness follows.

Knowledge soundness: The extractor ExtA,P∗
and the running time analysis are identical to

the proof of Theorem 4.2. The main difference lies in the analysis of the success probability.
Here we need to further argue that the extracted witness for relation Rb,k

splitccs satisfies the
CCS relation (i.e., (ppccs, xccs; wccs) ∈ Rccs). To show this, let zccs := (xccs, 1,wccs), we
define the multilinear polynomial q(x⃗) the same way as we did in the proof of Lemma 4.1,

q(x⃗) :=
∑

b⃗∈{0,1}logm

eq(x⃗, b⃗) ·

 ns∑
i=1

ci ·
∏
j∈Si

 ∑
y⃗∈{0,1}logn+nin

mle [Mj ] (b⃗, y⃗) ·mle [zccs] (y⃗)

 .

Recall that (ppccs, xccs; wccs) ∈ Rccs if and only if the multilinear polynomial q(x⃗) is a zero
polynomial. Similar to the proof of Theorem 4.2, we need to define the bad event E∗

bad

and prove that E∗
bad happens with small probability. Here the definition of E∗

bad is almost
identical to that in Eq. (51) except that we add that E∗

bad also holds true if q(x⃗) ̸= 0.
Next, similar to Claim 7, we have to provide an upper-bound on the probability that

the evaluation check passes while the bad event happens, that is, Pr[E∗
eval ∧ E∗

bad]. Here,
E∗

eval is similarly defined as in Eq. (50) except that we add the following predicate: for all

i ∈ [k], let f⃗ ′i denote the i-th low-norm extracted witness for Rb,k
splitccs, then for all j ∈ [t],

check
ηi,j∗ =

∑
y⃗∈{0,1}log (n+nin)

mle [Mj ] (⃗ro, y⃗) ·mle
[
Lw (⃗f ′i)

]
(y⃗) .

Note that we can obtain an analogous claim as in Claim 6 with exactly the same proof.
Finally, we use the same technique in the proof of Claim 7 to bound the probability

Pr[E∗
eval∧E∗

bad]. A key observation is that q(β⃗) can be understood as a sumcheck statement,
that is,

q(β⃗) =
∑

b⃗∈{0,1}logm

g′ccs(b⃗)

where g′ccs(x⃗) is defined in Eq. (41). Therefore, by analogously defining the polynomial h
and adding the term q(β⃗) ·W inside h (where W is a formal variable), we can go through
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exactly the same route as in the proof of Claim 7 to argue that Pr[E∗
eval ∧ E∗

bad] is small.
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