2 results sorted by ID
Possible spell-corrected query: Toeplitz has.
Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More
Sanjam Garg, Mohammad Hajiabadi, Rafail Ostrovsky
Public-key cryptography
Substantial work on trapdoor functions (TDFs) has led to many powerful notions and applications. However, despite tremendous work and progress, all known constructions have prohibitively large public keys.
In this work, we introduce new techniques for realizing so-called range-trapdoor hash functions with short public keys. This notion, introduced by Döttling et al. [Crypto 2019], allows for encoding a range of indices into a public key in a way that the public key leaks no information...
On the Minimum Number of Multiplications Necessary for Universal Hash Constructions
Mridul Nandi
Secret-key cryptography
Let $d \geq 1$ be an integer and $R_1$ be a finite ring whose elements are called {\bf block}. A $d$-block universal hash over $R_1$ is a vector of $d$ multivariate polynomials in message and key block such that the maximum {\em differential probability} of the hash function is ``low''. Two such single block hashes are pseudo dot-product (\tx{PDP}) hash and Bernstein-Rabin-Winograd (\tx{BRW}) hash which require $\frac{n}{2}$ multiplications for $n$ message blocks. The Toeplitz construction...
Substantial work on trapdoor functions (TDFs) has led to many powerful notions and applications. However, despite tremendous work and progress, all known constructions have prohibitively large public keys. In this work, we introduce new techniques for realizing so-called range-trapdoor hash functions with short public keys. This notion, introduced by Döttling et al. [Crypto 2019], allows for encoding a range of indices into a public key in a way that the public key leaks no information...
Let $d \geq 1$ be an integer and $R_1$ be a finite ring whose elements are called {\bf block}. A $d$-block universal hash over $R_1$ is a vector of $d$ multivariate polynomials in message and key block such that the maximum {\em differential probability} of the hash function is ``low''. Two such single block hashes are pseudo dot-product (\tx{PDP}) hash and Bernstein-Rabin-Winograd (\tx{BRW}) hash which require $\frac{n}{2}$ multiplications for $n$ message blocks. The Toeplitz construction...