2 results sorted by ID
Possible spell-corrected query: ran
Message Latency in Waku Relay with Rate Limiting Nullifiers
Alvaro Revuelta, Sergei Tikhomirov, Aaryamann Challani, Hanno Cornelius, Simon Pierre Vivier
Applications
Waku is a privacy-preserving, generalized, and decentralized messaging protocol suite. Waku uses GossipSub for message routing and Rate Limiting Nullifiers (RLN) for spam protection. GossipSub ensures fast and reliable peer-to-peer message delivery in a permissionless environment, while RLN enforces a common publishing rate limit using zero-knowledge proofs.
This paper presents a practical evaluation of message propagation latency in Waku. First, we estimate latencies analytically,...
DSKE: Digital Signature with Key Extraction
Zhipeng Wang, Orestis Alpos, Alireza Kavousi, Sze Yiu Chau, Duc V. Le, Christian Cachin
Cryptographic protocols
This work introduces DSKE, digital signatures with key extraction. In a DSKE scheme, the private key can be extracted if more than a threshold of signatures on different messages are ever created while, within the threshold, each signature continues to authenticate the signed message. We give a formal definition of DSKE, as well as two provably secure constructions, one from hash-based digital signatures and one from polynomial commitments.
We demonstrate that DSKE is useful for...
Waku is a privacy-preserving, generalized, and decentralized messaging protocol suite. Waku uses GossipSub for message routing and Rate Limiting Nullifiers (RLN) for spam protection. GossipSub ensures fast and reliable peer-to-peer message delivery in a permissionless environment, while RLN enforces a common publishing rate limit using zero-knowledge proofs. This paper presents a practical evaluation of message propagation latency in Waku. First, we estimate latencies analytically,...
This work introduces DSKE, digital signatures with key extraction. In a DSKE scheme, the private key can be extracted if more than a threshold of signatures on different messages are ever created while, within the threshold, each signature continues to authenticate the signed message. We give a formal definition of DSKE, as well as two provably secure constructions, one from hash-based digital signatures and one from polynomial commitments. We demonstrate that DSKE is useful for...