
Two-Round Maliciously-Secure Oblivious Transfer

with Optimal Rate

Pedro Branco1, Nico Döttling2, and Akshayaram Srinivasan3

1Max Planck Institute for Security and Privacy
2Helmholtz Center for Information Security (CISPA)

3University of Toronto

Abstract

We give a construction of a two-round batch oblivious transfer (OT) protocol in the CRS model that
is UC-secure against malicious adversaries and has (near) optimal communication cost. Specifically, to
perform a batch of k oblivious transfers where the sender’s inputs are bits, the sender and the receiver
need to communicate a total of 3k+o(k) ·poly(λ) bits. We argue that 3k bits are required by any protocol
with a black-box and straight-line simulator. The security of our construction is proven assuming the
hardness of Quadratic Residuosity (QR) and the Learning Parity with Noise (LPN).

1 Introduction

Oblivious transfer (OT) is a two-party protocol between a sender and a receiver. The receiver’s private
input in this protocol is a bit b ∈ {0, 1} and the sender’s private input are two bits (m0,m1). At the end
of the protocol, the receiver learns mb and the sender does not get any output. For security, we require
that the sender learns no information about the receiver’s choice bit b and the receiver should not learn any
information about the sender’s other bit, namely, m1−b. We also consider a natural extension where the
sender’s private inputs are two strings rather than bits and the receiver learns one of the two strings. This
extension is known as the string OT protocol.

Oblivious transfer is a foundational cryptographic primitive that is used as the core building block in
the construction of secure computation protocols [Yao86, Kil88, IPS08, GS18, BL18]. In many applications,
including secure computation and OT extension [Bea96, IKNP03], we require the sender and the receiver to
execute k oblivious transfers in parallel. This is known as the batch setting and such protocols are called
batch OT protocols.

A large body of work focused on minimizing the round-complexity of oblivious transfer (e.g., [NP01,
AIR01, PVW08, DGH+20]). We now know constructions of round-optimal (i.e., two-round) oblivious transfer
protocols in the CRS model that are UC-secure against malicious adversaries based on standard cryptographic
assumptions such as CDH, LPN, QR, and LWE [PVW08, DGH+20].

Communication Complexity. Recently, the communication complexity of OT has received a lot of atten-
tion [IKNP03, BCGI18, BCG+19a, BCG+19b, DGI+19, BCG+20a, BCG+20b, GHO20, CGH+21, ADD+22].
This line of research has culminated with the works of Gentry et al. [GH19], Brakerski et al. [BDGM19,
BBDP22], and Branco et al. [BDS23] which focused on minimizing the communication complexity of batch
OT protocols. They gave constructions of two-round semi-honest and statistical sender private batch OT
protocols with (near) optimal communication cost. Specifically, the communication complexity of these pro-
tocols was 2k+ o(k) · poly(λ) where k is the batch size and λ is the security parameter. These works further
argued that any batch OT protocol requires at least 2k bits to ensure correctness.

1

We observe that at least 3k bits of communication is needed to prove security against malicious adversaries
via a black-box and straight-line simulator.1 Indeed, the first-round message from the receiver should contain
enough information for the simulator to extract all its choice bits and the sender’s message should contain
enough information for the simulator to extract both the sender’s inputs. By standard incompressibility
argument, it follows that the communication complexity should be at least 3k bits. Given this lower bound,
a natural question is to give a construction with matching communication cost.

Prior Work. Though not explicitly stated, we observe that the techniques introduced in prior works can
be used to construct a malicious-secure, two-round batch OT protocol with optimal communication.

1. Spooky Encryption. Spooky encryption [DHRW16] is a generalization of fully homomoprhic encryp-
tion with the following property. Let (pk1, sk1) and (pk2, sk2) be independently sampled public-key,
secret-key pairs for a spooky encryption scheme. Given Enc(pk1, x1), Enc(pk2, x2) and a two-party
function f , there is a special homomorphic operation that generates Enc(pk1, y1) and Enc(pk2, y2) such
that y1 ⊕ y2 = f(x1, x2). Let us now see how to use spooky encryption to construct a batch OT
protocol with optimal communication. In the first round, the receiver samples (pk1, sk1) of a spooky
encryption scheme and a PRG seed s1. It generates Enc(pk1, s1) and sends this ciphertext along with
b′ = PRG(s1) ⊕ b where b denotes the vector of choice bits of the receiver. In the second round, the
sender samples (pk2, sk2) of the spooky encryption scheme and PRG seed s2. It generates Enc(pk2, s2).
Let f be a two-party function that takes in s1 and s2 and computes PRG(s1)◦PRG(s2) where ◦ denotes
the point-wise product of the two strings. The sender homomorphically evaluates f on Enc(pk1, s1)
and Enc(pk2, sk2) to obtain Enc(pk1,y1) and Enc(pk2,y2) such that y1 ⊕ y2 = f(s1, s2). It decrypts
the second ciphertext using sk2 to learn y2. Note that if the sender sends Enc(pk2, s2) to the receiver,
the receiver can obtain y1. Observe that y1 = y2 ⊕ PRG(s1) ◦ PRG(s2). Hence, we can use this
to generate random OT correlations where the receiver’s choice bits are given by PRG(s1) and the
sender’s random input bits are (y2,y2 ⊕ PRG(s2)). Further, the sender can derandomize this random
OT correlation to actual OT using the receiver’s first round message b′. The receiver can then use
y1 to recover the inputs of the sender corresponding to its choice bits b. To protect against malicious
adversaries, we add additional NIZK proofs (that are known from LWE [PS19]) showing that the re-
ceiver’s and the sender’s encryptions are generated correctly. This protocol has a total communication
cost of 3k+ poly(λ) bits. Dodis et al. [DHRW16] gave a construction of spooky FHE under LWE with
super-polynomial modulus-to-noise ratio.

2. Pseudorandom Correlation Generators. Orlandi et al. [OSY21] constructed a non-interactive
protocol for generating the seeds of a pseudorandom correlation generator (PCG) for computing corre-
lated oblivious transfer. These short seeds can be locally expanded to give many instances of correlated
OT.2 These can be further transformed to standard OT correlations using a correlation-robust hash
function [IKNP03]. Generically, the entire protocol requires at least three rounds in the CRS model
(one round to generate the seeds and two more rounds to derandomize from random OT correlations
to actual OTs). However, if we open up the protocol of [OSY21], we note that the OT protocol can
in fact be implemented in two rounds as the receiver can already compute its random choice bits after
the CRS is known. One caveat, though, is that [OSY21] requires a way to publicly generate ran-
dom Goldwasser-Micali ciphertexts encrypting random bits. This would either need a random oracle,
or a uniform CRS with length proportional to the number of OTs which is non-reusable. Boyle et
al. [BCG+19a] gave a two-round protocol for generating many instances of correlated OTs with small
communication using LPN in the random oracle model.

To conclude, we know how to build optimal-rate maliciously-secure OT in two rounds in the standard model
i) from LWE with super-polynomial modulus to noise ratio, ii) group based assumptions (namely DCR and

1Straight-line simulation is required to show UC-security.
2Correlated OTs are generated by sampling a fixed offset ∆← {0, 1}λ and generating several instances of the form (b, v+b·∆)

where b← {0, 1} and v ← {0, 1}λ. The receiver gets (b, v + b ·∆) and the sender gets (v,∆).

2

QR) with a large CRS (that is, a CRS which grows with the batch size) that is non-reusable, or a random
oracle, or (iii) LPN assumption in the random oracle model.

Given the above state-of-the-art, the main question we would like to address in this work is the following:

Can we construct a malicious-secure, two-round batch oblivious transfer protocol with (near) optimal
communication cost with a short resuable CRS under assumptions that are weaker than LWE?

Our Results. We answer the above question affirmatively and give a construction of a two-round batch OT
protocol in the CRS model with (near) optimal communication and satisfying UC-security against malicious
adversaries. The security of our construction is based on the Quadratic Residuosity (QR) and Learning
Parity with Noise (LPN) assumptions. Formally,

Theorem 1. Assume the hardness of Quadratic Residuosity and the Learning Parity with Noise. There exists
a two-round protocol for computing batch of k oblivious transfers in the CRS model with total communication
cost of 3k+o(k) ·poly(λ) bits when the sender’s private inputs are bits and k+2km+o(k) ·poly(λ) bits when
the sender’s private inputs are strings of length m. The protocol achieves UC-security against malicious
adversaries.

2 Technical Overview

A recent line of work [GH19, BDGM19, BBDP22, BDS23] studies the hardness assumptions needed to
construct communication-optimal 2-message batch OT, that is batch OT protocols in which the amortized
communication cost per OT approaches 2 bits. Such protocols cannot be maliciously secure under straight-
line simulation, as the total amount of communication is insufficient to encode both the sender’s and receiver’s
inputs in an information-theoretic sense.

2.1 Warmup: The PVW Protocol

The starting point of our construction is the well-known protocol of Peikert, Vaikuntanathan and Wa-
ters [PVW08], in the following referred to as the PVW protocol. We will consider a simple variant of the
PVW protocol in the QR setting which can be described as follows on a high-level 3. Let N = pq be a
product of two safe primes and let g ∈ QRN be a random generator of the group of quadratic residues in
Z∗
N , and let u ∈ JN be a uniformly random element with Jacobi symbol 1. The common reference string

consists of the N , g and u.
The receiver, given a choice bit b ∈ {0, 1} picks a random x ←$ ZN , sets h = gx · ub and sends h to the

sender. The sender, on input two messages m0,m1 ∈ {0, 1} picks a random r ←$ ZN and computes c = gr,
c0 = hr · (−1)m0 and c1 = (h · u−1)r · (−1)m1 . He then sends c, c0 and c1 to the receiver, who can recover
(−1)mb (and thus mb) by computing cb/c

x.
Security against a malicious receiver can (roughly) be argued by choosing the value u in the CRS as

u = gy · (−1) (for a random y ←$ Z∗
N), which is indistinguishable from a random u ∈ Z∗

N under the QR
assumption. Given the factorization N = pq as a trapdoor, a simulator can now extract the choice bit b
from h by testing whether h is a quadratic residue. Finally, we can argue that the values c = gr, c0 and c1
statistically hide m1−b as

c0 = hr(−1)m0 = (gr)x+by · (−1)br+m1

c1 = (h · u−1)r · (−1)m1 = (gr)x+(1−b)y · (−1)(1−b)r+m1 .

We can rewrite this as

cb = (gr)x · (−1)mb

c1−b = (gr)x+y · (−1)r+m1−b .

3The QR-based construction in [PVW08] is based on Cocks’ cryptosystem, but we will describe a version here based on the
Brakerski Goldwasser encryption scheme [BG10]

3

Since p and q are safe primes, it holds that the group order of QRN is odd, from which is follows that (−1)r
is uniformly random in {−1, 1} given gr as g ∈ QRN . Hence, the distribution of c1−b is independent of m1−b

and the claim follows.
Security against a malicious sender can be argued by modifying the CRS such that u = gy is a random

quadratic residue, which is indistinguishable from a random u under the QR assumption. Hence, the term
h now statistically hides b. The senders input can be extracted by decrypting c0 and c1 using c, x and y.

The communication complexity of this protocol is far from constant; for a single bit OT, the receiver
needs to send 1 group element, whereas the sender transmits 3 group elements. Using ciphertext compression
techniques introduced in [DGI+19] (which we discuss in the next paragraph), the sender’s communication
complexity may further be improved to 1 single group element and two additional bits.

To improve the communication complexity further, we will need to consider the batch setting, i.e. a
setting in which the protocol parties run many independent OT instances in parallel.

2.2 Batch OT with Trapdoor Hash Functions

To make progress towards optimal communication complexity for the sender, in other words optimal down-
load complexity, we will consider a batch variant of the PVW protocol based on a primitive called trapdoor
hash functions (TDH) [DGI+19].

Trapdoor Hash Functions In broad terms, a trapdoor hash function is a hash function that supports
the generation of additional hinting keys that encode a secret function f . Using this hinting key and the
hash key, a hash evaluator can release fine-grained hints along with a hash value of some input x. Using the
hash value, the hints, and secret state needed to generate the hinting key, one can recover the output of f
applied on x. The important efficiency requirement is that the size of the hints only grow with the length of
the output of f and are otherwise, independent of the input length.

In a bit more detail, TDH consists of a setup algorithm Setup, which produces a public hashing key hk,
and a hashing algorithm H which takes hk and an input x and produces a succinct hash value h. In addition
to these, there are three more algorithms KeyGen, Enc and Dec with the following syntax.

• KeyGen takes as input a hashing key hk and some function f : {0, 1}n → {0, 1} which outputs a single
bit, and produces an hinting key ek and a corresponding trapdoor td.

• The encryption or hinting algorithm Enc takes a hinting key ek and an input x and produces a binary
hint z ∈ {0, 1}.

• The decryption algorithm Dec takes a trapdoor td and a hash value h and produces an offset v ∈ {0, 1}.

In terms of security, we only require that the hinting key ek computationally hides the function f . In
terms of correctness, we require that it holds for all supported functions f and all inputs x that

Enc(ek,x) = Dec(td,H(hk,x))⊕ f(x),

where hk← Setup(1λ, n) and (ek, td)← KeyGen(hk, f). In other words, Enc(ek,x) produces a simple XOR-
encryption of f(x) under a key which can be recovered from H(hk,x) using the trapdoor td. This property
can also be interpreted as the ability to perfectly simulate the hint Enc(ek,x) given only the succinct hash
value H(hk,x), the trapdoor td and the bit f(x). Conversely, it allows us to perfectly simulate Dec(td,x)
without td, given only h = H(hk,x), ek, f(x) and x.

Döttling et al. [DGI+19] provide a number of instantiations of TDH from DDH, LWE and QR. Looking
ahead, in this work our goal is to construct maliciously secure OT. For this reason we will require the above
correctness property of TDH to hold perfectly, which is the case for the QR-based construction in [DGI+19],
but not for their DDH-based construction.

We will thus briefly discuss the QR-based TDH of [DGI+19]. The setup algorithm Setup generates an
RSA-modulus N = p · q with two random safe primes p and q. It further generates n random quadratic

4

residues g1, . . . , gn ∈ QRN . The hashing key hk consists of N and g1, . . . , gn. To hash a message x ∈ {0, 1}n,
the hash algorithm H computes

h =

n∏
i=1

gxi
i .

This construction only supports F2-linear functions f : {0, 1}n → {0, 1}, i.e. inner product functions f(x) =
⟨t,x⟩ for some vector t ∈ Fn

2 . The key generation algorithm KeyGen, given a hashing hk = (N, g1, . . . , gn)
and such a vector t = (t1, . . . , tn) (describing the function f(x) = ⟨t,x⟩) chooses a uniformly random r ∈ Zn

and computes h1 = gr1 · (−1)t1 , . . . , hn = grn · (−1)tn . The hinting key ek is then given by h1, . . . , hn, whereas
the trapdoor td is the value r. We can routinely argue that ek hides t via the QR assumption.

To construct the hinting algorithm Enc, we will make use of an efficient “rounding” or “shrinking”
algorithm Shrink : Z∗

N → {0, 1} with the property that for all h ∈ Z∗
N it holds that Shrink(h · (−1)) =

Shrink(h)⊕ 1. Now, given ek = (h1, . . . , hn) and x the hinting algorithm computes and outputs

c = Shrink

(
n∏

i=1

hxi
i

)
.

The decryption algorithm, given a hash value h and a trapdoor td = r computes and outputs v = Shrink(hr).
To see that this construction satisfies the correctness property, note that

Enc(ek,x) = Shrink

(
n∏

i=1

hxi
i

)

= Shrink

(
n∏

i=1

(gri · (−1)ti)xi

)

= Shrink

((
n∏

i=1

gxi
i

)r

· (−1)
∑n

i=1 tixi

)
= Shrink

(
hr · (−1)⟨t,x⟩

)
= Shrink (hr)⊕ ⟨t,x⟩
= Dec(td, h)⊕ ⟨t,x⟩.

PVW with Trapdoor Hash Functions We will now discuss a new batched variant of the PVW protocol
using TDH which achieves optimal communication complexity for the sender. The new protocol proceeds as
follows.

The CRS consist of a hashing key hk for a TDH that supports inner product functions (such as the one
discussed in the last paragraph) and m uniformly random vectors t1, . . . , tm ∈ Fn

2 .
The receiver, on input choice bits b1, . . . , bm generates hinting keys and trapdoors (eki, tdi)← KeyGen(hk, bi·

ti) for i = 1, . . . ,m and sends ek1, . . . , ekm to the sender.
The sender, on input pairs of bits (m1,0,m1,1), . . . , (mm,0,mm,1) and given the hashing key hk and

the hinting keys ek1, . . . , ekm proceeds as follows. He picks a uniformly random r ∈ Fn
2 and computes

h← H(hk, r). He then proceeds to compute

wi,0 ← Enc(eki, r)⊕mi,0

wi,1 ← Enc(eki, r)⊕ ⟨ti, r⟩ ⊕mi,1,

for i = 1, . . . ,m. He then sends the hash value h and the pairs (w1,0, w1,1), . . . , (wm,0, wm,1) to the receiver.
The receiver then computes and outputs m′

i ← Dec(tdi, h) ⊕ wi,bi for i = 1, . . . ,m. We will first argue

5

correctness of this protocol. Note that it holds that

m′
i = Dec(tdi, h)⊕ wi,bi

= Dec(tdi, h)⊕ Enc(eki, r)⊕ bi · ⟨ti, r⟩ ⊕mi,bi

= mi,bi ,

as Enc(eki, r) = Dec(tdi, h)⊕ ⟨bi · ti, r⟩ by the correctness of the TDH.
This protocol is not readily maliciously secure. However, assume for a moment there was an additional

mechanism in place against a malicious sender which ensures that h = H(hk, r) for some r without revealing
r, and further enables a simulator to extract r. This could in principle be achieved via (designated verifier)
zero-knowledge proofs of knowledge. Given r, we can simulate the receiver’s behavior (without knowledge
of the bi or tdi) by extracting the messages

m′
i,0 ← Enc(eki, r)⊕ wi,0

m′
i,1 ← Enc(eki, r)⊕ ⟨ti, r⟩ ⊕ wi,1

for all i = 1, . . . ,m. By the correctness property of the TDH it holds that

Dec(tdi, h)⊕ wi,bi = Enc(eki, r)⊕ bi⟨ti, r⟩ ⊕ wi,bi = m′
i,bi ,

i.e. we can replace the receiver’s output by m′
i,bi

, and this modification is perfectly indistinguishable from
the receivers view. At this point, the simulation does not rely on the bi or tdi anymore. Hence, we can use
the function hiding property of the TDH to generate the hinting keys eki independently of the bi, and hence
simulate the protocol.

In turn, to establish security against a malicious receiver we need an additional mechanism which ensures
well-formedness of hk and the eki and lets us extract the bi and tdi from the receiver. Once such a mechanism
is in place, we can argue security against a malicious receiver as follows. Note that by the correctness of
the TDH a simulator in possession of the trapdoors tdi can equivalently compute the ciphertexts wi,b (for
i = 1, . . . ,m and b ∈ {0, 1}) via wi,b = Dec(tdi, h) ⊕ (b ⊕ bi) · ⟨ti, r⟩ ⊕mi,b. Consequently, for the message
mi,1−bi , which should remain hidden from the receiver, it holds that

wi,1−bi = Dec(tdi, h)⊕ ⟨ti, r⟩ ⊕mi,1−bi .

That is, from the receiver’s view the message mi,1−bi is masked by the term ⟨ti, r⟩. Note that the succinct
hash value h is the only additional information the receiver learns about r besides the inner products ⟨ti, r⟩.
Furthermore, note that the hash value h = H(hk, r) does not depend on the random vectors t1, . . . , tm. Hence,
given that m is sufficiently smaller than n− bitlength(h), we can appeal to the leftover hash lemma [DRS04,
Reg05] to argue that the inner products ⟨ti, r⟩ are statistically close to uniform given h, and consequently
we can simulate the wi,1−bi by choosing them uniformly at random.

While this protocol makes progress towards our goal of optimal maliciously secure OT, it has several
glaring problems.

Most obviously, we have not specified how the additional extraction mechanism require for simulation
affect the communication complexity of the protocol. We will postpone the discussion of this issue as there
is another, far more severe issue with the above protocol: With the parameter choice discussed above we can
achieve optimal amortized download complexity for the sender, however we have done so at the expense of
the upload complexity! Specifically, in order to be able to extract a sufficient number of masks, we need to
make n sufficiently larger than m. But looking at the TDH construction from QR above, this means that
each hinting key eki consists of n group elements, while at the same time the receiver sends m hinting keys,
which means in order to get m bit OTs, the receiver needs to send Ω(m2) group elements. This means the
total communication complexity of this protocol is asymptotically worse than repeating the simple QR-based
PVW protocol above m times!

The underlying issue here is that our information theoretic argument for sender security runs into an
entropy barrier; we cannot extract more than n random bits from r. Consequently, to bypass this barrier
and make this approach work we need to settle on a computational argument, that is we need to derive
computationally secure masks from r.

6

2.3 Computational Sender Security via LPN

This is where the Learning Parity with Noise (LPN) assumption comes into play. The basic observation is
that, using nearly the same construction as above, the LPN assumption lets us extract more entropy than
there is if we are able to deal with additional errors. The decisional LPN assumption postulates that for
any polynomial bound m the samples (t1, ⟨t1, r⟩+ f1), . . . , (tm, ⟨tm, r⟩+ fm) are pseudorandom, where the
r ←$ Fn

2 and the ti ←$ Fn
2 are chosen uniformly random and the fi are independent and follow a Bernoulli

distribution, that is each fi is 0 with probability 1 − δ and 1 with probability δ. We will choose a slightly
sub-constant δ, hence there will not be too many faulty positions.

A moment of reflection exposes that we cannot simply add noise terms fi into the construction in the
last paragraph, as LPN requires the secret r to be uniform, whereas r in the construction above “loses”
entropy as the hash value h = H(hk, r) is leaked. However, we have also seen in the last paragraph that we
can use the leftover hash lemma to extract a uniformly random vector from r in the presence of the leakage
h = H(hk, r). Hence, we will modify the construction such that it first extracts an LPN secret r̂ from r, and
then expands r̂ via LPN. We can achieve this via a single linear function!

We will now discuss the necessary modifications to the protocol in the last paragraph in more detail. Let
n′ be sufficiently smaller than n−bitlength(h). We will first discuss how CRS generation has to be modified.

Instead of choosing the ti ∈ Fn
2 uniformly random, we will choose a uniformly random matrix V ∈ Fn′×n

2

and uniformly random vectors t̂1, . . . , t̂m and set ti ← V⊤ · t̂i for i = 1, . . . ,m. Note that this is equivalent
to putting the random matrix V and the random vectors t̂1, . . . , t̂m into the CRS and letting the parties
compute the ti.

Both the receiver’s first and second phase are as before, we will only modify the sender’s algorithm. As
before, the sender picks a uniformly random r ∈ Fn

2 and computes h ← H(hk, r) and zi ← Enc(eki, r) for
i = 1, . . . ,m. However, the computation of the wi,b is now modified by introducing noise terms. Specifically,
for i = 1, . . . ,m the sender computes

wi,0 ← zi ⊕ fi,0 ⊕mi,0

wi,1 ← zi ⊕ ⟨ti, r⟩ ⊕ fi,1 ⊕mi,1,

where the fi,b are chosen from a Bernoulli distribution with parameter δ. As before, he then sends the hash
value h and the pairs (w1,0, w1,1), . . . , (wm,0, wm,1) to the receiver.

We will first analyze correctness of this protocol. Letting m′
i ← Dec(tdi, h) ⊕ wi,bi for i = 1, . . . ,m be

the receiver’s outputs, we can establish using the correctness of the TDH that

m′
i = mi,bi ⊕ fi,bi ,

which means that each output of the receiver will be faulty with (small) probability δ. We will later describe a
mechanism that deals with the errors and merely observe now that if the total number of errors is sufficiently
small, we will be able to afford a relatively costly mechanism (in terms of communication complexity) to
correct the errors.

At this point we will only examine security against malicious receivers. We do this in a few hybrid steps.
As before, via the correctness property of the TDH we can simulate the wi,b via

wi,bi ← Dec(tdi, h)⊕ fi,bi ⊕mi,bi

wi,1−bi ← Dec(tdi, h)⊕ ⟨ti, r⟩ ⊕ fi,1−bi ⊕mi,1−bi .

First note that it holds by our choice of the ti = V⊤t̂i that

⟨ti, r⟩ = ⟨V⊤t̂i, r⟩ = ⟨t̂i,Vr⟩.

That is, we can equivalently compute wi,1−bi via

wi,1−bi ← Dec(tdi, h)⊕ ⟨t̂i,Vr⟩ ⊕ fi,1−bi ⊕mi,1−bi .

7

As before, noting that r has high conditional min-entropy given the succinct hash h = H(hk, r) and that
h is independent of V, we can invoke the leftover hash lemma and replace Vr with a uniformly random
r̂←$ Fn′

2 while introducing only a negligible statistical distance in the view of a malicious receiver. That is,
we compute wi,1−bi via

wi,1−bi ← Dec(tdi, h)⊕ ⟨t̂i, r̂⟩ ⊕ fi,1−bi ⊕mi,1−bi .

Now, as r̂ is independent of h, we can rely on the pseudorandomness of LPN to replace the ⟨t̂i, r̂⟩ ⊕ fi,1−bi

with uniformly random and independent ui ←$ {0, 1}. That is, we compute wi,1−bi via

wi,1−bi ← Dec(tdi, h)⊕ ui ⊕mi,1−bi .

But this means that wi,1−bi itself is independently uniformly random in {0, 1}, i.e. we can equivalently just
choose wi,1−bi ←$ {0, 1}. We can conclude that in this final hybrid the sender’s message is independent of the
mi,1−bi , and we have thus established security against malicious receivers (given that we have a mechanism
to extract the tdi and bi).

We will now briefly consider the communication complexity of our current protocol. The modification
discussed in this paragraph (omitting the issue of errors) does not affect the download communication
complexity, the sender still sends (amortized) 2 bits per OT. However, the upload communication complexity
is now just O(n ·m) group elements, where n = poly(λ) is a fixed polynomial, independent of m.

2.4 Key-Homomorphic Trapdoor Hash Functions

We will now discuss an additional mechanism which lets us further compress the upload communication
complexity. The starting observation here is that each hinting key eki only “encrypts” a single bit bi, but
consists of n group elements. To address this issue, we will pursue a hybrid encryption approach similar
to [BBDP22], i.e. we will encrypt the bits bi under a symmetric key encryption scheme with optimal
rate along with TDH hinting keys which encrypt the corresponding secret key, and then let the sender
homomorphically expand these ciphertexts into the actual hinting keys eki.

Consequently, to implement this approach we need to add homomorphic capabilities to our underlying
trapdoor hash functions for linear functions. We call this primitive key-homomorphic trapdoor hash functions.
Recall that our trapdoor hash functions allow for hints which let the receiver learn linear functions f(r) =
⟨t, r⟩ of then sender’s input r, i.e. it holds that

Enc(ek, r) = Dec(td,H(hk, r))⊕ ⟨t, r⟩,

where (ek, td)← KeyGen(hk, t).
In a key-homomorphic trapdoor hash function, we require keys to support homomorphic operations, that

is, given ek1 and ek2 with (ek1, td1) ← KeyGen(hk, t1) and (ek2, td2) ← KeyGen(hk, t2), one can efficiently
derive a key ek∗ corresponding to t1 ⊕ t2, given only hk, ek1 and ek2, and likewise a trapdoor td∗ from hk,
td1 and td2 such that

Enc(ek∗, r) = Dec(td∗,H(hk, r))⊕ ⟨t1 ⊕ t2, r⟩.
More formally, we require a key-homomorphic evaluation algorithm Eval along with a corresponding decryp-
tion algorithm Dec′ such that the following holds. Eval takes as input a vector d = (d1, . . . , dk) ∈ Fk

2 and
hinting keys ek1, . . . , ekk and outputs a hinting key ek∗, while Dec′ also takes the vector d and trapdoors
td1, . . . , tdk as well as a hash value h and outputs a trapdoor td∗, such that it holds that

Enc(Eval(d, ek1, . . . , ekk), r) = Dec′(d, td1, . . . , tdk, h)⊕

〈
k∑

i=1

diti, r

〉
.

Turning to the construction of key-homomorphic TDH, we observe that the construction of TDH from
QR [DGI+19] we discussed above readily supports key homomorphism. Specifically, given two hinting keys
ek1 = (h1,i = gr1i · (−1)t1,i)i∈[n] and ek2 = (h2,i = gr2i · (−1)t2,i)i∈[n], it holds that

h1,i · h2,i = gr1i (−1)t1,i · gr2i (−1)t2,i = gr1+r2
i · (−1)t1,i+t2,i ,

i.e. ek∗ = (h1,i · h2,i)i∈[n] is a hinting key for t1 ⊕ t2, and the corresponding trapdoor is td∗ = r1 + r2.

8

2.5 Compressing the Receiver’s Message via LPN and Key-Homomorphic TDH

We will use the LPN assumption once more, this time in conjunction with the key-homomorphism property
of the trapdoor hash function to implement a hybrid encryption approach which enables the receiver to
transmit the encoding keys corresponding to his choice bits in a compressed form, which can then be locally
expanded by the sender. In essence, this approach is an adaptation of the LPN-based compression mecha-
nisms of [BBDP22]. Specifically, we can think of the hinting keys of a key-homomorphic TDH as ciphertexts
of a homomorphic encryption scheme encrypting a vector t. Following the blueprint of [BBDP22], we let the
receiver provide TDH hinting keys which encode an LPN secret, and additionally provide LPN ciphertexts
of the actual choice bits along with. Given this information, the sender will then be able to homomorphically
derive hinting keys that encode the actual choice bits.

For simplicity, we start be considering a single t. Assume the common reference string contains uniformly
random vectors d1, . . . ,dℓ ∈ Fn

2 . The receiver will choose an LPN secret s←$ Fn
2 and compute hinting keys

ek0, ek1, . . . , ekn, where ek0 encodes t and eki encodes si · t for 0 < i ≤ n. The receiver further encrypts his
choice bits b1, . . . , bℓ to

ci ← ⟨s,di⟩+ ei + bi

for i = 1, . . . , k. Here the ei ∈ {0, 1} are chosen from a Bernoulli distribution with slightly sub-constant
parameter ϵ, that is each ei is independently 1 with probability ϵ and otherwise 0.

The receiver now sends sends the hinting keys ek0, ek1, . . . , ekn and the ciphertexts c1, . . . , cℓ to the sender.
Sender can compute expanded encoding keys via

ek′j = Eval((cj ,dj), ek0, ek1, . . . , ekn)

for j = 1, . . . , ℓ. By the homomorphic correctness of the TDH, ek′j is a hinting key for the vector

cj · t+
n∑

i=1

dj,isit = (cj + ⟨s,d⟩) · t

= (⟨s,dj⟩+ ej + bj + s,d⟩) · t
= (bj + ej) · t.

Consequently, if ej = 0, which holds except with sub-constant probability ϵ, the sender obtains the correct
hinting key for bj · t. The sender now proceeds analogous to the previous protocol. He chooses uniform
vectors r1, . . . , rℓ and computes hash values hj ← H(hk, rj) for j = 1, . . . , ℓ. Furthermore, he computes

wj,0 ← Enc(ek′j , rj)⊕ fj,0 ⊕mj,0

wj,1 ← Enc(ek′j , rj)⊕ ⟨t, rj⟩ ⊕ fj,1 ⊕mj,1,

for j = 1, . . . , ℓ. He then sends the h1, . . . , hℓ and (wj,0, wj,1)j∈[ℓ] to the receiver.
Using the trapdoors td0, td1, . . . , tdn corresponding to ek0, ek1, . . . , ekn the receiver then computes

m′
j,bj ← Dec′((cj ,dj), td0, . . . , tdn, hj)⊕ wj,bj

for j = 1, . . . , ℓ. This concludes the outline of the protocol.
We will first look at correctness of this protocol. By the homomorphic correctness of TDH it holds that

m′
j,bj =Dec′((cj ,dj), td0, . . . , tdn, hj)⊕ wj,bj

=Dec′((cj ,dj), td0, . . . , tdn,H(hk, rj))

⊕ Enc(Eval((cj ,dj), ek0, ek1, . . . , ekn), rj)⊕ bj · ⟨t, rj⟩ ⊕ fj,bj ⊕mj,bj

= (bj ⊕ ej) · ⟨t, rj⟩ ⊕ bj · ⟨t, rj⟩ ⊕ fj,bj ⊕mj,bj

= ej · ⟨t, rj⟩ ⊕ fj,bj ⊕mj,bj .

9

Consequently, if both ej and fj,bj are 0, which happens except with (small) probability ≤ δ+ ϵ, the receiver
obtains the correct output mj,bj .

For simplicity, we only considered a single vector t in this sketch; this is insufficient to get optimal
download communication as the sizes of the hash values hj are not amortized. Hence, in the full protocol
we need to use all the vectors t1, . . . , tm.

The Full Protocol For the full protocol, it will be convenient to arrange both the receiver’s choice bits
and the sender’s messages in a matrix form. That is, the receiver’s choice bits are bi,j and the sender’s
messages are (mi,j,0,mi,j,1) for i ∈ [m] and j ∈ [ℓ]. I.e., we will get m · ℓ batch OTs.

The full protocol is summarized as follows.

• The common reference string contains the hashing key hk, random vectors t1, . . . , tm ∈ Fn
2 as in

Section 2.3, and uniformly random di,j ∈ Fn
2 for i ∈ [m] and j ∈ [ℓ].

• The receiver generates hinting keys eki,k encoding sk · ti for i ∈ [m] and k ∈ [n] together with a
corresponding trapdoor tdi,k. The receiver further encrypts each bi,j to

ci,j ← ⟨s,di,j⟩+ ei,j + bi,j .

The receiver sends the eki,k and the ci,j to the sender.

• The sender homomorphically derives hinting keys ek′i,j corresponding to (bi,j ⊕ ei,j) · ti from the eki,k,
di,j and the ci,j as described above. The sender now chooses r1, . . . , rℓ ←$ {0, 1}n uniformly at random
and computes hj ← Hash(hk, rj). He further computes

wi,j,0 ← Enc(ek′i,j , rj)⊕ fi,j,0 ⊕mi,j,0

wi,j,1 ← Enc(ek′i,j , rj)⊕ ⟨ti, rj⟩ ⊕ fi,j,1 ⊕mi,j,1,

for i ∈ [m] and j ∈ [ℓ].

• The receiver recovers the m′
i,j,bi,j

via

m′
i,j,bi,j ← Dec′(Eval((ci,j ,di,j), tdi,0, . . . , tdi,n), hj)⊕ wi,j,bi,j .

The correctness analysis is identical to the one provided in the last paragraph, i.e. it holds that m′
i,j,bi,j

=
mi,j,bi,j , except with probability δ + ϵ over the choice of the ej and fi,j .

In terms of security, note the following. Once we extract the rj and the locations of the errors fi,j ,
we can simulate the output of the receiver without knowledge of the LPN secret s or the choice-bits bi,j .
Consequently, we can use the LPN assumption to replace the ci,j with uniformly random values.

In terms of security against a malicious receiver, we now have to extract the trapdoors tdi,k and the
LPN secret s, as well as the locations of the errors ei,j . Once these are known, we can simulate the
sender’s messages without knowledge of the secrets r1, . . . , rℓ, but only the corresponding LPN samples
⟨ti, rj⟩⊕ fi,j,1−bi,j as well as the hash-values h1, . . . , hℓ. The rest of the argument proceeds analogous to the
argument given in Section 2.3.

Communication Complexity We will now take at look at the communication complexity of this protocol.

• The receiver’s message consists of m ·n hinting keys eki,j (each consisting of O(n) group elements) and
m · ℓ bits ci,j . Hence the upload rate of this protocol is

ρup =
m · n2poly(λ) +m · ℓ

m · ℓ
= 1 +

n2poly(λ)

ℓ
= 1 +

poly(λ)

ℓ
,

as we can choose the LPN dimension n as a fixed polynomial in the security parameter.

10

• The sender’s message consists of ℓ hash values hj (each consisting of O(1) group elements) and 2 ·m · ℓ
bits wi,j,0 and wi,j,1. Hence the download rate becomes

ρdown =
ℓ · poly(λ) + 2m · ℓ

m · ℓ
= 2 +

poly(λ)

m
.

Consequently, by choosing ℓ,m = poly(λ) as sufficiently large polynomials, we will obtain asymptotically
optimal rate.

2.6 Correcting Errors and achieving Malicious Security

We will now briefly discuss which additional mechanisms need to be deployed in order to make this protocol
both correct and maliciously secure. Taking the analysis of the communication complexity in the last Section
as a guideline, we can afford to “spend” additionalm·poly(λ) bits of communication in the receiver’s message,
and ℓ · poly(λ) bits on top of the sender’s message.

The additional mechanism will ensure the following properties:

1. For every error location (i, j) for which ei,j = 1 we need to “flip” the receiver’s output.

2. For every error location (i, j, bi,j) (where bi,j is the receiver’s choice bit at i, j) where fi,j,bi,j = 1, we
need to signal to the receiver that an error occurred at this location so that the corresponding output
can be corrected.

3. For every “column” j ∈ [ℓ] we need to make the rj corresponding to the hj = H(hk, rj) extractable.
Furthermore, we need to make the LPN secret s and the support of the error vector ej = (e1,j , . . . , em,j)
extractable. Since ei has Hamming weight at most 2ϵm, we can describe it via a succinct list of indices of
length 2ϵm. Furthermore, we need to make the the support of the error vectors fj,0 = (f1,j,0, . . . , fm,j,0)
and fj,1 = (f1,j,1, . . . , fm,j,1) extractable. Since each of this vectors has Hamming weight at most 2δm,
we can describe each of them via a list of length 2δm.

4. For every “row” i ∈ [m] and for k ∈ {0, . . . , n} we need to make the trapdoors tdi,k corresponding to
the hinting keys eki,k extractable and ensure that the eki,k were generated correctly with respect to
the LPNs secret s, and the vectors ti which are taken from the common reference string.

Property 4 can be achieved succinctly via a computationally secure rate-1 conditional disclosure of secrets
(CDS) scheme, which can routinely implemented from general purpose non-interactive secure computation
(NISC) protocol (with malicious UC-security) and pseudorandom functions. This protocol can be run “piggy-
back” style with the main protocol, so it does not increase the round complexity.

We will thus focus on properties 1,2 and 3. We will address these issues simultaneously using also a
general purpose NISC protocol with malicious UC-security. The key insight is that both our corrections and
checks do not need to be performed “globally”, but merely “column”-wise. Hence the NISC for each column
can be succinct. Similarly important, these 2-message NISC protocols can also be piggy-backed with the
main protocol, so they will neither increase the round complexity.

We will need an additional mechanism which lets us correct the LPN errors ei,j on the receiver’s choice-
bits. A mechanism achieving this was recently proposed in [BBDP22]. For every column j the sender chooses
a fresh key Kj for a puncturable pseudorandom function [BW13, KPTZ13, BGI14] which is puncturable in
2ϵm positions. We need to modify the protocol such that the wi,j,0 and wi,j,1 are computed via

wi,j,0 ← Enc(ek′i,j , rj)⊕ fi,j,0 ⊕mi,j,0 ⊕ PRFKj
(i)

wi,j,1 ← Enc(ek′i,j , rj)⊕ ⟨ti, rj⟩ ⊕ fi,j,1 ⊕mi,j,1 ⊕ PRFKj (i).

Furthermore, we will need to make the vectors t1, . . . , tm, which are part of the CRS, available to the
NISC computation. However, since we need to NISC protocol to have sublinear communication complexity
in m, we cannot make the ti explicit inputs to the NISC. However, each NISCj will only need to access a

11

few of the ti. Hence, we will bind to the ti via a vector commitment with succinct opening [CF13], and
instead of providing all the ti to NISCj , we will let the receiver only input a small number of the ti (needed
to correct the receiver’s errors) together with a succinct opening of the vector commitment. In the same
manner, we will use vector commitments with succinct opening to bind to the vectors di,j given in the CRS
and to the ciphertexts ci,j .

We will now describe the NISC functionality NISCj for column j.
The functionality for column j takes as input from the receiver the LPN secret s, the error vector ej

(represented by a succinct list of length at most 2ϵm). Furthermore, for every index i in the support of ej
the receiver inputs ti together with a succinct opening of the corresponding vector commitment.

The sender provides as input rj , and the error vectors fj,0 and fj,1 (each represented by a succinct list
of length 2δm), as well as the key Kj . For every index i in the support of either fj,0 or fj,1, the sender also
inputs ci,j (together with a succinct opening of the corresponding vector commitment) and di,j (also with
an opening of the corresponding vector commitment).

The functionality performs the following computations. It punctures Kj at the support of ej yielding a
key K⊙

j , computes offsets γi,j = PRFKj
(i)⊕ ⟨ti, rj⟩ for i in the support of ej , as well as hj = H(hk, rj). For

every index i in the support of either fj,0 or fj,1, the functionality decrypts ci,j via bi,j ← ⟨s,di,j⟩⊕ei,j⊕ci,j .
If i is in the support of fj,bi,j , it sets βi,j = 1 and otherwise βi,j = 0. Note that the (βi,j)i∈[m] can be
described by a succinct list of length at most 4δm.

The functionality then outputs K⊙
j , (γi,j)i∈[m], hj as well as (βi,j)i∈[m] to the receiver.

Now the receiver proceeds as follows. For every i not in the support of ej , he uses the punctured key
K⊙

j to remove the mask PRFKj
(i) from wi,j,bi,j and use βi,j to correct a potential error. Specifically, he

computes

m′
i,j,bi,j ← Dec′(Eval((ci,j ,di,j), tdi,0, . . . , tdi,n), hj)⊕ wi,j,bi,j ⊕ PRFK⊙

j
(i)⊕ βi,j .

For every i in the support of ej , the receiver can correct wi,j,bi,j via γi,j , i.e. he computes

m′
i,j,bi,j ← Dec′(Eval((ci,j ,di,j), tdi,0, . . . , tdi,n), hj)⊕ wi,j,bi,j ⊕ γi,j ⊕ βi,j .

We will first discuss correctness of the modified scheme. First note that by construction it holds that
βi,j = fi,j,bi,j . Hence, for i not in the support of ej it holds that

m′
i,j,bi,j = Dec′(Eval((ci,j ,di,j), tdi,0, . . . , tdi,n), hj)⊕ wi,j,bi,j ⊕ PRFK⊙

j
(i)⊕ βi,j

= mi,j,bi,j ⊕ fi,j,bi,j ⊕ βi,j

= mi,j,bi,j

as desired. Here, the first equality follows from

wi,j,bi,j = Enc(ek′i,j , rj)⊕ bi,j⟨ti, rj⟩ ⊕ fi,j,bi,j ⊕mi,j,bi,j ⊕ PRFKj
(i).

For i in the support of ej , it holds that

m′
i,j,bi,j = Dec′(Eval((ci,j ,di,j), tdi,0, . . . , tdi,n), hj)⊕ wi,j,bi,j ⊕ γi,j ⊕ βi,j

= ei,j⟨ti, rj⟩ ⊕ fi,j,bi,j ⊕mi,j,bi,j ⊕ PRFKj (i)⊕ γi,j ⊕ βi,j

= ⟨ti, rj⟩ ⊕ ⊕mi,j,bi,j ⊕ PRFKj (i)⊕ γi,j

= ⟨ti, rj⟩ ⊕ ⊕mi,j,bi,j ⟨ti, rj⟩
= mi,j,bi,j ,

where the second equality follows from βi,j = fi,j,bi,j , the third equality from ei,j = 1 for i in the support of
ej , and the fourth equality from the definition of γi,j . Hence the modified scheme is correct.

The security proof proceeds along similar lines as in [BBDP22], in that we can replace the PRF out-
puts PRFKj

(i) at punctured points i by uniformly random values to make the programming via the γi,j
undetectable.

12

Concerning the additional communication overhead induced by these modifications, note the following.
For every j ∈ [ℓ], NISCj takes inputs of size sub-linear in m and only performs a few local computations.
Hence, using a NISC protocol such as [IKO+11] (which can be instantiated using any 2-message OT protocol),
we obtain for each NISCj a communication overhead sub-linear inm, hence by choosingm and ℓ as sufficiently
large polynomials, we achieve amortized upload complexity approaching 1 bit, and amortized download
complexity approaching 2 bits.

This concludes the outline.

2.7 Discussion

A natural question arising considering the results of our work is whether trapdoor hash function TDH
in our protocol can be instantiated from assumptions other than QR, e.g. via the DDH-based trapdoor
hash function given in [DGI+19]. A point of notice is that our construction makes critical use of perfect
correctness properties of the underlying TDH, as it allows us to simulate the views of malicious parties. The
DDH-based construction in [DGI+19] has a correctness error, and mitigating this correctness error requires
the “assistance” of the evaluator. This is highly problematic for the case of malicious evaluators, since we
cannot rely on tools such as NIZK proofs to enforce honest behaviour by the evaluator as this would ruin
the rate of the TDH. Consequently, trying to instantiate this blueprint with TDH that have an additional
correctness error is beyond the scope of this work.

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this work, λ denotes the security
parameter. By negl(λ), we denote a negligible function in λ, that is, a function that vanishes faster than any
inverse polynomial in λ.

Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we denote by y ← A(x) the
output y after running A on input x. If S is a (finite) set, we denote by x←$ S the experiment of sampling
uniformly at random an element x from S. If D is a distribution over S, we denote by x←$ D the element
x sampled from S according to D.

For two probability distributions X,Y , we use the notation X ≈s Y to state that the distributions are
statistically indistinguishable.

We denote by Supp(u) the support of u, that is, the set of indices where u is different from 0.4 For
S ⊆ [n], uS denotes the vector (ui)i∈S . Finally, u

T denotes the transpose of u.

3.1 Hardness Assumptions

The hardness assumptions used in this work are the learning parity with errors (LPN) and the quadratic
residuosity (QR) assumptions.

3.1.1 Learning Parity with Noise

Informally, the LPN assumption states that it is hard to find a solution for a noisy system of linear equations
over Z2. We now give the precise definition of the assumption.

Definition 1 (LPN assumption). Let n,m, t ∈ N such that n ∈ poly(λ) and let χm,t be uniform distribution
over the set of error vectors of size m and hamming weight t. The Learning Parity with Noise (LPN)

4If there is only one index different from zero, Supp(u) denotes this index.

13

assumption LPN(n,m, t) holds if for any PPT adversary A we have that∣∣∣∣∣∣∣∣∣∣
Pr

1← A(A, sA+ e) :
A←$ {0, 1}n×m

s←$ {0, 1}n
e←$ χm,t

−
Pr

[
1← A(A,y) :

A←$ {0, 1}n×m

y←$ {0, 1}m
]

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where ρ = m/t (ρ is called the noise rate).

In this work, we assume that the noise rate ρ is m1−ε, where m = poly(n), for any constant ε > 0. The
LPN assumption is believed to be hard for that noise rate (see e.g. [BCG+19a] and references therein).

3.1.2 Quadratic Residuosity Assumption

In the following, let N is a Blum integer if N = p · q for some primes p and q such that p (mod 4) =
q (mod 4) = 3. Moreover, we say p and q are safe primes if p = 2p′ + 1 and q = 2q′ + 1 for some prime
numbers p′, q′. We denote by JN the multiplicative group of the elements in Z∗

N with Jacobi symbol +1 and
by QRN the multiplicative group of quadratic residues modulo N with generator g. Note that QRN is a

subgroup of JN and they have order φ(N)
4 and φ(N)

2 , respectively, where φ(·) is Euler’s totient function. It
is useful to write JN ≃ H × QRN , where H is the multiplicative group (±1, ·) of order 2. Note that if N

is a Blum integer then gcd
(
2, φ(N)

4

)
= 1 and −1 ∈ JN \ QRN . We recall the quadratic residuosity (QR)

assumption [BG10].

Definition 2 (Quadratic Residuosity Assumption). Let N be a uniformly sampled Blum integer and let QRN

be the multiplicative group of quadratic residues modulo N with generator g. We say the QR assumption
holds with respect to QRN if for any PPT adversary A

|Pr[1← A(N, g, a)]− Pr[1← A(N, g, (−1) · a)]| ≤ negl(λ)

where a←$ QRN .

3.2 Cryptographic Primitives

Here we define the relevant cryptographic primitives that we use in this work.

3.2.1 PRGs and Puncturable PRFs

We recall the definition of pseudorandom generators.

Definition 3 (Pseudorandom Generators). Let α = α(λ) and β = β(λ) be two polynomials. A pseudorandom
generator PRG : {0, 1}α → {0, 1}β is a function such that for all PPT adversaries A we have that∣∣∣∣Pr [1← A(ν) : s←$ {0, 1}α

ν ← PRG(s)

]
− Pr

[
1← A(ν) : ν ←$ {0, 1}β

]∣∣∣∣ ≤ negl(λ).

A pseudorandom function (PRF) is a pair of functions KeyGen,Eval where Eval : K × {0, 1}α → {0, 1}β
(for some α, β = poly(λ)) is computed by a deterministic polynomial time algorithm: On input (K,x) ∈
K×{0, 1}α the algorithm outputs Eval(K,x) = y ∈ {0, 1}β . In terms of security, the value y is pseudorandom.
This is captured by a game where a PPT adversary gets either oracle access to Eval(K,x) or to a random
function.

Puncturable pseudorandom functions (PPRFs) [BW13, KPTZ13, BGI14] are a special case of PRFs
where a punctured key allows one to evaluate the PRF at all points except one.

14

Definition 4 (Puncturable PRF). Let α = α(λ) and β = β(λ) be two polynomials. A puncturable PRF
(PPRF) scheme PPRFα,β = PPRF is composed by the following algorithms:

• KeyGen(1λ) takes as input a security parameter λ. It outputs a key K.

• Eval(K,x) takes as input a key K and x ∈ {0, 1}α. It outputs y ∈ {0, 1}β.

• Punct(K, S) takes as input a key K and a subset S ⊆ {0, 1}α. It outputs a punctured key KS.

• EvalPunct(KS ,x) takes as input a punctured key KS and x ∈ {0, 1}α. It outputs y ∈ {0, 1}β.

Definition 5 (Correctness). A PPRF scheme PPRF is said to be correct if for all λ ∈ N, for all S ⊆ ({0, 1}α)t
(for t = poly(λ)), all x /∈ S we have that

Pr

[
Eval(K,x) = EvalPunct(KS ,x) :

K← KeyGen(1λ)
KS ← Punct(K, S)

]
= 1.

We define T ← Eval(K, S) to be the set of points y← Eval(K,x) where x ∈ S.

Definition 6 (Pseudorandomness). A PPRF scheme PPRF is said to be pseudorandom at punctured points
if for all λ ∈ N, all PPT adversaries A = (A1,A2) we have that∣∣∣∣∣∣∣∣

Pr

[
1← A2(KS , S, T, aux) :

(S, aux)← A1(1
λ); K← KeyGen(1λ)

KS ← Punct(K, S); T ← Eval(K, S)

]
−

Pr

[
1← A2(KS , S, T, aux) :

(S, aux)← A1(1
λ); K← KeyGen(1λ)

KS ← Punct(K, S); T ←$ {0, 1}β|S|

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

PPRFs can be built solely based on any length-doubly pseudorandom generators (PRG)5 via (a variant
of) the tree-based construction of [GGM86].

3.2.2 Functional Laconic Oblivious Transfer

In this section, we present a variant of laconic oblivious transfer [CDG+17], which we call functional laconic
oblivious tranfer (FLOT). Here, the receiver hashes a database D composed of several blocks (D1, . . . ,Dν).
The sender can compute a ciphertext with respect to a position i ∈ [ν] encrypting a value y which allows
the receiver to obtain F (Di, y).

Definition 7. Let F be any polynomial-time function. A functional laconic oblivious transfer (FLOT)
scheme FLOT for a function F : {0, 1}L × {0, 1}ℓ → {0, 1} is composed by the following algorithms:

• Setup(1λ) takes as input a security parameter λ. It outputs a common reference string crs.

• H(crs,D ∈ {0, 1}ν·L) takes as input a common reference string crs a database D = (D1, . . . ,Dν) where
each block Di ∈ {0, 1}L. It outputs a hash value h.

• Enc(crs, h, i ∈ [ν],y ∈ {0, 1}ℓ) takes as input a common reference string crs, a hash value h, a position
i ∈ [ν] and a vector y ∈ {0, 1}ℓ. It outputs a ciphertext lotct.

• Dec(crs,D, lotct, i) takes as input a common reference string crs, a database D, a ciphertext lotct and
a position i. It outputs a value z ∈ {0, 1}.

Definition 8 (Correctness). A FLOT is said to be correct if for all D ∈ {0, 1}ν·L, i ∈ [ν], y ∈ {0, 1}ℓ λ ∈ N
we have that

Pr

z = F (Di,y) :

crs← Setup(1λ)
h← H(crs,D)

lotct← Enc(crs, h, i,y)
z ← Dec(crs,D, lotct, i)

 = 1.

5Which in turn, can be based on LWE, DDH or QR assumptions.

15

Definition 9 (Sender security). A FLOT is said to be sender secure if for all PPT advrsaries A there exists
a simulator Sim such that for all databases D ∈ {0, 1}ν·L, any position i ∈ [ν], any vector y ∈ {0, 1}ℓ we
have that ∣∣∣∣∣∣∣∣∣∣∣∣

Pr

1← A(crs, lotct) : crs← Setup(1λ)
h← H(crs,D)

lotct← Enc(crs, h, i,y)

−
Pr

1← A(crs, lotct) : crs← Setup(1λ)
h← H(crs,D)

lotct← Sim(crs, h, i, F (Di,y))



∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2
+ negl(λ)

Definition 10 (Compactness). A FLOT is said to be compact if |crs| = |h| = poly(λ), and if the running
time of Enc is bounded by poly(F, |y|, |Di|, λ).

Instantiation. In Appendix A, we show how to build this flavor of laconic oblivious transfer from the
quadratic residuosity assumption.

3.2.3 Vector Commitments with Local Openings

Vector commitments [CF13] are commitment schemes that have the following properties: the commitment
is short, when compared to the message, and we can locally open just a position of the committed message
with small communication. They can be instantiated using Merkle trees.

Definition 11 (Vector commitment). A vector commitment VC is composed by the following algorithms:

• Setup(1λ) takes as input a security parameter λ. It outputs a common reference string crs.

• Com(crs,D ∈ {0, 1}ν) takes as input a common reference string crs a database D = (d1, . . . , dν). It
outputs a commitment com and a state st.

• Open(crs, com, st, i) takes as input a common reference string crs, a commitment com, a state st and a
position i ∈ [ν]. It outputs an opening δ.

• Verify(crs, com, di, i, δ) takes as input a common reference string crs, a commitment com, a bit di ∈
{0, 1}, a position i ∈ [ν] and an opening δ. It outputs a value z ∈ {0, 1}.

A VC is compact if |crs| = |com| = |δ| = poly(λ). In particular, they do not depend on the size of
D ∈ {0, 1}ν .

Definition 12 (Correctness). A VC is said to. be correct if for all databases D = (d1, . . . , dν) ∈ {0, 1}ν and
all indices i ∈ [ν] we have that

Pr

1← Verify(crs, com, di, i, δ) :
crs← Setup(1λ)

(com, st)← Com(crs,D ∈ {0, 1}ν)
δ ← Open(crs, com, st, i)

 = 1.

Definition 13 (Position binding). A VC is said to be position binding if for all i ∈ [ν] and PPT all
adversaries A we have that

Pr

[
1← Verify(crs, com,m, i, δ)∧

1← Verify(crs, com,m′, i, δ′) ∧m ̸= m′
crs← Setup(1λ)

(com,m,m′, i, δ, δ′)← A(crs)

]
≤ negl(λ).

Instantiation. Vector commitments can be instantiated using Merkle trees. Hence, we can instantiate the
VC from the QR assumption using a appropriate collision-resistant hash function from the QR assumption
[BG10].

16

3.3 UC-Security and Ideal Functionalities

For malicious security, we work in the standard UC-framework [Can01] that allows us to prove security of
protocols under arbitrary composition with other protocols. Let F be a functionality, π a protocol that
implements F and E be a environment, an entity that oversees the execution of the protocol in both the
real and the ideal worlds. Let IDEALF,Sim,E be a random variable that represents the output of E after the

execution of F with adversary Sim. Similarly, let REALGπ,A,E be a random variable that represents the output
of E after the execution of π with adversary A and with access to the functionality G.

Definition 14. A protocol π UC-realizes F in the G-hybrid model if for every PPT adversary A there is
a PPT simulator Sim such that for all PPT environments E, the distributions IDEALF,Sim,E and REALGπ,A,E
are computationally indistinguishable.

3.3.1 NISC Functionality

Let C : X × Y → Z be a circuit. We define the ideal functionality the NISC functionality that allows two
parties to jointly compute C(x, y).

NISC functionality FC for C. This implements the following functionality.

• Receiver’s input: x ∈ X .

• Sender’s input: y ∈ Y.

• Receiver’s output: C(x, y).

Given a circuit C the functionality can be implemented in two rounds using a non-interactive secure
computation scheme (NISC).

Lemma 1 ([IKO+11]). Given a circuit C, the functionality FC can be implemented in two-rounds by a NISC
scheme. Additionally, a NISC scheme can be implemented using only a two-round OT (such as the one from
[PVW08]). The total communication of the protocol is |C| · poly(λ).

3.3.2 OT Functionality

We define the OT ideal functionality as in [PVW08].

OT functionality. A (batch) OT scheme should implement the following functionality.

• Receiver’s input: A string of bits b = (b1, . . . , bk) ∈ {0, 1}k.

• Sender’s input: Pairs of messages (m0,m1) ∈ ({0, 1}k)2, where m0 = (m0,1, . . . ,m0,k) and m1 =
(m1,1, . . . ,m1,k)

• Receiver’s output: The string mb = (mb1,1, . . . ,mbk,k).

4 Key-Homomorphic Trapdoor Hash Function

We start by defining key-homomorphic trapdoor hash (KH-TDH). This primitive is similar to the one
presented in [DGI+19] except that it allows for homomorphic operations over evaluation keys. Here, we
define homomorphism just for linear functions which is enough for our application.

Definition 15 (Key-homomorphic trapdoor hash function). Let n ∈ N. A key-homomorphic trapdoor hash
function (KH-TDH) is a tuple of algorithms (Setup,KeyGen,Eval,H,Enc,Dec)

• Setup(1λ, L) takes as input a security parameter and an integer L ∈ N. It outputs a hash key hk.

17

• KeyGen(hk, z, t) takes as input a hash key hk and two vectors z ∈ {0, 1}n and t ∈ {0, 1}L. It outputs a
evaluation key ek and a trapdoor td.

• Eval(ek, (d, c), t) takes as input an evaluation key ek, a linear function (d, c) ∈ {0, 1}n × {0, 1} and a
vector t ∈ {0, 1}L. It outputs a new evaluation key ek′.

• H(hk, r) takes as input a hash key hk and a vector r ∈ {0, 1}L. It outputs a hash value h.

• Enc(ek′, r) takes as input an evaluation key ek′ and a vector r ∈ {0, 1}L. It outputs an encoding
a ∈ {0, 1}.

• Dec(td, (d, c), h) takes as input a trapdoor td, a linear function (d, c) ∈ {0, 1}n × {0, 1} and a hash
value h. It outputs an encoding a′ ∈ {0, 1}.

Correctness. For all integers n,L ∈ N, all vectors z ∈ {0, 1}n, t ∈ {0, 1}L, r ∈ {0, 1}L and all linear
functions (d, c) ∈ {0, 1}n × {0, 1} we have that

Pr

a+ a′ = (z · dT + c) · (t · rT) :

hk← Setup(1λ, L)
(ek, td)← KeyGen(hk, z, t)
ek′ ← Eval(ek, (d, c), t)

h← H(hk, r)
a← Enc(ek′, r)

a′ ← Dec(td, (d, c), h)

 = 1

Receiver privacy. For all λ ∈ N, all n,L ∈ N, all vectors z0, z1 ∈ {0, 1}n and t ∈ {0, 1}L and all PPT
adversaries A, we have that

Pr

b← A(hk, ek) : hk← Setup(1λ, L)
b←$ {0, 1}

(ek, td)← KeyGen(hk, zb, t)

 ≤ 1

2
+ negl(λ).

Sender security. For all λ ∈ N, all n,L ∈ N such that L = ω(λ), all vectors r ←$ {0, 1}L and all PPT
adversaries A, we have that

Pr

b← A(hk, h) :
hk← Setup(1λ, n, L)

b←$ {0, 1}
h← H(hk, r) if b = 0
h← {0, 1}λ if b = 1

 ≤ 1

2
+ negl(λ).

4.1 Construction from QR

We recall the shrinking mechanism of [DGI+19] (formalized in [BBD+20]). Let a (packed) ciphertext ct =
(gr, (−1)b1hr

1, . . . , (−1)bkhr
k) = (c1, c2,1, . . . , c2,k) and let < be an order over JN (e.g., the lexicographic order).

The shrinking mechanism of [DGI+19] simply outputs 0 if c2,i < −c2,i and outputs 1 otherwise. We will
denote this procedure by ShrinkQR : JN → {0, 1}. Note that this procedure is completely deterministic.

Lemma 2 (Linear homomorphism). For any x ∈ JN we have that ShrinkQR(x·(−1)) mod 2 = ShrinkQR(x)+1
mod 2

Proof. If x < −x then ShrinkQR(x) = 0 and ShrinkQR(x·(−1)) = 1. Then ShrinkQR(x·(−1)) = ShrinkQR(x)+1.
The other case follows using a similar reasoning.

In this section we present our key-homomorphic TDH from QR. The construction shares similarities with
the one from [DGI+19]. The main difference is that we show keys are linearly homomorphic.

Construction 1. Let L, n ∈ poly(λ). Let ShrinkQR be the algorithm described above.

18

Setup(1λ, L) :

• Generate two safe prime numbers P,Q and compute N = P ·Q. Sample g = (g1, . . . , gL)←$ QRL
N .

• Output hk = (N,g).

KeyGen(hk, z ∈ {0, 1}n, t ∈ {0, 1}L) :

• Parse hk as (N,g), z = (z1, . . . , zn) and t = (t1, . . . , tL).

• Sample s = (s1, . . . , sn)←$ [(N − 1)/2].

• For all i ∈ [n] and all j ∈ [L] compute yj,i = gsij (−1)zi·tj mod N .

• Output ek = {yj,i}i∈[n],j∈[L] and td = (s, t).

Eval(ek, (d ∈ {0, 1}n, c ∈ {0, 1}), t) :

• Parse ek as {yj,i}i∈[n],j∈[L], d = (d1, . . . , dn).

• For all j ∈ [L] compute wj =
∏n

i=1 y
di
j,i · (−1)c·t mod N .

• Output ek′ = {wj}j∈[L].

H(hk, r ∈ {0, 1}L) :

• Parse hk as (N,g) where g = (g1, . . . , gL).

• Output h =
∏L

j=1 g
rj
j mod N .

Enc(ek′, r ∈ {0, 1}L) :

• Parse ek′ as {wj}j∈[L].

• Output a = ShrinkQR(
∏L

j=1 w
rj
j mod N).

Dec(td, (d ∈ {0, 1}n, c ∈ {0, 1}), h) :

• Parse td as (s, t).

• Compute s′ = s · dT ∈ ZN .

• Output a′ = ShrinkQR(h
s′ mod N).

We now analyze correctness of the scheme.

Lemma 3. The scheme presented in Construction 1 is correct.

Proof. First note that

L∏
j=1

w
rj
j mod N =

L∏
j=1

(
n∏

i=1

ydi
j,i · (−1)

c·t

)rj

=

L∏
j=1

(
n∏

i=1

(
gsij (−1)zi·tj

)di · (−1)c·t
)rj

= (−1)(z·d
T+c)·(t·rT)

L∏
j=1

g
(s·dT)·rj
j .

19

On the other hand

hs′ mod N =

 L∏
j=1

g
rj
j

s·dT

mod N.

Hence by the linear homomorphic correctness of ShrinkQR (Lemma 2) we have that

a+ a′ mod 2 = ShrinkQR

 L∏
j=1

w
rj
j mod N

+ ShrinkQR(h
s′ mod N)

= (z · dT) · (t · rT) mod 2.

Lemma 4 (Receiver security). The scheme presented in Construction 1 is receiver secure assuming that the
QR assumption holds.

This is a direct consequence of the QR assumption.

Lemma 5 (Sender security). The scheme presented in Construction 1 is sender secure assuming that L =
Ω(poly(λ)).

Let q, L ∈ N such that L = Ω(λ). To prove this lemma, recall that the leftover hash lemma states that
for s←$ {0, 1}L and for b←$ ZL

q then

(b, s · bT) ≈s (b, u)

where U ←$ Zq.

Proof. Let g1, . . . , gL ←$ QRN , then there exists a b ∈ Zϕ(N)/4 such that gbi = gi. Then the leftover hash

lemma states that gu ≈s g
r·bT

for u←$ Zϕ(N)/4.

Batch KH-TDH. We also define a batch version of the algorithms described above. Let µ ∈ N. For a
set of vectors t1, . . . , tµ ∈ {0, 1}L we define ek = (ek1, . . . , ekµ) ← KeyGen(hk, z ∈ {0, 1}n, t1, . . . , tµ) where
eki ← KeyGen(hk, z ∈ {0, 1}n, ti) for all i ∈ [µ]. Additionally, we define ek′ = (ek′1, . . . , ek

′
µ)← Eval(ek, (D ∈

{0, 1}n×µ, c ∈ {0, 1}µ)) as ek′i ← Eval(ek, (di ∈ {0, 1}n, ci ∈ {0, 1})) where di is the i-th column of D. All
other algorithms are defined analogously.

Communication complexity. We now analyze the communication complexity of our construction. Let
n,L, µ ∈ N defined as above.

• hk = L · poly(λ).

• |td| = n · L · poly(λ) (in the batch version it has size µ · L · n · poly(λ)).

• |ek| = L · n · poly(λ) (in the batch version it has size µ · L · n · poly(λ)).

• |h| = poly(λ).

• |a| = |a′| = 1 (in the batch version they have size µ).

20

Local Decryption. We define an additional property for our KH-TDH called local decryption. A KH-
TDH is local decryptable if there exists an algorithm LocDec such that for all λ ∈ N we have that

Pr

z · dT + c← LocDec(td,d, ek′) :
hk← Setup(1λ, L)

(ek, td)← KeyGen(hk, z, t)
ek′ ← Eval(ek, (d, c))

 = 1.

In this batch version, given a batch of encoding keys ek′ = (ek′1, . . . , ek
′
µ) (obtained by evaluating D ∈

{0, 1}n×µ instead of a single vector d), the LocDec algorithm can decrypt only one of ek′i given the i-th
column of D.

It is easy to see that Construction 1 fulfills this definition. We explicitly present the LocDec algorithm.

LocDec(td,d, ek′) :

• Parse ek′ as {wj}j∈[L] and td as (s, t).

• Compute s′ = s · dT .

• For all j ∈ [L] compute aj = wj/g
s′

j mod N .

• For all i ∈ Supp(t), if ai = 1, output 0. Else if ai = −1, output 1.

Upon evaluation Eval(ek, (d, c)) we obtain the encoding key ek′ = (gr
′

1 ·(−1)(z·d
T+c)·t1 , . . . , gr

′

L ·(−1)(z·d
T+c)·tL)

where r′ = s · dT . Correctness of LocDec follows easily.
Moreover, note that, since |td| = n · L · poly(λ), the algorithm described above can be computed by a

circuit of size n · L · poly(λ).

5 Composable Oblivious Transfer with Optimal Rate

In this section we present our optimal-rate OT scheme that achieves UC-security against malicous adversaries
under the QR and LPN assumptions. Before we present our OT construction, we enumerate the necessary
ingredients as well as an auxiliary ideal functionality. Additionally, we show that this ideal functionality
can be implemented with sublinear communication (with respect to the total communication of the OT
protocol).

5.1 Ingredients.

For our construction we need the following ingredients

• Let L, n, µ, t1, t2 ∈ N such that ν =
√
µ.

• A key-homomorphic TDH scheme TDH = (Setup,KeyGen,Eval,H,Enc, LocDec,Dec).

• A puncturable PRF PRF = (KeyGen,Eval,Puncture,EvalPunct) such that PRF.Eval : ([ν] × [ν] ×
{0, 1})→ {0, 1}.

• A PRG PRG : {0, 1}λ → {0, 1}2·µ.

• A functional LOT = (Setup,H,Enc,Dec) for the function Fri,K,b(tj) = F (tj , (ri, i,K, b)) = PRF.Eval(K, (i, j, b))+
(ri · tTj) mod 2.

• A vector commitment VC = (Com,Open,Verify) with local openings.

21

Auxiliary ideal functionality. We present an auxiliary ideal functionality that we will use in our OT
protocol. This functionality implements four procedures: i) It checks if the receiver’s TDH message is well-
formed. ii) It checks if the sender’s TDH hash is well-formed. iii) It corrects the receiver’s LPN errors. And
iv) it corrects the sender’s LPN errors.

For technical reasons, we define an ideal functionality that implements these four procedures as it becomes
easier to guarantee consistency of inputs for different procecures. Additionally, it gives the simulator enough
power to extract the receiver’s and sender’s inputs that will allow for the simulation to go through in the
security proof.

Gaux ideal functionality. Consider the ideal functionality Gaux such that:

Receiver’s input. An LPN secret s ∈ {0, 1}n, random coins r ∈ {0, 1}λ, a set of indices S = Supp(e),
vectors t1, . . . , tν ∈ {0, 1}L, a hash key hk, a LOT hash hLOT and a VC commitments com and com′.

Sender’s input. An encoding key ek, a PRG seed seed, hash values h1, . . . , hν , vectors r1, . . . , rν ∈
{0, 1}L and t′1, . . . , t

′
ν ∈ {0, 1}L, a hash key hk′, two support sets T0 = Supp(f0), T1 = Supp(f1), vectors

{di,j}(i,j)∈T0∪T1
, uncompressed ciphertexts {γi,j}(i,j)∈T0∪T1

, openings {δi,j}i,j∈T0∪T1
and {ϕi,j}i,j∈T0∪T1

and
a LOT hash hLOT.

The functionality G implements the following functions:

FCons : This function checks consistency of inputs from the receiver and the sender.

• If hk ̸= hk′ or t1, . . . , tν ̸= t′1, . . . , t
′
ν or hLOT ̸= h′

LOT abort.

FCDS: This function checks if the receiver’s TDH messsage is well-formed.

• Take as input s ∈ {0, 1}n, r ∈ {0, 1}λ, t1, . . . , tν ∈ {0, 1}L from the receiver. Take as input ek and seed
from the sender.

• Parse ek = (ek1, . . . , ekν).

• If for all i ∈ [ν] eki ← TDH.KeyGen(hk, s, ti : r) return seed to the receiver.

• Else abort.

FDVNIZK : This function checks if the sender’s message is well-formed.

• Take as input h1, . . . , hν and r, . . . , rν from the sender.

• If for all i ∈ [ν] hi ← TDH.H(hk, ri) return h1, . . . , hν to the receiver. Else abort.

FRecErr : This function corrects the errors introduced by the receiver.

• Take as input a set of indices S = Supp(e) from the receiver. Take as input a PRF key K, a LOT hash
h′
LOT and vectors r1, . . . , rν from the sender.

• Compute K∗ ← PRF.Puncture(K, {(i, j, b) : (i, j) ∈ S, b ∈ {0, 1}}).

• For all (i, j) ∈ S compute lotct0,i,j ← LOT.Enc(crs, hLOT, j, (K, i, 0)) and lotct1,i,j ← LOT.Enc(crs, hLOT, j, (K, i, 1)).

• Output (hLOT,K
∗, {lotctb,i,j}β∈{0,1},(i,j)∈S to the receiver.

22

FSendErr : This function corrects the errors introduced by the sender.

• Take as input S = Supp(e), td, s ∈ {0, 1}n, com and com′ from the receiver. Take as input a support
set T = T0∪T1, vectors {di,j}(i,j)∈T , uncompressed ciphertexts {γi,j}(i,j)∈T , and openings {δi,j}(i,j)∈T

and {ϕi,j}(i,j)∈T from the sender.

• For all (i, j) ∈ T do the following:

– If 1 ̸= VC.Verify(crsVC, com, γi,j , (i, j), δi,j) or 1 ̸= VC.Verify(crsVC, com
′,di,j , (i, j), ϕi,j) abort the

protocol.

– Decrypt b′i,j ← TDH.LocDec(td,di,j , γi,j).

– If (i, j) ∈ Tb′i,j
and (i, j) /∈ S, add (i, j) ∈ T̄ .

– Else if (i, j) ∈ T1−b′i,j
and (i, j) ∈ S, add (i, j) ∈ T̄ .

• Output T̄ to the receiver.

Receiver’s output. A seed seed ∈ {0, 1}λ, hash values {hi}i∈[ν], a punctured key K∗, LOT ciphertexts
{lotctb,i,j}β∈{0,1},(i,j)∈S and a set T̄ .

The following lemma states that the functionality described above can be implemented using a two-round
protocol with communication sublinear in ν2 = µ.

Lemma 6. The functionality G can be implemented using a two-round NISC protocol with communication
complexity of ν · poly(n,L, t1, t2, λ).

Proof. By Lemma 1, it is enough to show that there is a circuit C with size ν · poly(n,L, t1, t2, λ) that
implements the functionality described above.

To analyze the size of the circuit, we analyze each component individually. The total size of C will be
the sum of all these components.

FCons can be implemented using a circuit of size ν · L · poly(λ) (this is just the equality circuit).
For FCDS, note that each eki ← TDH.KeyGen(hk, s, ti) can be implemented using a circuit of size n · L ·

poly(λ) by the definition of TDH.KeyGen, that is, independent of ν. Thus, repeating this process ν times,
we conclude that FCDS can be implemented using a circuit of size ν · n · L · poly(λ).

Analogously, for FCDS, we have that each hi ← TDH.H(hk, ri) can be implemented using a circuit of size
L · poly(λ). Thus FCDS can be implemented using a circuit of size ν · L · poly(λ).

Let t1 = |S| = |Supp(e)|. To puncture the K on the set {(i, j, b) : (i, j) ∈ S, b ∈ {0, 1}} a circuit of
size poly(t1, λ) is needed. Moreover, for a fixed (i, j, b), lotctb,i,j ← LOT.Enc(crs, hLOT, j, (K, i, b)) can be
implemented using a circuit of size poly(L, λ) by the definition of LOT. Repeating this process t1 times, we
obtain a circuit of size poly(L, t1, λ). Moreover, fetching each ri requires ν · poly(λ). Hence the total size of
this circuit is ν · poly(L, t1, λ).

For FSendErr :, note that each b′i,j ← TDH.LocDec(s,di,j , γi,j) requires a circuit of size poly(n, λ). Repeat-
ing this |T | (where |T | = |T0 ∪ T1| ≤ 2 · t2) we obtain a circuit of size poly(n, t2).

Finally, the total size of the circuit can be upperbounded by ν · poly(n,L, t1, t2, λ) and the result follows.

5.2 Universally Composable Oblivious Transfer with Optimal Rate

We are now ready to present our OT scheme. We first present the scheme, then we analyze it.

Construction 2. Let L, n, µ, t1, t2 ∈ poly(λ). Let ν =
√
µ. Let χµ,t be the uniform distribution over the

binary vectors of size µ and hamming weight t. In the scheme, parties execute µ independent OTs. We now
describe the scheme in full detail.

23

Setup(1λ) :

• Run hk← TDH.Setup(1λ, L).

• Sample vectors t̂1, . . . , t̂ν ←$ {0, 1}ℓ and a matrix V ←$ Fℓ×L
2 , for i = 1, . . . , ν set ti ← t̂i · V.

Additionally sample an LPN matrix D = (D1, . . . ,Dν)←$ {0, 1}n×µ, where each Di ∈ {0, 1}n×ν .

• Compute crsLOT ← LOT.Setup(1λ).

• Output crs = (hk, {ti}i∈[ν],D, crsLOT)

R1(crs,b ∈ {0, 1}µ) :

• Parse crs as (hk, {ti}i∈[
√
µ],D, crsLOT) and b as (b1,1, b1,2, . . . , bν,ν).

• Sample s←$ {0, 1}n and e←$ χµ,t.

• Compute c = s · D + e + b and (ek, td) ← TDH.KeyGen(hk, s, (t1, . . . , tν); r) using random coins
r ←$ {0, 1}λ.

• Compute hLOT ← LOT.H(crsLOT, (t1, . . . , tν ·)).

• For all i ∈ [ν] compute ek′i ← TDH.Eval(ek,Di, ci) and set ek′i = (γi,1, . . . , γi,ν). Compute com ←
VC.Com(crsVC,EK) where EK = (ek1, . . . , ekν) and com′ ← VC.Com(crsVC,D).

• Set S = Supp(e). Send (S, s, r, (t1, . . . , tν), hk, hLOT, com, com′) to Gaux.

• Output ot1 = (ek, c) and st = td.

S(ot1, (m0,m1) ∈ {0, 1}µ × {0, 1}µ) :

• Parse m0 = (m0,1,1, . . . ,m0,ν,ν) and m1 = (m1,1,1, . . . ,m1,ν,ν). Parse ot1 as (ek, c) where c =
(c1, . . . , cν) and ci ∈ {0, 1}ν .

• For all i ∈ [ν] sample ri ←$ {0, 1}L. Compute hi ←$ TDH.H(hk, ri). Compute ek′i ← TDH.Eval(ek,Di, ci).
Finally compute zi ← TDH.Enc(ek′i, ri).

• Sample a puncturable PRF key K←$ {0, 1}λ.

• For all i ∈ [ν] parse zi = (zi,1, . . . , zi,ν). For all β ∈ {0, 1} sample fβ ←$ χµ,t2 such that f = (fi,j)i,j∈[ν].
For all j ∈ [ν] compute

w0,i,j = zi,j +m0,i,j + f0,i,j + PRF.Eval(K, (i, j, 0)) mod 2

and
w1,i,j = zi,j + (ri · tTj) +m1,i,j + f1,i,j + PRF.Eval(K, (i, j, 1)) mod 2.

• Sample a PRG seed seed←$ {0, 1}λ and compute w̄ = (w0,1,1, w1,1,1, w0,1,2, . . . , w1,ν,ν) + PRG(seed).

• Compute hLOT ← LOT.H(crsLOT, (t1, . . . , tν)).

• Set T0 = Supp(f0), T1 = Supp(f1) and T = T0 ∪ T1.

• For all i ∈ [ν], set ek′i = (γi,1, . . . , γi,ν). Compute (com, stVC) ← VC.Com(crsVC,EK) where EK =
(ek1, . . . , ekν). Additionally, for all (i, j) ∈ T compute δi,j ← VC.Open(crs, com, st, (i, j)). Additionally,
compute (com′, st′VC)← VC.Com(crsVC,D) and for all (i, j) ∈ T compute ϕi,j ← VC.Open(crs, com′, st′, (i, j)).

• Send (ek, seed, {hiri, ti}i,∈[ν], hk, T0, T1, {di,j , γi,j , δi,j , ϕi,j}(i,j)∈T , hLOT) to Gaux.

• Output ot2 = ({hi}i∈[ν], w̄).

24

R2(ot2, st) :

• Parse ot2 as ({hi}i∈[ν], w̄) and st as ({sti}i∈[µ].

• Obtain (seed, {h′
i}i∈[ν],K

∗, {lotctb,i,j}β∈{0,1},(i,j)∈S , T̄) from Gaux.

• Compute (w0,1,1, w1,1,1, w0,1,2, . . . , w1,ν,ν) = w̄ + PRG(seed).

• If there is i ∈ [ν] such that hi ̸= h′
i, abort the protocol.

• For all i ∈ [µ] compute ai ← TDH.Dec(td, (Di, ci,), hi). Parse ai = (ai,1, . . . , ai,ν).

• For all (i, j) ∈ S = Supp(e) and all β ∈ {0, 1} compute yi,j,b ← LOT.Dec(crsLOT, {t1, . . . , tν}, lotctβ,i,j , i).

• For all i, j ∈ [µ] compute

m′
i,j =

{
wbi,j ,i,j + ai,j + yi,j,bi,j mod 2, if j ∈ Supp(ei)

wbi,j ,i,j + ai,j + PRF.Eval(K∗, (i, j, bi,j)) mod 2, otherwise
.

• Finally, output mi,j where

mi,j =

{
m′

i,j + 1 mod 2, if (i, j) ∈ T̄

m′
i,j, otherwise

.

Communication Complexity. We now analyze the communication complexity for our protocol. For
this analysis, we instantiate the ideal functionality Gaux using a two-round protocol as in Lemma 6. Recall
that, using Lemma 6, the ideal functionality Gaux can be instantiated using a two-round protocol with total
communication complexity ν · poly(n,L, t1, t2, λ). Let nisc1, nisc2 be the receiver’s and sender’s message in
this protocol, respectively.

• Receiver’s message. The receiver’s message is composed by (ek, c) and nisc1 where

– |ek| = ν · L · n · P1(λ) for some polynomial P1

– |c| = ν2 = µ

– |nisc1| = ν · P2(n,L, t1, t2, λ) for some polynomial P2.

Hence, the upload rate ρup of the protocol is

ρup =
ν · L · n · P1(λ) + ν2 + ν · P2(n,L, t1, t2, λ)

ν2
= 1 +

L · n · P1(λ) + P2(n,L, t1, t2, λ)

ν
.

Setting ν, n, L, t1, t2 such that o(ν) = L · n · P1(λ) and o(ν) = P2(n,L, t1, t2)
6 then ρup → 1 for large

enough ν.

• Sender’s message. The sender’s message is composed by ({hi}i∈[ν], w̄) and nisc2 where

– |{hi}i∈[ν]| = ν · poly(λ) = ν · n ·Q1(λ) for some polynomial Q1.

– |w̄| = 2 · ν2 = 2 · µ.
– |nisc2| = ν · poly(n,L, t1, t2, λ) = ν ·Q2(n,L, t1, t2, λ) for some polynomial Q2.

Hence the download rate ρdown of the protocol is

ρdown =
ν ·Q1(λ) + 2ν2 + ν ·Q2(n,L, t1, t2, λ)

ν2
= 2 +

Q1(λ) +Q2(n,L, t1, t2, λ)

ν
.

A similar choice of parameters as in the previous case, yields that ρup → 2 for large enough ν.
6For this to happen, we just have to set o(ν) = n,L, t1, t2 accordingly.

25

Analysis. We now analyze the correctness and security of our scheme.

Theorem 2 (Correctness). The scheme presented in Construction 2 is correct.

Proof. First, the receiver gets the seed seed and can recover (w0,1,1, w1,1,1, w0,1,2, . . . , w1,µ,µ) = c̄+PRG(seed).
By the correctness of the LOT, we have that yi,j,β = PRF.Eval(K, (i, j, β)) + (ri · tTj) for (i, j) ∈ Supp(e)

and β ∈ {0, 1}, where yi,j,β ← LOT.Dec(crsLOT, {t1, . . . , tν}, lotctβ,i,j , i).
Moreover, the receiver obtains K∗ (which is punctured at (i, j, β) for (i, j) ∈ Supp(e) and β ∈ {0, 1}) and

a set

T̄ =

(i, j) ∈ [ν]2 :

(i, j) ∈ Tb′i,j
∧ (i, j) /∈ S

∨
(i, j) ∈ T1−b′i,j

∧ (i, j) ∈ S(i, j)


where b′i,j ← TDH.LocDec(s,di,j , γi,j). Note that by the local correctness of the TDH, we have that b′i,j =
bi,j + ei,j .

Now recall that, by the correctness of TDH, we have that ai,j + zi,j = bi,j · (ri · tTj) for all i, j ∈ [ν].
We divide the proof in several cases. In this first case, (i, j) /∈ Supp(e). In this case we have that

wbi,j ,i,j = zi,j + bi,j · (ri · tTj) +mbi,j ,i,j + fbi,j ,i,j + PRF.Eval(K, (i, j, bi,j)).

Thus
m′

bi,j ,i,j = wbi,j ,i,j + ai,j + PRF.Eval(K∗, (i, j, bi,j) = mbi,j ,i,j + fbi,j ,i,j

where the equality holds from the correctness of TDH and the puncturable PRF.
If fbi,j ,i,j = 1 then (i, j) ∈ T̄ and thus the receiver outputs mbi,j ,i,j = m′

bi,j ,i,j
+ 1 = mbi,j ,i,j . Otherwise

mbi,j ,i,j = m′
bi,j ,i,j

= mbi,j ,i,j .

Now we consider the case where (i, j) ∈ Supp(e). Recall that yi,j,bi,j = PRF.Eval(K, (i, j, bi,j)) + (ri · tTj).
This in this case, the receiver computes

wbi,j ,i,j + ai,j + yi,j,bi,j = (zi,j + ai,j)︸ ︷︷ ︸
=(1−bi,j)(ri·tTj)

+bi,j(ri · tTj) +mbi,j ,i,j + fi,j + (ri · tTj)

= mbi,j ,i,j + fi,j

In this case, if fbi,j ,i,j = 1 then (i, j) ∈ T̄ . To see this note that, since b′i,j = 1−bi,j , (i, j) ∈ T1−b′i,j
= Tbi,j

and (i, j) ∈ S. The remaining of the analysis follows the same reasoning as in the previous case.

Theorem 3 (Security). The scheme presented in Construction 2 implements the functionality FOT in the
Gaux hybrid model.

The proof of this theorem follows from Lemmas 7 and 8 presented below.

Lemma 7 (Receiver security). Assume that TDH is receiver secure, VC is position binding and that the
LPN assumption holds. Then the scheme presented in Construction 2 is secure against malicious senders in
the Gaux hybrid model.

Proof. We start the proof by presenting the simulator SimS(1
λ) for a corrupted sender.

SimS(λ) :

• Simulate the functionality Gaux, and create the crs as in the real scheme.

• For all i ∈ [µ] compute (ek, st)← TDHKeyGen(hk,0; ri) and sample c←$ {0, 1}µ.

• Send ot1 = {CTi, ci}i∈[µ] to the sender.

26

• Upon receiving a query (ek, seed, {hi, ri, t
′
i}i,∈[ν], hk

′, T0, T1, {di,j , γi,j , δi,j}(i,j)∈T , hLOT) (intended to
Gaux and a message ({hi}i∈[ν], w̄) from the sender do the following:

1. If hk′ ̸= hk or (t1, . . . , tν) ̸= (t′1, . . . , t
′
ν) or hLOT ̸= LOT.H(crs, {t′1, . . . , t′ν}) abort the protocol.

2. If there is i ∈ [ν] such that hi ̸= TDH.H(hk, ri) abort the protocol.

3. Compute (w0,1,1, w1,1,1, w0,1,2, . . . , w1,µ,µ) = w̄ + PRG(seed).

4. For all i ∈ [ν] compute ek′i ← TDH.Eval(ek,Di, ci), and zi ← TDH.Enc(ek′i, ri). Parse ek′i =
(γ′

i,1, . . . , γ
′
i,1). For (i, j) ∈ T , if γi,j ̸= γ′

i,j abort the protocol.

5. For all β ∈ {0, 1} let fβ be the vector such that Supp(fβ) = Tβ .

6. For all i, j ∈ [ν] set

m0,i,j = w0,i,j + zi,j + f0,i,j + PRF.Eval(K, (i, j, 0))

and
m1,i,j = w1,i,j + zi,j + (ri · tTj) + f1,i,j + PRF.Eval(K, (i, j, 1)).

• It sends (m0,m1) to FOT where m0 = (m0,i,j)i,j∈[ν] and m1 = (m1,i,j)i,j∈[ν].

We now prove that the real-world and ideal-world execution are indistinguishable. The proof follows
from the following sequence of hybrids.

Hybrid H0. This is the real-world execution.

Hybrid H1. In this hybrid, the simulator checks if γi,j ̸= γ′
i,j where ek′i = (γ′

i,1, . . . , γ
′
i,1), for (i, j) ∈ T ,

instead of running VC.Verify. Additionally, check if d′
i,j = di,j .

Indistinguishability of hybrids follows from the position binding of the underlying VC.

Hybrid H2. In this hybrid, the simulator extracts m′
0,m

′
1 as described in the simulation. If there exists

an index (i, j) ∈ [ν] × [ν] such that the message mbi,j output by the honest receiver is different from the
extracted m′

bi,j
, then the simulator aborts the protocol.

To see that these hybrids are indistinguishable, we will show that the output distribution is the same in
both executions. Assume that in the real-world, the receiver’s choice bit for a position (i, j) ∈ [ν] × [ν] is
bi,j . We analyze four different possible cases.

First, assume that (i, j) /∈ S and (i, j) /∈ T . In this case the real-world receiver extracts

mbi,j ,i,j = wbi,j ,i,j + ai,j + PRF.Eval(K∗, (i, j, bi,j))

= wbi,j ,i,j + zi,j + bi,j · (ri · tTj) + PRF.Eval(K, (i, j, bi,j))

by the correctness of the TDH and the PRF. Thus, the receiver obtains the same messages that the sender
extracts.

In the second case (i, j) ∈ S and (i, j) /∈ T . In this case

mbi,j ,i,j = wbi,j ,i,j + ai,j + yi,j,bi,j

= wbi,j ,i,j + zi,j + (bi,j + 1) · (ri · tTj) + PRF.Eval(K, (i, j, bi,j)) + (ri · tTj)
= wbi,j ,i,j + zi,j + bi,j · (ri · tTj) + PRF.Eval(K, (i, j, bi,j))

where the second equality holds by the correctness of the LOT.
In the third and last case (i, j) ∈ Tbi,j , meaning that fbi,j ,i,j = 1. If (i, j) /∈ S, TDH.LocDec outputs bi,j

and (i, j) ∈ T̄ . Hence the real-world receiver outputs

mbi,j ,i,j = wbi,j ,i,j + ai,j + PRF.Eval(K∗, (i, j, bi,j)) + 1

= wbi,j ,i,j + zi,j + bi,j · (ri · tTj) + PRF.Eval(K, (i, j, bi,j)) + fbi,j ,i,j .

27

Analogously, if (i, j) /∈ S, TDH.LocDec outputs 1 − bi,j and (i, j) ∈ T̄ (by definition of T̄ , (i, j) is added if
(i, j) ∈ T1−(1−bi,j). Hence,

mbi,j ,i,j = wbi,j ,i,j + ai,j + yi,j,bi,j + 1

= wbi,j ,i,j + zi,j + (bi,j + 1) · (ri · tTj) + PRF.Eval(K, (i, j, bi,j)) + (ri · tTj) + fbi,j ,i,j

= wbi,j ,i,j + zi,j + bi,j · (ri · tTj) + PRF.Eval(K, (i, j, bi,j)) + fbi,j ,i,j .

Hybrid H3. In this hybrid, the simulator computes (ek, st) ← TDHKeyGen(hk,0; r). Indistinguishability
follows from the receiver security of the underlying TDH.

Hybrid H4. In this hybrid, we replace ci by ci ←$ {0, 1}λ. Indistinguishability follows from the LPN
assumption.

This concludes the proof as the outputs are statistically indistinguishable.

Lemma 8 (Sender security). Assume that TDH is sender secure, PRF is pseudorandom at punctured points,
LOT is sender secure and that the (entropic) LPN assumption holds. Then the scheme presented in Con-
struction 2 is secure against malicious receivers in the Gaux hybrid model.

Proof. We start the proof by presenting the simulator SimR(1
λ) for a corrupted receiver.

SimR(λ) :

• Simulate the ideal functionality Gaux. Create crs as in the real scheme.

• For all i ∈ [ν] sample ri ←$ {0, 1}L and compute hi ← TDH.H(hk, ri).

• Upon receiving a query (S, s, r, (t′1, . . . , t
′
ν), hk, hLOT) (intended to Gaux) and a message (ek, c) from the

receiver do the following:

1. If hLOT ̸= LOT.H(crs, {t1, . . . , tν}) or (t′1, . . . , t′ν) ̸= (t1, . . . , tν) abort the protocol.

2. If ek ̸= TDH.KeyGen(hk, s; r), return ({hi}i∈[ν], w̄←$ {0, 1}2µ2

) to the receiver. Else continue.

3. Let e ∈ {0, 1}µ such that Supp(e) = S. Compute

b = c+ s ·D+ e mod 2.

• Send b = (b1, . . . ,bµ) to FOT.

• Upon receiving m = mb do the following:

1. For all i ∈ [µ], compute ai ← TDH.Dec(st, (D, ci), {tj}j∈[µ], hi).

2. Sample f0, f1 ←$ χµ,t2 .

3. Sample a PRF key K← PRF′KeyGen(1λ) and compute K∗ ← PRF.Puncture(K, {(i, j, β}(i,j)∈S,β∈{0,1}).

4. For all i, j ∈ [ν] set

wbi,j ,i,j =

{
ai,j +mbi,j ,i,j + PRF.Eval(K, (i, j, bi,j)) + fbi,j ,i,j , if (i, j) /∈ S

ai,j +mbi,j ,i,j + ubi,j ,i,j + fbi,j ,i,j , otherwise

where ubi,j ,i,j ←$ {0, 1}. Additionally, set w1−bi,j ,i,j ←$ {0, 1}.
5. For (i, j) ∈ S compute lotcti,j,β ← LOTSim(crs, hLOT, j, uβ,i,j) where u1−bi,j ,i,j ←$ {0, 1}.
6. Set T̄ = {(i, j) : fbi,j ,i,j = 1}.
7. Sample a PRG seed seed←$ {0, 1}λ and set c̄ = (w0,1,1, w1,1,1, w0,1,2, . . . , w1,µ,µ) + PRG(seed).

28

8. Output (seed, {h′
i}i∈[ν],K

∗, {lotctβ,i,j}β∈{0,1},(i,j)∈S , T̄) via Gaux to the receiver.

• Output ot2 = ({hi}i∈[µ], c̄).

We now show that the real-world and ideal-world executions are insdistinguishable. This follows from
the following sequence of hybrids.

Hybrid H0. This hybrid is the real-world execution.

Hybrid H1. In this hybrid, the simulator simulates Gaux as in the real experiment, except that if ek ̸=
TDH.KeyGen(hk, s; r), it sets c̄←$ {0, 1}2µ.

Indistinguishability of hybrids follows from the security of the PRG.

Hybrid H2. In this hybrid, the simulator extracts b as described in the simulation and computes

wβ,i,j = ai,j + (β + bi,j + ei,j) · (ri · tTj) + fβ,i,j + PRF.Eval(K, (i, j, β)) +mβ,i,j mod 2

for all i, j ∈ [ν] and β ∈ {0, 1}.
The hybrids are identical since by the correctness of the TDH we have that zi,j = ai,j + (s · dT

i,j + ci,j) ·
(ri · tTj) = ai,j + (bi,j + ei,j) · (ri · tTj).

Hybrid H3. In this hybrid, the simulator computes yβ,i,j ← PRF(K, (i, j, βi,j)) + (ri · tTj) and lotcti,j,β ←
LOT.Sim(crs, hLOT, j, yβ,i,j) for all β ∈ {0, 1} and all (i, j) ∈ S.

Indistinguishability of hybrids folllows from the sender security of the underlying LOT scheme.

Hybrid H4. In this hybrid, the simulator sets yβ,i,j = uβ,i,j + (ri · tTj) where uβ,i,j ←$ {0, 1} for i, j ∈ S
and β ∈ {0, 1} and sets

wβ,i,j = ai,j + (β + bi,j + 1) · (ri · tTj) + fβ,i,j + uβ,i,j +mβ,i,j .

Indistinguishability of hybrids follows from the pseudorandomness of the PRF at punctured points.

Hybrid H5. In this hybrid, the simulator computes

wβ,i,j = ai,j + (β + bi,j) · (ri · tTj) + fβ,i,j + uβ,i,j +mβ,i,j

where uβ,i,j ←$ {0, 1} and sets yβ,i,j = uβ,i,j for i, j ∈ S and β ∈ {0, 1}.
The hybrids are identical.

Hybrid H6. In this hybrid, the simulator chooses r̂1, . . . , r̂ν ←$ {0, 1}ℓ uniformly at random and sets

wβ,i,j = ai,j + (β + bi,j) · (r̂i · t̂Tj) + fβ,i,j + uβ,i,j +mβ,i,j

for all i, j ∈ [µ] and β ̸= bi,j .
Indistinguishability of hybrids H5 and H6 follows via the leftover hash lemma. Note that it holds that

ti = t̂i ·V. Hence it holds that
ri · t⊤j = (ri ·V⊤)t̂⊤j .

Now, given hi = TDH.H(hk, ri) ∈ {0, 1}λ, it holds by the min-entropy chain rule that the conditional min-
entropy of ri given hi is at least L − λ bits. As the matrix V ∈ FL×ℓ

2 is chosen uniformly random and
importantly independently of hk, ri and therefore hi, it holds by the leftover hash Lemma that

(hi, ri ·V⊤) ≈s (hi, r̂i),

for a uniformly random r̂i ∈ {0, 1}ℓ. Hence the claim follows.

29

Hybrid H7. In this hybrid the simulator sets

wβ,i,j = uβ,i,j

for β ̸= bi,j for all i, j ∈ [µ].
Indistinguishability of hybrids follows from the hardness of LPN. To see this note that in hybrid H6 for

all (i, j) ∈ [ν]× [ν] and β ̸= bi,j we have that

wβ,i,j = ai,j + (r̂i · t̂Tj) + fβ,i,j + uβ,i,j +mβ,i,j .

Since the r̂i are uniformly random and independent of all other protocol messages, we can argue by the LPN
assumption that

(t̂1, . . . , t̂ν , (r̂i · t̂Tj + fβ,i,j)i,j) ≈c (t̂1, . . . , t̂ν , (u
′
β,i,j)i,j)

for uniformly random u′
β,i,j . It follows that

wβ,i,j = ai,j + u′
β,i,j + uβ,i,j +mβ,i,j

is uniformly random.

Hybrid H8. The simulator computes T̄ as T̄ = {(i, j) : fbi,j ,i,j = 1}. The hybrids are statistically
indistinguishable by the definition of T̄ .

Note that the last hybrid corresponds to the simulation described above. This concludes the proof.

Acknowledgements

Pedro Branco is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
Project number 537717419 and partially funded by the German Federal Ministry of Education and Research
(BMBF) in the course of the 6GEM research hub under grant number 16KISK038. Nico Döttling: Funded
by the European Union (ERC, LACONIC, 101041207). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the European Research
Council. Neither the European Union nor the granting authority can be held responsible for them.

References

[ADD+22] Divesh Aggarwal, Nico Döttling, Jesko Dujmovic, Mohammad Hajiabadi, Giulio Malavolta, and
Maciej Obremski. Algebraic Restriction Codes and Their Applications. In Mark Braverman,
editor, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume
215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:15, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital
goods. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045
of Lecture Notes in Computer Science, pages 119–135, Innsbruck, Austria, May 6–10, 2001.
Springer, Heidelberg, Germany.

[BBD+20] Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Constant
ciphertext-rate non-committing encryption from standard assumptions. In TCC 2020: 18th
Theory of Cryptography Conference, Part I, Lecture Notes in Computer Science, pages 58–87.
Springer, Heidelberg, Germany, March 2020.

[BBDP22] Zvika Brakerski, Pedro Branco, Nico Döttling, and Sihang Pu. Batch-OT with optimal rate.
In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT
2022, pages 157–186, Cham, 2022. Springer International Publishing.

30

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round OT extension and silent non-interactive secure computation. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019: 26th Conference on Computer and Communications Security, pages 291–308. ACM Press,
November 11–15, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III, volume
11694 of Lecture Notes in Computer Science, pages 489–518, Santa Barbara, CA, USA, Au-
gust 18–22, 2019. Springer, Heidelberg, Germany.

[BCG+20a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated
pseudorandom functions from variable-density LPN. In 61st Annual Symposium on Foundations
of Computer Science, pages 1069–1080. IEEE Computer Society Press, 2020.

[BCG+20b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Effi-
cient pseudorandom correlation generators from ring-LPN. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology – CRYPTO 2020, Part II, Lecture Notes in
Computer Science, pages 387–416, Santa Barbara, CA, USA, August 16–20, 2020. Springer,
Heidelberg, Germany.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th
Conference on Computer and Communications Security, pages 896–912, Toronto, ON, Canada,
October 15–19, 2018. ACM Press.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of
Lecture Notes in Computer Science, pages 407–437, Nuremberg, Germany, December 1–5, 2019.
Springer, Heidelberg, Germany.

[BDS23] Pedro Branco, Nico Döttling, and Akshayaram Srinivasan. A framework for statistically sender
private OT with optimal rate. In Helena Handschuh and Anna Lysyanskaya, editors, Advances
in Cryptology – CRYPTO 2023, pages 548–576, Cham, 2023. Springer Nature Switzerland.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 479–488. ACM, 1996.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 1–20, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference on Theory and
Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science, pages
501–519, Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidelberg, Germany.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Com-
puter Science, pages 500–532, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg,
Germany.

31

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part II,
volume 8270 of Lecture Notes in Computer Science, pages 280–300, Bengalore, India, Decem-
ber 1–5, 2013. Springer, Heidelberg, Germany.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas, NV,
USA, October 14–17, 2001. IEEE Computer Society Press.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Poly-
chroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lec-
ture Notes in Computer Science, pages 33–65, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kuro-
sawa and Goichiro Hanaoka, editors, PKC 2013: 16th International Conference on Theory and
Practice of Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages
55–72, Nara, Japan, February 26 – March 1, 2013. Springer, Heidelberg, Germany.

[CGH+21] Melissa Chase, Sanjam Garg, Mohammad Hajiabadi, Jialin Li, and Peihan Miao. Amortizing
rate-1 OT and applications to PIR and PSI. In Kobbi Nissim and Brent Waters, editors, Theory
of Cryptography, pages 126–156, Cham, 2021. Springer International Publishing.

[DG17] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I,
volume 10677 of Lecture Notes in Computer Science, pages 372–408, Baltimore, MD, USA,
November 12–15, 2017. Springer, Heidelberg, Germany.

[DGH+20] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs. Two-
round oblivious transfer from CDH or LPN. In Vincent Rijmen and Yuval Ishai, editors, Ad-
vances in Cryptology – EUROCRYPT 2020, Part II, Lecture Notes in Computer Science, pages
768–797. Springer, Heidelberg, Germany, May 2020.

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New constructions of
identity-based and key-dependent message secure encryption schemes. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018: 21st International Conference on Theory and Practice of
Public Key Cryptography, Part I, volume 10769 of Lecture Notes in Computer Science, pages
3–31, Rio de Janeiro, Brazil, March 25–29, 2018. Springer, Heidelberg, Germany.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes
in Computer Science, pages 3–32, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and
its applications. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer Science, pages 93–122,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 523–540, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

32

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, August 1986.

[GH19] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis Hofheinz
and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume
11892 of Lecture Notes in Computer Science, pages 438–464, Nuremberg, Germany, December 1–
5, 2019. Springer, Heidelberg, Germany.

[GHO20] Sanjam Garg, Mohammad Hajiabadi, and Rafail Ostrovsky. Efficient range-trapdoor functions
and applications: Rate-1 OT and more. In TCC 2020: 18th Theory of Cryptography Conference,
Part I, Lecture Notes in Computer Science, pages 88–116. Springer, Heidelberg, Germany, March
2020.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from min-
imal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages
468–499, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers ef-
ficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient
non-interactive secure computation. In Kenneth G. Paterson, editor, Advances in Cryptology
– EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 406–425,
Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157
of Lecture Notes in Computer Science, pages 572–591, Santa Barbara, CA, USA, August 17–21,
2008. Springer, Heidelberg, Germany.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM Symposium on
Theory of Computing, pages 20–31, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013: 20th Conference on Computer and Communications
Security, pages 669–684, Berlin, Germany, November 4–8, 2013. ACM Press.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju, editor,
12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 448–457, Washington, DC,
USA, January 7–9, 2001. ACM-SIAM.

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of Paillier: Homomorphic secret
sharing and public-key silent OT. In Anne Canteaut and François-Xavier Standaert, editors, Ad-
vances in Cryptology – EUROCRYPT 2021, pages 678–708, Cham, 2021. Springer International
Publishing.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Science, pages 89–114,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

33

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 554–571, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Heidelberg, Germany.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario,
Canada, October 27–29, 1986. IEEE Computer Society Press.

A Laconic Oblivious Transfer from QR

A LOT scheme is a FLOT where the function F is defined as: F (xi, (m0,m1)) = mxi . In [CDG+17] it is
shown how to go from LOT to FLOT using garbled circuits. In essence, the sender sends labels using LOT
to the receiver and prepares a garbled circuit that implements the function Fy(·) = F (·,y). The receiver can
recover F (Di,y) by evaluating the garbled circuit.

Moreover, it is known that to build LOT, it is enough to build a hash with encryption scheme, which has
compression 2-to-1 [CDG+17].

Definition 16 (Hash with encryption). Let L = poly(λ). A hash with encryption scheme is a tuple of
algorithms:

• Setup(1λ, L) takes as input a securty parameter λ. It outputs a crs.

• H(crs,x ∈ {0, 1}L) takes as input a crs and x ∈L. It outputs a hash value h.

• Enc(crs, h, (i, β) ∈ [L]×{0, 1},m ∈ {0, 1}) takes as input a crs, a hash h, a position (i, β) ∈ [L]×{0, 1},
and a message m. It outputs a ciphertext ct.

• Dec(crs, ct,x) takes as input a crs, a ciphertext ct and x ∈L. It outputs a message m.

Correctness states that the decryptor is able to recover the message m, if ct is encrypted with respect to
(i, β) and xi = β.

Security states that Enc(crs, h, (i, 1 − xi), 0 ∈ {0, 1}) is indistinguishable from Enc(crs, h, (i, 1 − xi), 1 ∈
{0, 1}), for crs← Setup(1λ) and x← H(crs,x ∈ {0, 1}L).

This is captured by the following game: For all adversaries A we have that

Pr

b← A3(st3, ct) :

(x, L, st1)← A1(1
λ)

crs← Setup(1λ, L)
(i, st2)← A2(st1, crs)

b←$ {0, 1}
ct← Enc(crs, h, (i, 1− xi), b)

 .

We now show how to build this primitive. The construction follows closely the existing constructions
[CDG+17, DG17, DGHM18].

Construction 3. Let L = poly(λ).

Setup(1λ) :

• Generate two safe prime numbers P,Q and compute N = P · Q. Sample G =

(
g1,0 . . . gL,0

g1,1 . . . gL,0

)
←$

QR2×L
N .

• Output crs = (N, g,g).

34

H(crs,x ∈ {0, 1}L) : Output h←
∏L

i=1 gi,xi .

Enc(crs, h, (i, β) ∈ [L]× {0, 1},m ∈ {0, 1}):

• Sample s←$ [(N − 1)/2].

• Compute E ∈ J2×L
N such that

ej,b =

{
gsj,b, if j ̸= i ∨ (j, b) = (i, β)

⊥ , if (j, b) = (i, 1− β)

• Compute f = hs · (−1)m mod N .

• Output ct = (E, f).

Dec(crs, ct,x) :

• Parse ct as (E, f). Let E =

(
e1,0 . . . eL,0

e1,1 . . . eL,1

)
• Compute c =

∏L
i=1 ei,xi

mod N

• If f/c mod N = 1 then output m = 0. Else if f/c mod N = −1 output m = 1.

Correctness holds since if xi = β, then Dec has access to ei,β . Hence c =
∏L

i=1 ei,xi =
∏L

i=1 g
s
i,xi

= hs

mod N and, thus, f/c mod N = (−1)m.
We now argue security. In the following we recall a useful lemma from [BG10].

Lemma 9 ([BG10]). Let N be a uniformly sampled Blum integer, let QRN be the multiplicative group of
quadratic residues modulo N with generator g, and let ℓ = ℓ(λ) be a polynomial. If the quadratic residuosity
assumption holds with respect to QRN then for any PPT adversary A = (A1,A2)∣∣∣∣∣∣∣∣∣∣∣∣

Pr

b← A2(g
r ⊙ (−1)m) :

g← QRℓ
N

m← A1(N,g)
r ←$ [(N − 1)/2]

−
Pr

b← A2(g
r) :

g← QRℓ
N

m← A1(N,g)
r ←$ [(N − 1)/2]



∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where m ∈ {0, 1}ℓ and ⊙ denotes the componentwise multiplication.

Lemma 10 (Security). The scheme presented above is a secure hash with encryption scheme under the QR
assumption.

Proof. The reduction starts by receiving x ∈ {0, 1}L from the adversary. It receives (g1,0, . . . , gL,1) from the
challenger and forwards it to the adversary as the crs. Upon receiving i from the adversary, the reduction
does the following:

• Send m = (0, . . . , 0, 1, 0, . . . , 0) with a 1 on position 2i+(1− xi), where m is the same as in Lemma 9.

• Upon receiving the challenge (e1,0, . . . , eL,1), it computes f =
∏

ei,xi
mod N and the matrix E which

is composed by the elementss ej,β except that the (i, xi) position is erased

• It sends (E, f) to the adversary and outputs whatever it outputs.

Note that f =
∏

ei,xi
=
∏

gri,xi
(−1)b. Moreover, the distribution of E is the same in the reduction.

Hence the advantage of the reduction is exactly the same as the one of the adversary.

35

	Introduction
	Technical Overview
	Warmup: The PVW Protocol
	Batch OT with Trapdoor Hash Functions
	Computational Sender Security via LPN
	Key-Homomorphic Trapdoor Hash Functions
	Compressing the Receiver's Message via LPN and Key-Homomorphic TDH
	Correcting Errors and achieving Malicious Security
	Discussion

	Preliminaries
	Hardness Assumptions
	Learning Parity with Noise
	Quadratic Residuosity Assumption

	Cryptographic Primitives
	PRGs and Puncturable PRFs
	Functional Laconic Oblivious Transfer
	Vector Commitments with Local Openings

	UC-Security and Ideal Functionalities
	NISC Functionality
	OT Functionality

	Key-Homomorphic Trapdoor Hash Function
	Construction from QR

	Composable Oblivious Transfer with Optimal Rate
	Ingredients.
	Universally Composable Oblivious Transfer with Optimal Rate

	Laconic Oblivious Transfer from QR

