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Abstract. Recent advances in Zero-Knowledge Proof and Argument (ZKP/ZKA) Systems
allow efficiently verifiable computation in the circuit-based model (where programs can be
represented as Boolean or arithmetic circuits). However, the circuit-based model is not widely
popular due to its unsuitability for big programs (as the circuit size is linear to the program’s
size). Hence, the research community began looking into the Random-Access Machine model
of programs, namely RAM programs, which is better suited for general-purpose program-
ming. Consequently, a flurry of work began researching to construct ZKP protocols for the
correct execution of RAM programs. In this paper, we also develop ZKP/ZKA for RAM
programs, with a particular focus on two properties: (i) parallelizability, which significantly
reduces prover (and verifier) computation, and (ii) genericity, which makes the construction
requires minimal assumptions and can be instantiated with any existing ZKP protocols. To
our knowledge, previous ZKP constructions for RAM programs either (i) are not known to
support proving or verifying in parallel, (ii) require making non-black-box use of specific
SNARK constructions, or (iii) even require proving computation of random oracle.
To this end, we propose the so-called Conditional Folding Scheme (CFS) as a building block
to construct ZKP/ZKA for RAM programs. We provide a non-trivial practical construction
for our CFS that is natively parallelizable, which significantly brings the runtime of proof
generation down to O(W logN) (compared to Ω(W ·N) in previous works), where W is the
witness size of the heaviest operation, and N is the number of execution steps. We rigorously
prove the security of our CFS (also for the case of folding in parallel). Our scheme can be
made non-interactive using the Fiat-Shamir transform. Our CFS is generic and does not
require a trusted setup (yielding a “transparent” argument). It can be adapted to construct
Parallelizable Scalable Transparent Arguments of Knowledge for RAM Programs that we
dub RAMenPaSTA.
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1 Introduction

Zero-knowledge proof for RAM programs. Zero-knowledge proofs (ZKP) allow a party, called
the prover, to convince another party, called the verifier, that the prover knows a witness of a
certain statement without disclosing any information beyond its validity. Over the past few years,
extensive research has been conducted to construct efficient ZKP protocols [IKOS07, GGPR13,
Gro16,BBB+18,XZZ+19,GWC19,BSBHR19,BSCR+19,CHM+20,MAGABMMT23] for programs.
These ZKP constructions mainly focus on proving computation of circuit-based programs, i.e., those
that can be represented as Boolean or arithmetic circuits. However, circuit-based programs are only
suitable for small programs (otherwise, the circuits would be huge, especially when the program has
loops or branches), are not developer-friendly, and thus yield a bad development experience. On the
contrary, RAM programs, where the programs can be represented as a sequence of computations in
the random-access machine (RAM) model, are better for big programs and much more friendly to
those that are used to programming the general-purpose CPU. Some results [BSCG+13,WSR+15,
MRS17,BCG+18,FKL+21,DdSGOTV22,GHAK23] set their focus on building ZKP protocols for
proving the correctness of RAM programs instead. Our goal of this work is also to design a ZKP
for RAM programs, with a particular interest in two properties: genericity and parallelizabiity.
Genericity and Standard Assumptions. Although there are various attempts to build ZKP
for RAM programs, many of them have to make non-black-box use of primitives such as Suc-
cinct Non-Interactive Argument of Knowledge (SNARKs) [BCCT12,GGPR13,Gro16], and global
random oracles [CJS14]. Several constructions using Incremental Verifiable Computation (IVC)
[KS22,BC24b,AS24] even require proving computation of random oracle (RO). Thus, they need to
prove the RO’s computation as a circuit of the employed hash function heuristically realizing RO
(a.k.a recursion heuristic) [KS22,BC23,BC24b]. (Note that proving the output of RO instantiated
by a hash function is not a standard way of guaranteeing security since RO is an ideal object that
any function cannot represent. Usually, we heuristically realize RO by a hash function via Fiat-
Shamir transform [FS87] since we do not need to prove the correct execution of the hash function.)
Consequently, all the constructions mentioned above have to rely on non-standard assumptions
found in SNARK and IVC, such as trusted setup, Algebraic Group Model (AGM) [FKL18], recur-
sion heuristic, and might not be compatible with other ZKP techniques. For example, those using
sumcheck [LFKN92,BSCR+19] have to make a non-black-box use of techniques and assumptions
found in SNARKs for sumcheck constraints and is only proven secure in the AGM. This is due to
employing polynomial commitment schemes whose instantiations are based on AGM. On the other
hand, a generic construction (i.e., making only black-box use of cryptographic primitive) would be
more beneficial since it can be deployed with any ZKP and does not have to rely on specific or
non-standard assumptions.

Notably, only [FKL+21,DdSGOTV22,YH24] and Dora [GHAK23] have managed to propose
efficient constructions achieving zero-knowledge while requiring only a homomorphic commitment
scheme and a ZKAoK protocol as building blocks, and do not require any non-standard assumption,
which is considered optimal in sense of genericity. However, these constructions suffer from a
common efficiency issue as follows. Consider a RAM program running in N steps for some positive
integer N . To prove the correctness of this RAM program, the prover and verifier have to engage
in an interactive protocol that requires Θ(N) rounds of communication in sequential. Therefore,
their protocols suffer from Ω(N) communication, computation, and especially network latency cost.
Additionally, requiring sequential execution means it is uncertain whether these protocols could
benefit from possible optimizations like producing the proofs in parallel, to be clarified below.
Parallelizability. A program’s execution is usually a sequence of computations. One way to opti-
mize the efficiency is to construct a ZKP for RAM program executions by making it parallelizable,
e.g., generating the proof in parallel by separating the proofs of instructions and then unifying
them into a single proof.

ZKPs for RAM programs with parallelizability have been mentioned and even considered in
several constructions, e.g., SuperNova [KS22] Mangrove [NDC+24] and SPARK [EFKP20]. More-
over, there exist several distributed ZKPs [WZC+18, XZC+22, LXZ+24] and the Proof-Carrying
Data (PCD) supporting parallelization [NDC+24] for general arithmetic circuits. Note that if we
employ an existing distributed ZKP protocol, on input a RAM program’s execution trace, and
view each prover as a thread, we could get a parallelizable ZKP for a RAM program execution.
Unfortunately, except [EFKP20], all the above protocols either have to make non-black-box use
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on existing SNARK constructions, such as [Gro16,ZXZS20,GWC19], or require recursion heuristic
in the case of [KS22, NDC+24], and hence, they all suffer from having to rely on non-standard
assumptions. Finally, while [EFKP20] only relies on hash functions, it mentions nothing about
ZK, and it is unknown whether [EFKP20] could achieve this property. Also, SPARK’s parallel
strategy only reduces the prover time to O(WN). This is less efficient for prover time compared
to [NDC+24] and distributed ZKP since their strategy allows reducing the prover time down to
O(W logN) or O(W logW ).
Research Questions. As analyzed above, there has not been an efficient ZKP for RAM programs
(with ZK) that achieves both parallelizability and genericity or relies only on standard assumptions.
Therefore, we ask the following questions.

Q.1 Can we construct a parallelizable ZKP/ZKA for RAM programs that require only generic prim-
itives, i.e., a homomorphic commitment scheme and a ZKAoK protocol, as building blocks?

Q.2 Can we rely only on standard assumptions (including a transparent setup)?
Q.3 And what would be the achievable efficiency when parallelizing?

1.1 Our Contributions

We answer Q.1 and Q.2 affirmatively by proposing a ZKAoK, dubbed RAMenPaSTA, for RAM
programs, that is parallelizable, generic with standard assumptions, and possibly transparent in
the setup4. RAMenPaSTA only requires black-box use of a homomorphic commitment scheme and
a compatible ZKAoK.

RAMenPaSTA is efficient and scalable (to answer Q.3). For “scalable”, we follow the definition
in [BSBHR19], requiring that the prover cost should be at most Õ(WN) and the verifier cost
should be at most poly(log(WN)). Later, when analyzing the cost, we will see that, RAMenPaSTA
is indeed scalable when executed in parallel. Compared to other constructions with minimal as-
sumptions, [FKL+21,DdSGOTV22,YH24,GHAK23], RAMenPaSTA has better efficiency since it
achieves parallelizability in proving the RAM programs. Consider a RAM program of N computa-
tion steps. To achieve genericity and efficiency, instead of running a ZKAoK and directly proving all
these N steps [BCG+17,FKL+21,DXNT23], we follow the Folding Scheme [KST22] paradigm and
propose Conditional Folding Scheme (a variant of folding scheme in [KST22]) to fold (in parallel)
all N instance-witness pairs with some conditions enforced between them, representing the N steps
and the necessary memory, into a single folded instance-witness pair. Then, we only need to apply
the ZKAoK to prove the validity of the folded pair, implying the validity of all N instance-witness
pairs. Details of our contributions are as follows.
Conditional Folding Scheme (CFS) and Generic Construction. Folding schemes such as
Nova [KST22] and subsequent works [BCMS20, BCL+21, BC23, KST22, KS22, KS23b, LXZ+24,
ZGGX23] do not enforce any condition between two instance-witness pairs when folding them. In
such schemes, to enforce some conditions between the folded pairs, they employ recursion heuristics
and possibly cycles of curves [H+] for consistency check of conditions validity, limiting the choices
of assumptions and proof techniques.

To avoid those issues, we propose Conditional Folding Scheme (CFS). Our CFS requires some
conditions between two to-be-folded instance-witness pairs to hold in order to fold them success-
fully. This is captured by the notion of knowledge soundness in our definition of CFS, i.e., the
extractor can extract valid witnesses with conditions satisfied. We then provide a generic con-
struction of CFS (called generic CFS) for folding two relaxed R1CS (rR1CS) instance-witness
pairs [KST22] with some conditions between them captured by an additional rR1CS. Our generic
CFS is non-trivial and does not rely on recursion heuristics and cycles of curves. We will discuss
more in detail in Section 2.2. Interestingly, compared with [KST22], we only fold by leveraging
the homomorphism of commitment schemes. When applying a ZKAoK for the folded instance, the
validity of the proof implies the validity of both to-be-folded instances (by knowledge extractors).

With the above generic CFS, we can extend to fold instance-witness pairs of an N -step com-
putation. Here, an N -step computation is a sequence of N consecutive computation steps that,
between any two consecutive steps, there are some relationships between them, e.g., the output of

4 The term RAMenPaSTA is from parallelizable scalable transparent arguments for RAM programs, i.e.,
“RAM and PaSTA”. Hence, we named RAMenPaSTA.
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the former step and the input of the latter one must be consistent. The folding process follows a
binary tree structure in a way that, by viewing the N computations as the N leaf nodes of the
tree, we can fold the nodes by appropriately picking two nodes and folding them into a new node
following the tree structure until reaching the root node.
Supporting Tuple Permutation and Tuple Lookup. We adapt our CFS for folding permuta-
tion and lookup arguments. For permutation arguments, we assume that there are two N -element
sequences where each sequence is distributed into N instance-witness pairs of the generic CFS.
Then, we can run the folding process and prove the permutation at once. A similar way is applied
to folding lookup arguments that N elements are a subset of a public sequence of size T .
Constructing RAMenPaSTA and Analysis. Consequently, we construct a ZKAoK for RAM
programs, dubbed RAMenPaSTA, that is parallelizable and generic from homomorphic commit-
ment schemes and a compatible ZKAoK. Here, permutation and lookup arguments aim to support
the consistency of memory accesses, correct instruction selections, and correct instruction compu-
tations by embedding PLONK’s arithmetization into rR1CS.

Our RAMenPaSTA supports parallelization for efficiency analysis, and its costs are relatively
efficient. First, it does not require a universal circuit. Secondly, when executing the protocol in
sequential, it manages to achieve linear size in terms of W · N + T in all costs, which is similar
to [GHAK23, FKL+21, DdSGOTV22], where N is the number of execution steps and T is the
number of instructions, and W is the witness size for each instruction. However, folding in parallel,
our scheme incurs only O(W logN+T ) prover and verifier time, dominated by the cost of executing
the CF schemes in parallel. This is much better than Dora since their prover time cannot be lower
than Ω(W ·N) since their protocol needs both prover and verifier to execute the steps sequentially.
When compared to distributed ZKP protocols [WZC+18,XZC+22,LXZ+24], our scheme is inferior
in terms of performance due to the O(logN) factor. However, our scheme is generic and can support
any ZKP instantiations, while [GHAK23, FKL+21, DdSGOTV22] have to make a non-black-box
use of a specific SNARK instantiation like [Gro16] or PLONK [GWC19] for such efficiency.

Regarding instantiation of RAMenPaSTA, we provide a potential instantiation of RAMen-
PaSTA presented in Figure 7 from compressed Σ-protocol theory (Section 7.1). Table 1 compares
our work and several existing ZKP constructions for the RAM programs.

Table 1. A comparison of our work (RAMenPaSTA) with several existing ZKP for RAM programs. TS
means ”trusted setup”, C is the size of the commitment to the witness, W is the witness size in a single
step, N is the number of computation steps, M is the memory size and T is the number of instructions in
the RAM program. While Pianist and Mangrove do not focus on proving RAM programs, it can be used
to prove any NP relation in parallel, including RAM programs.

Work Proof size Prover time Verifier time Assumptions

Franzese et al. [FKL+21] O(C(N + T )) O((N +M)W logW ) O((N +M)W logW ) Hom.Com+ZKAoK
Yang et al. [YH24] O(C(N +M)) O(W (N +M)) O(W (N +M)) Hom.Com+ZKAoK
Dora [GHAK23] O(C(N + T )) O(W (N + T )) O(C(N + T )) Hom.Com.+ZKAoK

Pianist [LXZ+24] O(N) Õ(W ) per thread O(1) DLOG+AGM+TS

MUXProof [DXNT23] O(1) Õ((N + T )W ) O(1) DLOG+AGM+TS

Dutta et al. [DGP+24] O(1) Õ(WN2) O(1) DLOG+AGM+TS (No ZK)
Mangrove (Parallel) [NDC+24] O(1) O(W logN) O(log(WN)) Recursion Heuristic
Nebula [AS24] O(logcW ) O(WN) O(logcW ) Recursion Heuristic (No ZK)

Ishai et al. [IOS23] O(logcM) Õ(N logN +M logM) O(logcM) Hash Func. (No ZK)
SPARK [EFKP20] O(logcN) O(WN) O(logcN) Hash Func. (No ZK)

Ours O(C(N + T )) O(W (N + T )) O(C(N + T )) Hom.Com.+ZKAoK
Ours (Parallel) O(C(N + T )) O(W logN + T ) O(C logN + T ) Hom.Com.+ZKAoK

1.2 Related Works

Incrementally Verifiable Computations (IVCs). An IVC allows a prover to prove to a veri-
fier the correct execution of a sequential computation. IVC can be either constructed from recur-
sive composition of SNARK [BCCT13,BSCTV14a], or accumulation/folding [BCMS20,BCL+21,
KST22, KS22, KS23b, LGZ+23, ZGGX23, BC24a, KS23a, AS24]. Ben-Sasson et al. [BSCTV14a]
showed that it is possible to handle RAM programs using IVC, making it one of the major
approaches for proving the correctness of RAM programs. Their work was later improved by
[KS22,BC23,BC24b,AS24] to achieve better efficiency. However, accumulation and folding-based
IVC constructions require recursion heuristic, i.e., proving computations of random oracle, which
is a non-standard way to achieve security as pointed out above, and this was proven to be theo-
retically impossible [HAN23,BCG24]. This means these IVC-based constructions do not achieve
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provable security even in ROM. While [BCCT13] achieves security without recursion heuristic due
to using SNARKs not requiring query to RO, it instead relies on the “knowledge-of-exponent”
assumption [BP04], which is another strong assumption and might only be instantiated with dis-
crete log-based ZKP protocols using such assumption such as [Gro10,GGPR13,Gro16] (and these
protocols also require trusted setup).
“Unroll”-Based Approaches for Proving RAM Programs. Another way is to “unroll” the
whole RAM program into a single set of constraints and then prove its correctness using ex-
isting ZKAoKs such as [WYKW21, IKOS07,GGPR13,GWC19] (the term “unroll” has been used
in [GHAK23,DXNT23]). Many works [BFR+13,BSCTV14b,WSR+15,BSBC+17,MRS17,BCG+18,
ZGK+18,EFKP20,FKL+21,DdSGOTV22, IOS23,DXNT23,YH24,CGG+24, JJ24,DGP+24] have
followed this approach to handle RAM programs. The advantage is that it avoids the recursion
heuristic problem in the IVC-based approach. However, current unroll-based constructions suffer
from inefficiency (especially prover time) or require a non-black-box use of cryptographic primitives.
For inefficiency, many works [BFR+13,BSCTV14b,WSR+15,DXNT23,CGG+24, JJ24,DGP+24]
rely on (i) specific SNARK constructions such as [Gro16,GWC19,CHM+20], (ii) quasilinear PCP
[BS08] or (iii) Merkle tree commitment [IOS23], therefore these works incur at least Ω(N logN)
prover time (for [IOS23], the prover cost is quasilinear in both the memory size M and the num-
ber of steps N). For non-genericity, all constructions mentioned above, except [FKL+21, DdS-
GOTV22, IOS23,YH24], have to rely on non-standard assumptions found in specific SNARKs (or
other primitives) such as AGM [FKL18], trusted setup or global random oracle [CJS14]. Finally,
while [EFKP20,FKL+21,DdSGOTV22,YH24] achieve generic constructions and enjoy linear prover
time and proof size, [EFKP20] does not provide zero knowledge for the execution because they
need to provide a short digest of the memory in intermediate steps (see Appendix A), and it is
unknown whether [FKL+21,DdSGOTV22,YH24] could support proving in parallel and the way
they handle (potentially different) instructions during the proving process. Even though [FKL+21]
and [DdSGOTV22] claim to support proving instructions, they need to employ universal circuits
in each step to prove instruction executions, which is rather expensive.
Parallel/Distributed ZKP. We consider the prover and verifier, each having O(N) threads, and
can execute the folding process in parallel with these threads. This can be seen as a special case of
distributed ZKPs, where each thread can be seen as a single prover. Thus, by using a distributed
ZKP protocol on input a RAM program, we could get a parallelizable ZKP protocol for RAM
program execution. So far, only [WZC+18,XZC+22,LXZ+24] have attempted to propose concrete
distributed ZKP protocols by distributing the constraints of SNARKs in [Gro16,ZXZS20,GWC19],
respectively, to each prover. Compared to ours, they all incur O(N) communication cost. For the
total proving and verification time, these complexities of their constructions are independent of N .
They thus could be more efficient than ours when W ≪ N , since ours are both O(W logN) (see
Appendix A for more details). However, to achieve such efficiency, they must make non-black-box
use of the underlying SNARKs and their non-standard assumptions.
Concurrent work: Dora. Dora [GHAK23] also leverages the folding scheme and proposes a
new primitive called ZK-bag to construct a ZKP for RAM program without the need for universal
circuits. However, their construction does not follow the IVC approach to achieve succinct proof size
but instead designs an interactive proof system that aims to achieve linear communication cost and
prover time like [FKL+21,YH24]. It also requires minimal assumption since only a homomorphic
commitment scheme is needed. This and the folding scheme make Dora the most similar work to
ours. However, whether Dora could support proving in parallel is unknown (see Appendix A for
more details), meaning that it might not receive the benefits of reduced proving and verification
time from parallelization.

1.3 Paper Organization

The paper is organized in the following structure.

– Section 1 is the introduction of the paper. The related work in this section is then extended in
Appendix A

– In Section 2, we describe the technical overview of our result.
– In Section 3, we present the necessary backgrounds, including commitment schemes, the in-

teractive protocol for folding relaxed R1CS instance-witness pairs, and hierarchical structures.
Extended preliminaries can be found in Appendix B.
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– In Section 4, we formally define CFS’s syntax and security properties.
– In Section 5, we propose a generic CFS CFgnr. Its security proof and detailed efficiency analysis

can be found in Appendix C.
– In Section 6, we propose a ΠRP employing the CFS described in Section 5 as a building block.

Its security proof can be found in Appendix D.
– In Appendix 7, we discuss potential instantiations of ΠRP described in Section 6.

2 Technical Overview

Notation for Hidden and Committed Secrets. In this technical overview, whenever writing
JAK for an object A (either a vector or a tuple of vectors), we understand that A is committed and
hidden. Moreover J·K is homomorphic, i.e., we can compute Jα ·A+ β ·BK := α · JAK + β · JBK for
some scalars α, β.

2.1 Defining CFS

Our definition of CFS follows the paradigm of Folding Scheme in [KST22]. Let R and Rcond be
NP relations. In Nova, Folding Scheme is used to fold two instance-witness pairs (I0, Z0), (I1, Z1)
into a single pair (I, Z) ∈ R iff (I0, Z0), (I1, Z1) ∈ R. Our definition is also similar, except with
one additional condition that (I, Z) ∈ R iff (I0, Z0), (I1, Z1) ∈ R and there exists a witness W
satisfying (I0, I1; Z0, Z1,W ) ∈ Rcond. For example, suppose Zi contains the input and output of
the sequential computation process. In this case, Rcond simply captures the condition “the output
of the current step to be exactly the input of the next step” and W is the intermediate witness for
this condition.

Hence, we define CFS as a triple containing an algorithm CF.Setup and two protocols CF.Fold
and CF.Prove. CF.Setup returns the public parameter used for folding and proving. CF.Fold allows
interactively folding the two pairs above into a single instance-witness pair (I, Z). Finally, CF.Prove
allows the prover and verifier to check the validity of (I, Z), indicating whether (I0, Z0), (I1, Z1) ∈ R
and (I0, I1; Z0, Z1,W ) ∈ Rcond. For security, we need CFS to be knowledge-sound, i.e., there exists
an extractor that, given I0, I1 and with rewinding capability, can extract the witnesses Z,Z0, Z1,W
satisfying the conditions above. We also define the honest-verifier zero-knowledge (HVZK) property,
modeled by a PPT simulator, to guarantee that the privacy of those witnesses is not compromised.

2.2 Generic Construction of CFS (Generic CFS)

For folding two instance-witness pairs, we denote the witness of the i-th pair as 𝕫i for i ∈ {0, 1}.
The witness 𝕫i is a tuple of some components (to be clarified below). Here, the prover commits to
these components into the corresponding commitments. Hence, we write J𝕫iK to indicate that the
prover keeps witness 𝕫i while both prover and verifier keep commitments to components in 𝕫i.
Structure of J𝕫iK for i ∈ {0, 1}. For simplicity, consider a program with 2-step computation
whose the step i, for i ∈ {0, 1}, has an execution trace as a witness 𝕫i. Moreover, there exist some
conditions between these two steps. For instance, the output of step 0 equals the input of step 1.
We come up with our design of instance-witness pairs for generic CFS. Initially, we propose

J𝕫iK = (J𝕩iK, JfrontiK, JreariK, J𝕩⋆i K) (1)

where

– J𝕩iK is an rR1CS instance-witness pair whose 𝕩i represents the witness for the computation in
step i;

– For i ∈ {0, 1}, fronti and reari are introduced s.t. rear0 (in 𝕫0) and front1 (in 𝕫1) contain those
needed for the condition between 𝕫0 and 𝕫1. This condition is captured by a circuit taking as
inputs rear0 and front1.

– J𝕩⋆i K is another rR1CS instance-witness pair playing the role of an accumulator to accumulate
the condition when folding. We will discuss how this accumulator works and why we need it
shortly below.
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𝕩 𝕩⋆

front rear

folded tuple 𝕫

cond. c for
𝕫0 → 𝕫1

𝕩⋆
0𝕩0

front0 rear0

tuple 𝕫0
𝕩1 𝕩⋆

1

front1 rear1

tuple 𝕫1

Fig. 1. Intuition for folding 𝕫0, 𝕫1 having the form of (1) with conditions.

Folding J𝕫0K and J𝕫1K. Our proposed way to fold J𝕫0K and J𝕫1K, with condition between rear0 and
front1, into J𝕫K = (J𝕩K, JfrontK, JrearK, J𝕩⋆K) is as follows.

1. As J𝕩0K and J𝕩1K respectively represent single computations for steps 0 and 1, respectively, we
simply apply Nova’s folding to fold them by using a random challenge α1 ∈ 𝔽 , into J𝕩K. Here,
𝕩 can be understood as the folded computation trace of both steps 0 and 1.

2. Since we need to capture the condition between rear0 and front1, we still keep front0 and rear1
in 𝕫 by setting JfrontK := Jfront0K and JrearK := Jrear1K. That is, front0 and rear1 are the input
and output, respectively, of the folded computation 𝕩 as it is the folded witness for both steps
0 and 1.

3. We now fold the condition. Since J𝕫0K and J𝕫1K are two consecutive instance-witness pairs,
when folding them, we must have some condition between rear0 and front1. For simplicity, we
assume that these conditions are captured by public R1CS matrices A′, B′ and C′ such that

A′ · c ◦B′ · c = C′ · c for c = (p∥rear0∥front1∥w) (2)

where p is some public vectors supporting the computations, and w is an auxiliary witness
supporting the computation of this R1CS. Regarding w, for example, to compute x3 where
x is the input and x3 is the output, we may need to compute x2, included in w. As shown
in Nova [KST22], we can transform an R1CS instance-witness pair into an rR1CS one by
setting the additional public value to be 1 and the error vector to be zero. Therefore, we can
capture the above condition by an rR1CS instance-witness pair J𝕪K, i.e., see Section 3.2 for
the setting J𝕪K = (𝕪.u, 𝕪.pub, J𝕪.z1K, . . . , J𝕪.z3K, J𝕪.eK) where 𝕪.u = 1, 𝕪.e = 0, 𝕪.z1 = rear0,
𝕪.z2 = front1 and 𝕪.z2 = w. By designing J𝕩⋆0K and J𝕩⋆1K to have the same structure with J𝕪K,
we can accumulate the condition, captured by J𝕪K, by running Nova’s folding twice to
(a) fold J𝕩⋆0K and J𝕩⋆1K, by using random challenge α1 ∈ 𝔽 , into J𝕪 ′K, and
(b) fold J𝕪 ′K and J𝕪K, by using a random challenge α2 ∈ 𝔽 , into J𝕩⋆K playing the condition

accumulator for J𝕫K.

Remark 1. Notice that we fold J𝕩0K and J𝕩1K into J𝕩K and fold J𝕩⋆0K and J𝕩⋆1K into J𝕩⋆K by using the
same α1. These two foldings are arguably independent (i.e., no common components). Using the
same challenge α1 for both foldings does not violate the security and helps save the communication
cost.

For better visualization of our folding process, we refer the readers to Figure 1. Notice that this
process of folding J𝕫0K and J𝕫1K only leverages the homomorphism property of the commitment
scheme according to Nova’s folding. Moreover, regarding knowledge soundness, it is possible to
extract the original witnesses by rewinding. HVZK is guaranteed due to the hiding property of the
commitment scheme and HVZK of CF.Prove as a ZKAoK.

2.3 Extension to Folding N Instance-Witness Pairs

Let N ∈ ℤ+ where N > 2. We can extend the above folding process of two instance-witness
pairs into a folding one for N instance-witness pairs, in which any two consecutive pairs have
some condition between them. To this end, we first define the following notion of binary-tree-like
hierarchical structures.
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J𝕫04K

CFold
cond.

𝕫02 → 𝕫24

J𝕫02K J𝕫24K

CFold CFold
cond.

𝕫01 → 𝕫12
cond.

𝕫23 → 𝕫34

J𝕫01K J𝕫12K J𝕫23K J𝕫34K

Fig. 2. An example of folding in parallel for a computation with 4 steps by following HS =
{(0, 1), (1, 2), (2, 3), (3, 4), (0, 2), (2, 4), (0, 4)}. Each box named “CFold” represents the folding process in
Figure 1. The prover with two parallel threads can fold two pairs (𝕫01, 𝕫12) and (𝕫23, 𝕫34) at depth 2 si-
multaneously as they can be folded independently. In this way, the prover obtains 𝕫02 and 𝕫24, which are
all the witnesses of depth 1. The prover then folds 𝕫02 and 𝕫24 into 𝕫04, which is the final witness.

Definition 1 (Hierarchical Structures). Let N ∈ ℤ+. A hierarchical structure HS = {(li, ri)}i∈[2N−1]

can be arranged as a binary tree as follows.

– The leaf nodes are indexed by (0, 1), . . . , (N − 1, N) from left to right.
– If (l, r) ∈ HS and l+ 1 < r, then there exists a unique j s.t. l < j, j < r and (l, j), (j, r) ∈ HS.

We see that (l, j) and (j, r) are direct child nodes of (l, r). In this case, we define the set HSfold
to contain all triples (l, j, r) s.t. l + 1 < r and (l, r), (l, j), (j, r) ∈ HS.

Remark 2. Also, we can see from Definition 1 that the root node is (0, N) ∈ HS. Moreover, (l, r)
is a leaf node iff r − l = 1. All nodes, except leaf nodes, are called non-leaf nodes.

Intuitively, we would like each non-leaf node (l, r) ∈ HS to contain a folded instance-witness
pair J𝕫lrK of the (l+1)-th to r-th pairs (among the N pairs introduced above). The subscript “lr”
is to indicate the node (l, r) ∈ HS. To this end, initially, in each leaf node (i− 1, i) ∈ HS, we assign
to it the i-th instance-witness pair, among the N pairs introduced above, and denote by J𝕫(i−1)iK.

For each (i, j, r) ∈ HSfold, suppose we already had J𝕫ljK and J𝕫jrK. By applying the CFS in
Section 2.2 to fold J𝕫ljK and J𝕫jrK, we obtain J𝕫lrK. In the end, we obtain the final folded instance-
witness pair J𝕫0N K at the root node (0, N) ∈ HS. For an example folding process, we refer the
reader to Figure 2. From Figure 2, it can be seen that we can proceed with the two foldings
independently in parallel. Hence, folding by following a binary-tree-like structure will help reduce
the computation cost significantly as follows.
A Strategy for Folding in Parallel. As HS is a binary-tree-like structure, we can fold in parallel
to make the protocol highly efficient. Folding in parallel can be done in many ways, depending on
the strategy. Here, we describe a simple strategy with N threads. Assume that the height of HS
is H = O(logN). We divide the nodes of HS into different depths from 0 to H as follows. A node
is of depth d if it is d-node away from the root node (0, N). Note that all foldings, at any depth
d, are all independent, i.e., no two foldings involve the same instance-witness pair. Hence, we can
use at most N threads to fold all the instance-witness pairs of depth d simultaneously to receive
the instance-witness pairs of depth d − 1. In this way, after H steps, we can reach J𝕫0N K. Again,
we refer the reader to Figure 2 for an example. Following HS, the folding time can be at most
H · tfold = O(tfold · logN) where tfold is the time for a single folding.

Remark 3. Note that, in a sequential computation process with N steps, we simply define J𝕫i(i−1)K
to be the instance-witness pair of its i-th step. By using CFS in Section 2.1 (which includes folding
conditions), we directly fold everything into Jz0N K such that all the conditions between J𝕫i(i−1)K
and J𝕫i(i+1)K are captured. In Nova [KST22], J𝕫i(i+1)K additionally must contains the witness of
correctly folding the previous steps to capture the constraints between J𝕫i(i−1)K and J𝕫i(i+1)K.
Since the folding step requires querying RO, thus proving J𝕫i(i+1)K in Nova requires modeling RO
as a circuit, which does not happen in our case.

2.4 Supporting Tuple Permutation and Tuple Lookup Arguments

We enhance the generic construction described in Section 2.2 to support proving tuple lookup and
permutation arguments in the following sense. Let s1, s2 ∈ ℤ+. Assume that each instance-witness
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pair J𝕫(i−1)iK at the leaf node (i− 1, i) of HS contains b
(0)
(i−1)i,b

(1)
(i−1)i ∈ 𝔽 s1 and b

(2)
(i−1)i ∈ 𝔽 s2 . We

consider the following conditions on b
(0)
(i−1)i,b

(1)
(i−1)i and b

(2)
(i−1)i.

– Tuple Permutation Argument. Show that (b
(0)
(i−1)i)i∈[N ] is a permutation of (b

(1)
(i−1)i)i∈[N ], i.e.,

there exists a permutation σ : [N ]→ [N ] satisfying (b
(0)
(i−1)i)i∈[N ] = (b

(1)
(σ(i)−1)σ(i))i∈[N ].

– Tuple Lookup Argument. Let T ∈ ℤ+ and (pj)j∈[T ] where pj ∈ 𝔽 s2 for j ∈ [T ]. Show that

{b(2)
(i−1)i}i∈[N ] ⊆ {pj}j∈[T ].

The above tuple permutation and tuple lookup arguments are necessary for our construction of
RAMenPaSTA, to be discussed in Sections 2.6 and 6, containing not only proving an N -step com-
putation but also proving memory consistency (using technique from [BCG+18,ZGK+18,FKL+21])
and instruction lookup.

Tuple Permutation Argument Adapted from [Hab22]. We can adapt Haböck’s technique
[Hab22] to handle tuple permutation arguments by proving that∑

i∈[N ]

binv
(0)
(i−1)i =

∑
i∈[N ]

binv
(1)
(i−1)i (3)

where binv
(j)
(i−1)i = (τ + ⟨b(j)

(i−1)i, (ω
k)k∈[0,s1−1]⟩)−1 ∀j ∈ {0, 1},∀i ∈ [N ] for τ, ω

$← 𝔽 . Intuitively,
compress each b

(j)
(i−1)i into a single value and prove (3).

Tuple Lookup Argument Adapted from [Hab22]. From Haböck’s technique [Hab22], we can
handle tuple lookup by proving the existence of (mulj)j∈[T ] ⊆ 𝔽 s.t.∑

i∈[N ]

binv
(2)
(i−1)i =

∑
j∈[T ]

pinvj (4)

where, for χ, ψ
$← 𝔽 , binv(2)(i−1)i = (χ + ⟨b(2)

(i−1)i, (ψ
k)k∈[0,s2−1]⟩)−1 for i ∈ [N ] and pinvj = mulj ·

(χ+ ⟨pj , (ψk)k∈[0,s2−1]⟩)−1 for j ∈ [T ].

Augmenting J𝕫lrK to Support Tuple Permutation and Tuple Lookup. Our observation
is that LHS and RHS of (3) and LHS of (4) are computed by taking the sum of components
with indices corresponding to the leaf nodes {(i − 1, i)}i∈[N ] of HS. However, the design of J𝕫lrK
in (1) is not sufficient for us to compute this sum. Therefore, our idea is to augment to each
leaf node (i − 1, i) an additional commitment-opening pair Js(i−1)iK s.t., after folding following
HS to compute JslrK := JsljK + JsjrK for (l, j, r) ∈ HSfold, the final instance-witness pair J𝕫0N K
has Js0N K =

∑
i∈[N ]Js(i−1)iK where the sum is computed by leveraging the homomorphism of the

underlying commitment scheme. For i ∈ [N ], if s(i−1)i contains binv
(j)
(i−1)i ∀j ∈ [3], then s0N contains∑

i∈[N ] binv
(j)
(i−1)i for j ∈ [3].

Unfortunately, regarding knowledge soundness, when having opening of JslrK, we cannot extract
back those for JsljK and JsjrK. To guarantee extractability, we additionally introduce JaljK and
JajrK respectively to J𝕫ljK and J𝕫jrK. Then, when folding, we can compute JalrK := JaljK + α1 ·
JajrK + α2

1 · (JsljK − JsjrK) for some random α1
$← 𝔽 which is quadratic in α1. Observe that,

for the same JaljK, JajrK, JsljK and JsjrK, if we rewind three times for with α1 i.i.d., then we

extract back alj , ajr, slj and sjr. Specifically, if we have distinct {a(j)lr }j∈[3], JslrK = JsljK + JsjrK,
Ja(j)lr K := JaljK + α

(j)
1 · JajrK + (α

(j)
1 )2 · (JsljK− JsjrK) ∀j ∈ [3] and the openings slr, a

(j)
lr for j ∈ [3],

then we can extract the openings alj , ajr and slj − sjr respectively of JaljK, JajrK and JsljK− JsjrK.
Since we have the opening slr of JslrK = JsljK + JsjrK, by the binding of commitment scheme, we
know that slr = slj + sjr. Hence, knowing both slj − sjr and slj + sjr helps recover slj and sjr by
using simple algebra.

Eventually, our final design of J𝕫lrK is the following form

J𝕫lrK = (J𝕩lrK, JfrontlrK, JrearlrK, J𝕩⋆lrK, JslrK, JalrK). (5)
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2.5 ZKP for RAM Program Execution: A High Level Overview

As we have described our building blocks, we now proceed to our final goal: Constructing a ZKP
protocol to prove the correctness of a RAM program. We follow the notation of [FKL+21] with
some modifications including the use of program counters {pci}i∈[0,N ] to select instructions. We
now briefly describe the execution of an N -step RAM program. Let M ∈ ℤ+ be the memory size,
mem = (memi)i∈[M ] be the memory and F ′ = {F ′

j}j∈[T ] be a public instruction set of cardinality
T . Initially, we assume that program counter pc0 = 1 and val0 is some initial input value. For
i ∈ [N ], the program counter pci−1 determines instruction Fi := F ′

pci−1
from F ′, which executes

on input vali−1 and returns output (pci, ℓi, vali,mopi) where ℓi ∈ [M ] is an address in memory and
mopi ∈ {0, 1} is a memory access operation. If mopi = 0, it is identified as a READ operation.
Otherwise, if mopi = 1, it is a WRITE operation. pci and vali are used for the next step while
ℓi, vali, and mopi determine the action for modifying the memory. Specifically, if mopi = 1 (i.e.,
WRITE), set memℓi := vali. Otherwise, set vali := memℓi when mopi = 0 (i.e., READ). The
output of the computation is valN . See Appendix B.1 for a detailed description of RAM programs.
Intuitively, with this description, the instance, witness, and major constraints for proving the
correctness of a RAM program are as follows.

– The public instance of the RAM program is (pc0, valout = valN ) and the private witness are the
value valin = val0 and the tuples (pci, ℓi, vali,mopi)i∈[N−1].

– 1st major constraint. F ′
pci−1

(vali−1) = (pci, ℓi, vali,mopi) ∀i ∈ [N ], also known as correct exe-

cution of instruction.

– 2nd major constraint. F ′
pci−1

∈ F ′ ∀i ∈ [N ], also known as correct selection of instructions.

– 3rd major constraint. If mopi = 0 and let j be the biggest integer less than i such that ℓj = ℓi
and mopj = 1, then it must hold that valj = vali. Also known as memory consistency check.

The 1st and 2nd major constraints are straightforward. The 1st constraint requires that the
result of each instruction is computed correctly, while the 2nd constraint requires that the next
instruction must be valid, i.e., it must be one of the specified instructions in F ′. The 3rd constraint
captures the correctness of reading/writing the values from/to the memory. More specifically, let ℓ =
ℓi = ℓj and suppose we read the value val from memℓ, then this value must be equal to the last time
memℓ was written, which is at time timej . To prove memory consistency, we use the technique from
[BCG+18, ZGK+18, FKL+21] by forming two sequences (macsi)i∈[N ] = (ℓi, timei, vali,mopi)i∈[N ]

and (macs′i)i∈[N ] where (macs′i)i∈[N ] is sorted via address then time log. Then it is well-known
[BCG+18,FKL+21] that memory consistency holds iff the following system (6) holds.

1 ≤ ℓi ≤M ∧mopi ∈ {0, 1} ∀i ∈ [N ],

timei−1 < timei ∀i ∈ [2, N ],(
ℓ′i−1 < ℓ′i

)
∨
(
(ℓ′i−1 = ℓ′i) ∧ (time′i−1 < time′i)

)
∀i ∈ [2, N ],

(macsi−1 = 1) ∨ (i− 1 > 1) ∀i ∈ [2, N ],

(ℓ′i−1 = ℓ′i) ∨ (mop′i = 1) ∀i ∈ [2, N ],

(ℓ′i−1 ̸= ℓ′i) ∨ (val′i−1 = val′i) ∨ (mop′i = 1) ∀i ∈ [2, N ].

(6)

See Appendix B.2 for a detailed description of (6). Note that the constraints in (6) can be “rep-
resented” with a fixed arithmetic circuit Cmem such that Cmem(i,macsi−1,macs′i−1,macsi,macs′i) = 1
iff (6) holds. Finally, since we sorted (macsi)i∈[n] into (macs′i)i∈[n], we must ensure that they are
permutations of each other. Thus, the 3rd constraint can be split into two sub-constraints as follows.

– Sub-constraint 1: Cmem(i,macsi−1,macs′i−1,macsi,macs′i) = 1 ∀i ∈ [2, N ].

– Sub-constraint 2: (macs′i)i∈[N ] is a permutation of (macsi)i∈[N ].

In the next section, we show how to employ the conditional folding scheme to handle all the ma-
jor constraints above, hence achieving a generic, parallelizable and transparent argument for RAM
programs, namely, RAMenPaSTA, which requires only a homomorphic commitment, a ZKAoK,
and without recursion heuristic or any other non-black-box assumptions.
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2.6 RAMenPaSTA

Finally, we show how to employ CFS to handle both memory and instructions in RAM programs.
The result is a generic, parallelizable and transparent argument for RAM programs, which we
name RAMenPaSTA.
(i) Handling Memory Consistency. Recall in Section 2.5 that, to prove memory consistency,
we need to form two sequences of memory accesses (macsi)i∈[N ] = (ℓi, timei, vali,mopi)i∈[N ] and
(macs′i)i∈[N ] = (ℓ′i, time′i, val

′
i,mop′i)i∈[N ] which is a sorted version of (macsi)i∈[N ]. Then, there exists

circuit Cmem such that memory accesses (macsi)i∈[N ] is consistent iff

(a) Cmem(i,macsi−1,macs′i−1,macsi,macs′i) = 1 ∀i ∈ [2, N ]; and
(b) (macs′i)i∈[N ] is a permutation of (macsi)i∈[N ].

Notice that (a) is the condition between any two consecutive computation steps while (b) is a tuple
permutation which is suitable with our design in Section 2.4.
(ii) Universally Realizing Instructions by PLONK Structures. We first need to have a
description of each instruction. Our approach is to use PLONK’s arithmetization [GWC19] (recalled
in Appendix B.3) to encode each instruction F ′

j ∈ F ′ as a vector plkst′j ∈ 𝔽nplk where nplk ∈ ℤ+.

Then, there is a circuit Cγ,δplk , parameterized by γ, δ
$← 𝔽 , s.t., on inputs a PLONK structure plkst

(corresponding to an instruction F ) and x, y and w where w is some supporting witness proving
F (x) = y with PLONK’s arithmetization, the following conditions must hold.

– If F (x) = y and w is valid, then Cγ,δplk (plkst,x,y,w) always returns 1.

– Otherwise, Cγ,δplk (plkst,x,y,w) returns 1 with probability at most O(nplk/ |𝔽 |).
We choose PLONK’s arithmetization and realize instructions as PLONK structures for the follow-
ing purposes. First, PLONK structure of size nplk = |plkst| is sufficient to represent any arithmetic

circuit of ngate gates (including multiplications and additions) s.t. nplk = O(ngate). Second, Cγ,δplk

also has the number of gates bounded by O(nplk), making verification efficient compared to those

for universal circuits [Val76]. Third, since plkst is viewed as input to Cγ,δplk , when applying ZKPs for
verifying execution of Cplk, the privacy of plkst is guaranteed.

Therefore, for an N -step computation with instructions (Fi)i∈[N ] selected from F ′, we have

the corresponding (plksti)i∈[N ] s.t., for γ, δ
$← 𝔽 , the correctness of the i-th step is reduced to

Cγ,δplk (plksti, vali−1, (pci∥macsi), auxplki) = 1 for i ∈ [N ] where x, y and wi respectively are replaced
by vali−1, (pci∥macsi) and auxplki. This probabilistic test, for all i ∈ [N ], incurs a total soundness
error O(N · nplk/ |𝔽 |) by using union bound.
(iii) Correct Selections of Instructions. Finally, we need to ensure that {Fi}i∈[N ] ⊆ {F ′

j}j∈[T ].
Recall that, for i ∈ [N ], Fi = F ′

pci−1
. Moreover, the instruction set F ′ = {F ′

j}j∈[T ] is described

alternatively by the set {plkst′j}j∈[T ]. Therefore, we understand that the PLONK structure of

the i-th instruction Fi is plksti := plkst′pci−1
. Hence, to prove correct selections of instructions,

we alternatively prove the tuple lookup {(pci−1∥plksti)}i∈[N ] ⊆ {(j∥plkst′j)}j∈[T ] which is already
discussed in Section 2.4.
Putting All Together. With the above discussion, the components for proving a RAM program
contains, for each step i ∈ [N ],

pci, vali, plksti, auxplki, pci, macsi, macs′i (7)

where pci = pci−1, vali = vali−1 belongs to macsi−1, macsi = (ℓi, timei, vali,mopi) and macs′i =
(ℓ′i, time′i, val

′
i,mop′i). Arguably, we need

– pci to determine plksti by selecting plkst′pci−1
form F ′ = {plkst′j}j∈[T ];

– vali as input to Fi (corresponding to plksti) to compute pci and macsi (with verification,

supported by plksti, by circuit Cγ,δplk ); and
– macs′i for proving memory consistency of sequence (macsi)i∈[N ] via Cmem.

These constraints will be summarized in (22). Thus, we can distribute them to the N instance-
witness pairs (J𝕫(i−1)iK)i∈[N ] of the form (5) that supports tuple permutation, tuple lookup argu-
ments and also folding these pairs in parallel following Section 2.3. Eventually, we can construct a
parallelizable and generic CFS that can be transformed into a ZKAoK for RAM programs, dubbed
RAMenPaSTA. See Section 6 for a detailed discussion.

12



3 Preliminaries

Notations. We denote by ℤ and ℤ+ as the sets of integers and positive integers, respectively. For
a, b ∈ ℤ s.t. a ≤ b, we write [a, b] and [a] to indicate {a, a + 1, . . . , b} and {1, . . . , a} (applicable
when a ≥ 1), respectively. Let 𝔽 be a finite field. All vectors in this paper are column vectors. For
two vectors a,b, we denote (a∥b) to be the vector [a⊤|b⊤]⊤. We use negl(λ) to denote a function
that is o(λ−n) for all n ∈ ℕ. We say an algorithm is probabilistic polynomial time (PPT) if this
algorithm runs within polynomial time in the size of its inputs. For any relation R in this paper, if
there exist two parties, namely, prover and verifier, jointly execute an interactive proof/argument
for prover’s knowledge of some witness wit for statement st and relation R, then we may write
(st; wit) ∈ R where “;” is to separate the common input st and prover’s input wit.

3.1 Commitment Scheme

A commitment scheme C allows one to commit to a secret vector (e.g., c) into a commitment (e.g., c̃)
by a key ck and some additional randomness ĉ. We define the relation Rcom s.t. (ck, c̃; c, ĉ) ∈ Rcom

iff c̃ is computed from c with commitment key ck and randomness ĉ. Regarding security, C should
satisfy binding, i.e., when obtaining c̃ from committing to c with randomness ĉ, it is hard to find a
distinct c′ ̸= c and ĉ s.t. (ck, c̃; c′, ĉ′) ∈ Rcom, and hiding, i.e., c̃ reveals nothing about c. A formal
definition of commitment scheme is deferred to Appendix B.6.

Remark 4. For ease of writing, we define the protocol Πcom in (8) for the prover to commit to c,
with randomness ĉ is sampled implicitly, and send commitment c̃ to verifier so that both parties
achieve JcKck. Hence, when denoting JcKck, we understand that prover keeps ck, c, ĉ and c̃ while
verifier keeps ck and c̃.

Πcom(ck; c)→ JcKck (8)

Remark 5. Following Remark 4, we may write a tuple mixing commitments and public values, e.g.,
(a, JbKck1 , c, JdKck2) for some commitment keys ck1, ck2. Here, we understand that the verifier knows
a, c and commitments to b,d while the prover knows everything, including b,d and commitment
randomness. In some case, we may write (a, JbKck1 , c, JdKck2 ; e) to imply that prover additionally
has a secret e since e is after “;” according to notations in the beginning of Section 3.

Remark 6 (Homomorphism). In this result, the commitment scheme is assumed to be homomor-
phic. Specifically, we can compute Jα0 ·c0+α1 ·c1Kck from α0, α1 ∈ 𝔽 and Jc0Kck, Jc1Kck by computing
α0 · Jc0K + α1 · Jc1K for α0, α ∈ 𝔽 .

Remark 7. We always commit to public vectors with default randomness 0, e.g., J0Kck = (ck,C.Commit(ck,0, 0); 0, 0)
for any ck where 0 is a public zero vector.

3.2 Interactive Folding Protocol for Folding Relaxed R1CS Instance-Witness Pairs

We recall the notion of relaxed R1CS (rR1CS) and its corresponding folding scheme (recalled in
Appendix B.8), as an interactive protocol, from [KST22].
rR1CS. Let d ∈ ℤ+ and mpub,m1, . . . ,md, n ∈ ℤ+, m = mpub +

∑
i∈[d]mi. Let

𝕩 = (𝕩.u,𝕩.pub,𝕩.z1, . . . ,𝕩.zd,𝕩.e) ∈ 𝔽 × 𝔽mpub × 𝔽m1 × · · · × 𝔽md × 𝔽n.

Let tck = (ck1, . . . , ckd, cke) be a tuple of commitment keys. Then, we write

J𝕩Ktck = (𝕩.u,𝕩.pub, J𝕩.z1Kck1 , . . . , J𝕩.zdKckd , J𝕩.eKcke) (9)

to indicate instance-witness pair after committing to 𝕩.z1, . . . ,𝕩.zd and 𝕩.e by ck1, . . . , ckd and cke,
respectively. See Remark 5 for the use of this notation.

Let S = (A,B,C) ∈ (𝔽n×m)
3
be a tuple of three matrices, together called rR1CS structure.

Then, J𝕩Ktck is a valid rR1CS pair if it satisfies the relation

RS
rr1cs =

J𝕩Ktck

∣∣∣∣∣∣
𝕩.u ∈ 𝔽 ∧ 𝕩.pub ∈ 𝔽mpub ∧ (𝕩.zi ∈ 𝔽mi ∀i ∈ [d]) ∧ 𝕩.e ∈ 𝔽n
∧J𝕩.ziKcki ∈ Rcom ∀i ∈ [d] ∧ J𝕩.eKcke ∈ Rcom

∧A · z′ ◦B · z′ = 𝕩.u ·C · z′ + 𝕩.e

 (10)
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Πrr1cs(tck = (ck1, . . . , ckd, cke),S, J𝕩0Ktck, J𝕩1Ktck)→ J𝕩Ktck
ck1, . . . , ckd and cke are commitment keys of a commitment scheme C. Parse

J𝕩iKtck = (𝕩i.u, 𝕩i.pub, J𝕩i.z1Kck1 , . . . , J𝕩i.zdKckd , J𝕩i.eKcke) ∀i ∈ {0, 1}
following the form (9). Protocol Πrr1cs works as follows.

1. Prover: g← garb(S, J𝕩0Ktck, J𝕩1Ktck).
2. Both parties run JgKcke ← Πcom(cke; g) where Πcom is defined in (8).

3. Verifier: α
$← 𝔽 and send α to prover.

4. This step folds J𝕩0Ktck and J𝕩1Ktck with α. Specifically, both parties compute
𝕩.u := 𝕩0.u+ α · 𝕩1.u, J𝕩.ziKcki := J𝕩0.ziKcki + α·J𝕩1.ziKcki ∀i ∈ [d],

𝕩.pub := 𝕩0.pub+ α·𝕩1.pub, J𝕩.eKcke := J𝕩0.eKcke + α·JgKcke + α2 ·J𝕩1.eKcke.
The output of this protocol is J𝕩Ktck = (𝕩.u, 𝕩.pub, J𝕩.z1Kck1 , . . . , J𝕩.zdKckd , J𝕩.eKcke).

Fig. 3. Protocol Πrr1cs.

where z′ = (𝕩.pub∥𝕩.z1∥ . . . ∥𝕩.zd) and ◦ is the entry-wise multiplication.

Folding rR1CS Instance-Witness Pairs. We recall from [KST22] for folding two instance-
witness pairs into a single satisfying pair w.r.t. RS

rr1cs in (10) (see Appendix B.8 for folding scheme’s
definition). Let J𝕩0Ktck, J𝕩1Ktck ∈ RS

rr1cs. We show how to fold J𝕩0Ktck and J𝕩1Ktck to obtain the new
pair J𝕩Ktck ∈ RS

rr1cs. With random α, the idea is to compute 𝕩.u := 𝕩0.u + α · 𝕩1.u, 𝕩.pub :=
𝕩0.pub+α ·𝕩1.pub, 𝕩.zi := 𝕩0.zi+α ·𝕩1.zi ∀i ∈ [d]. Let z′i := (𝕩i.pub∥𝕩i.z1∥ . . . ∥𝕩i.zd), ∀i ∈ {0, 1},
and z′ := (𝕩.pub∥𝕩.z1∥ . . . ∥𝕩.zd). Define

garb(S, J𝕩0Ktck, J𝕩1Ktck) = A·z′0 ◦B·z′1 +A·z′1 ◦B·z′0 −C·(𝕩1.u·z′0 + 𝕩0.u·z′1).

Then, one can check that

A · z′ ◦B · z′ = 𝕩.u ·C · z′ + 𝕩.e (11)

where 𝕩.e := 𝕩0.e+ α · garb(S, J𝕩0Ktck, J𝕩1Ktck) + α2 · 𝕩1.e. From (11), we obtain a new pair J𝕩Ktck
satisfying J𝕩Ktck ∈ RS

rr1cs. Hence, we present protocol Πrr1cs (in Figure 3) for folding two pairs with
extractability discussed in Lemma 1.

Lemma 1 ((3; |𝔽 |)-Special Soundness of Πrr1cs). Let C be a homomorphic commitment scheme.
Assume that Πrr1cs in Figure 3 are rewinded thrice (from step 4), with the same JgKcke and dis-
tinct {α(i)}i∈[3], to produce {J𝕩(i)K}i∈[3], respectively. If we have the valid witnesses s.t. J𝕩(i)Ktck ∈
RS

rr1cs ∀i ∈ [3], then we can extract witnesses to construct (J𝕩iKtck)i∈{0,1} s.t. J𝕩iKtck ∈ RS
rr1cs ∀i ∈

{0, 1}.

The proof of Lemma 1 will be presented in Appendix B.9.

Efficiency. We first define the following notations in Definition 2.

Definition 2 (Notations for Efficiency). We define the following notations.

c(k): the size of the commitment to a message of length k.

tpc(k), tph(k): the running times for the prover respectively to commit and to process homomor-
phism of the commitments to messages of length k.

tvc(k), tvh(k): the running times for the verifier respectively to commit and to process homomor-
phism of the commitments to messages of length k.

Assuming that A,B,C have O(n) non-zero entries, the efficiency related to protocol Πrr1cs in
Figure 3 as below. See Appendix B.9 for more details.

– Size of J𝕩Ktck. O(mpub +
∑
i∈[d] c(mi) + c(n)).

– Communication Cost of Πrr1cs. c(n).

– Prover Time of Πrr1cs. O(n+ tpc(n) +mpub +
∑
i∈[d] tp

h(mi) + tph(n)).

– Verifier Time of Πrr1cs. O(tvc(n) +mpub +
∑
i∈[d] tv

h(mi) + tvh(n)).
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4 Conditional Folding Scheme

We formally present the definition of Conditional Folding Scheme (CFS), whose idea was discussed
in Section 2.1. For a relation R, CFS allows to fold two instance-witness pairs into a new pair s.t.
the folded pair satisfying R implies that (i) the two original pairs also satisfy R, and (ii) together
satisfy another condition relation, denoted by Rcond. Section 4.1 is the syntax of a conditional
folding scheme. Section 4.2 presents its correctness and security properties.

4.1 Syntax

Definition 3 (Syntax of CFS). Let PP, I, and Z respectively be the sets of public parameters,
instances, and witnesses. Let Paux and Waux be the set of auxiliary public inputs and witnesses
supporting conditions for folding. Let R ⊆ PP × I × Z and Rcond ⊆ PP × I × I × Paux × Z ×
Z×Waux be relations. A CFS CF for relation R and associated condition relation Rcond, is a tuple
CF [R,Rcond] = (CF.Setup,CF.Fold,CF.Prove) described as follows.

CF.Setup(1λ)→ pp: This PPT algorithm returns a public parameter pp.
CF.Fold(pp, I0, I1, P ; Z0, Z1,W )→ (I; Z): This is an interactive protocol between prover, holding

(I0, Z0), (I1, Z1) ∈ I×Z and auxiliary public input P ∈ Paux and witness W ∈ Waux supporting
the condition for folding, and verifier, holding I0, I1 ∈ I and P ∈ Paux. In the end, the prover
and verifier receive the folded pair (I, Z) and folded instance I ∈ I, respectively.

CF.Prove(pp, I; Z)→ {0, 1}: This is an interactive protocol between prover, holding (I, Z) ∈ I×Z,
and verifier, holding I ∈ I, s.t. prover tries to convince verifier that he knows Z ∈ Z satisfying
(pp, I; Z) ∈ R. Eventually, verifier returns b ∈ {0, 1} for deciding whether to accept (b = 1)
or reject (b = 0).

4.2 Security Requirements

We now define the security properties including correctness, knowledge soundness and honest-
verifier zero knowledge (HVZK) in Definitions 4, 5, and 7, respectively, for a CFS CF [R,Rcond],
whose syntax is defined in Definition 3.
Correctness. Correctness of a CFS is formally defined in Definition 4.

Definition 4 (Correctness). For pp ← CF.Setup(1λ), any {(pp, Ii; Zi)}i∈{0,1} ⊆ R, P ∈ Paux

and W ∈Waux s.t. (pp, I0, I1, P ; Z0, Z1,W )∈Rcond, it holds that

Pr
[
(pp, I; Z) ∈ R

∣∣(I; Z)← CF.Fold(pp, I0, I1, P ; Z0, Z1,W )
]
≥ 1− ϵ1.

And, for any (pp, I; Z) ∈ R, Pr
[
b = 1

∣∣b← CF.Prove(pp, I; Z)
]
≥ 1 − ϵ2 where ϵ1 and ϵ2 are

respectively folding and completeness errors (of CF.Prove). The sum ϵ1+ ϵ2 is the correctness error
of CF .
Knowledge Soundness. We now briefly discuss the intuition for modeling knowledge soundness
property. To model, we use a PPT extractor E , having oracle access to the potential adversary
playing the role of a prover, to extract the witnesses given the instances I0 and I1. Here, we
allow E to rewind A to any previous state of A, several times polynomial in λ. Therefore, we
write EA(sec)(pp, I0, I1, P ) to indicate the execution of E (playing the role of verifier) with oracle
access to A (playing the role of prover) to extract the witness Zi corresponding to Ii, w.r.t. R
for i ∈ {0, 1}, and witness W for guaranteeing the condition for folding I0 and I1. This notation
implies the executions of CF.Fold and CF.Prove inside. That is, E can invoke CF.Fold and CF.Prove
appropriately such that A cannot distinguish E from a verifier.

If there is any invocation to CF.Prove that returns 0, E simply aborts and return ⊥. Since A is
trying to break knowledge soundness, we consider that CF.Prove always returns 1 because returning
0 indicates that A does not know the corresponding witnesses for Ii to satisfy R, ∀i ∈ {0, 1}, with
overwhelming probability, by the correctness in Definition 4.

Eventually, if E returns (Z0, Z1,W ) as the extracted witnesses, the knowledge soundness of CF is
guaranteed if, with overwhelming probability, (i) Z0 and Z1 are valid witnesses for I0 and I1, respec-
tively, w.r.t. R, and, (ii) with witness W , the condition must hold, i.e., (pp, I0, I1, P ; Z0, Z1,W ) ∈
Rcond.

The above discussion is formalized in Ecf-sound
A (λ) (c.f. Figure 4). Knowledge soundness is for-

mally defined in Definition 5.
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pp← CF.Setup(1λ); (I0, I1, P, sec)← A(pp); (Z0, Z1,W )← EA(sec) (pp, I0, I1, P ).
b := ((pp, I0; Z0) ∈ R) ∧ ((pp, I1; Z1) ∈ R) ∧ ((pp, I0, I1, P ; Z0, Z1,W ) ∈ Rcond).
Return ¬b.

Fig. 4. Experiment Ecf-sound
A (λ).

Definition 5 (Knowledge Soundness). CF is said to satisfy knowledge soundness if N ∈ ℤ+,
any (PPT) A, there exists a PPT extractor E, with rewindable oracle access to A, it holds that
Pr[Ecf-sound

A (λ) = 1] ≤ negl(λ) where Ecf-sound
A (λ).

HVZK. Before formally defining HVZK of CF , we define the transcript the Definition 6. Then,
we define HVZK of CF in Definition 7.

Definition 6. We denote by ΠCF (pp, I0, I1, P ; Z0, Z1,W ) to be the combined protocol that se-
quentially runs (I; Z) ← CF.Fold(pp, I0, I1, P ; Z0, Z1,W ) and then b ← CF.Prove(pp, I; Z). We
define the transcript

tr← View(ΠCF (pp, I0, I1, P ; Z0, Z1,W )) (12)

of ΠCF between prover and verifier to contain all public inputs and exchanged messages during
executing protocols CF.Fold and CF.Prove in ΠCF .

Definition 7 (HVZK). CF is HVZK if, for pp← CF.Setup(1λ), there exists a PPT simulator S
s.t., for any distinguisher A, any (I0, I1, P ; Z0, Z1,W ) satisfying (pp, Ii;Zi) ∈ R ∀i ∈ {0, 1} and
((pp, I0, I1, P ; Z0, Z1,W ) ∈ Rcond),∣∣Pr [A(tr) = 1

∣∣tr← View(ΠCF (pp, I0, I1, P ; Z0, Z1,W ))
]

−Pr
[
A(tr) = 1

∣∣tr← S(pp, I0, I1, P )]∣∣ ≤ negl(λ).

5 A Generic CFS

We propose a generic CFS CFgnr, following the discussion in Sections 2.2 and 2.4. Section 5.1
presents the design of the instance-witness pairs for CFS following the form discussed in (5). In
Section 5.2, we define the relations for the pairs defined in Section 5.1. In Section 5.3, we construct
protocol Πfold-gnr for folding two instance-witness pairs specified in Section 5.1 w.r.t. relations in
Section 5.2.

5.1 Form of Instance-Witness Pairs for Generic CFS

Following Section 2.4, we come up an instance-witness pair of the form J𝕫K = (J𝕩K, JfrontK, JrearK, J𝕩⋆K, JsK, JaK)
in (5) without mentioning the commitment keys (for committing witnesses) and indices (for folding
following HS). Recall that J𝕩K and J𝕩⋆K are rR1CS instance-witness pairs w.r.t. rR1CS structures
S = (A,B,C) and S′ = (A′,B′,C′), respectively. In our design, the witness of J𝕩K contains
d ∈ ℤ+ vectors 𝕩.z1, . . . ,𝕩.zd respectively of lengths m1, . . . ,md and an error vector 𝕩.e of length
n. The witness of J𝕩⋆K contains 3 vectors 𝕩⋆.z1, . . . ,𝕩⋆.z3 respectively of length m′

1, m
′
2, m

′
3, and

an error vector 𝕩⋆.e′ of length n′. 𝕩⋆ is of length 3 to capture the condition between 𝕩⋆.z1 and
𝕩⋆.z2 with supporting witness 𝕩⋆.z3. Finally, s and a are of length s ∈ ℤ+.

Let C be a homomorphic commitment scheme defined in Section 3.1. Let d ∈ ℤ+. Let ck1, . . . , ckd,
cke, ck′1, ck

′
2, ck

′
3, cke

′ and cks be commitment keys for committing messages over 𝔽 of lengths
m1, . . . ,md, n, m

′
1, m

′
2, m

′
3, n

′ and s, respectively. We define instance-witness pair J𝕫Kpp with pub-
lic parameter pp containing commitment keys generated from C. The formal design is as follows.

pp = (tck, tck′, cks ), (13)

𝕫 = (𝕩, front, rear, 𝕩⋆, s, a ), (14)

J𝕫Kpp = (J𝕩Ktck, JfrontKck′2 , JrearKck′1 , J𝕩⋆Ktck′ , JsKcks, JaKcks ) (15)

16



where tck = (ck1, . . . , ckd, cke) and tck′ = (ck′1, . . . , ck
′
3, cke

′) are tuple of keys for rR1CS instance-
witness pairs (see Section 3.2); front, rear, s, a are vectors over 𝔽 ; and 𝕩,𝕩⋆, J𝕩Ktck, J𝕩⋆Ktck′ have the
following forms.

𝕩 = (𝕩.u, 𝕩.pub, 𝕩.z1, . . . , 𝕩.zd, 𝕩.e ),

J𝕩Ktck = (𝕩.u, 𝕩.pub, J𝕩.z1Kck1 , . . . , J𝕩.zdKckd , J𝕩.eKcke ), (16)

𝕩⋆ = (𝕩⋆.u, 𝕩⋆.pub, 𝕩⋆.z1, . . . , 𝕩⋆.z3, 𝕩⋆.e ),

J𝕩⋆Ktck′ = (𝕩⋆.u, 𝕩⋆.pub, J𝕩⋆.z1Kck′1 , . . . , J𝕩⋆.z3Kck′3 , J𝕩⋆.eKcke′ ). (17)

It can be seen that A,B,C ∈ 𝔽n×m and A′,B′,C′ ∈ 𝔽n′×m′
where m = mpub +

∑
i∈[d]mi and

m′ = m′
pub +

∑
i∈[3]m

′
i where mpub = |𝕩.pub| and m′

pub = |𝕩⋆.pub|.

5.2 Defining Relations

We define the relations for the instance-witness pairs in (15) to support our construction of CFS

CFgnr. Let pp be of the form (13). Let S,S′ be fixed in advance. We define the relations RS,S′

gnr-inst,

in (18), and RS′

gnr-cond, in (19), respectively, s.t.

– RS,S′

gnr-inst captures the constraints inside each J𝕫Kpp of the form (15).

– RS′

gnr-cond captures the condition when folding J𝕫0Kpp and J𝕫1Kpp into J𝕫Kpp where J𝕫0Kpp, J𝕫1Kpp
and J𝕫Kpp are of the form (15).

RS,S′

gnr-inst =

{
J𝕫Kpp

∣∣∣∣ JfrontKck′2 , JrearKck′1 , JsKcks, JaKcks∈Rcom

∧J𝕩Ktck ∈ RS
rr1cs ∧ J𝕩⋆Ktck′ ∈ RS′

rr1cs

}
. (18)

We now define the condition relation RS′

gnr-cond with associated setWgnr-aux defined to be the set con-
taining all auxiliary witnesses in the forms of fixed-length vectors over 𝔽 s.t. we can fold J𝕫0Kpp and
J𝕫1Kpp with auxiliary witnessw ∈ Wgnr-aux. Parse J𝕫iKpp = (J𝕩iKtck, JfrontiKck′2 , JreariKck′1 , J𝕩

⋆
i Ktck′ , JsiKcks, JaiKcks)

as in (15) for i ∈ {0, 1}. Relation RS′

gnr-cond is formally defined to be

RS′

gnr-cond =
{
(p, J𝕫0Kpp, J𝕫1Kpp; w)

∣∣w ∈ Wgnr-aux ∧A′ · c ◦B′ · c = C′ · c
}

(19)

where p is an additional public input supporting the condition and vector c = (p∥rear0∥front1∥w).
Relation RS′

gnr-cond specifies the condition in the form of a computation of R1CS equation w.r.t.
matrices A′,B′ and C′ in S′.

5.3 Protocol Πfold-gnr and Construction of CFS CFgnr

We formally describe the generic CFS CFgnr = (CF.Setup,CF.Fold,CF.Prove). To this end, first
describe protocol Πfold-gnr in Figure 5 for folding J𝕫0Kpp and J𝕫1Kpp into J𝕫Kpp and then use Πfold-gnr

to construct CF.Fold in Figure 6.
Overview of Πfold-gnr. We describe in high level the protocol Πfold-gnr for folding J𝕫0Kpp and J𝕫1Kpp
into J𝕫Kpp, where J𝕫0Kpp, J𝕫1Kpp and J𝕫Kpp are of the form (15). This high-level description follows
the discussion for folding two instance-witness pairs in Sections 2.2 and 2.4. The prover and verifier
proceed as follows.

– Obtain folded rR1CS instance-witness pair J𝕩K by folding J𝕩0Ktck and J𝕩1Ktck using Nova’s
folding with a challenge α1 ∈ 𝔽 . This can be done by running protocol Πrr1cs in Figure 3 w.r.t.
tck and S.

– Set JfrontKck′2 := Jfront0Kck′2 and JrearKck′1 := Jrear1Kck′1 .
– Obtain the accumulated relaxed R1CS instance-witness pair J𝕩⋆Ktck′ for the condition by first

forming the rR1CS instance-witness pair J𝕪Ktck′ where 𝕪 contains Jrear0Kck′1 , Jfront1Kck′2 and

some auxiliary witness JwKck′3 s.t. J𝕪Ktck′ ∈ RS′

rr1cs. Then, fold the three pairs J𝕩⋆0Ktck′ J𝕩⋆1Ktck′
and J𝕪Ktck′ , into J𝕩⋆Ktck′ by first running protocol Πrr1cs, described in Figure 3, with challenge
α1 ∈ 𝔽 to fold J𝕩⋆0Ktck′ and J𝕩⋆1Ktck′ into J𝕪 ′Ktck′ . Then, fold J𝕪 ′Ktck′ and J𝕪Ktck′ into J𝕩⋆Ktck′ by
again running protocol Πrr1cs with challenge α2 ∈ 𝔽 .
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Πfold-gnr(pp,S,S
′, J𝕫0Kpp, J𝕫1Kpp,p; w)→ J𝕫Kpp

Parse J𝕫iKpp = (J𝕩iKtck, JfrontiKck′2 , JreariKck′1 , J𝕩
⋆
i Ktck′ , JsiKcks, JaiKcks) ∀i ∈ {0, 1} where public parameter pp

is of the form (13). We describe protocol Πfold-gnr as follows.
1. Prover: Compute g ← garb(S, J𝕩0Ktck, J𝕩1Ktck) and g1 ← garb(S′, J𝕩⋆

0Ktck′ , J𝕩⋆
1Ktck′) where garb is in

Section 3.2.
2. Both parties run JgKcke←Πcom(cke; g), JwKck′3 ←Πcom(ck

′
3; w) and Jg1Kcke′ ←Πcom(cke

′; g1) where
Πcom is defined in (8). Form the pair (for the condition)

J𝕪Ktck′ = (𝕪.u, 𝕪.pub, J𝕪.z1Kck′1 , J𝕪.z2Kck′2 , J𝕪.z3Kck′3 , J𝕪.eKcke′ )

:= (1, p, Jrear0Kck′1 , Jfront1Kck′2 , JwKck′3 , J0n′
Kcke′ ).

Notice that ck′1 = ck2 and ck′2 = ck1 as designed in Section 5.1 and the commitment J0n′
Kcke′ can be

determined by verifier alone, as in Remark 7.

3. Verifier: Sample α1
$← 𝔽 and send α1 to prover.

4. Both parties run step 4 in Πrr1cs (see Figure 3) to
– fold J𝕩0Ktck, J𝕩1Ktck into J𝕩Ktck with α1 and JgKcke, and
– fold J𝕩⋆

0Ktck′ , J𝕩⋆
1Ktck′ into J𝕪 ′Ktck′ with α1 and Jg1Kcke′ .

5. Prover: Compute g2 ← garb(S′, J𝕪 ′Ktck′ , J𝕪Ktck′).
6. Both parties run Jg2Kcke′ ← Πcom(cke

′; g2).

7. Verifier: Sample α2
$← 𝔽 and send α2 to prover.

8. Both parties run step 4 in Πrr1cs to fold J𝕪 ′Ktck′ , J𝕪Ktck′ into J𝕩⋆Ktck′ with α2, Jg2Kcke′ .
9. Finally, both parties compute the followings.

JfrontKck′2 := Jfront0Kck′2 , JsKcks := Js0Kcks + Js1Kcks,

JrearKck′1 := Jrear1Kck2 , JaKcks := Ja0Kcks + α1 · Ja1Kcks + α2
1 · (Js0Kcks − Js1Kcks).

The output of this protocol is J𝕫Kpp = (J𝕩Ktck, JfrontKck′2 , JrearKck′1 , J𝕩
⋆Ktck′ , JsKcks, JaKcks).

Fig. 5. Protocol Πfold-gnr.

Generic CFS CFgnr

CF.Setup(1λ)→ pp: This algorithm works as follows.
1. Sample ck1, . . . , ckd, cke, ck

′
1, ck

′
2, ck

′
3, cke

′, cks from C.Setup.
2. Form tuples tck := (ck1, . . . , ckd, cke) and tck′ := (ck′1, ck

′
2, ck

′
3, cke

′).
3. Return pp := (tck, tck′, cks).

CF.Fold(pp, J𝕫0KppJ𝕫1Kpp,p; w)→ J𝕫Kpp: Both parties run Πfold-gnr (see Figure 5) by J𝕫Kpp ←
Πfold-gnr(pp,S,S

′, J𝕫0Kpp, J𝕫1Kpp,p; w).

CF.Prove(pp, J𝕫Kpp)→ {0, 1}: This is a proof/argument for J𝕫Kpp ∈ RS,S′

gnr-inst.

Fig. 6. Generic CFS CFgnr.

– Finally, compute JsKcks := Js0Kcks+Js1Kcks and JaKcks := Ja0Kcks+α1·Ja1Kcks+α2
1·(Js0Kcks−Js1Kcks)

as instructed in Section 2.4.

Formal Description of Πfold-gnr. Assuming pp, S = (A,B,C) ∈ (𝔽n×m)3, S′ = (A′,B′,C′) ∈
(𝔽n′×m′

)3 are commonly determined by prover and verifier. Protocol Πfold-gnr in Figure 5 is for
folding J𝕫0Kpp and J𝕫1Kpp into J𝕫Kpp, with public input p ∈ m′

pub and secret vector w ∈ Wgnr-aux for
the condition.
CFS CFgnr. The construction of CFS CFgnr can be constructed from this protocolΠfold-gnr straight-
forwardly. Let S = (A,B,C), S′ = (A′,B′,C′) be described as above. Let C be a homomorphic

commitment scheme. We describe the generic CFS CFgnr[RS,S′

gnr-inst,RS′

gnr-cond] = (CF.Setup,CF.Fold,CF.Prove)
in Figure 6 (with security in Theorem 1) employing Πfold-gnr as a building block. In the description,
we do not strictly follow the syntax defined in Definition 3 due to abusing notations. However,
recall from Section 3.1, it is understood that the witnesses Z0, Z1 of provers are (𝕫0, �̂�0), (𝕫1, �̂�1),
respectively, and the instances I0, I1 are �̃�0, �̃�1 which are contained in J𝕫0Kpp and J𝕫1Kpp, respec-
tively. Here �̂� and �̃� are the randomness and commitment of 𝕫 respectively, as defined in Section
3.1.

Theorem 1 (Security of CFgnr). If CF.Prove is an (HV)ZKAoK and C is a secure homomorphic
commitment scheme, then CFgnr is correct with correctness error cerrprf(pp), HVZK and knowledge-
sound with soundness error O(1/|𝔽 |+ serrprf(pp)+negl(λ)) where cerrprf(pp) and serrprf(pp) respec-
tively are completeness and soundness error of CF.Prove.
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Proof (Sketch). Completeness is straightforward. HVZK is implied from the hiding property of C
and HVZK from the employed protocol realizing CF.Prove. Knowledge soundness of CFgnr follows
the knowledge soundness of CF.Prove and the binding of C. The full security proof is presented in
Appendix C.1. ⊓⊔

Efficiency. Recall the notations in Definition 2. The efficiency is as follows.

– Size of Public Instance in J𝕫Kpp in (15). O(mpub +
∑
i∈[d] c(mi)+ c(n)+m′

pub +
∑
i∈[3] c(m

′
i)+

c(n′) + c(s)).
– Communication Cost of CF.Fold. O(c(n) + c(n′)).
– Prover Time of CF.Fold. O(n+ tpc(n)+mpub +

∑
i∈[d] tp

h(mi)+ tph(n)+n′ + tpc(n′)+m′
pub +∑

i∈[3] tp
h(m′

i) + tph(n′)).

– Verifier Time of CF.Fold.O(tvc(n)+mpub+
∑
i∈[d] tv

h(mi)+tvh(n)+tvc(n′)+m′
pub+

∑
i∈[3] tv

h(m′
i)+

tvh(n′)).
– Prover and Verifier Time of CF.Prove. This depends on the employed ZKAoK.

See Appendix C.2 for a detailed discussion of efficiency.

6 RAMenPaSTA: Parallelizable Scalable Transparent Arguments of
Knowledge for RAM Programs

We construct RAMenPaSTA, a parallelizable and generic argument of knowledge for RAM pro-
grams. Let pp be the tuple of commitment keys, described in (13). Recall that F ′ = {F ′

j}j∈[T ] is

an instruction set of T instructions describable by the PLONK structures F ′
struct = {plkst

′
j}j∈[T ].

Given an output valout and commitment tuple JvalinKcki to secret input valin with commitment key
cki, prover proceeds an interactive argument with verifier for the statement that valout is the output
of an N -step execution of the RAM program RAM with instruction set F ′, i.e., RAM(valin) = valout.
(See Section 2.6 and Appendix B.1 for the description of RAM programs.) This statement is for-
malized by Rram in (20).

Rram=
{
(cki,F ′

struct, JvalinKcki, valout)
∣∣JvalinKcki∈Rcom∧RAM(valin)=valout

}
. (20)

In Section 6.1, we first reduce the constraints for proving a RAM program into those suitable
for us to apply the generic CFS (Section 5). The adaptation to this generic CFS is presented
in Section 6.2, by following the discussion from Section 2.6. Finally, in Section 6.3, we describe
RAMenPaSTA.

6.1 Reducing Constraints

We first recall the components mentioned in Section 2.6. Let N,T,M ∈ ℤ+. An N -step RAM pro-
gram has an instruction set F ′ = {F ′

j}j∈[T ] representable by the PLONK structures {plkst′j}j∈[T ].
To prove the correct execution of a RAM program, as specified in (7), we need the following
components for each i ∈ [N ].

pci, vali, plksti, auxplki, pci, macsi, macs′i (21)

where pci = pci−1, vali = vali−1, macsi = (ℓi, timei, vali,mopi) and macs′i = (ℓ′i, time′i, val
′
i,mop′i).

With γ, δ
$← 𝔽 sampled in advance, the correctness of the RAM program, as in (20), with soundness

error O(N · nplk/ |𝔽 |) due to the use of PLONK’s arithmetization with random γ, δ discussed in
Section 2.6, by proving

Cmem(i,macsi−1,macs′i−1,macsi,macs′i) = 1 ∀i ∈ [2, N ],

Tuple Permutation: (macsi)i∈[N ] is a permutation of (macs′i)i∈[N ],

Tuple Lookup: {(pci∥plksti)}i∈[N ] ⊆ {(j∥plkst′j)}j∈[T ],

Cγ,δplk (plksti, vali, (pci∥macsi), auxplki) = 1 ∀i ∈ [N ]

(22)
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where Cmem and Cγ,δplk , parameterized by γ, δ
$← 𝔽 , are public arithmetic circuits for memory checking

and instruction execution, respectively. The detailed discussions of these two circuits are deferred
to Appendices B.2 and B.3.

We now discuss the handling of constraints in (22).
Tuple Permutation in (22). Recall the technique discussed in Section 2.4, to prove tuple argu-

ment. We use challenges τ, ω
$← 𝔽 to compute, for all i ∈ [N ],

mivi = (τ + ⟨macsi, (ω
k)k∈[0,3]⟩)−1 and miv′i = (τ + ⟨macs′i, (ω

k)k∈[0,3]⟩)−1 (23)

with probability for division by zero bounded by O(N/ |𝔽 |). Then, we can prove this tuple lookup
argument by proving that

∑
i∈[N ] mivi =

∑
i∈[N ] miv′i. The argument has soundness error O(4 ·

N/ |𝔽 |) = O(N/ |𝔽 |) (see (45) in Appendix B.4).
Tuple Lookup in (22). Similarly, we use the technique discussed in Section 2.4 to prove this
tuple lookup argument. Let nplk =

∣∣plkst′j∣∣ for any j ∈ [T ]. Then, we prove this tuple lookup

argument by proving the existence of (mulj)j∈[T ] ⊆ 𝔽 such that, for χ, ψ
$← 𝔽 sampled in advance,∑

i∈[N ] plkivi =
∑
j∈[T ] plkiv

′
j where

plkivi = (χ+ ⟨(pci∥plksti), (ψk)k∈[0,nplk]⟩)
−1 ∀i ∈ [N ],

plkiv′j = mulj · (χ+ ⟨(j∥plkst′j), (ψk)k∈[0,nplk]⟩)
−1 ∀j ∈ [T ].

(24)

This reduced argument implies the tuple lookup argument with probability for division by zero
bounded by O((N +T )/ |𝔽 |) and soundness error O(nplk · (N +T )/ |𝔽 |) (see (48) in Appendix B.4).

Putting All Together. Let γ, δ, τ, ω, χ, ψ
$← 𝔽 and (mulj)j∈[T ] ∈ 𝔽 be prepared in advance. Let

plkiv′j = mulj · (χ+ ⟨(j∥plkst′j), (ψk)k∈[0,nplk]⟩)−1 for j ∈ [T ]. With those above discussions for tuple
permutation and tuple lookup in (22), we enhance components in (21) to additionally contain mivi,
miv′i and plkivi for i ∈ [N ]. Hence, for each i ∈ [N ], the components include

pci, vali, plksti, auxplki, pci, macsi, macs′i︸ ︷︷ ︸
as of (21)

, mivi, miv′i, plkivi︸ ︷︷ ︸
enhanced

(25)

where pci = pci−1, vali = vali−1, macsi = (ℓi, timei, vali,mopi) and macs′i = (ℓ′i, time′i, val
′
i,mop′i).

Then, system (22) is reduced, with some negligible completeness error, to the combination of (26),
(27) and (28) below. See Lemma 2 for the soundness of this reduction.

Cmem(i,macsi−1,macs′i−1,macsi,macs′i) = 1 ∀i ∈ [2, N ], (26)
mivi = (τ + ⟨macsi, (ω

k)k∈[0,3]⟩)−1 ∀i ∈ [N ],

miv′i = (τ + ⟨macs′i, (ω
k)k∈[0,3]⟩)−1 ∀i ∈ [N ],

plkivi = (χ+ ⟨(pci∥plksti), (ψk)k∈[0,nplk]⟩)−1 ∀i ∈ [N ],

Cγ,δplk (plksti, vali, (pci∥macsi), auxplki) = 1 ∀i ∈ [N ],

(27)

∑
i∈[N ]

mivi =
∑
i∈[N ]

miv′i,
∑
i∈[N ]

plkivi =
∑
j∈[T ]

plkiv′j . (28)

Lemma 2. Let γ, δ, τ, ω, χ, ψ
$← 𝔽 and (mulj)j∈[T ] ∈ 𝔽 be prepared in advance. Let plkiv′j =

mulj · (χ+ ⟨(j∥plkst′j), (ψk)k∈[0,nplk]⟩)−1 for j ∈ [T ]. Then, (i) (22) implies (26), (27) and (28) with
probability 1−O((N +T )/ |𝔽 |) due to division by zero; (ii) And (26), (27) and (28) together imply
(22) with soundness error at most O(nplk · (N + T )/ |𝔽 |).

The proof of Lemma 2 is deferred to Appendix D.1.

Remark 8. The purpose of splitting into (26), (27) and (28) rather than making them a single
system of constraints is to distinguish them as follows. (26) is for the condition between two
consecutive instance-witness pairs. (27) is for constraints those inside a single instance-witness
pair. And, (28) is for proving tuple permutation and tuple lookup as discussed in Section 2.4.
Hence, splitting them into three separate (system of) equations is convenient for us to design
instance-witness pairs for folding in the following Section 6.2.
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6.2 Partitioning Components and Adapting to Generic CFS

We first discuss how to put those components in (25), in Section 6.1, into instance-witness pairs
suitable for applying generic CFS in Section 5.3. Then, we specify the necessary relations for
folding, as required in Section 5.2.

Partition components in (25), into zij of length mj , ∀i ∈ [N ],∀j ∈ [5], below.

zi1 = (pci∥vali∥macsi∥macs′i) ∈ 𝔽m1 , zi2 = (pci∥macsi∥macs′i) ∈ 𝔽m2 ,

zi3 = plksti ∈ 𝔽m3 , zi4 = auxi ∈ 𝔽m4 , zi5 = (mivi∥miv′i∥plkivi) ∈ 𝔽m5
(29)

where auxi (containing auxplki) is the auxiliary input supporting the verification of system (27)
w.r.t. A,B,C ∈ 𝔽n×m defined in the following Definition 8.

Definition 8. For n ∈ ℤ+ and m = 1+
∑
j∈[5]mj, A,B,C ∈ 𝔽n×m, with γ, δ, τ, ω, χ, ψ hardwired,

are defined s.t., for all zi1 ∈ 𝔽m1 , . . . , zi5 ∈ 𝔽m5 ,

A · (1∥zi1∥ . . . ∥zi5) ◦B · (1∥zi1∥ . . . ∥zi5) = C · (1∥zi1∥ . . . ∥zi5)

iff (27) holds and the suffixes of zi1 and zi2, w.r.t. macsi and macs′i, are equal.

Remark 9. We note that, for i ∈ [N ], A,B,C, zi4 and zi5 are determined only after γ, δ, τ, ω, χ, ψ
are known. This is due to constraints in (27).

Condition for Two Consecutive Instance-Witness Pairs. For i ∈ [2, N ], according to our
partition of components in (29), we define matrices A′,B′,C′ to enforce the condition between
z(i−1)2 and zi1 as in the following Definition 9.

Definition 9. A′,B′,C′ are defined in advance s.t., ∀i ∈ [2, N ], exist wi s.t.

A′ · ((1, i)∥z(i−1)2∥zi1∥wi) ◦B′ · ((1, i)∥z(i−1)2∥zi1∥wi) = C′ · ((1, i)∥z(i−1)2∥zi1∥wi)

iff (i) pci in zi1 is equal to pci−1 in z(i−1)2; (ii) vali in zi1 is equal to vali−1 in macsi−1 in z(i−1)2;
and (iii) Cmem(i,macsi−1,macs′i−1,macsi,macs′i) = 1 (as of (26)) macsi−1 and macs′i−1 are in
z(i−1)2, and macs′i and macs′i are in zi1.

We assume that A′,B′,C′ ∈ 𝔽n′×m′
where, for m′

pub = 2, m′
1 = m2, m

′
2 = m1 and m′

3 = |wi|,
n′ is some integer in ℤ+ and m′ = m′

pub +
∑
j∈[3]m

′
j. Here, setting m

′
1 = m2 and m′

2 = m1 is due

to
∣∣z(i−1)2

∣∣ = m2 and |zi1| = m1.

In other words, zi1 in step i is designed to capture some constraints with z(i−1)2 in the previous
step i − 1. This includes the correct use of pci−1 and vali−1 from the previous step i − 1 to
determine the computations in the current step i (see Section 2.6 and Appendix B.1) and the
memory constraint in (26).
Capturing Tuple Permutation and Tuple Lookup. From the partition in (29), we see that
zi5 = (mivi∥miv′i∥plkivi). Since we need to take the sums

∑
i∈[N ] mivi,

∑
i∈[N ] miv′i and

∑
i∈[N ] plkiv

′
i

as specified in (28). Notice that, we do not need to consider the {plkst′j}j∈[T ] since these can be

computed publicly from the public set {plkst′j}j∈[T ] and random challenges χ, ψ.
Putting All Together. Let

S = (A,B,C) and S′ = (A′,B′,C′) (30)

specified above. Let HS be defined in Definition 1. We adapt the above discussion into the generic
CFS CFgnr described in Section 5.3. Recall the form of instance-witness pairs in (15). For i ∈ [N ],
we design J𝕫(i−1)iKpp to be

(J𝕩(i−1)iKtck, Jfront(i−1)iKck1 , Jrear(i−1)iKck2 , J𝕩⋆(i−1)iKtck′ , Js(i−1)iKck5 , Ja(i−1)iKck5)

whose components are as follows. The rR1CS instance-witness pair J𝕩(i−1)iKtck is the tuple (31)
whose J0nKcke is committed as in Remark 7.

(𝕩(i−1)i.u,𝕩(i−1)i.pub, J𝕩(i−1)i.z1Kck1 , . . . , J𝕩(i−1)i.z5Kck5 , J𝕩(i−1)i.eKcke)
= (1, 1, Jzi1Kck1 , . . . Jzi5Kck5 , J0

nKcke).
(31)
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Notice that we set d in Section 5.1 to be d = 5. The rR1CS instance-witness pair J𝕩⋆(i−1)iKtck′ , as
a condition accumulator, is set randomly s.t. J𝕩⋆(i−1)iKtck′ ∈ R

S′

gnr-cond (see (19)) with S′ defined in

(30). Since this accumulator is used for folding the instance-witness pairs for the conditions at the
leaf nodes, as there is no related condition, we simply set it to be random.

Jfront(i−1)iKck1 and Jrear(i−1)iKck2 respectively are Jzi1Kck1 and Jzi2Kck2 . Recall that, from Sec-
tion 5.1, tck′ = (ck′1, ck

′
2, ck

′
3, cke

′). As we use front(i−1)i and rear(i−1)i for capturing the condition,
we hence enforce ck′1 = ck2 and ck′2 = ck1.

Finally, we set Js(i−1)iKck5 := Jzi5Kck5 and Ja(i−1)iKck5 to be J03Kck5 (committed as in Remark 7).
Since, as explained above, zi5 contains only 3 𝔽 -elements. Therefore, we enforce cks (in Section 5.1)
to be cks = ck5 = 3.

We now construct RAMenPaSTA (Section 6.3) considering CFgnr (Section 5.3) as a building
block with the setting of {J𝕫(i−1)iKpp}i∈[N ], at the leaf nodes of HS.

6.3 Description of RAMenPaSTA

We describe RAMenPaSTA, as ΠRP (c.f. Figure 7), for relation Rram (c.f. (20)). We first need to
prove the constraints specified in Lemma 2 clarified as follows.
Initial Setting. Due to Remark 9, {zij}i∈[N ],j∈[4,5] are determined only after γ, δ, τ, ω, χ, ψ are

known. Parse z11 = (pc1∥val1∥macs1∥macs′1) and zN2 = (pcN∥macsN∥macs′N ). Let pc1 = pc0 = 1
be the initial program counter, val1 = val0 = valin and valN = valout. Moreover, S′ = (A′,B′,C′)
can be determined without knowing γ, δ, τ, ω, χ, ψ (see Definition 9).

When γ, δ, τ, ω, χ, ψ are known, prover can compute {zij}i∈[N ],j∈[4,5]. Moreover, both par-
ties can commonly determine S = (A,B,C) following Definition 8. Hence, at this stage, both
parties can determine necessary components as specified in Section 6.2 to fold with public in-
puts (pi)i∈[2,N ] = (1, i)i∈[2,N ]. In the end, we need to run CF.Prove which is a ZKAoK for

J𝕫0N Kpp ∈ RS,S′

gnr-inst. However, RS,S′

gnr-inst does not suffice for proving relation Rram. In fact, RS,S′

gnr-inst

does not imply those for related input and output (i.e., the values val and val in 𝕫0N are valin and
valout, respectively), tuple permutation and tuple lookup.

Capturing RS,S′

gnr-inst with Enhanced Constraints. To capture the mentioned constraints, we

must prove
∑
i∈[N ] mivi =

∑
i∈[N ] miv′i and

∑
i∈[N ] plkivi =

∑
j∈[T ] plkiv

′
j (see (28)). After folding

following HS, the final instance-witness pair 𝕫0N contains s0N =
∑
i∈[N ] s(i−1)i as explained in

Section 2.4. By parsing s0N = (plkiv∥miv∥miv′), we need to prove miv =
∑
j∈[T ] plkiv

′
j and miv =

miv′ where plkiv′j = mulj ·(χ+⟨(j∥plkst′j), (ψk)k∈[0,nplk]⟩)−1 for j ∈ [T ] (see Lemma 2). Moreover, we
also need to prove the correct commitment of input valin, i.e., JvalinKcki ∈ Rcom and the consistency
between the input valin and output valout of the RAM program. Observing that front0N and rear0N
respectively are equal to front11 (in 𝕫11) and rearN2 (in 𝕫N2) due to the folding strategy specified
in Sections 2.2 and 5.3. Hence, we need to additionally prove that input in front0N and output in
rear0N respectively match valin and valout. Thus, we have the relation

RS,S′

RP-prf=


(pp, cki, (ckmj)j∈[T ],
JvalinKcki, valout,
(JmuljKckmj

)j∈[T ],
J𝕫Kpp)

∣∣∣∣∣∣∣∣∣∣∣

J𝕫Kpp ∈ RS,S′

gnr-inst ∧ JvalinKcki ∈ Rcom

∧pc = 1 ∧ val = valin ∧ val = valout
∧(JmuljKckmj

∈ Rcom ∀j ∈ [T ])

∧plkiv=
∑
j∈[T ]

mulj
χ+⟨(j∥plkst′j),(ψk)k∈[0,nplk]

⟩

∧miv=miv′


. (32)

where (i) cki and {ckmj}j∈[T ] are for committing valin and {mulj}j∈[T ], respectively; (ii) J𝕫Kpp =
(J𝕩Ktck, JfrontKck2 , JrearKck1 , J𝕩⋆Ktck′ , JsKck5 , JaKck5), of the form (14), and s = (plkiv∥miv∥miv′) where
commitment key setting is discussed below; (iii) pp = (tck, tck′, cks), tck = (ck1, . . . , ck5, cke) and
tck′ = (ck′1, ck

′
2, ck

′
3, cke

′) where ck′1 = ck2, ck
′
2 = ck1 and cks = ck5 = 3 as explained in Section 6.1;

and (iv) front = (pc∥val∥ . . . ) and rear = (pc∥macs∥macs′) s.t. macs = (ℓ, time, val,mop) as in
memory consistency in Section 2.6.

Hence, proving J𝕫0N Kpp ∈ RS,S′

RP-prf in (32) implies not only J𝕫0N Kpp ∈ RS,S′

gnr-inst but also the
constraints in relation Rram in (20) due to Lemma 2. RAMenPaSTA is described in Figure 7 as
ΠRP with security in Theorem 2.
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ΠRP

(
pp, cki, (ckmj)j∈[T ],F ′

struct, JvalinKcki, valout; (zij)i∈[N ],j∈[3], (mulj)j∈[T ]

)
→ {0, 1}

With the parameters m1, . . . ,m5, n, m
′
1, . . . ,m

′
5, n

′ and
pp = (tck, tck′, cks) = ((ck1, . . . , ck5, cke), (ck

′
1, . . . , ck

′
3, cke

′))
s.t. ck′1 = ck2, ck

′
2 = ck1 and cks = ck5 = 3 (see Section 5.1), ΠRP runs as follows.

1. Both parties run protocols, from Πcom (see Remark 4).
JzijKckj ← Πcom(ckj ; zij) ∀i ∈ [N ], ∀j ∈ [3],

J0nKcke ← Πcom(cke; 0n), J0n′
Kcke′ ← Πcom(cke

′; 0n′
),

J03Kck5 ← Πcom(ck5,0
3), JmuljKckmj ← Πcom(ckmj ; mulj) ∀j ∈ [T ]

where committing to 0n, 0n′
, 03 by cke, cke′, cke5, respectively can be done locally and independently

by each party according to Remark 7.

2. Verifier: γ, δ, τ, ω, χ, ψ
$← 𝔽 and send γ, δ, τ, ω, χ, ψ to prover.

3. Each party determines S = (A,B,C),S′ = (A′,B′,C′) from γ, δ, τ, ω, χ, ψ.
4. Prover:

– Determine (zi4, zi5)i∈[N ] from (zi1, zi2, zi3)i∈[N ] and γ, δ, τ, ω, χ, ψ.

– Find arbitrary p′ ∈ 𝔽m′
pub and {z′i}i∈[3] s.t. z′i ∈ 𝔽m′

i and A′ · c′ ◦ B′ · c′ = C · c′ where c′ =
(p′∥z′1∥z′2∥z′3).

5. Both parties run Jz′jKck′j ← Πcom(ck
′
j ; z′j) ∀j ∈ [3].

6. For each i ∈ [N ], both parties form tuple J𝕫(i−1)iKpp, of the form (15), by setting
Jfront(i−1)iKck1 := Jzi1Kck1 , Jrear(i−1)iKck2 := Jzi2Kck2 ,
J𝕩(i−1)iKtck := (1, 1, Jzi1Kck1 , . . . , Jzi5Kck5 , J0

nKcke),

J𝕩⋆
(i−1)iKtck′ := (1,p′, Jz′1Kck′1 , . . . , Jz

′
3Kck′3 , J0

n′
Kcke′),

Js(i−1)iKck5 := Jzi5Kck5 , Ja(i−1)iKck5 := J03Kck5
where J𝕩(i−1)iKtck and J𝕩⋆

(i−1)iKtck′ are of the forms (16) and (17), respectively.
7. Both parties fold {J𝕫(i−1)iK}i∈[N ] into J𝕫0N Kpp following the topological order of HS s.t., when folding

J𝕫ljKpp and J𝕫jrKpp into J𝕫lrKpp (where (l, j), (j, r), (l, r) ∈ HS),

J𝕫lrKpp ← CF.Fold(pp, J𝕫ljKpp, J𝕫jrKpp, (1, j + 1); w)

where (1, j+) is the additional public input required as in Definition 9. This step can be done in
parallel, e.g., following the strategy in Section 2.3.

8. Finally, run CF.Prove as a ZKAoK (or ZKPoK) ΠRP-prf for showing

(pp, cki, (ckmj)j∈[T ], JvalinKcki, valout, (JmuljKckmj )j∈[T ], J𝕫0N Kpp) ∈ RS,S′

RP-prf .

Fig. 7. RAMenPaSTA as protocol ΠRP.

Theorem 2 (Security of ΠRP). If C is a homomorphic commitment scheme and ΠRP-prf is an

HVZKAoK for relation RS,S′

RP-prf then ΠRP is an HVZKAoK for Rram in (20) with completeness error
O((N + T )/ |𝔽 | + cerrprf(pp)) and soundness error O (nplk · (N + T )/|𝔽 |+ serrRP-prf(pp) + negl(λ))
where cerrprf(pp) and serrRP-prf(pp) are respectively completeness and soundness error of ΠRP-prf

and negl(λ) is the negligible probability for cheating prover to break the binding of C.

The security of ΠRP follows from the security of the underlying commitment scheme, CFS
CFgnr and HVZKAoK. For knowledge soundness, we can extract the witnesses of ΠRP, satisfying
requirements of Lemma 2, implying the satisfaction of (22) and (20). The full proof of Theorem 2
is deferred to Appendix D.2.

Efficiency. To analyze efficiency, we first analyze as follows.

– We first consider the components in (29). For i ∈ [N ], |pci| = |pci| = O(1),
∣∣vali∣∣ = |vali| =

O(1), |macs|i = |macs′i| = O(1), |plksti| = nplk, |auxi| = O(nplk) since it contains witness for
PLONK’s arithmetization, which is bounded by nplk, and other constraints related to O(1)-size
components.

– A, B and C have O(nplk) non-zero entries (Remark 11 in Appendix B.3).

– A′, B′ and C′ have O(log |𝔽 |) non-zero entries (Remark 10 in Appendix B.2).

– wi in Definition 9 has size of O(log |𝔽 |) (Remark 10 in Appendix B.2).

Recall the notations in Definition 2. The efficiency of ΠRP is as follows.

– Public Input Size. O(1) for commitment in JvalinKcki and size of valout.
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– Communication Cost. O(T + N · (c(nplk) + c(log |𝔽 |)) + p) where we assume c(c) = O(1) for
any constant c and p is the proof size of CF.Prove. This cost is from the commitments to
{mulj}j∈[T ], the N − 1 times of running CF.Fold (step 7) and the proof size p of CF.Prove.

– Prover Time. O(T +N · (nplk + log |𝔽 |+ tpc(nplk) + tpc(log |𝔽 |) + tph(nplk) + tph(log |𝔽 |)) + tpp)
where tpc(c) = tph(c) = O(1) for any constant c and tpp is the prover time for CF.Prove. The
analysis of prover time is as from above, for communication cost and CF.Fold in Section 5.3. The
factor O(nplk + log |𝔽 |) is because of garb (c.f. Section 3.2) w.r.t. A,B,C of O(nplk) non-zero
entries and A′,B′,C′ of O(log |𝔽 |) non-zero entries.

– Verifier Time. O(T +N · (tvc(nplk)+ tvc(log |𝔽 |)+ tvh(nplk)+ tvh(log |𝔽 |))+ tvp) where tvc(c) =
tvh(c) = O(1) for any constant c and tvp is the verifier time for CF.Prove. This is analyzed as
from above.

When parallelizing with N threads employing the strategy in Section 2.3, we can achieve the
following efficiency for ΠRP.

– Public Input Size. O(1).
– Communication Cost. O(T +N · (c(nplk) + c(log |𝔽 |)) + p) in total.
– Prover Time.O(T/N+logN ·(nplk+log |𝔽 |+tpc(nplk)+tpc(log |𝔽 |)+tph(nplk)+tph(log |𝔽 |))+tpp).
– Verifier Time. O(T/N + logN ·

(
tvc(nplk) + tvc(log |𝔽 |) + tvh(nplk) + tvh(log |𝔽 |)

)
+ tvp).

Instantiating with compressed Σ-protocol from [AC20], we achieve the following efficiency for two
settings, namely, (i) sequential and (ii) parallel with N threads.

– Public Input Size. O(1) for both settings.
– Communication Cost. O(T +N+log nplk+log log |𝔽 |) in total for both settings. For the parallel

setting with N threads, the communication cost for each thread can be O(T/N + logN +
log nplk + log log |𝔽 |).

– Prover Time. O(T +N · (nplk + log |𝔽 |)) for (i) and O(T/N + logN · (nplk + log |𝔽 |)) for (ii).
– Verifier Time. O(T +N + nplk + log |𝔽 |) for (i) and O(T/N + logN + nplk + log |𝔽 |) for (ii).

We achieve the above efficiency because the employed Pedersen commitment [Ped92] is O(1) and
homomorphically processing commitments (for any vector of any length) takes O(1) time. The
prover also needs to homomorphically evaluate the witnesses behind the commitments. See Ap-
pendix 7.1 for more details.

7 Instantiation

We provide potential instantiation of RAMenPaSTA presented in Figure 7 from compressed Σ-
protocol theory [AC20] in Appendix 7.1.

7.1 Instantiation from Compressed Σ-Protocol Theory

Recall that, in [AC20], they construct a succinct ZKAoK for circuit satisfiability [AC20, Section 6]
by applying Lagrange interpolation to transform the witness of computation, through an affine
transformation, into a single check of multiplication of two finite field elements. Their construction
employs the Pedersen commitment scheme [Ped92] (recalled in Appendix B.6) as a building block.
Moreover, the Pedersen commitment scheme is doubly homomorphic [BMM+21] (homomorphic not
only in commitment, message, and randomness, but also in commitment key), perfectly hiding and
computationally binding, and succinct ZKAoK of [AC20] (recalled in Appendix B.12) for circuit
satisfiability meets required properties in Theorem 2. Therefore, it is expected that RAMenPaSTA
in Figure 7 can be instantiated by Pedersen commitment scheme to achieve a sub-linear5 statistical
ZKAoK for RAM programs.

Nevertheless, applying ZKAoK for circuit satisfiability in [AC20] is not direct. In fact, for
proving C(x) = 0 given the public circuit C, the authors transform the witness of the computation
C(x) into a witness vector w ∈ 𝔽w for some positive integer w ∈ ℤ+. Then, they commit to w
to obtain a commitment c ∈ 𝔾 for some group 𝔾. Notice that to commit such a vector w, they

5 The proof size is linear only in N , and hence sub-linear in N ·W .
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employ a grand commitment key ck = (g1, . . . , gw′) ∈ 𝔾w′
for some w′ ≥ w such that each entry

of ck is sampled independently and uniformly from 𝔾. Nevertheless, commitments in RS,S′

RP-prf may

be computed from the same keys, e.g., ck′1 = ck2 (namely, the same key used for committing both
𝕩.z2 in (16) and 𝕩⋆.z1 in (17)) as specified in Section 5.1. Hence, we cannot perform the proof for

RS,S′

gnr-inst at once because some keys, e.g., ck′1 and ck2 satisfying ck′1 = ck2, are not independently
generated.

To overcome the issue, we can split constraints in relation RS,S′

RP-prf into L split-relations of

RS,S′

RP-prf , for some constant L ∈ ℤ+, such that

– w.r.t. the same statement and witness, RS,S′

RP-prf is satisfied iff all split-relations are satisfied, and
– any two commitments involving constraints of the same split-relation do not correspond to the

same commitment key.

Then, we devise a sufficiently long commitment key ck ∈ 𝔾w′
, for some w′ ∈ ℤ+, that contains

commitment keys of each split-relation. To commit components of any split-relation, we simply use
entries of ck that are related to those components. Other unrelated entries of ck are used to commit
to 0 to become 1 ∈ 𝔾. Moreover, the verifier can compute commitments w.r.t. those split-relations
and grand commitment key ck by simply manipulating the commitments to components of each
split-relation.

Now we need to construct a proof/argument that simultaneously proves all L split-relations.
However, each split-relation has a specific affine transform to check the multiplication of two single
field elements. Therefore, the prover and verifier proceed all L parallel proofs/arguments, for those
L-split-relations, independently in 2µ+1 rounds, where µ = O(logw′), in a way that the transcript

of proof/argument for the i-th split-relation is represented by the sequence (a
(i)
1 , b

(i)
1 , . . . , a

(i)
µ , b

(i)
µ , a

(i)
µ+1)

where a
(i)
1 , . . . , a

(i)
µ+1 are prover’s messages while b

(i)
1 , . . . , b

(i)
µ ∈ 𝔽 are verifier’s challenges. Notice

that, to simplify the proof of knowledge soundness and reduce the communication cost, we can

enforce b
(1)
i = · · · = b

(L)
i , for all i ∈ [µ], since those L proofs/arguments are independent with the

same commitment key ck.
A Transformation into L Split-Relations for Constant L. Above we claimed that L is

constant. Here, we provide a proof for this fact. We first take out all constraints in relation RS,S′

RP-prf

in (32) as follows: 

J𝕫Kpp ∈ RS,S′

gnr-inst,

JvalinKcki ∈ Rcom

pc = 1 ∧ val = valin ∧ val = valout

(JmuljKckmj
∈ Rcom ∀j ∈ [T ])

plkiv =
∑
j∈[T ]

mulj
χ+⟨(j∥plkst′j),(ψk)k∈[0,nplk]

⟩

miv = miv′

where

– pp = (tck, tck′) = ((ck1, . . . , ck5, cke), (ck
′
1, . . . , ck

′
3, cke

′));
– 𝕫 = (𝕩, front, rear,𝕩⋆, s,a);
– J𝕫Kpp = (J𝕩Ktck, JfrontKck1 , JrearKck2 , J𝕩⋆Ktck′ , JsKck5 , JaKck5) as in (15);
– pc, val, pc,macs,macs′ are obtained by parsing front = (pc∥val∥ . . . ) and rear = (pc∥macs∥macs′)

(see (32));
– valin and valout are input and output of a RAM program;
– γ, δ, τ, ω, χ, ψ are challenges specified in Lemma 2;
– values miv, miv′ and plkiv are obtained by parsing vector s = (miv∥miv′∥plkiv).

Moreover, from (18), J𝕫Kpp ∈ RS,S′

gnr-inst is equivalent to
JfrontKck1 , JrearKck2 , JsKck5 , JaKck5 ∈Rcom,

J𝕩Ktck ∈ RS
rr1cs,

J𝕩⋆Ktck′ ∈ RS′

rr1cs.

25



Recall, from Section 5.1, that tck = (ck1, . . . , ck5, cke) and tck′ = (ck′1, ck
′
2, ck

′
3, cke

′) where ck′1 =
ck2 and ck′2 = ck1. Notice that cki, ckm1, . . . , ckmT , ck1, . . . , ck5, ck

′
3 and cke′ are generated inde-

pendently. We now split the above constraints into the following sets of constraints:

– Constraint Set 1. J𝕩Ktck ∈ RS
rr1cs involving commitment keys ck1, . . . , ck5 and cke;

– Constraint Set 2. J𝕩⋆Ktck′ ∈ RS′

rr1cs involving commitment keys ck1, ck2, ck
′
3 and cke′;

– Constraint Set 3. 

JvalinKcki ∈ Rcom,

JmuljKckmj ∈ Rcom ∀j ∈ [T ],

JfrontKck1 ∈ Rcom,

JrearKck2 ∈ Rcom,

JsKck5 ∈ Rcom,

pc = 1 ∧ valin = front ∧ valout = rear,

plkiv =
∑
j∈[T ] mulj ·

(
χ+

〈
(j∥plkst′j), (ψk)

nplk

k=0

〉)−1
,

miv = miv′ ∧macs⋆ = macs′

where
∑
j∈[T ] mulj ·

(
χ+

〈
(j∥plkst′j), (ψk)

nplk

k=0

〉)−1
can be computed in advance, and

front = (pc∥val∥ . . . ), rear = (pc∥macs∥macs′), s = (plkiv∥miv∥miv′),

involving commitment keys cki, ckm1, . . . , ckmT , ck1, ck2 and ck5; (Notice that by Definition 9,
the suffixes of front and rear w.r.t. (macs∥macs′) are the same due to J𝕩⋆Ktck′ ∈ RS′

rr1cs. We hence
simply write front = (pc∥val∥ . . . ) and only use (macs∥macs′) from rear.)

– Constraint Set 4. JaKck5 ∈ Rcom involving ck5.

Thus, with L = 4, we can split RS,S′

RP-prf into 4 split-relations w.r.t. those above constraints.
Efficiency.Notice that proving the above constraints can result in proof sizeO(log nplk+log log |𝔽 |) =
O(log nplk) since nplk dominates in the lengths of involved vectors and log |𝔽 | involves those vec-
tors for proving memory consistency (see Remark 10). The prover time and verifier time are both
O(nplk + log |𝔽 |). See Appendix B.12 for the proof size and running time.

Instantiating ΠRP (Figure 7) with compressed Σ-protocol from [AC20], we achieve the following
efficiency for two settings, namely, (i) sequential and (ii) parallel with N threads:

– Public Input Size. O(1) for both settings. For the parallel setting with N threads, the commu-
nication cost for each thread can be O(T/N + logN + log nplk + log log |𝔽 |).

– Communication Cost. O(T +N + log nplk + log log |𝔽 |) in total for both settings.
– Prover Time. O(T +N · (nplk + log |𝔽 |)) for (i) and O(T/N + logN · (nplk + log |𝔽 |)) for (ii).
– Verifier Time. O(T +N + nplk + log |𝔽 |) for (i) and O(T/N + logN + nplk + log |𝔽 |) for (ii).

We achieve the above efficiency because the employed Pedersen commitment [Ped92] is O(1) and
homomorphically processing commitments (for any vector of any length) takes O(1) time. Note
that the prover still needs to homomorphically evaluate the witnesses behind the commitments.
See Appendix 7.1 for more details.

Acknowledgments

The work of Khai Hanh Tang was supported by Singapore Ministry of Education Academic
Research Fund Tier 2 Grant MOE2019-T2-2-083. The work of Minh Pham was supported by
Ethereum Foundation Ecosystem Support Program (Grant ID FY23-1101).

26



References

AC20. Thomas Attema and Ronald Cramer. Compressed Σ-Protocol Theory and Practical
Application to Plug & Play Secure Algorithmics. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, volume 12172 of Lecture
Notes in Computer Science, pages 513–543. Springer International Publishing, 2020.

ACK21. Thomas Attema, Ronald Cramer, and Lisa Kohl. A Compressed Σ-Protocol Theory for
Lattices. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO
2021, volume 12826 of Lecture Notes in Computer Science, pages 549–579. Springer
International Publishing, 2021.

AS24. Arasu Arun and Srinath Setty. Nebula: Efficient read-write memory and switchboard
circuits for folding schemes. Cryptology ePrint Archive, Paper 2024/1605, 2024.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short Proofs for Confidential Transactions and More. In 2018
IEEE Symposium on Security and Privacy – S&P 2018, pages 315–334. IEEE, 2018.

BC23. Benedikt Bünz and Binyi Chen. Protostar: Generic Efficient Accumulation/Folding for
Special-Sound Protocols. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptol-
ogy – ASIACRYPT 2023, volume 14439 of Lecture Notes in Computer Science, pages
77–110. Springer Nature Singapore, 2023.

BC24a. Dan Boneh and Binyi Chen. LatticeFold: A Lattice-based Folding Scheme and its
Applications to Succinct Proof Systems. Cryptology ePrint Archive, Paper 2024/257,
2024. https://eprint.iacr.org/2024/257.

BC24b. Benedikt Bünz and Jessica Chen. Proofs for Deep Thought: Accumulation for large
memories and deterministic computations. Cryptology ePrint Archive, Paper 2024/325,
2024. https://eprint.iacr.org/2024/325.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference –
ITCS 2012, pages 326–349. Association for Computing Machinery, 2012.

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In Proceedings of the Forty-
Fifth Annual ACM Symposium on Theory of Computing – STOC 2013, pages 111–120.
Association for Computing Machinery, 2013.

BCG+17. Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi,
and Sune K. Jakobsen. Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit
Satisfiability. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
– ASIACRYPT 2017, volume 10626 of Lecture Notes in Computer Science, pages 336–
365. Springer International Publishing, 2017.

BCG+18. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary Maller. Arya:
Nearly Linear-Time Zero-Knowledge Proofs for Correct Program Execution. In Thomas
Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, vol-
ume 11272 of Lecture Notes in Computer Science, pages 595–626. Springer International
Publishing, 2018.

BCG24. Annalisa Barbara, Alessandro Chiesa, and Ziyi Guan. Relativized succinct arguments
in the rom do not exist. Cryptology ePrint Archive, Paper 2024/728, 2024. https:

//eprint.iacr.org/2024/728.
BCL+21. Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas

Spooner. Proof-Carrying Data Without Succinct Arguments. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology – CRYPTO 2021, volume 12825 of Lecture
Notes in Computer Science, pages 681–710. Springer International Publishing, 2021.

BCMS20. Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recur-
sive Proof Composition from Accumulation Schemes. In Rafael Pass and Krzysztof
Pietrzak, editors, Theory of Cryptography – TCC 2020, volume 12551 of Lecture Notes
in Computer Science, pages 1–18. Springer International Publishing, 2020.

BFR+13. Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg,
and Michael Walfish. Verifying computations with state. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles – SOSP 2013, pages 341–357.
Association for Computing Machinery, 2013.

BMM+21. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs
for Inner Pairing Products and Applications. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology – ASIACRYPT 2021, volume 13092 of Lecture Notes
in Computer Science, pages 65–97. Springer International Publishing, 2021.

27

https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/325
https://eprint.iacr.org/2024/728
https://eprint.iacr.org/2024/728


BP04. Mihir Bellare and Adriana Palacio. The Knowledge-of-Exponent Assumptions and 3-
Round Zero-Knowledge Protocols. In Matt Franklin, editor, Advances in Cryptology
– CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 273–289.
Springer Berlin Heidelberg, 2004.

BS08. Eli Ben-Sasson and Madhu Sudan. Short pcps with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008.

BSBC+17. Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and
Madars Virza. Computational Integrity with a Public Random String from Quasi-
Linear PCPs. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in
Cryptology – EUROCRYPT 2017, volume 10212 of Lecture Notes in Computer Science,
pages 551–579. Springer International Publishing, 2017.

BSBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable Zero Knowl-
edge with No Trusted Setup. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, volume 11694 of Lecture Notes in Computer
Science, pages 701–732. Springer International Publishing, 2019.

BSCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge. In
Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
volume 8043 of Lecture Notes in Computer Science, pages 90–108. Springer Berlin Hei-
delberg, 2013.

BSCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent Succinct Arguments for R1CS. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, vol-
ume 11476 of Lecture Notes in Computer Science, pages 103–128. Springer International
Publishing, 2019.

BSCTV14a. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable Zero
Knowledge via Cycles of Elliptic Curves. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, volume 8617 of Lecture Notes in
Computer Science, pages 276–294. Springer Berlin Heidelberg, 2014.

BSCTV14b. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-
Interactive Zero Knowledge for a von Neumann Architecture. In 23rd USENIX Security
Symposium – USENIX Security 2014, pages 781–796. USENIX Association, 2014.

CDP12. Ronald Cramer, Ivan Damg̊ard, and Valerio Pastro. On the amortized complexity of zero
knowledge protocols for multiplicative relations. In Adam Smith, editor, Information
Theoretic Security – ICITS 2012, volume 7412 of Lecture Notes in Computer Science,
pages 62–79. Springer Berlin Heidelberg, 2012.

CGG+24. Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha.
SublonK: Sublinear Prover PlonK. In Proceedings on Privacy Enhancing Technologies
– PETS 2024, volume 2024, pages 314–335, 2024.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT
2020, volume 12105 of Lecture Notes in Computer Science, pages 738–768. Springer
International Publishing, 2020.

CJS14. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
Global Random Oracle. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security – CCS 2014, page 597–608. Association for Com-
puting Machinery, 2014.

DdSGOTV22. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and Michiel
Verbauwhede. Efficient Proof of RAM Programs from Any Public-Coin Zero-Knowledge
System. In Clemente Galdi and Stanislaw Jarecki, editors, Security and Cryptography
for Networks – SCN 2022, volume 13409 of Lecture Notes in Computer Science, pages
615–638. Springer International Publishing, 2022.

DGP+24. Moumita Dutta, Chaya Ganesh, Sikhar Patranabis, Shubh Prakash, and Nitin Singh.
Batching-efficient RAM using updatable lookup arguments. Cryptology ePrint Archive,
Paper 2024/840, 2024.

DXNT23. Zijing Di, Lucas Xia, Wilson Nguyen, and Nirvan Tyagi. MUXProofs: Succinct Ar-
guments for Machine Computation from Tuple Lookups. Cryptology ePrint Archive,
Paper 2023/974, 2023. https://eprint.iacr.org/2023/974.

EFKP20. Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. SPARKs: Succinct
Parallelizable Arguments of Knowledge. In Anne Canteaut and Yuval Ishai, editors, Ad-

28

https://eprint.iacr.org/2023/974


vances in Cryptology – EUROCRYPT 2020, volume 12826 of Lecture Notes in Computer
Science, pages 707–737. Springer International Publishing, 2020.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The Algebraic Group Model and its
Applications. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryp-
tology – CRYPTO 2018, volume 10992 of Lecture Notes in Computer Science, pages
33–62. Springer International Publishing, 2018.

FKL+21. Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai
Weng. Constant-Overhead Zero-Knowledge for RAM Programs. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security – CCS
2021, pages 178–191. Association for Computing Machinery, 2021.

FS87. Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Andrew M. Odlyzko, editor, Advances in Cryptology —
CRYPTO 1986, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer Berlin Heidelberg, 1987.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span
Programs and Succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 626–645. Springer Berlin Heidelberg, 2013.

GHAK23. Aarushi Goel, Mathias Hall-Andersen, and Gabriel Kaptchuk. Dora: Processor Expres-
siveness is (Nearly) Free in Zero-Knowledge for RAM Programs. Cryptology ePrint
Archive, Paper 2023/1749, 2023. https://eprint.iacr.org/2023/1749.

Gro10. Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In
Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010, volume 6477 of
Lecture Notes in Computer Science, pages 321–340. Springer Berlin Heidelberg, 2010.

Gro16. Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
volume 9666 of Lecture Notes in Computer Science, pages 305–326. Springer Berlin Hei-
delberg, 2016.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

H+. Daira-Emma Hopwood et al. Pasta curves. https://github.com/zcash/pasta.
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A Related Work (Extended)

We provide a more detailed comparison of our work and several related works from Section 1.2.
Distributed ZKP. Recall that, by employing an existing distributed ZKP protocol in the liter-
ature on input a RAM program execution trace and viewing each prover as a thread, we could
trivially get a somewhat parallelizable ZKP protocol for RAM programs. Hence, it would be neces-
sary to compare our result with other distributed ZKP protocols regarding efficiency and minimal
assumption required. To the best of our knowledge, there are only 3 existing distributed ZKP proto-
cols, namely DIZK [WZC+18], deVirgo [XZC+22] and Pianist [LXZ+24] by proposing distributed
versions of an existing SNARK construction [Gro16,ZXZS20,GWC19].

We now compare the efficiency and minimal assumptions of our work and theirs. For commu-
nication complexity, if a succinct commitment scheme like Pedersen is used, then our communi-
cation cost is O(N), while DIZK’s cost is O(|W | · N) and deVirgo, Pianist’s cost are O(N). For
proving time, their total proving time is equal to the cost of a single prover, which ranges from
O(|W | log |W |) to O(|W | log2 |W |), while ours is O(|W | logN). For verification time, all of them
incur O(1) verification time, while ours depends on the ZKAoK instantiation. Hence, their con-
structions could be more efficient than ours when N ≫ |W |. However, to achieve such efficiency,
DIZK and Pianist have to rely on Groth16 and PLONK, respectively, which require non-standard
assumptions for security such as AGM and trusted setup, while deVirgo uses sumcheck argument
and thus, could only rely on SNARKs for sumcheck-type constraints like Virgo. This makes all these
constructions have only limited choice for ZKP instantiations. On the other hand, our construction
requires the relatively standard and minimal assumption, it only requires the existence of a
homomorphic commitment scheme and can be instantiated from any ZKP protocol with that
requirement. Finally, while these protocols claim that they could achieve zero knowledge, there is
no detailed method so far in each construction nor a formal proof for this.
Dora. Dora [GHAK23] also leverages the folding scheme to propose a ZKP for RAM programs.
However, as of ours, their construction does not follow the IVC approach to achieve succinct proof
size but instead designs an interactive proof system that aims to achieve linear communication
cost and prover time like [FKL+21,YH24]. In addition, their construction also requires minimal
assumption since only a homomorphic commitment scheme is needed, making it compatible with
many ZKP paradigms. Due to these similarities, it would be straightforward to compare their
approach against us. Unlike our construction based on CF, Dora proposed ZK-bag, a novel primitive
that allows the prover to insert (send)/retrieve items to/from the bag such that

– The retrieved items do not reveal when it has been sent.
– The prover cannot retrieve items not in the bag.
– The prover can convince the verifier that the bag is empty.

Using ZK-bag, handling memory consistency in Dora is straightforward as follows. Initially, the
prover inserts all the tuples (JℓK, JvalK) of every memory cells to the ZK-bag. In each step, sup-
pose we need to read/write the value val′ from/to address ℓ, the prover retrieves the current tuple
(JℓK, JvalK) from the ZK-bag and “remove” it, then insert the tuple (JℓK, Jval′K) into the bag. Fi-
nally, the prover proves that the bag is empty, implying that the inserted and “removed” tuples
are permutations of each other. For handling the correctness of instructions, suppose there are T
instructions, and each instance-witness pair of a single computation step has the form of an R1CS
instance-witness pair. The prover initializes T accumulators (Jz′iK)Ti=1, which represents T instruc-
tions. In each step, if the instruction Fj is executed, then the value 𝕫′j will first be retrieved from
the bag, then updated by folding with the R1CS instance-witness pair of the current step, and
finally be sent to the bag again. Finally, the prover and verifier engage in a ZKAoK for checking
the validity of Jz′iKTi=1, which implies the correctness of the whole execution process. However, in
this way, Dora’s construction does not support generating proofs in parallel. Indeed, in each step,
the prover has to “remove” the instance-witness pair of the current step from the ZK-bag and then
insert a new one into it. These operations can only be performed sequentially during the whole N
steps, and we are unaware of any method to parallize it.
A Note on SPARK. SPARK [EFKP20] is also a parralizable succinct argument for RAM pro-
gram. However, the construction is not zero-knowledge because the construction requires revealing
the hash digest of the memory in intermediate steps and then later using a SNARK to prove the
correctness of the hash. For the hash function to be modeled as a circuit and proved by a SNARK,
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it must be a standard hash function, not modeled as a random oracle. Since the hash function is
not known to be hiding, SPARK is not believed to be zero-knowledge. Also, SPARK’s paralliza-
tion method differs from ours: SPARK’s method is to have k threads, and divides a N -step RAM
program into k sub-programs, where the i-th thread executes the i-th sub-program and prove the
correctness of it. The computation time of SPARK is WN/k + O(log(WN)), as analyzed by the
authors (since one of the threads has to run WN/k computation steps). On the other hand, our
construction runs the program sequentially and records the witness, then uses the threads to pro-
vide the proof in parallel using the binary tree-like folding method, which requires O(T +W logN)
proof generation time in parallel.

B Preliminaries (Extended)

We recall the necessary preliminaries in complement to Section 3.

B.1 RAM Program

We model a RAM program as a combination of the Non-Uniform Incremental Computation [KS22]
and RAM Program [FKL+21]. This model of computation contains a memory mem, a program
counter pc and an instruction set F ′ of cardinality T described as follows.

– The memory mem can be viewed as a sequence of M elements, i.e., mem = (memi)i∈[M ]. For
each i ∈ [M ], memi belongs to the set 𝔽 ∪ {⊥} where ⊥ is understood to be an uninitialized
value which cannot be read by the instructions. At the beginning, every memi is set to be ⊥.

– The instruction set F ′ is a set of T instructions containing F1, . . . , FT . There exists a program
counter pc ∈ [T ] that determines the next instruction Fpc to be executed. Initially, pc is set to
be 1 and the RAM program receives as input a value val. For each step of the RAM program,
it determines the instruction Fpc and runs Fpc on input val. Fpc then returns a new tuple
(pc′, val′, ℓ, val′,mop) containing a new program counter pc′, new value val′, an index ℓ ∈ [M ],
new value val′ and a memory access operation mop ∈ {WRITE,READ}. Then, it updates the
state of the system as follows:
• Set val := val′ and pc := pc′. Here, pc is set to be the new value pc′ to determine the
instruction in the next step.
• If mop = WRITE, set memℓ := val′ and val := val′. Otherwise, if mop = READ, set
val := memℓ.

B.2 Memory Consistency Check

We recall the technique for checking memory consistency in [BCG+18,ZGK+18,FKL+21]. Roughly
speaking, let N ∈ ℤ+, for each i ∈ [N ], the i-th memory access is represented by a tuple

macsi = (ℓi, timei, vali,mopi) ∈ 𝔽 4,

where ℓi is the index of the accessed memory cell memℓi , timei is the time logged for this access,
vali is the access value and mopi is either READ or WRITE

A sequence of memory access (macsi)i∈[N ] is valid if, for each memory cell, over time, the first
access is of type WRITE and the value val achieved from any READ access must be equal to the
previous value read from or written to the same cell. To capture the above condition, [FKL+21]
show that there exists a sequence (macs′i)i∈[N ] s.t.

– (macs′i)i∈[N ] is a permutation of (macsi)i∈[N ].
– (macs′i)i∈[N ] is well-sorted (sorted via address and time-log). In addition, (macs′i)i∈[N ] must

satisfies the below conditions:
– If ℓ′i = ℓ′i+1 and mop′i = 0 then val′i = val′i+1 and,
– The first access to each memory cell must be equal to WRITE.

Let us explain the meaning of the third constraint. Because (macs′i)i∈[N ] is sorted by address, we
can easily check that: If ℓ = ℓ′i = ℓ′i+1, then time′i is the latest previous time we have accessed
memℓ and therefore it must holds that val′i = val′i+1 if we read from memℓ at time timei+1 (i.e.,
mop′i = 0). This is also sufficient to capture the consistency of reading values from the memory at
any time. Now, to verify the second, third, and fourth constraints, we observe that:
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– Verifying the well-sorted property of the sequence (macs′i)i∈[N ] requires checking
(
ℓ′i−1 < ℓ′i

)
∨(

(ℓ′i−1 = ℓ′i) ∧ (time′i−1 < time′i)
)
∀ i ∈ [2, N ]. This implies that (macs′i)i∈[N ] is sorted via ad-

dress first, then time-log.
– Verifying the consistency of reading between two steps can be captured by checking that

(ℓ′i−1 ̸= ℓ′i) ∨ (val′i−1 = val′i) ∨ (mop′i = 0) ∀ i ∈ [2, N ]..
– We also require all the first access of the cell must be equal to WRITE. This can be done by

checking (ℓ′i−1 = ℓ′i) ∨ (mop′i = 0) ∀ i ∈ [2, N ], and (macsi−1 = 0) ∨ (i− 1 > 1) ∀ i ∈ [2, N ].
– We also need to check the validity of the address and operations. This can be done by checking

1 ≤ ℓi ≤M ∧mopi ∈ {0, 1} ∀ i ∈ [N ] and timei−1 < timei ∀ i ∈ [2, N ].
– Finally, we need the original sequence (macsi)i∈[N ] represents the process of accessing the

memory during the course of time. This can be done by checking timei−1 < timei for all
i ∈ [2, N ].

In summary, to prove memory consistency, it suffices to compute a sequence (macs′i)i∈[N ] where
macs′i = (ℓ′i, time′i, val

′
i,mop′i), and show that

(macs′i)i∈[N ] is a permutation of (macsi)i∈[N ] (33)

and 

1 ≤ ℓi ≤M ∧mopi ∈ {0, 1} ∀i ∈ [N ],

timei−1 < timei ∀i ∈ [2, N ],(
ℓ′i−1 < ℓ′i

)
∨
(
(ℓ′i−1 = ℓ′i) ∧ (time′i−1 < time′i)

)
∀i ∈ [2, N ],

(macsi−1 = 1) ∨ (i− 1 > 1) ∀i ∈ [2, N ],

(ℓ′i−1 = ℓ′i) ∨ (mop′i = 1) ∀i ∈ [2, N ],

(ℓ′i−1 ̸= ℓ′i) ∨ (val′i−1 = val′i) ∨ (mop′i = 1) ∀i ∈ [2, N ].

(34)

We note that the first line of (34) has index i ∈ [N ] while, in the remaining lines, i ∈ [2, N ].
Our purpose is to use this system to guarantee the condition between memory accesses at steps
i− 1 and i. Therefore, we transform this condition into

1 ≤ ℓi ≤M ∧mopi ∈ {0, 1} ∀i ∈ [2, N ],

1 ≤ ℓi−1 ≤M ∧mopi−1 ∈ {0, 1} ∀i ∈ [2, N ],

timei−1 < timei ∀i ∈ [2, N ],(
ℓ′i−1 < ℓ′i

)
∨
(
(ℓ′i−1 = ℓ′i) ∧ (time′i−1 < time′i)

)
∀i ∈ [2, N ],

(macsi−1 = 1) ∨ (i− 1 > 1) ∀i ∈ [2, N ],

(ℓ′i−1 = ℓ′i) ∨ (mop′i = 1) ∀i ∈ [2, N ],

(ℓ′i−1 ̸= ℓ′i) ∨ (val′i−1 = val′i) ∨ (mop′i = 1) ∀i ∈ [2, N ]

(35)

s.t. the first line in (34) is equivalently split into the first two lines in (35).
In summary, there is a circuit Cmem defined as follows. On inputs i, macsi−1, macs′i−1, macsi

and macs′i,
Cmem(i,macsi−1,macs′i−1,macsi,macs′i) ∈ {0, 1},

for all i ∈ [2, N ], s.t., Cmem returns 1 iff the constraints of (35) are satisfied. Here, we need index i
in the parameters of Cmem since we need to check whether i−1 > i as in the 4-th line of system (35).
Thus, (33) and Cmem together capture the memory consistency of sequence (macsi)i∈[N ].

Remark 10. In our construction of RAMenPaSTA, we realize Cmem as R1CS matrices A′,B′ and
C′ (see Definition 9 excluding those for checking equality). It is well-known that the size of R1CS
matrices only depends on the multiplication gates of the circuit. Hence, we count the number of
multiplication gates in Cmem as follows.

In (35), handling the three final constraints requires O(1) multiplication gates. Finally, handling
the first four constraints requires proving that a < b for two values a, b≪ 𝔽 . It is well-known that
such handling a < b when a, b ∈ 𝔽 requires O(log |𝔽 |) multiplication gates (e.g., see [NTWZ19,
Theorem 2]). Therefore, handling the first four constraints requires O(log |𝔽 |) multiplication gates.
Thus, we conclude that the circuit Cmem has O(log |𝔽 |) multiplication gates. Consequently, we can
see that A′,B′, and C′ have O(log |𝔽 |) rows while each row has a constant number of non-zero
entries.
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B.3 PLONK’s Arithmetization

We recall PLONK’s arithmetization [GWC19] for representing a circuit in the form of gate con-
straints and copy constraints. Let C be an arithmetic circuit representing the computation of a
function F : 𝔽nin → 𝔽nout that maps an input vector x = (x1, . . . , xnin) ∈ 𝔽nin to an output vector
y = (y1, . . . , ynout) ∈ 𝔽nout . Each gate in C is of the following four types:

– Addition. An addition gate takes as inputs a, b ∈ 𝔽 and returns a+ b ∈ 𝔽 .
– Addition with Constant d. This gate takes as input a ∈ 𝔽 and return a+ d ∈ 𝔽 .
– Multiplication. This gate takes as inputs a, b ∈ 𝔽 and returns a · b ∈ 𝔽 .
– Multiplication with Constant d. This gate takes as input a ∈ 𝔽 and returns a · d ∈ 𝔽 .

We denote by ngate as the total number of gates in C. Hence, by indexing each gate of C to be
a number in [ngate], we denote by ai, bi, ci to be the values on the left, right, and output wires,
respectively, of the i-th gate. For addition and multiplication with constant, we assume that bi
can be any value in 𝔽 since it does not affect the computation following the structure of circuit
C. Moreover, the i-th gate is associated with the selectors slefti , srighti , smul

i , sconsti s.t. the relation
between ai, bi and ci is captured by the equation

slefti · ai + srighti · bi + smul
i · (ai · bi) + sconsti − ci = 0. (36)

Each equation in the form of (36) is a gate constraint. Hence, we define a witness satisfying circuit
C to be

wplk = (x1, . . . , xnin , y1, . . . , ynout , a1, . . . , angate , b1, . . . , bngate , c1, . . . , cngate)

= (w1, . . . , wnwit) ∈ 𝔽nwit
(37)

where nwit = nin + nout + 3ngate and cngate is value of output wire.
In addition, we would require constraints to ensure that the wires are connected. For ex-

ample, in some circuits, we would require that the output of the first wire is equal to the left
input of the second wire, which can be captured by the constraint c1 = a2. We name these
constraints copy constraint. To guarantee the connection between wires, namely, copy constraint,
there exists a public permutation φ : [nwit] → [nwit] based on C s.t. the copy constraint is sat-
isfied iff ((1, w1), . . . , (nwit, wnwit)) is a permutation of ((φ(1), w1), . . . , (φ(nwit), wnwit)). According

to [GWC19], for value γ, δ
$← 𝔽 , if

nwit∏
i=1

(γ + i · δ + wi) =

nwit∏
i=1

(γ + φ(i) · δ + wi) (38)

holds, then it would imply that ((1, w1), . . . , (nwit, wnwit)) is a permutation of ((φ(1), w1), . . . , (φ(nwit), wnwit))
with probability at least 1− nwit

|𝔽 | by Schwartz-Zippel lemma [Zip79,Sch80].

In summary, the structure of circuit C can be compactly represented by the PLONK structure

plkst = (sleft1 , sright1 , smul
1 , sconst1 , . . . , sleftngate

, srightngate
, smul
ngate

, sconstngate
,

φ(1), . . . , φ(nwit)) ∈ 𝔽nplk
(39)

where
nplk = 4ngate + nwit = nin + nout + 7ngate. (40)

We assume that nplk = O(ngate) because nwit = 4ngate + nin + nout with nin and nout are at most
O(ngate).

From (36) and , by sampling γ, δ
$← 𝔽 , if the system{

slefti · ai + srighti · bi + smul
i · (ai · bi) + sconsti − ci = 0 ∀i ∈ [ngate],∏nwit

i=1(γ + i · δ + wi) =
∏nwit

i=1(γ + φ(i) · δ + wi)
(41)

is satisfied, we see that wplk is a valid witness of C w.r.t. the compact PLONK structure plkst
with probability at least 1− nwit

|𝔽 | . Notice that (41) can be represented under the form of an R1CS

constraint system with public matrices determined based on γ and δ. The witness vector for this
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R1CS constraint system contains both PLONK structure plkst and witness vector wplk specified
above.

Let plkst be the PLONK structure of a function F . Notice that the witness wplk in (37) contains
3 components: (i) input x to and (ii) output y from F , and (iii) middle values known as supporting
witness w. Hence, a valid witness wplk (for proving F (x) = y) can be parsed as wplk = (x∥y∥w).

Then, system (41) implies the existence of a circuit Cγ,δplk : 𝔽nplk+nwit → {0, 1}, parameterized by

γ, δ
$← 𝔽 , s.t.

– if wplk is a valid witness for plkst, then Cγ,δplk (plkst,x,y,w) = 1.

– if wplk is not a valid witness corresponding for plkst, then Cγ,δplk (plkst,x,y,w) returns 1 with
probability at most O(nplk/ |𝔽 |), namely, the soundness error.

Remark 11. In our construction of RAMenPaSTA, we realize Cplk as R1CS matrices A,B and
C (see Definition 8). It is well-known that the size of these R1CS matrices only depends on the
multiplication gates of the circuit. As of Remark 10, we count the number of multiplication gates
in Cγ,δplk as follows.

Each gate constraint requires 4 multiplication gates (see the first row of (41)). Hence, handling
the gate constraints requires 4ngate multiplication gates. Finally, the two products in the second
row of (41) can be decomposed into 3nwit multiplication gates. Hence, the number of multiplication

gates in Cγ,δplk is equal to 4ngate + 3nwit = O(nplk) where nplk = 4ngate + nwit = nin + nout + 7ngate as
defined in (40).

B.4 Logarithmic Derivative Supporting Permutation and Lookup Arguments

Permutations. We recall the following lemma from [Hab22] for supporting checking permutation
arguments.

Lemma 3 (Consequence of Lemma 3 of [Hab22]). Let n be a positive integer. Let (ai)
n
i=1

and (bi)
n
i=1 be sequence over a field 𝔽 with characteristic p > n. Then (ai)

n
i=1 and (bi)

n
i=1 are

permutation of each other iff
n∑
i=1

1

X + ai
=

n∑
i=1

1

X + bi
(42)

in the rational function field 𝔽 (X).

Permutations of Sequences of Tuples. We adapt the above lemma to support permutations
of sequences of tuples in the following sense. We say that a = (ai)

n
i=1 ∈ (𝔽 s)n is a permutation of

b = (bi)
n
i=1 ∈ (𝔽 s)n for some positive integers s and n iff there exists some φ ∈ Sn, where Sn is a

symmetric group over [n], satisfying ai = bφ(i) for all i ∈ [n]. We have the following Lemma 4:

Lemma 4 (Permutations of Sequences of Tuples). Given sequences a = (ai)
n
i=1,b = (bi)

n
i=1 ∈

(𝔽 s)n where s and n are positive integers. Then, a is a permutation of of b iff

n∑
i=1

1

X +
〈
ai, (Y k)

s−1
k=0

〉 =

n∑
i=1

1

X +
〈
bi, (Y k)

s−1
k=0

〉 (43)

in the rational function field 𝔽 (X,Y ) where X and Y are variables over 𝔽 .

Proof. If (ai)
n
i=1 is a permutation of (bj)

n
j=1 then (43) trivially holds.

We consider the other direction. Let a′1, . . . ,a
′
u be distinct vectors satisfying {a′i}ui=1 = {ai}ni=1

for some positive integer u ≤ n and consider muli =
∑n
j=1(a

′
i = aj), for all i ∈ [u]. Similarly, let

{b′
i}vi=1 = {bi}ni=1 for some positive integer v ≤ n and consider mul′i =

∑n
j=1(b

′
i = bj), for all

i ∈ [v]. It suffices to prove the following:{
u = v,

∃σ ∈ Su s.t. a′i = b′
σ(i) ∧muli = mul′σ(i) ∀ i ∈ [u]

(44)

where Su is the symmetric group over [u].
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For a vector v ∈ 𝔽 s, define fv(Y ) =
〈
v, (Y k)s−1

k=0

〉
. Let

f(X,Y ) =

n∑
i=1

1

X + fai
(Y )
−

n∑
i=1

1

X + fbi
(Y )

=

u∑
i=1

muli
X + fa′

i
(Y )
−

v∑
j=1

mul′j
X + fb′

j
(Y )

.

We can see that (43) holds iff f(X,Y ) = 0 ∈ 𝔽 (X,Y ). Since we assume that (43) holds, we have
f(X,Y ) = 0. We define

g(X,Y ) = f(X,Y ) ·
u∏
i=1

(X + fa′
i
(Y )) ·

v∏
i=1

(X + fb′
i
(Y )).

Then it holds that g(X,Y ) = 0 ∈ 𝔽 (X,Y ). We see that the explicit form of g(X,Y ) can be written
to be

g(X,Y ) =

u∑
i=1

muli ·
∏

j∈[u] s.t. j ̸=i

(X + fa′
j
(Y )) ·

v∏
j=1

(X + fb′
j
(Y ))

−
v∑
i=1

mul′i ·
u∏
j=1

(X + fa′
j
(Y )) ·

∏
j∈[v] s.t. j ̸=i

(X + fb′
j
(Y )).

For each k ∈ [u] by replacing X by −fa′
k
(Y ), we see that

g(−fa′
k
(Y ), Y ) = mulk ·

∏
j∈[u] s.t. j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )) ·

v∏
j=1

(−fa′
k
(Y ) + fb′

j
(Y )).

Since we assumed that g(X,Y ) = 0, mulk ̸= 0 and a′1, . . . ,a
′
u are pairwise distinct, thus fa′

k
(Y ) ̸=

fa′
j
(Y ) in 𝔽 (X,Y ) for any j ̸= k and thus

mulk ·
∏

j∈[u] s.t. j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )) ̸= 0.

Hence, it can be seen that
∏v
j=1(−fa′

k
(Y ) + fb′

j
(Y )) = 0 ∈ 𝔽 (X,Y ) for each k ∈ [u]. This means

that each a′k(Y ) is equal to b′
h(Y ) for some h ∈ [v] and each value k gives a distinct value h. Hence,

u ≤ v.
Similarly, by replacing X with b′

k(Y ) for each k ∈ [v], we see that each b′
k(Y ) is equal to a′h(Y )

for some h ∈ [u], each value k gives a distinct value h as well. Hence, v ≤ u.
Therefore, for two equalities happen, we must have u = v and there exists a permutation σ ∈ Su

s.t. a′k = b′
σ(k) for all k ∈ [u].

Finally, we need to prove that muli = mul′σ(i) for all i ∈ [u]. We see that f(X,Y ) can now be
written as

f(X,Y ) =

u∑
i=1

muli −mul′σ(i)
X + fa′

i
(Y )

.

We define

g′(X,Y ) = f(X,Y ) ·
u∏
i=1

(X + fa′
i
(Y )).

Since we assumed that f(X,Y ) = 0, it implies that g′(X,Y ) = 0 ∈ F [X,Y ]. For each k ∈ [u], by
letting X = −fa′

k
(Y )), we see that

g′(−fa′
k
(Y ), Y ) = (mulk −mul′σ(k)) ·

∏
j∈[u] s.t. j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )).

Since we have assumed that a′i ̸= a′j for all i, j ∈ [u] satisfying i ̸= j thus fa′
i
(Y ) ̸= fa′

j
(Y ),

consequently we must have
mulk = mul′σ(k).

Hence, it holds that (ai)
n
i=1 is indeed a permutation of (bi)

n
i=1, as desired, according to (44). ⊓⊔
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Testing Permutations of Sequences of Tuples. If a and b are not permutation of each other,

then by sampling (τ, ω)
$← 𝔽 × 𝔽 and setting X = τ and Y = ω, then (43) holds with probability

at most

errperm(𝔽 , s, n) =
(s− 1)(2n− 1)

|𝔽 |
= O

(
s · n
|𝔽 |

)
. (45)

according the following Lemma 5.

Lemma 5 (Tuple Permutation Error Probability). Given sequences a = (ai)
n
i=1 ∈ (𝔽 s)n

and b = (bi)
n
i=1 ∈ (𝔽 s)n where s and n are positive integers. For a vector v ∈ 𝔽 s, define fv(Y ) =〈

v, (Y k)s−1
k=0

〉
. Assume that

n∑
i=1

1

X + fai(Y )
̸=

n∑
i=1

1

X + fbi(Y )
.

Then,

Pr
[
f(τ, ω) = 0

∣∣∣τ $← 𝔽 ∧ ω $← 𝔽
]
≤ (s− 1)(2n− 1)

|𝔽 |
where

f(X,Y ) =

n∑
i=1

1

X + fai(Y )
−

n∑
i=1

1

X + fbi(Y )
.

Proof. Define

g(X,Y ) = f(X,Y )

n∏
i=1

(X + fai
(Y ))

n∏
i=1

(X + fbi
(Y ))

=

n∑
i=1

∏
j∈[n] s.t. j ̸=i

(X + faj (Y )) ·
n∏
j=1

(X + fbj (Y ))

−
n∑
i=1

n∏
j=1

(X + faj
(Y )) ·

∏
j∈[n] s.t. j ̸=i

(X + fbj
(Y )).

Notice that each term (X+fai
(Y )) and (X+fbi

(Y )) has degree at most s−1 for all i ∈ [n], hence
g(X,Y ) has of total degree at most (s− 1)(2n− 1). We see that if f(X,Y ) ̸= 0 iff g(X,Y ) ̸= 0.

Notice that there are some bad pair (τ, ω) such that f(τ, ω) cannot be computable, i.e., τ +
faj (ω) = 0 for some j ∈ [n]. However, in such cases, g(τ, ω) is still computable since there is no
denominator in g(X,Y ) ∈ 𝔽 (X,Y ). We see that, for any (τ, ω) ∈ 𝔽 × 𝔽 , if f(τ, ω) is computable
and f(τ, ω) = 0, then g(τ, ω) = 0. We deduce that

Pr
[
f(τ, ω) = 0

∣∣∣τ $← 𝔽 ∧ ω $← 𝔽
]

≤ Pr
[
g(τ, ω) = 0

∣∣∣τ $← 𝔽 ∧ ω $← 𝔽
]

≤
∣∣{τ ∈ 𝔽 ∧ ω ∈ 𝔽

∣∣g(τ, ω) = 0
}∣∣

|𝔽 |2

≤
(s−1)(2n−1)

|𝔽 | · |𝔽 |2

|𝔽 |2
(Schwartz–Zippel lemma [Zip79,Sch80])

=
(s− 1)(2n− 1)

|𝔽 |

as desired. ⊓⊔

Lookup. We recall the following lemma from [Hab22] for supporting lookup arguments.

Lemma 6 (Lemma 5 of [Hab22] and Lemma 4 of [BC23]). Let n and t be positive integers.
Let (ai)

n
i=1 and (bi)

t
i=1 be sequence over a field 𝔽 with characteristic p > max(n, t). Then, {ai}ni=1 ⊆

{bi}ti=1 iff there exists (mulj)
t
j=1 over 𝔽 satisfying

n∑
i=1

1

X + ai
=

t∑
j=1

muli
X + bj

(46)
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in the rational function field 𝔽 (X).

Remark 12. In Lemma 6, it suffices to choose a random γ ∈ 𝔽 and check if both sides are equal for
X = γ. By multiplying

∏n
i=1(X + ai)

∏t
j=1(X + bi) and subtracting the two sides, we see that the

check of Lemma 6 is reduced into proving that a certain polynomial p(X) of degree d = n+ t− 1
is equal to zero. By Schwartz-Zippel lemma [Zip79, Sch80], if p(X) is not equal to zero, then the
probability that p(γ) = 0 is at most d𝔽 , which is negligible. We can argue the same way for Lemma 3.

Tuple Lookup. We may encounter a tuple lookup argument in our construction. Specifically, let
s, n, t be positive integers. Given list a = (ai)

n
i=1 and b = (bj)

t
j=1 where ai ∈ 𝔽 s for all i ∈ [n] and

bj ∈ 𝔽 s for all j ∈ [t], we would like to establish necessary and sufficient conditions to guarantee
that every ai is equal to some bj in b. We adapt the above lemma, namely, Lemma 6, to achieve
the following Lemma 7:

Lemma 7. Given sequences a = (ai)
n
i=1 ∈ (𝔽 s)n and b = (bj)

t
j=1 ∈ (𝔽 s)t where s, n and t are

positive integers. Then, {ai}ni=1 ⊆ {bj}tj=1 iff there exists mul1, . . . ,mult ∈ 𝔽 satisfying

n∑
i=1

1

X +
〈
ai, (Y k)

s−1
k=0

〉 =

t∑
j=1

mulj

X +
〈
bi, (Y k)

s−1
k=0

〉 (47)

in the rational function field 𝔽 (X,Y ) where X and Y are variables over 𝔽 .

Proof. If {ai}ni=1 ⊆ {bj}tj=1, then it can be seen that (47) trivially holds.
Now, we consider the other direction. Assume that a′1, . . . ,a

′
m be distinct vectors satisfying

{a′i}mi=1 = {ai}ni=1 for some positive integer m ≤ n.
For a vector v ∈ 𝔽 s, define fv(Y ) =

〈
v, (Y k)s−1

k=0

〉
. By defining mul′i =

∑n
j=1(a

′
i = aj), for all

i ∈ [m], we see that
m∑
i=1

mul′i
X + fa′

i
(Y )

=

n∑
i=1

1

X + fai
(Y )

.

Hence, it is sufficient for us to prove that

m∑
i=1

mul′i
X + fa′

i
(Y )

=

t∑
j=1

mulj
X + fbj

(Y )

which implies {ai}ni=1 ⊆ {bj}tj=1.
Define

f(X,Y ) =

n∑
i=1

mul′i
X + fa′

i
(Y )
−

t∑
j=1

mulj
X + fbj (Y )

and

g(X,Y ) = f(X,Y )

m∏
i=1

(X + fa′
i
(Y ))

t∏
j=1

(X + fbj (Y )).

We can see the followings are equivalent:

– (47) is satisfied,
– f(X,Y ) = 0 ∈ 𝔽 (X,Y ) and
– g(X,Y ) = 0 ∈ 𝔽 (X,Y ).

Notice that the explicit form of g(X,Y ) can be written to be

g(X,Y ) =

m∑
i=1

mul′i ·
∏

j∈[m] s.t. j ̸=i

(X + fa′
j
(Y )) ·

t∏
j=1

(X + fbj
(Y ))

−
t∑
i=1

muli ·
m∏
j=1

(X + fa′
j
(Y )) ·

∏
j∈[t] s.t. j ̸=i

(X + fbj
(Y )).
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Notice that the total degree of g(X,Y ) is at most n+ t− 1. Assume that g(X,Y ) = 0 ∈ 𝔽 (X,Y ).
Then, we see that, for each k ∈ [m], by replacing X by −fa′

k
(Y ), we see that

g(−fa′
k
(Y ), Y )

=

m∑
i=1

mul′i ·
∏

j∈[m] s.t. j ̸=i

(−fa′
k
(Y ) + fa′

j
(Y )) ·

t∏
j=1

(−fa′
k
(Y ) + fbj

(Y ))

−
t∑
i=1

muli ·
m∏
j=1

(−fa′
k
(Y ) + fa′

j
(Y )) ·

∏
j∈[t] s.t. j ̸=i

(−fa′
k
(Y ) + fbj

(Y ))

= mul′k ·
∏

j∈[m] s.t. j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )) ·

t∏
j=1

(−fa′
k
(Y ) + fbj

(Y )).

Since we assumed that g(X,Y ) = 0, mul′k ̸= 0 and a′1, . . . ,a
′
m are distinct, we see that

mul′k ·
∏
j ̸=k

(−fa′
k
(Y ) + fa′

j
(Y )) ̸= 0.

Hence, it can be seen that
∏t
j=1(−fa′

k
(Y ) + fbj

(Y )) = 0. Therefore,
∏t
j=1(X + fbj

(Y )) contains

a factor X + fa′
k
(Y ) which implies a′k ∈ {bj}tj=1, and this holds for all k ∈ [m]. ⊓⊔

Testing Tuple Lookup. If sequences a and b do not satisfy Lemma 7, i.e., exists ai ̸∈ {bj}tj=1,

by sampling ψ
$← 𝔽 and χ

$← 𝔽 \ {
〈
bi, (ψ

k)s−1
k=0

〉
}ti=1, and setting X = χ and Y = ψ, we can see

that (47) holds with probability at most

errlookup(𝔽 , s, n, t) =
(s− 1)(n+ t− 1)

|𝔽 |
= O

(
s · (n+ t)

|𝔽 |

)
. (48)

according to the following Lemma 8

Lemma 8 (Tuple Lookup Error Probability). Given sequences a = (ai)
n
i=1 ∈ (𝔽 s)n and

b = (bj)
t
j=1 ∈ (𝔽 s)t where s, n and t are positive integers. For a vector v ∈ 𝔽 s, define fv(Y ) =〈

v, (Y k)s−1
k=0

〉
. Assume that

n∑
i=1

1

X + fai
(Y )
̸=

t∑
j=1

mulj
X + fbj

(Y )

for some mul1, . . . ,mult ∈ 𝔽 . Then,

Pr
[
f(χ, ψ) = 0

∣∣∣ψ $← 𝔽 ∧ χ $← 𝔽
]
≤ (s− 1)(n+ t− 1)

|𝔽 |

where

f(X,Y ) =
n∑
i=1

1

X + fai
(Y )
−

t∑
j=1

mulj
X + fbj

(Y )
.

Proof. Define

g(X,Y ) = f(X,Y )

n∏
i=1

(X + fai
(Y ))

t∏
j=1

(X + fbj
(Y ))

=

n∑
i=1

∏
j∈[n] s.t. j ̸=i

(X + faj
(Y )) ·

t∏
j=1

(X + fbj
(Y ))

−
t∑
i=1

muli ·
n∏
j=1

(X + faj (Y )) ·
∏

j∈[t] s.t. j ̸=i

(X + fbj (Y ))
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of total degree at most (s−1)(n+ t−1). We see that if f(X,Y ) = 0, it must hold that g(X,Y ) = 0
as well. Similarly to Lemma 5, since the degree of g(X,Y ) is at most n+ t− 1, we deduce that

Pr
[
f(χ, ψ) = 0

∣∣∣ψ $← 𝔽 ∧ χ $← 𝔽
]

≤ Pr
[
g(χ, ψ) = 0

∣∣∣ψ $← 𝔽 ∧ χ $← 𝔽
]

≤
(s−1)(n+t−1)

|𝔽 | · |𝔽 |2

|𝔽 |2
(Schwartz–Zippel lemma [Zip79,Sch80])

=
(s− 1)(n+ t− 1)

|𝔽 |

as desired. ⊓⊔

Remark 13. Notice that, there are some bad χ such that f(χ, ψ) cannot be computable, i.e., χ+
faj

(ψ) = 0 for some j ∈ [n]. For such challenges, the prover could never produce a valid witness
leading to completeness error, and in fact, it reveals partial information of aj , since faj (ψ) = −χ.
Fortunately, such bad challenges happen with probability at most t/|𝔽 |. Hence we also conclude
that the tuple lookup argument above has completeness error O(t/|𝔽 |).

B.5 Schwartz-Zippel Lemma

We recall the Schwartz-Zippel lemma [Zip79,Sch80] in the following Lemma 9.

Lemma 9 (Schwartz-Zippel Lemma). Let 𝔽 be a field and multivariate polynomial f ∈ 𝔽 [X1, X2, . . . , Xn]
be non-zero and of total degree d. Let S be a finite subset of 𝔽 and suppose |S| > d, then it holds
that

Pr
[
f(x1, x2, . . . , xn) = 0

∣∣∣(x1, x2, . . . , xn) $← Sn
]
≤ d

|S|
.

B.6 Commitment Scheme (Extended)

This appendix is an extension of Section 3.1. We recall the syntax of commitment schemes, denoted
by C, in Definition 10. Additionally, we require C in our construction to be additively homomorphic.

Definition 10 (Syntax of Commitment Scheme). A commitment scheme C is a tuple of
algorithms C = (C.Setup,C.Commit,C.Verify) defined as follows:

C.Setup(1λ)→ ck: On input 1λ, output a commitment key ck and determine randomness distribu-
tion Rck.

C.Commit(ck,M,R)→ C: On input key ck, message M and randomness R sampled from some
randomness distribution Rck, output commitment C.

C.Verify(ck,M,R,C)→ {0, 1}: On input commitment key ck, messageM , randomness R and com-
mitment C, output a bit b ∈ {0, 1}.

C should satisfy perfect correctness (Definition 11) and two additional security properties,
namely binding and hiding, formally defined in Definitions 12 and 13, respectively.
Security of Commitment Schemes. Let C be a commitment scheme with syntax in Defini-
tion 10. We now define the completeness, binding and hiding of C in the following Definitions 11,
12 and 13, respectively.

Definition 11 (Perfect Correctness of C). C satisfies correctness if for all message M , ran-
domness R, it holds that

Pr

[
C.Verify(ck,M,R,C) = 1

∣∣∣∣ck← C.Setup(1λ)
C ← C.Commit(ck,M,R)

]
= 1.
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Definition 12 (Binding of C). C is binding if for all (PPT) adversaries A, it holds that

Pr

M1 ̸=M2

∧C.Verify(ck,M1, R1, C) = 1
∧C.Verify(ck,M2, R1, C) = 1

∣∣∣∣∣∣ck← C.Setup(1λ)
(M1, R1,M2, R2, C)← A(ck)

 ≤ negl(λ).

If A is PPT, we say that C is computationally binding. Otherwise, if A is computationally un-
bounded, we say that C is statistically binding.

Definition 13 (Hiding of C). A commitment scheme satisfies hiding if for any messages M and
M ′, then the two following distributions are close:{

C

∣∣∣∣∣R $← Rck

C ← C.Commit(ck,M,R)

}
and

{
C ′

∣∣∣∣∣R′ $← Rck

C ′ ← C.Commit(ck,M ′, R′)

}
.

If the above two distributions are computationally close, we say that C is computationally hiding.
Otherwise, if they are statistically close, we say that C is statistically hiding.
Homomorphic Commitment Schemes. A commitment scheme C, with syntax defined in Def-
inition 10, is said to be homomorphic if

C.Commit(ck,M1, R1) + C.Commit(ck,M2, R2)

= C.Commit(ck,M1 +M2, R1 +R2).

Remark 14. By using notation in Remark 4, for two commitment tuples, e.g., Jc0Kck and Jc1Kck.
If either Jc0Kck /∈ Rcom or Jc1Kck /∈ Rcom, then, in many situations in this paper, we may face the
form JcKck := Jc0Kck + α · Jc1Kck for some α chosen uniformly from 𝔽 . Due to the binding property
of commitment schemes, the probability that JcKck ∈ Rcom is negligible.

An Instantiation of Homomorphic Commitment Schemes. Let n ∈ ℤ+. Below, we describe
the Pedersen commitment scheme [Ped92], a secure and homomorphic commitment for committing
to length-n vectors. As a remark, just for this instantiation, the addition “+” is a group operation
between group elements in 𝔾 while multiplication “·” is an action between a scalar and a group
element in 𝔾.

C.Setup(1λ)→ ck: Sample g1, . . . , gn, h
$← 𝔾 and return ck = (g1, . . . , gn, h).

C.Commit(ck,x = (x1, . . . , xn))→ (C,R): Sample R uniformly and output C = R ·h+
∑n
i=1 xi ·gi.

C.Verify(ck,x = (x1, . . . , xn), R, C)→ {0, 1}: Output 1 if C = R · h+
∑n
i=1 xi · gi and 0 otherwise.

B.7 Special Soundness

We recall the special soundness property for multi-round protocols [ACK21]. We first recall the
special soundness property for 3-move protocols in Definition 14, then we recall the generalization
for multi-round protocols in Definition 16.

Definition 14 ((k;n)-Special Soundness). Let k, n ∈ ℕ. Let CH be a set such that |CH| = n.
Let Π be public-coin 3-move protocol for a relation R with challenge set CH. Then Π is (k;n)-
special sound if there exists a PPT extractor E, such that, given an instance Z and k accepting
transcripts (a, ci, zi)

k
i=1 with the same first message a and pairwise distinct challenges ci ∈ CH,

extractor E can output a witness W such that (Z,W ) ∈ R.

To generalize the above property for multi-round protocols, we recall the notion of the tree of
transcripts [ACK21] in Definition 15. Then, we state the special soundness property for multi-round
protocols in Definition 16.

Definition 15 (Tree of Transcripts). Let Π be a public-coin (2µ+1)-move protocol. A (k1, . . . , kµ)-
tree of transcript is a set of transcripts arranged in the following tree format: Each node corresponds
to a message of prover and each edge corresponds to a challenge of V. For each i < µ, each node
of depth i has exactly ki children, corresponding to ki pairwise distinct challenges of V. Every
transcript corresponds to exactly one path from the root to a leaf of the tree.
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Definition 16 ((k1, . . . , kµ;n1, . . . , nµ)-Special Soundness). Let k1, . . . , kµ, and n1, . . . , nu be
positive integers in ℤ+. Let CH1,CH2, . . . ,CHµ be sets such that |CHi| = ni for each 1 ≤ i ≤ µ. Let
Π be a public-coin (2µ+1)-move protocol for a relation R where the i-th challenge is sampled from
CHi. Then Π satisfies (k1, . . . , kµ;n1, . . . , nµ)-special soundness if there exists a PPT algorithm E,
such that, given an instance 𝕫 and a (k1, . . . , kµ)-tree of accepted transcripts, outputs a witness W
such that (Z,W ) ∈ R.

B.8 Folding Scheme

We recall the definition and security properties of folding schemes of [KST22] in Definitions 18, 19
and 20 respectively.

Definition 17 (Syntax of Folding Scheme). Let PP, I, and Z be the sets of public param-
eters, instances, and witnesses, respectively. Let R ⊆ PP × I × Z be an NP relation. A fold-
ing scheme FS for relation R, is a tuple FS[R] = (FS.Setup,FS.Fold,FS.Verify) of algorithms
FS.Setup,FS.Fold,FS.Verify, run as follows:

FS.Setup(1λ)→ pp: Run public parameter generator, on input a security parameter 1λ, it returns
a public parameter pp.

FS.Fold(pp, I0, I1; Z0, Z1)→ (I; Z): This algorithm is run by prover. On inputs public parameter
pp and instance-witness pairs (I0, Z0), (I1, Z1) ∈ I × Z, it returns an instance-witness pair
(I, Z) ∈ I × Z.

FS.Verify(pp, I0, I1)→ I: This algorithm is run by verifier. On inputs public parameter pp and
instances I0, I1 ∈ I, it returns an instance Z ∈ I.

Defining Transcript. For common public inputs pp, I0, I1, we denote

(I, Z)← ΠFS(pp, (I0, I1; Z0, Z1))

the output of prover and verifier when prover executes FS.Fold with inputs pp, I0, I1, Z0, Z1 while
verifier executes FS.Verify with inputs pp, I0, I1. Define the public transcript

tr← View(ΠFS(pp, (I0, I1; Z0, Z1))

to contains all the inputs, outputs, and public messages between the prover and verifier when
executing ΠFS .

Definition 18 (Perfect Correctness of FS). Let pp← FS.Setup(1λ). Then for any {(pp, Ii; Zi)}i∈{0,1} ⊆
R, it holds that

Pr
[
(pp, I; Z) ∈ R

∣∣(I, Z)← ΠFS(pp, (I0, I1; Z0, Z1))
]
= 1.

Definition 19 (Knowledge Soundness of FS). FS is said to satisfy knowledge soundness if
for any positive integer N , any (PPT) algorithm A, there exists a PPT extractor E, it holds that
Pr[Efs-sound

A (λ) = 1] ≤ negl(λ) where Efs-sound
A (λ) is described in Figure 8. Note that in this definition

(which is also the FS definition of [KST22], the extractor is given the private randomness ρ of the
prover, while in our CFS definition, no such ρ is given to it. A folding scheme FS is statistically
(respectively, computationally) knowledge-sound if A is computationally unbounded (respectively,
bounded). FS has soundness error ϵ if A can break knowledge soundness with probability at most
ϵ.

Definition 20 (HVZK of FS). FS is HVZK if there exists a PPT simulator S s.t., for any
distinguisher A, any valid instance-witness pairs (Z0,W0), (Z1,W1), it holds that∣∣Pr [A(tr) = 1

∣∣pp← FS.Setup(1λ), tr← View(ΠFS(pp, I0, I1; Z0, Z1))
]

−Pr
[
A(tr) = 1

∣∣pp← FS.Setup(1λ), tr← S(pp, I0, I1)
]∣∣ ≤ negl(λ)
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pp← FS.Setup(1λ).
(I0, I1, ρ)← A(pp).
(I, Z)← ΠFS(pp, (I0, I1; Z0, Z1))
(Z0, Z1)← EA (pp, Z0, Z1, ρ).
b0 = ((pp, I, Z) ∈ R)
b1 = ((pp, I0, Z0) /∈ R) ∨ ((pp, I1, Z1) /∈ R)
Return b0 ∧ b1.

Fig. 8. Experiment Efs-sound
A (λ).

B.9 Interactive Folding Protocol for Folding rR1CS Instance-Witness Pairs
(Extended)

Explanation of Equations in Section 3.2.We now explain in detail the equations in Section 3.2.
First, (11) is fully written to be

A · z′ ◦B · z′

= A · z′0 ◦B · z′0 + α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0)
+ α2(A · z′1 ◦B · z′1)

= (𝕩0.u ·C · z′0 + 𝕩0.e) + α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0)
+ α2(𝕩1.u ·C · z′1 + 𝕩1.e)

= (𝕩0.u+ α · 𝕩1.u) ·C · (z′0 + r · z′1)
− α · 𝕩1.u ·C · z′0 − α · 𝕩0.u ·C · z′1 + 𝕩0.e
+ α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0) + α2 · 𝕩1.e

= 𝕩.u ·C · z′ + 𝕩.e

and the error 𝕩.e, as show in (3.2), can be written in details to be

α(−𝕩1.u ·C · z′0 − 𝕩0.u ·C · z′1) + 𝕩0.e
+ α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0) + α2 · 𝕩1.e

= 𝕩0.e+ α2 · 𝕩1.e
+ α(A · z′0 ◦B · z′1 +A · z′1 ◦B · z′0 − 𝕩1.u ·C · z′0 − 𝕩0.u ·C · z′1︸ ︷︷ ︸

garbage term

).

Proof of Lemma 1. Here, we provide a proof of Lemma 1. We recall Lemma 1 for readability
purpose as following Lemma 10.

Lemma 10 (Recall of Lemma 1). Let C be a homomorphic commitment scheme. Assume that
Πrr1cs in Figure 3 are rewinded thrice (from step 4), with the same JgKcke and distinct {α(i)}i∈[3],

to produce {J𝕩(i)K}i∈[3], respectively. If we have the valid witnesses s.t. J𝕩(i)Ktck ∈ RS
rr1cs ∀i ∈ [3],

then we can extract witnesses to construct (J𝕩iKtck)i∈{0,1} s.t. J𝕩iKtck ∈ RS
rr1cs ∀i ∈ {0, 1}.

As a remark, this lemma satisfies (3; |𝔽 |)-special soundness defined in Appdx. B.7.
Before going to the proof, we first recall the notations. Recall in Section 3.2, for a vector 𝕩, we

can parse

𝕩 = (𝕩.u,𝕩.pub,𝕩.z1, . . . ,𝕩.zd,𝕩.e) (49)

where 𝕩.u and 𝕩.pub are scalars and 𝕩.z1, . . . ,𝕩.zd,𝕩.e are vectors. Also, for a tuple commitment
key tck = (ck1, . . . , ckd, cke), from (9), we can parse J𝕩Ktck as

J𝕩Ktck = (𝕩.u,𝕩.pub, J𝕩.z1Kck1 , . . . , J𝕩.zdKckd , J𝕩.eKcke)

According to Remark 4, we additionally parse

J𝕩.ziKcki = (cki,𝕩.z̃i; 𝕩.zi,𝕩.ẑi) ∀i ∈ [d] and J𝕩.eKcke = (cke,𝕩.ẽ; 𝕩.e,𝕩.ê)
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where 𝕩.z̃i and 𝕩.ẑi are the commitment and randomness, respectively, to vector 𝕩.zi for all i ∈ [d].
We denote by

�̃� = (𝕩.u,𝕩.pub,𝕩.z̃1, . . . ,𝕩.z̃d,𝕩.ẽ) (50)

to contains all public information and commitments,

�̂� = (𝕩.ẑ1, . . . ,𝕩.ẑd,𝕩.ê) (51)

to contain all associated randomness to the component vectors of 𝕩 employed for the commitments,
such that we can write J𝕩Ktck = (tck, �̃�; 𝕩, �̂�). Finally, recall in (10), 𝕩 is a valid pair of rR1CS if it
satisfies the relation

RS
rr1cs =

J𝕩Ktck

∣∣∣∣∣∣
𝕩.u ∈ 𝔽 ∧ 𝕩.pub ∈ 𝔽 ∧ (𝕩.zi ∈ 𝔽mi ∀i ∈ [d]) ∧ 𝕩.e ∈ 𝔽n
∧J𝕩.ziKcki ∈ Rcom ∀i ∈ [d] ∧ J𝕩.eKcke ∈ Rcom

∧A · z′ ◦B · z′ = 𝕩.u ·C · z′ + 𝕩.e


where z′ = (𝕩.pub∥𝕩.z′1∥ . . . ∥𝕩.z′d) and ◦ is the entry-wise multiplication.

Proof (Proof of Lemma 1 (recalled in Lemma 10)). First, consider the system

𝕩(i).pub = 𝕩0.pub+ α(i) · 𝕩1.pub ∀i ∈ [2],

𝕩(i).zj = 𝕩0.zj + α(i) · 𝕩1.zj ∀i ∈ [2],∀j ∈ [d],

𝕩(i).e = 𝕩0.e+ α(i) · g + (α(i))2 · 𝕩1.e ∀i ∈ [3],

𝕩(i).ẑj = 𝕩0.ẑj + α(i) · 𝕩1.ẑj ∀i ∈ [2],∀j ∈ [d],

𝕩(i).ê = 𝕩0.ê+ α(i) · ĝ + (α(i))2 · 𝕩1.ê ∀i ∈ [3].

(52)

As each α(i), for i ∈ [3], has powers at most 3 in system (52) and we have 3 distinct challenges
{α(i)}i∈[3], hence, we can solve system (52). By solving (52), we can extract 𝕩i.pub, 𝕩i.zj and 𝕩i.ẑj
for all i ∈ [2] and all j ∈ [d]. Hence, we can extract 𝕩0 and 𝕩1 of the form (49), �̂�0 and �̂�1 of
the form (51), vector g and randomness ĝ and thus form the pairs J𝕩0Ktck = (tck, �̃�0; 𝕩0, �̂�0) and
J𝕩1Ktck = (tck, �̃�1; 𝕩1, �̂�1).

It suffices to prove that the extracted vectors 𝕩0,𝕩1 above are valid, i.e., they satisfy J𝕩0Ktck ∈
RS

rr1cs and J𝕩1Ktck ∈ RS
rr1cs. We proceed as follows.

First, let us prove that J𝕩i.zjKckj , J𝕩i.eKcke ∈ Rcom ∀i ∈ {0, 1},∀j ∈ [d]. From the statement of

this lemma, notice that we have J𝕩(i).zjKckj ∈ Rcond for all i ∈ [3] and j ∈ [d]. In addition, according
to Πrr1cs in Figure 3 and due to the homomorphism and binding properties of the commitment
scheme, for each i ∈ [2], it implies that

𝕩0.z̃j + α(i) · 𝕩1.z̃j = C.Commit(𝕩0.zj ,𝕩0.ẑj) + α(i) · C.Commit(𝕩1.zj ,𝕩1.ẑj)

= C.Commit(𝕩0.zj + α(i) · 𝕩1.zj ,𝕩0.ẑj + α(i) · 𝕩1.ẑj) = C.Commit(𝕩(i).zj ,𝕩(i).ẑj)

= 𝕩(i).z̃j .

Since the equation above holds for three distinct {α(i)}i∈[3], we must have 𝕩i.z̃j = C.Commit(𝕩i.zj ,𝕩i.ẑj)
for all j ∈ {0, 1}, or equivalently, J𝕩i.zjKckj ∈ Rcom ∀i ∈ {0, 1},∀j ∈ [d]. In fact, by binding prop-
erty of C, if prover does not have J𝕩i′ .zjKckj ∈ Rcom for some i′ ∈ {0, 1}, j ∈ [d], then the case that

all J𝕩(i).zjK ∈ Rcom ∀i ∈ [3] hold is with negligible probability according to Remark 14.

Similarly, by considering 𝕩(i).ẽ = 𝕩0.ẽ+α(i) ·g̃+
(
α(i)

)2 ·𝕩1.ẽ, we must have J𝕩i.eKcke ∈ Rcom ∀i ∈
{0, 1} and JgKcke ∈ Rcom.

Finally, we need to prove that A · z′i ◦ B · z′i = 𝕩i.u · C · z′i + 𝕩i.e for all i ∈ {0, 1} where
z′i = (𝕩i.pub∥𝕩i.z1∥ . . . ∥𝕩i.zd). Note that, since

C.Commit(𝕩(3).zj ,𝕩(3).ẑj) = 𝕩(3).z̃j = 𝕩0.z̃j + α(3) · 𝕩1.z̃j
= C.Commit(𝕩0.zj ,𝕩0.ẑj) + α(3) · C.Commit(𝕩1.zj ,𝕩1.ẑj)

= C.Commit(𝕩0.zj + α(3) · 𝕩1.zj ,𝕩0.ẑj + α(3) · 𝕩1.ẑj)

and
𝕩(3).pub = 𝕩0.pub+ α(3) · 𝕩1.pub.
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Hence, we must have 𝕩(3).zj = 𝕩0.zj+α(3) ·𝕩1.zj with overwhelming probability due to the binding
property of commitment scheme. Thus we have that

z′(i) = z′0 + α(i) · z′1 ∀i ∈ [3].

In addition, since, for each i ∈ [3], J𝕩(i)Ktck ∈ RS
rr1cs and the following equations hold, due to the

statement of this lemma:
A · z′(i) ◦B · z′(i) = 𝕩(i).u ·C · z′(i) + 𝕩(i).e ∀i ∈ [3]

z′(i) = z′0 + α(i) · z′1 ∀i ∈ [3]

𝕩(i).u = 𝕩0.u+ α(i) · 𝕩1.u ∀i ∈ [3]

𝕩(i).e = 𝕩0.e+ α(i) · g + (α(i))2 · 𝕩1.e ∀i ∈ [3].

From the system above, by replacing z′(i), 𝕩(i) and 𝕩(i).e with z′0 + α(i) · z′1, 𝕩0.u + α(i) · 𝕩1.u
and 𝕩0.e+ α(i) · g+ (α(i))2 · 𝕩1.e, respectively, in the first equation of the system, then expanding
everything and considering that the first equation holds for three distinct values α(i) for all i ∈ [3],
it holds that A · z′i ◦B · z′i = 𝕩i.u ·C · z′i + 𝕩i.e for all i ∈ {0, 1} and hence J𝕩iKtck ∈ RS

rr1cs for all
i ∈ {0, 1} as desired. ⊓⊔

Efficiency of Πrr1cs (Extended). Recall notations in Definition 2. Efficiency of Πrr1cs in Figure 3
as follows:

– Size of J𝕩Ktck. O(mpub +
∑
i∈[d] c(mi) + c(n)) which is straightforward from the design in (9).

– Communication Cost of Πrr1cs. c(n) which is because both prover and verifier run Πcom to
obtain JgKcke.

– Prover Time of Πrr1cs. O(n + tpc(n) + mpub +
∑
i∈[d] tp

h(mi) + tph(n)) analyzed as follows.

O(n) is due to the computation of garb (defined in Section 3.2). tpc(n) is for committing to g
from Πcom. O(mpub+

∑
i∈[d] tp

h(mi)+tph(n)) is for homomorphically evaluating after receiving
challenge α.

– Verifier Time of Πrr1cs. O(tvc(n) +mpub +
∑
i∈[d] tv

h(mi) + tvh(n)) analyzed as follows. tvc(n)

is for committing to g from Πcom. O(mpub +
∑
i∈[d] tv

h(mi) + tvh(n)) is for homomorphically
evaluating after sending challenge α.

B.10 Honest-Verifier Zero-Knowledge Argument/Proof of Knowledge

We recall the syntax of honest-verifier zero-knowledge arguments/proofs of knowledge (ZKAoKs/ZKPoKs)
in Definition 21 and their security properties in Definitions 22, 23 and 24.

Definition 21 (Syntax of Honest-Verifier ZKAoK/ZKPoK). Let I and Z denote the in-
stance and witness set, respectively. Let R ⊆ I × Z be a relation. A ZKAoK for R is a tuple

ZK = (ZK.Setup,ZK.Prove)

consists of the algorithm ZK.Setup and interactive protocol ZK.Prove, working as follows:

ZK.Setup(1λ)→ pp : On input a security parameter 1λ, this PPT algorithm returns a public pa-
rameter pp.

ZK.Prove(pp, I; Z)→ {0, 1} This is an interactive protocol between prover and verifier, where
prover holds an instance-witness pair (I, Z) ∈ I × Z and verifier holds an instance Z ∈ I,
such that prover tries to convince verifier that he knows W ∈ Z satisfying (Z,W ) ∈ R. At
the end of the interaction, the verifier outputs a bit b ∈ {0, 1} for deciding whether to accept
(b = 1) or reject (b = 0).

Security of Honest-Verifier ZKAoK/ZKPoK. Let ZK be a system whose syntax is defined
in Definition 21. We now recall the completeness, knowledge soundness, and (honest-verifier) zero-
knowledge for ZK in the following Definitions 22, 23 and 24, respectively.

Definition 22 (Completeness of ZK). ZK satisfies completeness if for any (I; Z) ∈ R it holds
that

Pr

[
b = 1

∣∣∣∣pp← ZK.Setup(1λ)
b← ZK.Prove(pp, I; Z)

]
= 1
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Definition 23 (Knowledge Soundness of ZK). ZK satisfies knowledge soundness if for any
(PPT) adversary A, there exists a PPT extractor E with rewindable oracle access to A such that

Pr

b = 1 ∧ (I, Z) /∈ R

∣∣∣∣∣∣∣∣
pp← ZK.Setup(1λ),
(pp, I)← A(pp),
Z ← EA(pp, Z),
b← ZK.Prove(pp, I;Z)

 ≤ negl(λ)

We write EA(pp, I) to indicate E (having oracle access to A) and A, playing the roles of verifier
and prover, respectively, to run CF.Prove on common inputs (pp, I). In addition, E can rewind A
to any previous state and run other instances of CF.Prove with different randomness. Finally, if
all instances of ZK.Prove return 1 after interacting with A with rewinding, E can return the valid
witnesses W satisfying (I, Z) ∈ R. We call this system an argument of knowledge (AoK) if A
is PPT. Otherwise, if A is of unbounded computation, we call this system a proof of knowledge
(PoK).

Definition 24 (Statistical Honest-Verifier Zero-Knowledge of ZK). ZK satisfies statistical
(honest-verifier) zero-knowledge if there exists a PPT simulator S such that for any (I, Z) ∈ R
and for any (PPT) adversary A, then the two following distributions are indistinguishable from
the view of A: {

tr
∣∣ tr← View(ZK.Prove(pp, I; Z))

}
and

{
tr∗

∣∣ tr∗ ← S(pp, I)} .
where tr ← View(ZK.Prove(pp, I;Z)) denotes the public transcript, which contains all the public
inputs and exchanged messages between the prover and verifier during the execution of ZK.Prove.
We say that ZK is computationally zero-knowledge if A is PPT. Otherwise, if A is of unbounded
computation, ZK is statistically zero-knowledge.

B.11 Lagrange Interpolation

We recall the Lagrange interpolation theorem in the following Theorem 3

Theorem 3 (Lagrange Interpolation). Let 𝔽 be a field. Given a set X = {x0, x1, . . . , xm} of
m+1 pairwise distinct values in 𝔽 , then for any set Y = {y0, y1, . . . , ym} ⊆ 𝔽 , there exists an unique
polynomial f(X) ∈ 𝔽 [X] of degree at most m satisfying f(xi) = yi for all i ∈ [0,m]. Moreover, the
exact formula of f(X) is given by

f(X) =

m∑
i=0

yi · ℓi(X)

where {ℓ0(X), ℓ1(X), . . . , ℓm(X)} is the Lagrange basis of X , given by the formula ℓi(X) =
∏

j∈[0,m]
s.t. j ̸=i

X − xj
xi − xj

.

B.12 Basic Circuit Satisfiability From Compressed Σ-Protocol Theory

We recall the technique for handling basic circuit satisfiability from compressed Σ-protocol theory
(Section 6 in [AC20], adapted from [CDP12]) to ensure statistical (honest-verifier) zero-knowledge.

Let n ∈ ℤ+. Assume that C(x) = 0 for some x = (x1, . . . , xn) ∈ 𝔽n and C is some arithmetic
circuit of m multiplication gates. Let w1, . . . , wm be the outputs of those m multiplication gates.
Moreover, let ui ∈ 𝔽 and vi ∈ 𝔽 , for all i ∈ [m], be the left and right inputs to each multiplication
gate such that ui · vi = wi.

Assume that q = |𝔽 | is a prime and there is an isomorphism from ℤq to 𝔽 . Hence, when saying
that 0, . . . ,m ∈ 𝔽 , these values are understood to be the output of the mentioned isomorphism from

inputs 0, . . . ,m ∈ ℤq. By sampling u0, v0
$← 𝔽 , applying Lagrange interpolation we can achieve

polynomials fu(X), fv(X) ∈ 𝔽 [X] of degrees at most m such that

fu(i) = ui and fv(i) = vi
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for all i ∈ [0,m] ⊆ 𝔽 . Specifically, we have a Lagrange basis {ℓ0(X), . . . , ℓm(X)} ⊆ 𝔽 [X] of
polynomials in 𝔽 [X] of degree m such that

fu(X) =

m∑
i=0

ui · ℓi(X) and fv(X) =

m∑
i=0

vi · ℓi(X).

By setting f(X) := fu(X) · fv(X) and setting w0 := u0 · v0, we see that f(X) is of degree 2m
and wi = f(i) = fu(i) · fv(i) for all i ∈ [0,m]. Define wm+1 := f(m + 1), . . . , w2m := f(2m). We
have a Lagrange basis {ℓ′0(X), . . . , ℓ′2m(X)} ⊆ 𝔽 [X] of polynomials in 𝔽 [X] of degree 2m such that

f(X) =

2m∑
i=0

wi · ℓ′i(X).

Thus, we can test whether ui · vi = wi for all i ∈ [m] by testing whether fu(X) · fv(X) = f(X).

This can be done by sampling ζ
$← 𝔽 and check whether fu(ζ) · fv(ζ) = f(ζ), by revealing

fu(ζ), fv(ζ) and f(ζ), with error probability at most 2m
|F | according to Schwartz-Zippel lemma

[Zip79,Sch80] (see Appendix B.5).
However, when conducting the proof, if ζ is among [m], the values uζ = fu(ζ), vζ = fv(ζ) and

wζ = f(ζ) must be revealed compromising zero-knowledge or witness indistinguishability of the
proof. Moreover, if ζ ∈ 𝔽 \ [m], the values ui, vi and wi, for all i ∈ [m], are secured. In fact, since
u0 and v0 are uniformed sampled from 𝔽 , we know that

fu(ζ) = u0 · ℓ0(ζ) +
m∑
i=1

ui · ℓi(ζ) and fv(ζ) = v0 · ℓ0(ζ) +
m∑
i=1

vi · ℓi(ζ).

and ℓ0(ζ) ̸= 0. Hence, fu(ζ) and fv(ζ) are uniform in 𝔽 . Thus, by sampling ζ
$← 𝔽 \ [m], revealing

fu(ζ), fv(ζ) and f(ζ) for checking fu(ζ) · fv(ζ) = f(ζ) does not compromise ui, vi and wi, for all
i ∈ [m].
Strategy for Making the Proofs/Arguments. To proceed the proofs, [AC20] indicates that

ui = f (i)u (x1, . . . , xn, u0, v0, w0, . . . , w2m) and

vi = f (i)v (x1, . . . , xn, u0, v0, w0, . . . , w2m),

for all i ∈ [m], where f
(i)
u (·) and f

(i)
v (·) are pre-determined affine functions. Hence, for a given

challenge ζ, the values fu(ζ) and fv(ζ) are obtained by affine mappings from

(x1, . . . , u0, v0, w0, . . . , w2m, ζ).

Since [AC20] supports protocols for nullity checks of affine maps, we hence can deduce the design
of interactive proofs/arguments for basic circuit satisfiability.
Efficiency. According to [AC20], the proof size of the above discussion in O(logm) assuming
m≫ n while prover time and verifier time are both O(m).

C Generic CFS CFgnr (Extended)

We provide a proof of Theorem 1 in Appendix C.1. In Appendix C.2, we provide a detailed efficiency
analysis of CFgnr in Figure 5.

C.1 Proof of Theorem 1

We first recall Theorem 1 in the following Theorem 4.

Theorem 4 (Recall of Theorem 1). If CF.Prove is an (HV)ZKAoK and C is a secure ho-
momorphic commitment scheme, then CFgnr is correct with correctness error cerrprf(pp), HVZK
and knowledge-sound with soundness error O(1/|𝔽 | + serrprf(pp) + negl(λ)) where cerrprf(pp) and
serrprf(pp) respectively are completeness and soundness error of CF.Prove.
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Before going to the proof, let us define the notations that will be used in the proof. First, recall
that Section 5.1, for a witness vector

𝕫 = (𝕩, front, rear,𝕩⋆, s,a)

having the form of (14), we can parse

J𝕫Kpp = (J𝕩Ktck, JfrontKck′2 , JrearKck′1 , J𝕩
⋆Ktck′ , JsKcks, JaKcks)

where, for �̃� and �̃�⋆ of the form (50), and for �̂� and �̂�⋆ of the form (51),

J𝕩Ktck = (tck, �̃�; x, �̂�), J𝕩⋆Ktck′ = (tck′, �̃�⋆; 𝕩⋆, �̂�⋆),

JfrontKck′2 = (ck′2, f̃ront; front, f̂ront), JrearKck′1 = (ck1, r̃ear; rear, r̂ear),

JsKcks = (cks, s̃; s, ŝ), JaKcks = (cks, ã; a, â).

We denote �̃� to define its public instance part that contains all the public information and
commitments of the components in 𝕫, i.e.,

�̃� = (�̃�, f̃ront, r̃ear, �̃�⋆, s̃, ã), (53)

and �̂� to define the corresponding randomness used for committing the components in 𝕫, i.e.,

�̂� = (�̂�, f̂ront, r̂ear, �̂�⋆, ŝ, â). (54)

The notation J𝕫Kpp is the same as (15).
The proof of Theorem 1 (recalled in Theorem 4) is as follows.

Proof (Proof of Theorem 1). The proof follows Lemmas 11, 13 and 14 for correctness, knowledge
soundness and HVZK, respectively. ⊓⊔

Correctness of CFgnr. Correctness follows the following Lemma 11.

Lemma 11 (Correctness of CFgnr). CFgnr is correct with correctness error cerrprf(pp) if C is

a homomorphic and perfectly correct commitment scheme and CF.Prove, for relation RS,S′

gnr-inst, is

complete with completeness error cerrprf(pp) for relation RS,S′

gnr-inst.

Proof. The proof is straightforward. ⊓⊔

Knowledge Soundness of CFgnr. We first analyze the extraction in each folding by Πfold-gnr

according to Lemma 12. Then, we formalize Lemma 13 the knowledge soundness of CFgnr by
extracting following a binary-tree-like HS and employing Lemma 12 as a building block. Details
are as follows.

Lemma 12 ((3, 3; |𝔽 | , |𝔽 |)-Special Soundness of Πfold-gnr). Assume that C, w.r.t. relation Rcom,

is homomorphic and binding. Assume that, on inputs p ∈ 𝔽m
′
pub , w ∈ 𝔽 ck′3 , J𝕫0Kpp and J𝕫1Kpp of the

forms
J𝕫iKpp = (J𝕩iKtck, JfrontiKck′2 , JreariKck′1 , J𝕩

⋆
i Ktck′ , JsiKcks, JaiKcks) ∀i ∈ {0, 1},

protocol Πfold-gnr in Figure 5 are rewinded 9 times following a (3, 3)-tree of transcripts, w.r.t. chal-

lenges {α(i1)
1 }i1∈[3] and {α

(i1,i2)
2 }i1∈[3],i2∈[3], into

J𝕫(i1,i2)Kpp = (J𝕩(i1)Ktck, JfrontKck′2 , JrearKck′1 , J(𝕩
⋆)(i1,i2)Ktck′ , JsKcks, Ja(i1)Kcks),

in the following sense (imitating the folding process of Πfold-gnr in Figure 5):

– J𝕪Ktck′ = (1,p, Jrear0Kck′1 , Jfront1Kck′2 , JwKck′3 , J0
n′

Kcke′) (step 2 in Figure 5).

– {α(i1)
1 }i1∈[3] are distinct and, for each i1 ∈ [3], by running step 4 of Πrr1cs,

• J𝕩0Ktck and J𝕩1Ktck are folded into J𝕩(i1)Ktck w.r.t. α
(i1)
1 , and

• J𝕩⋆0Ktck′ and J𝕩⋆1Ktck′ are folded into J𝕪 ′(i1)Ktck′ w.r.t. α
(i1)
1 .

(The above process is similar to step 4 in Figure 5.)
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– For each i1 ∈ [3], {α(i1,i2)
2 }i2∈[3] are distinct, and for each i2 ∈ [3], by running step 4 of Πrr1cs,

• J𝕪 ′(i1)Ktck′ and J𝕪Ktck′ are folded into J(𝕩⋆)(i1,i2)K w.r.t. α
(i1,i2)
2 .

(The above process is similar to step 8 in Figure 5.)
– JfrontKck′2 = Jfront0Kck′2 , JrearKck′1 = Jrear1Kck′1 , JsKcks = Js0Kcks+Js1Kcks, and Ja(i1)Kcks = Ja0Kcks+
α
(i1)
1 · Ja1Kcks + (α

(i1)
1 )2 · (Js0Kcks − Js1Kcks) (step 9 in Figure 5).

Finally, assume that we have all witnesses and randomness of all J𝕫(i1,i2)Kpp, for all i1 ∈ [3] and

all i2 ∈ [3], such that J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst. Then, we can extract 𝕫0, 𝕫1 and w such that

J𝕫0Kpp, J𝕫1Kpp ∈ RS,S′

gnr-inst and (p, J𝕫0Kpp, J𝕫1Kpp; w) ∈ RS′

gnr-cond

where relations RS,S′

gnr-inst and RS′

gnr-cond are defined in (18) and (19), respectively.

Proof. We split the proof into two steps: (i) extracting all witnesses of J𝕫iKpp ∀i ∈ {0, 1} and (ii)

showing the existence of w such that (J𝕫0Kpp, J𝕫1Kpp; w) ∈ RS′

gnr-cond. These steps are proceeded as
follows.
Extracting All Witnesses and Randomness of J𝕫iKpp ∀i ∈ {0, 1}. We proceed as follows:

– Extracting Witnesses and Randomness of JfrontKck′2 and JrearKck′1 . Since we have all witnesses

and randomness of all J𝕫(i1,i2)Kpp for all i1 ∈ [3] and all i2 ∈ [3], we know (from the statement of
this lemma) that JfrontKck′2 = Jfront0Kck′2 and JrearKck′1 = Jrear1Kck′1 . Therefore, we also achieve
all witnesses and randomness of JfrontKck′2 and JrearKck′1 according to Remark 6.
As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ (JfrontKck1 , JrearKck2 ∈ Rcom)

according to (18). Hence, we deduce that JfrontKck′2 , JrearKck′1 ∈ Rcom.
– Extracting Witnesses and Randomness of J𝕩0Ktck and J𝕩1Ktck. As there are 3 distinct challenges

{α(i1)
1 }i1∈[3], and, for each i1 ∈ [3], J𝕩0Ktck and J𝕩1Ktck are folded into J𝕩(i1)Ktck w.r.t. α

(i1)
1 .

Moreover, we also have witnesses and randomness of J𝕫(i1,i2)Kpp, for all i1 ∈ [3] and all i2 ∈
[3], containing those of J𝕩(i1)Ktck, for all i1 ∈ [3]. We hence can apply Lemma 1 (recalled in
Lemma 10) to extract witnesses and randomness of J𝕩0Ktck and J𝕩1Ktck.
As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ J𝕩(i1)Ktck ∈ RS
rr1cs.

Hence, by Lemma 1, we deduce that J𝕩0Ktck, J𝕩1Ktck ∈ RS
rr1cs.

– Extracting Witnesses and Randomness of J𝕪Ktck′ , J𝕩⋆0Ktck′ and J𝕩⋆1Ktck′ . For all i1 ∈ [3], since

there are 3 distinct challenges {α(i1,i2)
2 }i2∈[3], and, for each i2 ∈ [3], J𝕪 ′(i1)Ktck′ and J𝕪Ktck′ are

folded into J(𝕩⋆)(i1,i2)K w.r.t. α(i1,i2)
2 . Moreover, we also have all witnesses and randomness of all

{J𝕫(i1,i2)Kpp}i1∈[3],i2∈[3] containing those of {J(𝕩⋆)(i1,i2)K}i1∈[3],i2∈[3]. For each i1 ∈ [3], we hence
can apply Lemma 1 (recalled in Lemma 10), we can extract all witnesses and randomness of
J𝕪 ′(i1)Ktck′ and J𝕪Ktck′ . Moreover, from the statement of this lemma, for all i1 ∈ [3], J𝕩⋆0Ktck′ and
J𝕩⋆1Ktck′ are folded into J𝕪 ′(i1)Ktck′ w.r.t. α

(i1)
1 . Since {α(i1)

1 }i1∈[3] are distinct, we again apply
Lemma 1 to extract all witnesses and randomness of J𝕩⋆0Ktck′ and J𝕩⋆1Ktck′ .
As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ J(𝕩⋆)(i1,i2)Ktck′ ∈ RS′

rr1cs.

By Lemma 1, J𝕪 ′(i1)Ktck′ and J𝕪Ktck′ satisfy J𝕪 ′(i1)Ktck′ , J𝕪Ktck′ ∈ RS′

rr1cs. Again, by Lemma 1,
J𝕩⋆0Ktck′ , J𝕩⋆1Ktck′ ∈ RS′

rr1cs as desired.
– Extracting Witnesses and Randomnesses of Ja0Kcks, Ja1Kcks, Js0Kcks − Js1Kcks. For each i1 ∈ [3],

Ja(i1)Kcks = Ja0Kcks + α
(i1)
1 · Ja1Kcks + (α

(i1)
1 )2 · (Js0Kcks − Js1Kcks)
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has α
(i1)
1 of degree 3. Moreover, we have distinct {α(i1)

1 }i1∈[3] and all witnesses and randomness

of J𝕫(i1,i2)Ki1∈[3],i2∈[3] containing those of {Ja(i1)Kcks}i1∈[3]. Therefore, we can extract all wit-
nesses and randomnesses of Ja0Kcks, Ja1Kcks and Js′Kcks = Js0Kcks− Js1Kcks by solving the system

of equations w.r.t. all {α(i1)
1 }i1∈[3].

As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ J(a)(i1)Kcks ∈ Rcom

=⇒ Ja0Kcks, Ja1Kcks, Js′Kcks ∈ Rcom.

– Extracting Witnesses and Randomness of Js0Kcks and Js1Kcks. We have JsKcks = Js0Kcks+ Js1Kcks
in the problem statement, and Js′Kcks = Js0Kcks − Js1Kcks. Moreover, we also have all witnesses
and randomness of JsKcks and Js′Kcks. Therefore, by solving equations, we can obtain all witnesses
and randomness of Js0Kcks and Js1Kcks.
As in the statement of this lemma, for all i1 ∈ [3] and i2 ∈ [3],

J𝕫(i1,i2)Kpp ∈ RS,S′

gnr-inst =⇒ JsKcks = Js0Kcks + Js1Kcks ∈ Rcom.

Since Js′Kcks = Js0Kcks − Js1Kcks ∈ Rcom as proved above, hence the extracted Js0Kcks, Js1Kcks ∈
Rcom.

Thus, we already achieve all witnesses and randomness of J𝕫iKpp for all i ∈ {0, 1}. By collecting
those extracted witnesses and randomness, we achieve

J𝕫iKpp = (J𝕩iKtck, JfrontiKck′2 , JreariKck′1 , J𝕩
⋆
i Ktck′ , JsiKcks, JaiKcks) ∈ R

S,S′

gnr-inst.

Existence of w s.t. (J𝕫0Kpp, J𝕫1Kpp,p; w) ∈ RS′

gnr-cond. Notice that, from the statement of this

lemma, J𝕪Ktck′ = (1,p, Jrear0Kck′1 , Jfront1Kck′2 , JwKck′3 , J0
n′

Kcke′). Since we have all witnesses and ran-
domness of J𝕪Ktck′ .

As proved above, J𝕪Ktck′ ∈ RS′

rr1cs. By the binding property of C, it implies that 𝕪.u = 1, 𝕪.e = 0n
′

and
A′ · c′ ◦B′ · c′ = C′ · c′

where c′ = (p∥rear0∥front1∥w). Hence, it holds that the witnessw in 𝕪 satisfies (J𝕫0Kpp, J𝕫1Kpp,p; w) ∈
RS′

gnr-cond. ⊓⊔

Lemma 13 (Knowledge Soundness of CFgnr). CFgnr is knowledge-sound if C is an additively

homomorphic and binding commitment scheme, protocol CF.Prove of CFgnr, for relation RS,S′

gnr-inst,
is knowledge-sound. Moreover, CFgnr has soundness error

O
(

1

|𝔽 |
+ serrprf(pp) + negl(λ)

)
where serrprf(pp) is the soundness error of CF.Prove, w.r.t. relation RS,S′

gnr-inst.

Proof. The proof is straightforward with Lemma 12 as a building block. Recall from Definition 6
that ΠCFgnr is the combined protocol that sequentially runs CF.Fold (folding) and then CF.Prove
(proving) where CF.Fold and CF.Prove are protocols of CFgnr.

As from Lemma 12, by rewinding CF.Fold 9 times following a (3, 3)-tree of transcripts. For each
of such rewindings, we additionally run CF.Prove. Since CF.Prove is knowledge-sound, we can run
the extractor of CF.Prove to extract the satisfying witnesses (corresponding to the folded instance)
for each rewinding. Finally, having enough transcript from the (3, 3)-tree pf acceptance transcripts,
we can use Lemma 12 to extract the witnesses corresponding to the to-be-folded instances (before
running CF.Fold). Thus, we conclude that CFgnr is knowledge-sound.
Soundness Error. As we see from Lemma 12, we need a (3, 3)-tree of accepted transcripts in

order to successfully extract. Each transcript corresponds to a challenge (α
(i1)
1 , α

(i1,i2)
2 ). Hence, we

imply that the soundness error is at most

2

|𝔽 |
+

(
1− 2

|𝔽 |

)
· 2

|𝔽 |
= O

(
1

|𝔽 |

)
.
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Hence, we conclude that the soundness error of ΠCFgnr is

O
(

1

|𝔽 |
+ serrprf(λ) + negl(λ)

)
where serrprf(λ) is the soundness error of CF.Prove and negl(λ) is some negligible probability for
the cheating prover to break the binding property of the underlying commitment scheme. ⊓⊔

HVZK of CFgnr. HVZK follows the following Lemma 14.

Lemma 14 (HVZK of CFgnr). CFS CFgnr is HVZK if C is an additively homomorphic and

hiding commitment scheme and CF.Prove, for relation RS,S′

gnr-inst, is HVZK.

Proof. Assume that we consider folding J𝕫0Kpp and J𝕫1Kpp into J𝕫K. Let �̃�0, �̃�1 and �̃� respectively
are the commitments (of the form (53)) in J𝕫0Kpp, J𝕫1Kpp and J𝕫K. Let �̂�0, �̂�1 and �̂� respectively are
the randomness (of the form (54)) in J𝕫0Kpp, J𝕫1Kpp and J𝕫K.

Let tr be the transcript

tr← View(ΠCFgnr(pp, J𝕫0Kpp, J𝕫1Kpp,p; w))

as defined in (12) w.r.t. CFS CFgnr. Notice that tr contains the transcript of the execution of
CF.Fold, the final instance �̃�, and the transcript of CF.Prove. Hence, we can write

tr = (trfold∥�̃�∥trprf)

where trfold is the transcript of the execution of CF.Fold and trprf is the transcript of CF.Prove when
�̃� is achieved after running CF.Fold.

Assume that Sprove is the simulator for CF.Prove since CF.Prove is a ZKAoK (or ZKAPoK). To
show that CFgnr satisfies HVZK, we construct a simulator S which outputs a simulated transcript
tr⋆ indistinguishable from tr. Before explicitly constructing S, we make some observations as follows.
First, by calling Sprove on inputs (pp, �̃�), we obtain transcript tr′prf . Then, we can form

tr′ =
(
trfold∥�̃�∥tr′prf

)
.

By HVZK of CF.Prove, we see that tr and tr′ are indistinguishable, i.e., the prefixes or tr and tr′

w.r.t. (trfold∥�̃�) are identical while the suffixes trprf and tr′prf are indistinguishable.
We now show how to construct

tr⋆ = (tr⋆fold∥�̃�⋆∥tr⋆prf),

namely, the simulated transcript by simulating not only CF.Prove, but also CF.Fold. Then, we will
show that tr′ and tr⋆ are indistinguishable. Consequently, tr and tr⋆ are indistinguishable implying
HVZK of CFgnr.
Constructing S for CFgnr. We show a construction of simulator S for CFgnr. Notice that, for each
folding, prover needs to send (g̃, w̃, g̃1), namely, commitments in JgKcke, JwKck′3 and Jg1Kcke′ as in
Figure 5, before receiving challenge α1, and g̃2, namely, commitment in Jg2Kcke′ in Figure 5, before
receiving α2. Therefore, the simulator simply commits to zero vectors with randomness sampled
appropriately, namely, following the correct distribution of randomness sampling, to obtain those
dummy commitments g̃, w̃, g̃1 and g̃2. By the hiding property of C, these dummy commitments are
indistinguishable from the real ones in the real transcripts. Hence, when simulating, simulator S
of CFgnr only computes dummy commitments and sends them to the verifier to obtain (tr⋆fold∥�̃�⋆).
Then, it calls simulator Sprove, on input (pp, �̃�⋆), of CF.Prove to get the simulated transcript tr⋆prf .
Finally, form the simulated transcript tr⋆ = (tr⋆fold∥�̃�⋆∥tr⋆prf).

We now analyze how tr⋆ is indistinguishable from tr′. We first notice that (tr⋆fold∥�̃�⋆) and (trfold∥�̃�)
are indistinguishable according to the hiding property of commitment scheme C. Then, (pp, �̃�⋆) is
passed to Sprove for producing simulated proof.

Finally, we show that tr′prf is indistinguishable from tr⋆prf . Indeed, if Sprove is unable to produce
tr⋆prf indistinguishable from tr′prf , then there exists a distinguisher A that can distinguish between
tr′prf and tr⋆prf with non-negligible probability. We assume that A output 0 if the input is tr′prf and
1 otherwise. Now we can construct a distinguisher A′ to distinguish (tr⋆fold∥�̃�⋆) and (trfold∥�̃�) as
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follows: A′, on input ẗr (which is either (tr⋆fold∥�̃�⋆) or (trfold∥�̃�)), employs Sprove to produce and
forward ẗrprf to A. Then A′ determines ẗr as (trfold∥�̃�) if A outputs 0. Otherwise, A determines ẗr
as (tr⋆fold∥�̃�⋆). One can see that, by using A, this distinguisher A′ can correctly distinguish (tr⋆fold∥�̃�⋆)
and (trfold∥�̃�) with non-negligible probability as well, contradicting the hiding property of C. Hence,
tr⋆prf and tr′prf are indistinguishable as well.

Therefore, tr⋆ and tr′ are indistinguishable implying indistinguishability between tr⋆ and tr.
Thus, HVZK is guaranteed. ⊓⊔

Remark 15. A variant of Lemma 14 is witness indistinguishability of CFgnr which can be for-
malized that CFgnr is (statistically) witness-indistinguishable if C is an additively homomorphic

and (statistically) hiding commitment scheme and CF.Prove, for relation RS,S′

gnr-inst, is (statistically)
witness-indistinguishable.

The proof of the above fact is straightforward since the two transcripts corresponding to the
two witnesses mainly contain commitments and the final proof which ensures witness indistin-
guishability by the hiding property of commitments and witness indistinguishability of the final
proof.

C.2 Efficiency of CFgnr (Extended)

Recall the notations in Definition 2. The efficiency of CFgnr is as follows:

– Size of Public Instance in J𝕫Kpp in (15). O(mpub +
∑
i∈[d] c(mi)+ c(n)+m′

pub +
∑
i∈[3] c(m

′
i)+

c(n′) + c(s)) which is obvious from the design in Section 5.1.
– Communication Cost of CF.Fold. O(c(n) + c(n′)) analyzed as follows. Notice that both parties

need to run three rR1CS foldings in which they need to obtain JgKcke, Jg1Kcke′ and Jg2Kcke′
where |g| = n and |g1| = |g2| = n′.

– Prover Time of CF.Fold. O(n+ tpc(n)+mpub +
∑
i∈[d] tp

h(mi)+ tph(n)+n′ + tpc(n′)+m′
pub +∑

i∈[3] tp
h(m′

i)+ tph(n′)) analyzed as follows. As from above, the prover needs to perform three
foldings, which can be implied from the analysis of efficiency from Section 3.2.

– Verifier Time of CF.Fold.O(tvc(n)+mpub+
∑
i∈[d] tv

h(mi)+tvh(n)+tvc(n′)+m′
pub+

∑
i∈[3] tv

h(m′
i)+

tvh(n′)) which, as form above, follows the analysis of efficiency from Section 3.2.
– Prover and Verifier Time of CF.Prove. This depends on the employed ZKAoK.

D RAMenPaSTA (Extended)

In Appendix D.1, we provide proof of Lemma 2. In Appendix D.2, we provide the proof of Theo-
rem 2.

D.1 Proof of Lemma 2

We first recall Lemma 2 in the following Lemma 15.

Lemma 15 (Recall of Lemma 2). Let γ, δ, τ, ω, χ, ψ
$← 𝔽 and (mulj)j∈[T ] ∈ 𝔽 be prepared in

advance. Let plkiv′j = mulj · (χ+ ⟨(j∥plkst′j), (ψk)k∈[0,nplk]⟩)−1 for j ∈ [T ]. Then,

– (22) implies (26), (27) and (28) with probability 1−O((N + T )/ |𝔽 |) due to division by zero.
– And (26), (27) and (28) together imply (22) with soundness error at most O(nplk ·(N+T )/ |𝔽 |).

Proof (Proof of Lemma 2 (recalled in Lemma 15)). We divide the proof into the following two
cases:
The Case “(22) =⇒ (26), (27), (28)”: This holds with probability 1 − O((N + T )/ |𝔽 |) due to
the potential division by zero where, from Section 6.1,

– (23) holds with probability for division by zero bounded by O(N/ |𝔽 |), and
– (24) holds with probability for division by zero bounded by O((N + T )/ |𝔽 |).
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Hence, by union bound, the total probability for division by zero is bounded by O((N + T )/ |𝔽 |).
The Case “(26), (27), (28) =⇒ (22)”: Indeed, it is trivial that (26) and (27) imply that

Cmem(i,macsi−1,macs′i−1,macsi,macs′i) = 1 ∀i ∈ [2, N ]

Cγ,δplk (plksti, vali, (pci∥macsi), auxplki) = 1 ∀i ∈ [N ]

with probability 1, meaning that the soundness error of these conditions is 0.
Next, since (27) we have that{

mivi = (τ + ⟨macsi, (ω
k)k∈[0,3]⟩)−1 ∀i ∈ [N ],

miv′i = (τ + ⟨macs′i, (ω
k)k∈[0,3]⟩)−1 ∀i ∈ [N ]

(55)

By substituting (55) into (28), it holds that∑
i∈[N ]

(τ + ⟨macsi, (ω
k)k∈[0,3]⟩)−1 =

∑
i∈[N ]

(τ + ⟨macs′i, (ω
k)k∈[0,3]⟩)−1 (56)

By Lemma (5) (see Appendix B.4), with randomly chosen τ, ω ∈ 𝔽 , since (56) holds, we have∑
i∈[N ]

(X + ⟨macsi, (Y
k)k∈[0,3]⟩)−1 =

∑
i∈[N ]

(X + ⟨macs′i, (Y
k)k∈[0,3]⟩)−1

in 𝔽 (X,Y ) with probability at least 1 − O(N/ |𝔽 |) as each tuple has constant size equal to 4. By
Lemma (7) (see Appendix B.4), this also implies that (macsi)i∈[N ] is a permutation of (macs′i)i∈[N ]

with probability at least 1 − O(N/ |𝔽 |). Therefore, the soundness error of the tuple permutation
condition from (22) is at most O(N/ |𝔽 |).

By (27), we also have that{
plkivi = (χ+ ⟨(pci∥plksti), (ψk)k∈[0,nplk]⟩)−1 ∀i ∈ [N ],

plkiv′j = mulj · (χ+ ⟨(j∥plkst′j), (ψk)k∈[0,nplk]⟩)−1 ∀j ∈ [T ]
(57)

Again, by substituting (57) into (28), it holds that∑
i∈[N ]

(χ+ ⟨(pci∥plksti), (ψk)k∈[0,nplk]⟩)
−1 =

∑
j∈[T ]

mulj · (χ+ ⟨(j∥plkst′j), (ψk)k∈[0,nplk]⟩)
−1 (58)

For some mul1, . . . ,mulT ∈ 𝔽 . Similarly, by Lemmas 7 and 8, we see that (pci∥plksti)i∈[N ] ⊆
(j∥plkst′j)j∈[T ] with probability at least 1−O(nplk · (N + T )/ |𝔽 |). Therefore, the soundness error
of the tuple lookup condition from (22) is at most O(nplk · (N + T )/ |𝔽 |).

Finally, the above arguments imply that (22) holds with soundness error at most

O(N/ |𝔽 |) +O(nplk · (N + T )/ |𝔽 |) = O(nplk · (N + T )/ |𝔽 |)

as desired. ⊓⊔

D.2 Proof of Theorem 2

For readability, we recall Theorem 2 in the following Theorem 5.

Theorem 5 (Recall of Theorem 2). If C is secure homomorphic commitment scheme and

ΠRP-prf is an HVZKAoK for relation RS,S′

RP-prf then ΠRP is an HVZKAoK for relation Rram in (20)
with completeness error O((N + T )/ |𝔽 |+ cerrprf(pp)) and soundness error

O (nplk · (N + T )/|𝔽 |+ serrRP-prf(pp) + negl(λ))

where cerrprf(pp) and serrRP-prf(pp) are respectively completeness and soundness error of ΠRP-prf

and negl(λ) is the negligible probability for cheating prover to break the binding of the underlying
commitment scheme.
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Proof (Proof of Theorem 2 (Recalled in Theorem 5)). The proof follows Lemmas 16, 17 and 18.
Specifically, Lemmas 16, 18 and 18 are for correctness, knowledge soundness and HVZK of ΠRP,
respectively. Together, they imply the proof of Theorem 2. ⊓⊔

Correctness of ΠRP. Correctness follows Lemma 16.

Lemma 16 (Completeness of ΠRP). If C is perfectly correct and ΠRP-prf , for relation RS,S′

RP-prf , is
complete with completeness error cerrRP-prf(pp), then ΠRP is complete with probability 1−O((N +
T )/|𝔽 |+ cerrRP-prf(pp)).

Proof. Notice that CF.Fold is correct with correctness error 0. However, Lemma 2 indicates that
the proof for both permutation lookup and tuple lookup incurs a total completeness error O((N +
T )/|𝔽 |). Hence, in total, completeness error of ΠRP is bounded by O((N + T )/|𝔽 |+ cerrRP-prf(pp)).

⊓⊔

Knowledge Soundness of ΠRP. Knowledge soundness follows Lemma 17 below. Before discussing
the idea for the proof of Lemma 17, we recall the hierarchical structure HS (see Definition 1). We
first classify the nodes in HS by depths according to the following Definition 25. Then, we prove
knowledge soundness of ΠRP by Lemma 17.

Definition 25 (Depths in Hierarchical Structures). Let N ∈ ℤ+ and HS be defined as in
Definition 1. We denote the depth of each node by a function depth : HS→ ℤ+ as follows:

– The root node (0, N) has depth 0, i.e., depth(0, N) = 0.
– For any pair of nodes (l, j) and (j, r) satisfying (l, j), (j, r), (l, r) ∈ HS (i.e., (l, r) is the direct

parent node of (l, j) and (j, r) in HS), we denote by depth(l, j) = depth(j, r) = depth(l, r) + 1.

The height H of HS is the maximum depth of nodes in HS, i.e.,

H = max
{
depth(l, r)

∣∣ (l, r) ∈ HS
}
.

Remark 16. Notice that ΠRP in Figure 7 folds N instance-witness pairs, in step 7 following a
hierarchical HS. Let H be the height of HS. By classifying the instance-witness pairs by depths as
in Definition 25, we see that, for a depth d ∈ [H], the process that folds all instance-witness pairs

at depth-d to the above depths, i.e., d − 1 to 0, and then prove J𝕫0N Kpp ∈ RS,S′

RP-prf , is a ZKAoK
(or ZKPoK), denoted by Πd, of instance-witness pairs at depth d such that (i) all instance-witness

pairs satisfy RS,S′

gnr-inst (see (18)) and, (ii) for each folding at depth d, the condition for such a folding

also satisfy RS′

gnr-cond (see (19)).

Lemma 17 (Knowledge Soundness of ΠRP). If C is an additively homomorphic and binding

and ΠRP-prf , for relation RS,S′

RP-prf , is knowledge-sound, then ΠRP is knowledge-sound. Moreover, ΠRP

has soundness error

O
(
nplk · (N + T )

|𝔽 |
+ serrRP-prf(pp) + negl(λ)

)
where serrRP-prf(pp) is the soundness error of ΠRP-prf and negl(λ) is the negligible probability for
cheating prover to break the binding of the underlying commitment scheme.

Proof. The proof is split into three smaller parts as follows. Firstly, we provide a strategy for the
extractor to extract all witnesses corresponding to instance-witness pairs at all nodes of HS. Sec-
ondly, from those extracted, we extract components for RAM programs that follow the specification
of Lemma 2. Third and eventually, we analyze the soundness error of ΠRP.
Rewinding Strategy. According to Remark 16, since for each depth d ∈ [0, H], there exists
a ZKAoK (or ZKPoK) for all relations and folding conditions at depth d, it seems that we can
directly apply Lemma 13 for extraction. However, at depth d, there may be more than one folding
(involving more than two instance-witness pairs). Therefore, directly applying Lemma 13 may not
be applicable. Below, we present another way of extracting w.r.t. HS.

The idea for extraction is as follows. SinceΠRP in Figure 7 folds instance-witness pairs {J𝕫(i−1)iKpp}i∈[N ]

(see step 7) following the topological order of a hierarchical structure HS (see Definition 1), we
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can construct the extractor for ΠRP to extract the witnesses corresponding to nodes of HS depth-
by-depth from the top to bottom. In particular, let H be the height of HS. We construct the
extractors {Ed}d∈[0,H] such that, for d ∈ [0, H], Ed extracts the witnesses of instance-witnesses
pairs {J𝕫lrKpp}(l,r)∈HS,depth(l,r)≤d at depth-d nodes of HS. In other words, Ed is the extractor for
ZKAoK (or ZKPoK) Πd. The extractions of {Ed}d∈[0,H] are recursively constructed as follows.
(i) Extractor E0. At depth 0, there is only the root node (0, N). The witness corresponding to
J𝕫0N Kpp is extractable by extractor of CF.Prove (since CF.Prove is knowledge-sound). Here, E0 is
the extractor of CF.Prove. Recalled that CF.Prove of ΠRP is realized by ΠRP-prf for satisfaction of

relation RS,S′

RP-prf (see Figure 7).
(ii) Extractor Ed for d ∈ [H]. We now construct extractor Ed that employs Ed−1 as a sub-rountine.
Assume that there are 2 ·Kd instance-witness pairs

{J𝕫lrKpp}(l,r)∈HS,depth(l,r)=d

at depth-d nodes such that we can partition into Kd pairs of these instance-witnesses pairs as
follows. For each pair of these instance-witnesses pairs, when running CF.Fold, we obtain a new
instance-witness pair at depth d− 1 of HS. Since ΠRP employs CF.Fold from CFgnr as a black box
for folding, according to Lemma 12, with a (3, 3)-tree of acceptance transcripts for each of these
pairs of instance-witness pairs, we can extract its corresponding witness. Hence, we construct the
extractor Ed as follows. This extractor first samples i.i.d. Kd (3, 3)-tree of challenges. For k ∈ [Kd],

we denote by T (d,k) = (α
(d,k,i1)
1 , α

(d,k,i1,i2)
2 )i1,i2∈[3] to be the k-th (3, 3)-tree of challenges. Then,

we instruct Ed to rewind 9 as follows. For each (i1, i2) ∈ [3]× [3], Ed works as follows:

– For all k ∈ [Kd], Ed communicates with prover to fold the k-th pair of instance-witness pairs at
depth-d nodes by running CF.Fold (realized by protocol Πfold-gnr in Figure 5) with α1 and α2 (in

Πfold-gnr) respectively are replaced by α
(d,k,i1)
1 and α

(d,k,i1,i2)
2 . Hence, all folded instance-witness

pairs are at depth-(d− 1) nodes of HS.
– Run Ed−1 to extract witnesses for those instance-witness pairs at depth-(d− 1) nodes.

Hence, by such a rewinding strategy, we obtainKd (3, 3)-tree of accepted transcripts. By Lemma 12,
it is sufficient for extracting witnesses of instance-witness pairs and those for the conditions when
folding at depth-d nodes.

Eventually, we see that EH extracts all witnesses and conditions for folding following hierarchical
structure HS. We are now ready to discuss in detail the extraction of the entire execution trace of
RAM programs from RAMenPaSTA.
Extracting the Execution Trace of RAM Program. Since ΠRP-prf is knowledge-sound, it

is also a knowledge-sound proof for relation RS,S′

gnr-inst because it is implied by relation ΠRP-prf as

specified in (32). By using EH , we can extract 𝕫lr, for all (l, r) ∈ HS s.t. J𝕫lrKpp ∈ RS,S′

gnr-inst.

By ΠRP-prf for relation RS,S′

RP-prf (see (32)), it also holds that J𝕫0N Kpp ∈ RS,S′

gnr-inst since satisfaction

of RS,S′

RP-prf implies satisfaction of RS,S′

gnr-inst. Moreover, according to step 7 in Figure 7, all of the
conditions between to-be-folded instance-witness pairs also hold, i.e.,∧

l,j,r s.t.
(l,j),(j,r)∈HS

(
(J𝕫ljKpp, J𝕫jrKpp, (1, j + 1); wk) ∈ RS′

gnr-cond

)

implying (J𝕫(i−1)iKpp, J𝕫i(i+1)Kpp, (1, i+ 1); wi+1) ∈ RS′

gnr-cond for all i ∈ [N − 1].
We also can extract (mulj)j∈[T ] and randomness (m̂j)j∈[T ] by the extractor ofΠRP-prf for relation

RS,S′

RP-prf such that
(ckmj , m̃j ; mulj , m̂j) ∈ Rcom j ∈ [T ].

(i) Extracting Components for Single Computation Steps. Recall that, from Remark 9, we can
parse S = (A,B,C) and A,B and C are public matrices that can be publicly determined

from challenges γ, δ, τ, ω, χ, ψ. Since J𝕫(i−1)iKpp ∈ RS,S′

gnr-inst, it captures the fact that

J𝕩(i−1)iKtck ∈ RS
rr1cs
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where J𝕩(i−1)iKtck is a component in J𝕫(i−1)iKpp according to the form (15). Hence, for each i ∈
[N ], by following Section 3.2, we can define ui = 𝕩(i−1)i.u, zi = (𝕩(i−1)i.pub∥𝕩(i−1)i.z1∥ . . . ∥𝕩(i−1)i.z5)
and ei = 𝕩(i−1)i.e such that

A · zi ◦B · zi = ui ·C · zi + ei.

According to protocolΠRP in Figure 7, it holds that 𝕩(i−1)i.pub = 1 and 𝕩(i−1)i.ẽ = C.Commitcke(0
n, 0),

i.e., 𝕩(i−1)i.ẽ is commitment in J𝕩(i−1)i.eKcke, since these public values are computed by verifier.
By the binding property of commitment scheme C, it should hold that 𝕩(i−1)i.e = 0n. Hence,
we see that

A · z′i ◦B · z′i = C · z′i (59)

where z′i = (1∥𝕩(i−1)i.z1∥ . . . ∥𝕩(i−1)i.z5). By following (29) in Section 6.2, we parse

𝕩(i−1)i.z1 = (pci∥vali∥macsi∥macs′i),

𝕩(i−1)i.z2 = (pci∥macsi∥macs′i),

𝕩(i−1)i.z3 = plksti,

𝕩(i−1)i.z4 = auxi, and

𝕩(i−1)i.z5 = (mivi∥miv′i∥plkivi)

Here, the fact that both 𝕩(i−1)i.z1 and 𝕩(i−1)i.z2 contain the same (macsi∥macs′i) is due to
Definition 8. Hence, we have

z′i = (1∥pci∥vali∥macsi∥macs′i∥pci∥macsi∥macs′i∥
plksti∥auxi∥mivi∥miv′i∥plkivi)

(60)

for all i ∈ [N ]. By Definition 8, we hence deduce that (27) holds.

SinceA,B,C realize the testing of hidden evaluation of hidden circuits by employing PLONK’s
arithmetization w.r.t. plksti, for all i ∈ [N ], by employing challenges γ and δ, according to

Appendix B.3, the error probability for this test is at most
N(nplk−4ngate)

|𝔽 | ≤ N ·nplk

|𝔽 | , by using

union bound over the N computation steps, where ngate is the number of gates in circuit
corresponding to plksti for i ∈ [N ].

(ii) Extracting Witnesses for Conditions. Parse S′ = (A′,B′,C′), where A′,B′,C′ are public ma-
trices defined in Definition 9. For each i ∈ [2, N ], recall that our extracted witnesses 𝕫(i−1)i

and auxiliary witnesses wi satisfy

(J𝕫(i−2)(i−1)Kpp, J𝕫(i−1)iKpp, (1, i); wi) ∈ RS′

gnr-cond,

it holds that

A′ · ci ◦B′ · ci = C′ · ci

where ci = ((1, i)∥rear(i−2)(i−1)∥front(i−1)i∥wi). However, since r̃ear(i−2)(i−1) = 𝕩(i−2)(i−1).z̃2

and f̃ront(i−1)i = 𝕩(i−1)i.z̃1, where r̃ear(i−2)(i−1), 𝕩(i−2)(i−1).z̃2, f̃ront(i−1)i, 𝕩(i−1)i.z̃1 are com-
mitments in Jrear(i−2)(i−1)Kck2 , J𝕩(i−2)(i−1).z2Kck2 , Jfront(i−1)iKck1 , J𝕩(i−1)i.z1Kck1 , respectively,
according to the settings

Jfront(i−1)iKck1 := Jzi1Kck1 ,
Jrear(i−1)iKck2 := Jzi2Kck2 ,
J𝕩(i−1)iKtck := (1, 1, Jzi1Kck1 , . . . , Jzi5Kck5 , J0

nKcke)

as in step 6 of ΠRP. By the binding property of C, it holds that

ci = (1∥(1, i)∥pci−1∥macsi−1∥macs′i−1∥pci∥vali∥macsi∥macs′i).

By Definition 9, we hence deduce that pci = pci−1, vali = vali−1 and (26) holds.
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(iii) Constraints for Tuple Permutation and Tuple Lookup. For all l, j, r ∈ HSfold (where HSfold is
defined in Definition 1), our extracted witnesses satisfy slr = slj + sjr according to the proof
of Lemma 13, we deduce that ∑

i∈[N ]

s(i−1)i = s0N .

According to step 6 in Figure 7, since verifier has computed s̃(i−1)i = 𝕩(i−1)i.z̃5, by the binding
property of C, it holds that

s(i−1)i = (mivi∥miv′i∥plkivi).
By parsing s0N = (miv∥miv′∥plkiv), we see that

∑
i∈[N ] mivi = miv,∑
i∈[N ] miv′i = miv′,∑
i∈[N ] plkivi = plkiv.

Since ΠRP-prf for relation RS,S′

RP-prf (see (32)) guarantees that

plkiv =
∑
j∈[T ]

mulj
χ+ ⟨(j∥plkst′j), (ψk)k∈[0,nplk]⟩

and miv = miv′,

we hence see that{∑
i∈[N ] plkivi =

∑
j∈[T ] mulj ·

(
χ+

〈
(j∥plkst′j),

(
ψk

)nplk

k=0

〉)−1
, and∑

i∈[N ] mivi =
∑
i∈[N ] miv′i.

By the fact that Jfront(i−1)iKck1 = Jzi1Kck1 = J𝕩(i−1)i.z1Kck1 (step (6) in Figure 7) and Defini-
tion 8, we know that {

mivi = (τ + ⟨macsi, (ω
k)k∈[0,3]⟩)−1 ∀i ∈ [N ],

miv′i = (τ + ⟨macs′i, (ω
k)k∈[0,3]⟩)−1 ∀i ∈ [N ]

and

plkivi =
(
χ+

〈
(pci−1∥plksti),

(
ψk

)nplk

k=0

〉)−1

.

Notice that the above systems imply that (28) is satisfied.

From (i), (ii) and (iii) above, (27), (26) and (28) are satisfied. By Lemma 2, they all imply
that (22) is satisfied with soundness error O(nplk · (N + T )/ |𝔽 |). Hence, we have already proved
the correct execution of RAM programs. Next, we prove the correct input and output of the RAM
program.
Correct Input and Output. Parse

front0N = (pc∥val∥macs∥macs′) and rear0N = (pc∥macs∥macs′).

Notice that relation RS,S′

RP-prf (see (32)) enforces pc = 1, val = valin, val = valout and JvalinKcki ∈ Rcom,

by the binding property of C. By the knowledge soundness of ΠRP-prf (for relation RS,S′

RP-prf), we can
extract valin, and we are guaranteed that those for input and output of the N -step RAM program
are correct.
Analysis of Soundness Error. Recall that (22) implies the correct execution of N instructions
with soundness error O(N · nplk/ |𝔽 |) (see Section 2.6 and Appendix B.3). By Lemma 2, (27), (26)
and (28) imply that (22) is satisfied with soundness error O(nplk · (N + T )/ |𝔽 |). Hence, in total,
(27), (26) and (28), with guaranteed correct input and output for RAM program, imply satisfaction
of Rram with total soundness error

O(nplk · (N + T )/ |𝔽 |). (61)

However, since we prove (27), (26) and (28) by ΠRP with underlying folding scheme, we need to
analyze another layer of soundness error. Recall that we split HS into H +1 depths (from 0 to H)
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according to Definition 25. Here, as discussed above, for d ∈ [N ], there are 2 ·Kd nodes in depth
d, while depth 0 has exactly one root node. As from above, we can extract witnesses of depth-d
nodes, for d ∈ [N ], by those from depth-(d − 1) nodes in the spirit of Kd (3, 3)-tree of accepted
transcripts, incurring soundness error Kd·4

𝔽 for all Kd foldings. Define Pd as the soundness error
for the validity of those instance-witness pairs at depth-d nodes. Then, we can see that

P0 = serrRP-prf(pp),

Pd = Pd−1 + (1− Pd−1) ·
Kd · 4
𝔽

+ negl(λ)

≤ Pd−1 +
Kd · 4
𝔽

+ negl(λ)

≤ serrRP-prf(pp) +
∑
i∈[d]

Ki · 4
𝔽

+ negl(λ)

where negl(λ) can be seen as the ability to break the binding of the underlying commitment scheme.
It can be seen that PH is the soundness error of ΠRP which is bounded by

serrRP-prf(pp) +
∑
i∈[H]

Ki · 4
𝔽

+ negl(λ) = O
(
serrRP-prf(pp) +

N

|𝔽 |
+ negl(λ)

)

by the observation that
∑
i∈[H]Ki = O(N).

Combining with soundness error O(nplk · (N + T )/ |𝔽 |) in (61), we see that the total soundness
error, from folding following HS and from those implying (61), is

O
(
nplk · (N + T )

|𝔽 |

)
+

(
1−O

(
N · nplk
|𝔽 |

))
· O

(
serrRP-prf(pp) +

N

|𝔽 |
+ negl(λ)

)
= O

(
nplk · (N + T )

|𝔽 |
+ serrRP-prf(pp) + negl(λ)

)
.

We thus conclude the proof. ⊓⊔

HVZK of ΠRP. HVZK of ΠRP follows Lemma 18.

Lemma 18 (HVZK of ΠRP). If C is an additively homomorphic and hiding commitment scheme

and ΠRP-prf , for relation RS,S′

RP-prf , is HVZK, then ΠRP is HVZK.

Proof. We prove recursively as follows. According to Remark 16, for any d ∈ [0, H], the process
of (i) folding all instance-witness pairs from depths d to 0 of HS and (ii) proving by ΠRP-prf is a
ZKAoK (or ZKPoK) Πd for those instance-witness pairs and conditions of foldings at depth d. By
this observation, we can prove HVZK by induction as follows:

– At depth 0, since Π0, which is also ΠRP-prf , is a ZKAoK (or ZKPoK). Hence, HVZK at depth
0 is guaranteed.

– For d ∈ [H], assume by inductive hypothesis that Πd−1 is HVZK. Then, we can show that
Πd is also HVZK. We can apply a similar proving strategy from the proof of Lemma 14. The
difference from the proof of Lemma 14 is that we consider folding Kd pairs of instance-witness
pairs at depth-d nodes of HS rather than a single folding as in Lemma 14.

We thus conclude the proof. ⊓⊔
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