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Abstract

In [Pan21] a linearization attack is proposed in order to break the cryp-
tosystem proposed in [Gli21]. We want to propose here a non-linearizable
operator that disables this attack as this operator doesn't give raise to a
quasigrup and doesn't obey the latin square property.

Entropic operator de�nition

As a reminder let's de�ne what an entropic operation is, in particular, if we take
◦ as operator it must satisfy:

(a ◦ b) ◦ (c ◦ d) = (a ◦ c) ◦ (b ◦ c)

so in this formula b and c can be interchanged without altering the result,
but not necessarily other exchanges are possible.

If with a �xed a, every b gives a distinct result, i.e. is a bijection, and the
same happens with a �xed b with respect to a variable a, then is a quasigroup.
We're not interested on quasigroups since are highly questioned by [Pan21], but
in entropic operators that aren't a quasigroup, so the operations cited are many-
to-one mappings and not one-to-one. This disables the referenced linearization
attack of [Pan21].

Basic algebraic structure

We will use polynomials of degree n− 1 modulo xn− 1 with coe�cients modulo
a large prime p:

F = Fp[x]\(xn − 1)

We will operate on this �eld and applying parametrization.

a ∈ F , a(xe) is the application of xe to the polynomial a. We remind that
a, b ∈ F , a(xe) · b(xe) = (a · b)(xe).
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Basic entropic operator

The entropic operation we will work with is:

a ◦ b = a · b · b(xe). As an example we can take e = n− 1.

It's straightforward to see that:

(a ◦ b) ◦ (c ◦ d) = a · b · b(xe) · c · d · d(xe) · c(xe) · d(xe) · (d(xe))(xe)

We check that b and c can be swapped in this formula so the entropic prop-
erty holds.

Due to the fact that −a · −b = a · b, and so −b · (−b)(xe) = b · b(xe), we
can state that the operator ◦ is non-injective, in particular its a two-to-one
map, so the resulting mathematical structure is not a quasigrup.

Entropic operator mixing

We will de�ne a mixing process r = m(t, k), where r, t and k are pairs of ele-
ments in F .

So we have:

r = (r1, r2), t = (t1, t2) and k = (k1, k2), r1, r2, t1, t2, k1, k2 ∈ F

First we join t and k values to get an initial state:

r = (t1 ◦ k1, t2 ◦ k2) = (r1, r2)

Next at each step we mix the two values of the tuple:

r := (r1 ◦ r2, r2 ◦ (r1 ◦ r2))

And as a �nal step we mix again k to prevent mixing's reversal:

r := (r1 ◦ k1, r2 ◦ k2)

Now, it's proven in [NN21] that the operation r = m(t, k) is as well entropic if
◦ is. Also, �nding k knowing t and r is assumed to be infeasible.

Protocol for key agreement and digital signature

The secret agreement and digital signature protocols are the same as the ones
described in [NN21].

To do signatures, we can pro�t from the following equality:
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m(m(C,H),m(K,Q)) = m(m(C,K),m(H,Q))

Then ⟨C,m(C,K)⟩ are the signer credentials, and ⟨m(H,Q),m(K,Q)⟩ the sig-
nature. Q must be di�erent for each signature, while K is always the same. H
is the hash to sign and C a constant value.

To do a secret agreement we pro�t from the equality

m(m(C,K),m(Q,C)) = m(m(C,Q),m(K,C)), where C is an agreed constant
and K, Q are secret values of each party in the agreeement.

Non linearizability and Gaussian elimination

The Bruck-Murdoch-Toyoda theorem [Bru44] [Mur41] [Toy41] states that every
entropic quasigroup has the form:

a ∗ b = σ(a) · τ(b) · c

where (G, ·) is an abelian group and σ and τ are commuting automorphisms
of (G, ·). This is the basis and a prerequisite to apply linearization attack, but
in this case the basic operator a ◦ b doesn't de�ne a quasigroup so we can assert
such automorphisms doesn't exist.

On the side of a possible pseudo Gaussian elimination for exponentiation we
assert that a and a(xn) must be treated as di�erent unknowns, so if we trace
the mixing process we can end with a system of equations, but due to this
assertion we got at least half equations than unknowns, making this Gaussian
elimination unfeasible if p is chosen big enough as we must guess half of those
unknowns.
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