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(sproston@di.unito.it )

Abstract. Probabilistic timed automata, a variant of timed automata extended with dis-
crete probability distributions, is a modelling formalism suitable for describing formally both
nondeterministic and probabilistic aspects of real-time systems, and is amenable to model
checking against probabilistic timed temporal logic properties. However, the previously devel-
oped verification algorithms either suffer from high complexity, give only approximate results,
or are restricted to a limited class of properties. In the case of classical (non-probabilistic)
timed automata it has been shown that for a large class of real-time verification problems
correctness can be established using an integral model of time (digital clocks) as opposed to a
dense model of time. Based on these results we address the question of under what conditions
digital clocks are sufficient for the performance analysis of probabilistic timed automata and
show that this reduction is possible for an important class of systems and properties includ-
ing probabilistic reachability and expected reachability. We demonstrate the utility of this
approach by applying the method to the performance analysis of three probabilistic real-time
protocols: the dynamic configuration protocol for IPv4 link-local addresses, the IEEE 802.11
wireless local area network protocol and the IEEE 1394 FireWire root contention protocol.

Keywords: Probabilistic model checking, timed automata, digital clocks

1. Introduction

Network protocols increasingly rely on the use of randomness and timing
delays, for example the exponential back-off in Ethernet and IEEE 802.11.
Since these protocols execute in a distributed environment, it is important
to also consider nondeterminism when modelling their behaviour. A natural
model for systems that exhibit nondeterminism, probability and real time,
calledprobabilistic timed automata– a probabilistic extension of timed au-
tomata [2] – has been proposed in [38]. In probabilistic timed automata,
real-valued clocks measure the passage of time, and transitions can be prob-
abilistic, that is, be expressed as a discrete probability distribution on the set
of target states. In [38] model-checking algorithms for verifying the likeli-
hood of certain temporal properties being satisfied by such system models
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are introduced. These model checking algorithms are either based onre-
gion equivalence[2], which results in prohibitively large state spaces for
realistic systems, or onforwards reachability, which leads to approximate
results [38, 20]. An alternative approach, based onbackwards reachability,
is given in [39, 42]; while this can be more efficient than the region equiv-
alence approach and leads to exact results, the approach has been applied
only to probabilistic temporal logics, and not to other classes of performance
properties such as expected-time or expected-cost.

When modelling real-time systems there is a trade off between expressive-
ness and complexity. For example, adensetime model is more expressive
than anintegral time model. However, it is generally the case that an integral
time model is easier to verify, since it leads to a finite-state system and allows
one to apply the efficient symbolic methods developed for untimed systems.
Henzinger et al. [30] study the question of when real-time properties can be
verified using only integral durations (digital clocks), and show that such a
reduction is possible for a large class of systems and properties, such as time-
bounded invariance and response. Other related work includes [7], where it
was observed that to perform reachability analysis of certain classes of timed
automata one need only consider integer clock values, and [13, 14] which
show that using BDDs and integral durations can lead to efficient methods
for performing reachability analysis of timed automata. We also mention [25]
and [45] which investigate the power of digital clocks.

The main contribution of this paper is to extend this direction of research
to the domain of probabilistic timed automata by showing that digital clocks
are sufficient for analysing a large class of probabilistic real-time systems and
performance measures. The models that can be considered are those which
can be represented byclosed, diagonal-freeprobabilistic timed automata,
intuitively automata whose clock constraints do not compare the values of
clocks with one another or contain strict comparisons with constants. The
performance measures includeprobabilistic reachabilityproperties, which
for example allow us to check the correctness of the following statements:
‘with probability 0.05 or less, the system aborts’ and ‘with probability 0.99
or greater, a data packet will be delivered within 5 time units’. Additionally,
expected reachabilityproperties can be verified using digital clocks, which
enable us to validate statements such as: ‘the expected time until a data packet
is delivered is at most 20ms’, ‘the expected number of packets sent before
failure is at least 100’ and ‘the expected number of retransmissions before a
packet is sent is at most 5’.

We then demonstrate the applicability of this approach on three case stud-
ies using the probabilistic symbolic model checker PRISM [35, 47] to per-
form the analysis. In each case study the interplay between real-time, non-
determinism and probabilistic behaviour is critical and each can be modelled
naturally as a (closed, diagonal-free) probabilistic timed automaton. The first
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concerns the ZeroConf dynamic configuration protocol for IPv4 link-local
addresses [18] (preliminary results concerning this case study can be found in
[37]). The second extends the results of [40], and investigates the performance
of the contention resolution protocol of the IEEE 802.11 wireless local area
network standard [33]. In the third case study we consider the root contention
protocol of the IEEE 1394 FireWire standard [32], previously studied using
probabilistic timed automata in [41, 20]. In the latter two publications, the
analysis was with respect to probabilistic reachability properties, whereas in
this paper we study expected reachability properties.

Outline. The next section introduces preliminary concepts that we will use
in the remainder of the paper. In Section 3 we introduce probabilistic timed
automata, their semantics for both the dense and integral models of time, two
corresponding performance measures (probabilistic and expected reachabil-
ity) and model checking techniques to compute these measures. Section 4
shows that, for closed diagonal-free probabilistic timed automata, computa-
tion of these measures can be performed using digital clocks (integral seman-
tics). In Section 5 we address the limitations of digital clocks for analysing
probabilistic timed automata; that is, we identify a class of properties which
cannot be verified with digital clocks. In Section 6 we present three prob-
abilistic timed automata case studies and give some experimental results to
compare the performance of the techniques described in this paper with alter-
native approaches from the literature. Finally, in Section 7, we conclude the
paper.

2. Preliminaries

2.1. PROBABILITY AND MEASURETHEORY

We assume some familiarity with probability and measure theory, see e.g.
[26]. Consider a setΩ. A σ-field onΩ, denotedF , is a family of subsets ofΩ
that containsΩ, and is closed under complementation and countable union.
The elements of aσ-field are calledmeasurable sets, and(Ω,F) is called a
measurable space.

Definition 1. Let (Ω,F) be a measurable space. A functionP : F → [0, 1]
is a probability measureon (Ω,F), and(Ω,F , P ) is a probability space, if
P satisfies the following properties:

1. P (Ω) = 1;

2. if A1, A2, . . . is a disjoint sequence of elements ofF , thenP (∪iAi) =∑
i P (Ai).
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The measureP is also referred to as aprobability distribution. The setΩ
is called the sample space, and the elements ofF are called events.

Definition 2. Let (Ω,F) and(Ω′,F ′) be two measurable spaces. A function
f : Ω → Ω′ is said to be ameasurable functionfrom (Ω,F) to (Ω′,F ′) if
f−1(A′) ∈ F for all A′ ∈ F ′.

Theorem 3 ([16]). Let (Ω,F) and(Ω′,F ′) be measurable spaces, and sup-
pose thatP is a measure on(Ω,F) and the functionT : Ω → Ω′ is measur-
able. Iff is a real non-negative measurable function on(Ω′,F ′), then:∫

ω∈Ω
f(Tω) dP =

∫
ω′∈Ω′

f(ω′) dPT−1 .

A discrete probabilitydistribution over a countable setQ is a function
µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1. For a possibly uncountable set

Q′, let Dist(Q′) be the set of distributions over countable subsets ofQ′. For
q ∈ Q, let µq be thepoint distributionat q which assigns probability 1 toq.

2.2. DISCRETE-TIME MARKOV CHAINS

We now introduce discrete-time Markov chains (DTMCs), a widely-studied
stochastic process.

Definition 4. A DTMC is a tupleD = (S, s,P) where:

− S is a set ofstates, including the initial states;
− P : S × S → [0, 1] is a transition probability matrix, such that for any

s ∈ S :
∑

s′∈S P(s, s′) = 1.

Each elementP(s, s′) of the transition probability matrix gives the proba-
bility of making a transition from states to states′. An execution of a system
which is being modelled by a DTMC is represented by apath. Formally,
a pathω is a non-empty finite or infinite sequence of states. In the case of a
finite paths0s1 · · · sn, we requireP(si, si+1) > 0 for all 0 6 i < n, whereas,
for an infinite paths0s1s2 · · · , we requireP(si, si+1) > 0 for all i > 0. We
denote byω(i) the(i+1)th state of a pathω, |ω| the length ofω (number of
transitions), and for a finite pathω, the last state bylast(ω). Observe that a
path can comprise a single state, in which case its number of transitions is
zero. We say that a finite pathω of lengthn is aprefixof the infinite pathω′ if
ω(i) = ω′(i) for 0 6 i 6 n. Also, we useω(k) to denote the prefix of length
k of ω. The sets of all finite and infinite paths starting in states are denoted
Pathfin(s) andPath ful (s), respectively.

In order to reason about the probabilistic behaviour of the DTMC, we need
to be able to determine the probability that certain paths are taken. This is
achieved by defining, for each states ∈ S, a probability measureProbs over
Path ful (s). Below, we give an outline of this construction. For further details,
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see [34]. The probability measure is induced by the transition probability
matrixP as follows. First, for any finite pathω ∈ Pathfin(s) of lengthn, we
define the probabilityPs(ω):

Ps(ω) def=
{

1 if n = 0
P(ω(0), ω(1)) · · ·P(ω(n− 1), ω(n)) otherwise.

Next, we define thecylinder setcyl(ω) as:

cyl(ω) def= {ω′ ∈ Path ful (s) |ω is a prefix ofω′} ,

that is, the cylinder setcyl(ω) is the set of all infinite paths with prefixω. Then
let Σs be the smallestσ-algebra onPath ful (s) which contains all the sets
cyl(ω), whereω ranges over paths inPathfin(s). We define the probability
measureProbs on Σs as the unique measure such that:Probs(cyl(ω)) =
Ps(ω) for all ω ∈ Pathfin(s).

2.3. TIMED PROBABILISTIC SYSTEMS

We now introducetimed probabilistic systemswhich extend DTMCs by al-
lowing both non-deterministic and probabilistic behaviour and in which tran-
sitions are labelled with either a duration taken from a time domain or an
action. Timed probabilistic systems are an extension of Markov decision pro-
cesses [24] and a variant of Segala’s probabilistic timed automata [50].

Definition 5. A timed probabilistic systemis a tupleTPS = (S, s̄,Act , T,Steps)
where:

− S is a set ofstates, including aninitial states̄ ∈ S;
− Act is a finite set ofactionssuch thatAct ∩ R = ∅;
− T ⊆ R is a set ofdurations, taken from the set of non-negative reals;
− Steps ⊆ S × (Act ∪ T)× Dist(S) is a probabilistic transition relation,

such that, if(s, a, µ) ∈ Steps anda ∈ T, thenµ is a point distribution.

A probabilistic transitions
a,µ−−→ s′ is made from a states ∈ S by first

nondeterministically selecting an action-distribution or duration-distribution
pair (a, µ) such that(s, a, µ) ∈ Steps, and second by making a probabilistic
choice of target states′ according to the distributionµ, such thatµ(s′)>0. We
require that only action-distributions can be probabilistic, that is, duration-
distribution pairs always comprise a point distribution.

We consider two ways in which a timed probabilistic system’s compu-
tation may be represented: using paths and adversaries. Apath represents
a particular resolution of both nondeterminismand probability. Formally, a
path of a timed probabilistic system is a non-empty finite or infinite sequence
of probabilistic transitions

ω = s0
a0,µ0−−−→ s1

a1,µ1−−−→ s2
a2,µ2−−−→ · · · .
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We denote byω(i) the (i+1)th state ofω, last(ω) the last state ofω if ω
is finite andstep(ω, i) the action or duration associated with the(i+1)-th
transition (that is,step(ω, i) = ai). By abuse of notation, we say that a single
states is a path of length 0. The set of finite and infinite paths starting in
the states is denoted byPathfin(s) andPath ful (s), respectively. For any

infinite pathω = s0
a0,µ0−−−→ s1

a1,µ1−−−→ · · · , the accumulated duration up to the
(n+1)-th state ofω is defined by:

dur(ω, n+1) def=
∑
{|ai | 06i6n ∧ ai ∈ T|} .

In contrast to a path, anadversary(or scheduler) represents a particular res-
olution of nondeterminismonly. More precisely, an adversary is a function
which chooses an outgoing distribution in the last state of a path. Formally,
we have the following definition.

Definition 6. Let TPS = (S, s̄,Act , T,Steps) be a timed probabilistic sys-
tem. An adversaryA of TPS is a function mapping every finite pathω of TPS
to a pair (a, µ) such that(last(ω), a, µ) is an element ofSteps. For any state
s ∈ S, let PathA

fin(s) andPathA
ful (s) denote the subsets ofPathfin(s) and

Path ful (s) which correspond toA.

The behaviour of a timed probabilistic systemTPS = (S, s̄,Act , T,Steps)
under a given adversaryA is purely probabilistic. More precisely, for a state
s ∈ S, the behaviour from states can be described by the infinite-state DTMC
DA

s = (SA
s , s,PA

s ), where:

− SA
s = PathA

fin(s);
− for any two finite pathsω, ω′ ∈ SA

s :

PA
s (ω, ω′) =

{
µ(s′) if ω′ is of the formω

a,µ−−→ s′ andA(ω) = (a, µ)
0 otherwise.

There is a one-to-one correspondence between the paths ofDA and the set of
pathsPathA

ful (s) in the timed probabilistic system. Hence, using the proba-
bility measure over DTMCs given in Section 2.2 we can define a probability
measureProbA

s over the set of pathsPathA
ful (s).

To simplify proofs, we also userandomized adversaries, where a random-
ized adversaryB is a functionB mapping every finite pathω to a distribution
over{(a, µ) | (last(π), a, µ) ∈ Steps}. Similarly to the above, we can asso-
ciate with any randomized adversary a probability measure over the set of
paths of the adversary (see, for example, [22, 50]).

We restrict our attention totime-divergent adversaries, a common restric-
tion imposed in real-time systems so that unrealisable behaviour (i.e. corre-
sponding to time not advancing beyond a time bound) is disregarded during
analysis. We say that an infinite pathω is divergentif for any t ∈ R, there
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existsj ∈ N such thatdur(ω, j)>t. The following lemma shows that for any
adversaryA and states of a timed probabilistic system the set of divergent
paths with initial states is measurable under any adversary identified in the
previous paragraph.

Lemma 7. LetTPS = (S, s̄,Act , T,Steps) be a timed probabilistic system.
For any adversaryA of TPS and s ∈ S the set of divergent paths ofA is
measurable.

Proof. For anyn, m ∈ N, let Cm
n = {ω ∈ PathA

ful (s) | dur(ω, m)>n}, then

{ω ∈ PathA
ful (s) |ω is divergent} =

⋂
n∈N

 ⋃
m∈N

Cm
n


and hence measurable. ut

Definition 8. An adversaryA for a timed probabilistic systemTPS is diver-
gentif and only if, for each states of TPS, the probabilityProbA

s assigned to
the divergent paths ofPathA

ful (s) is 1. Furthermore, letAdvTPS be the set of
divergent adversaries ofTPS.

For motivation on why we consider suchprobabilistic divergent adver-
saries, as opposed to a stronger notion in which an adversary is divergent if
and only if all its paths are divergent, see [38].

3. Probabilistic Timed Automata

In this section we review the definition of probabilistic timed automata [38],
a modelling framework for timed probabilistic systems. The formalism is de-
rived from classical timed automata [1, 2] extended with discrete probability
distributions over edges.

3.1. TIME , CLOCKS AND CLOCK CONSTRAINTS

Let T ∈ {R, N} be thetime domainof either the non-negative reals or nat-
urals. LetX be a finite set of variables calledclockswhich take values from
the time domainT. A functionv ∈ TX is referred to as aclock valuation. Let
0 ∈ TX be the clock valuation which assigns 0 to all clocks inX . For any
v ∈ TX andt ∈ T, the clock valuationv⊕ t denotes thetime incrementfor v
with t (we present two alternatives for⊕ in Section 3.3; for the time domain
R it is standard addition+). We usev[X:=0] to denote the clock valuation
obtained fromv by resetting all of the clocks inX ⊆ X to 0, and leaving the
values of all other clocks unchanged.
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Let CC (X ) be the set ofclock constraintsoverX , which are conjunctions
of atomic constraints of the formx ∼ c for x ∈ X , ∼∈ {6,=,>}, and
c ∈ N. The clock valuationv satisfiesthe zoneζ, written v / ζ, if and only
if ζ resolves to true after substituting each clockx ∈ X with the correspond-
ing clock value fromv. Readers familiar with timed automata will note that
we consider the syntax ofclosed, diagonal-free zones, which do not feature
atomic constraints of the formx > c or x < c (closed) orx−y ∼ c (diagonal
free).

3.2. SYNTAX OF PROBABILISTIC TIMED AUTOMATA

We now introduce formally probabilistic timed automata. Observe that we
extend the original definition of [38] with urgent events, a well-established
concept for classical timed automata [29, 21].

Definition 9. A probabilistic timed automatonPTA is a tuple of the form
(L, l̄,X ,Σ, inv , prob) where:

− L is a finite set oflocations:
− l̄ ∈ L is theinitial location;
− X is a finite set ofclocks;
− Σ is a finite set ofevents, of whichΣu ⊆ Σ are declared as beingurgent;
− the functioninv : L → CC (X ) is theinvariant condition;
− the finite setprob ⊆ L×CC (X )×Σ×Dist(2X ×L) is theprobabilistic

edge relation.

Note that we often refer to the model presented above asclosed, diagonal-
free probabilistic timed automata, in order to distinguish the clock constraints
used with those in previous work [38].

A stateof a probabilistic timed automaton is a pair(l, v) wherel ∈ L and
v ∈ TX are such thatv / inv(l). Informally, the behaviour of a probabilistic
timed automaton can be understood as follows. The model starts in the initial
location l̄ with all clocks set to 0, that is, in the state(l̄,0). In this, and any
other state(l, v), there is a nondeterministic choice of either (1) making a
discrete transitionor (2) lettingtime pass. In case (1), a discrete transition can
be made according to any probabilistic edge(l, g, σ, p) ∈ prob with source
locationl which isenabled; that is, the zoneg is satisfied by the current clock
valuationv. Then the probability of moving to the locationl′ and resetting all
of the clocks inX to 0 is given byp(X, l′). In case (2), the option of letting
time pass is available only if the invariant conditioninv(l) is satisfied while
time elapses and there does not exist an enabled probabilistic edge with an
urgent event.

Note that atimed automaton[2] is a probabilistic timed automaton for
which every probabilistic edge(l, g, σ, p) is such thatp = µ(X,l′) (the point
distribution assigning probability 1 to(X, l′)) for some(X, l′) ∈ 2X × L.
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done

true

wait

x68

init
x62

0.01

0.99

x=2, x:=0

x:=0, 46x68

send
x60rec

retry

true
send

Figure 1. A probabilistic timed automaton modelling a simple communication protocol.

Example 10. Consider the probabilistic timed automaton modelling a simple
probabilistic communication protocol given in Figure 1. The protocol starts in
locationinit (the double border indicatesinit is the initial location). After ex-
actly 2 time units, the process receives data to send and moves to the location
send. Before any time elapses the process attempts to send the data and, with
probability 0.99, the data is sent correctly (locationdone is reached) while,
with probability 0.01, the data is sent incorrectly (locationwait is reached). In
the latter case, the process waits between 4 and 8 time units before attempting
to resend the data (returns to locationsend).

In Figure 2 we present an example of the behaviour for the timed proba-
bilistic system which underlies the probabilistic timed automata of Figure 1.

Higher-level modelling. To aid higher-level modelling, it is often useful to
define complex systems as theparallel compositionof a number of inter-
acting sub-components. The definition of the parallel composition operator
‖ of probabilistic timed automata uses ideas from the theory of (untimed)
probabilistic systems [51] and classical timed automata [2]. LetPTAi =
(Li, l̄i,Xi,Σi, inv i, probi) for i ∈ {1, 2} and assume thatX1 ∩ X2 = ∅.
Definition 11. Theparallel compositionof two probabilistic timed automata
PTA1 andPTA2 is the probabilistic timed automaton

PTA1‖PTA2 = (L1 × L2, (l̄1, l̄2),X1 ∪ X2,Σ1 ∪ Σ2, inv , prob)

such that

− σ ∈ Σ1 ∪ Σ2 is declared as urgent if and only if it is declared urgent in
at least one ofPTA1 andPTA2;

− inv(l, l′) = inv1(l) ∧ inv2(l′) for all (l, l′) ∈ L1 × L2;
− ((l1, l2), g, σ, p) ∈ prob if and only if one of the following conditions

holds:

1. σ ∈ Σ1 \ Σ2 and there exists(l1, g, σ, p1) ∈ prob1 such thatp =
p1⊗µ(∅,l2);
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〈init, 0〉

〈init, 2〉

rec

〈send, 0〉

send 0.010.99

〈wait, 0〉

retry

〈wait, 7.001〉

...

〈send, 0〉

send 0.010.99

〈wait, 0〉

〈wait, 4.72〉
retry

〈done, 0〉

〈done, 0〉

7.001

4.72

2

Figure 2. An example of behaviour for the simple communication protocol given in Figure 1.

2. σ ∈ Σ2 \ Σ1 and there exists(l2, g, σ, p2) ∈ prob2 such thatp =
µ(∅,l1)⊗p2;

3. σ ∈ Σ1 ∩Σ2 and there exists(li, gi, σ, pi) ∈ probi for i = 1, 2 such
that g = g1 ∧ g2 andp = p1⊗p2

where for anyl1 ∈ L1, l2 ∈ L2, X1 ⊆ X1 andX2 ⊆ X2:

p1⊗p2(X1 ∪X2, (l1, l2)) = p1(X1, l1) · p2(X2, l2) .

In addition to parallel composition, features which are present in the UPPAAL

input syntax [48, 44], such as urgent locations, committed locations and inte-
ger variables can be added to the probabilistic timed automaton framework.
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3.3. SEMANTICS OF PROBABILISTIC TIMED AUTOMATA

We now give the semantics of probabilistic timed automata defined in terms
of timed probabilistic systems. Observe that the definition is parameterized
by both the time domainT and the time increment operator⊕. The time
increment operator is a binary operator which takes a clock valuationv ∈ TX
and a time durationt ∈ T, and returns a clock valuationv⊕t ∈ TX which
represents, intuitively, the clock valuation obtained fromv after t time units
have elapsed.

Definition 12. Let PTA = (L, l̄,X ,Σ, inv , prob) be a probabilistic timed
automaton. Thesemantics ofPTA with respect to the time domainT and time
increment⊕ is the timed probabilistic system[[PTA]]⊕T = (S, s̄,Σ, T,Steps)
such that:

− S ⊆ L× TX where(l, v) ∈ S if and only if v / inv(l);
− s̄ = (l̄,0);
− ((l, v), a, µ) ∈ Steps if and only if one of the following conditions holds:

Time transitions. a = t ∈ T andµ = µ(l,v⊕t) such that:

1. v ⊕ t′ / inv(l) for all 0 6 t′ 6 t;

2. for all probabilistic edges of the form(l, g, σ,−) ∈ prob, if
v ⊕ t′ / g for some0 6 t′ 6 t, thenσ 6∈ Σu (no urgent
transitions are enabled);

Discrete transitions. a = σ ∈ Σ and there exists(l, g, σ, p) ∈ prob
such thatv / g and for any(l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=v[X:=0]

p(X, l′) .

The summation in the definition of discrete transitions is required for the
cases in which multiple clock resets result in the same target state.

In our setting, the semantics falls into two classes, depending on whether
the underlying model of time is the positive reals or the naturals. IfT =
R we let⊕ equal+ (standard addition) and refer to[[PTA]]+R as thedense-
time semanticsof the probabilistic timed automatonPTA. In contrast, ifT =
N, we let⊕ equal⊕N which is defined below, and refer to[[PTA]]⊕N

N as the
integral semanticsof PTA. To define⊕N, first, for anyx ∈ X , let kx denote
the greatest constant that the clockx is compared to in the clock constraints of
PTA. If the value of the clockx exceedskx, then its exact value is not relevant
when deciding which probabilistic edges are enabled. This means thatkx +1
is the maximum value of clockx that needs to be represented, because we can
interpret this value as corresponding to all clock values greater thankx, and
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12 Kwiatkowska, Norman, Parker and Sproston

leads us to the following definition of⊕N. For any clock valuationv ∈ NX

and time durationt ∈ N, let v⊕Nt be the clock valuation ofX which assigns
the valuemin{v(x) + t,kx + 1} to all clocksx ∈ X (although the operator
⊕N is dependent onPTA, we elide a sub- or superscript indicating this for
clarity).

Note that the definition of integral semantics for probabilistic timed au-
tomata is a generalization of the analogous definition for the classical model
in [13]. As we always use the same type of time increment for a particular
choice of time domain, we henceforth omit the+ and⊕N superscripts from
the notation, and write[[PTA]]R and [[PTA]]N, respectively. The fact that the
integral semantics of a probabilistic timed automaton is finite, and the dense-
time semantics of probabilistic timed automaton is generally uncountable,
can be derived from the definitions.

It is not difficult to check that the semantics of the parallel composition of
two probabilistic timed automata corresponds to the semantics of the parallel
composition of their individual semantic timed probabilistic systems. For-
mally, we overload the parallel composition operator‖ such thatTPS1‖TPS2

denotes the timed probabilistic system obtained from the parallel composition
of the timed probabilistic systemsTPS1 andTPS2 in the standard manner
[51] and defined below.

Definition 13. Theparallel compositionof two timed probabilistic systems
TPS1 andTPS2 with the same domainT is the timed probabilistic system

TPS1‖TPS2 = (S1 × S2, (s̄1, s̄2),Act1 ∪ Act2, T,Steps)

such that((s1, s2), a, µ) ∈ Steps if and only if one of the following conditions
holds:

1. a ∈ Act1 \ Act2 and there exists(s1, a, µ1) ∈ Steps1 such thatµ =
µ1⊗µs2 ;

2. a ∈ Act2 \ Act1 and there exists(s2, a, µ2) ∈ Steps2 such thatµ =
µs1⊗µ2;

3. a ∈ Act1 ∩ Act2 and there exists(si, a, µi) ∈ Steps i for i = 1, 2 such
that µ = µ1⊗µ2;

4. a ∈ T and there exists(si, a, µi) ∈ Steps i for i = 1, 2 such thatµ =
µ1⊗µ2;

Two timed probabilistic systemsTPS1 = (S1, s̄1,Act , T,Steps1) andTPS2 =
(S2, s̄2,Act , T,Steps2) are isomorphicif there exists a bijectionf : S1 →
S2 such that(s1, a, µ) ∈ Steps1 if and only if (f(s1), a, f(µ)) ∈ Steps2,
wheref(µ) ∈ Dist(S2) is the distribution defined byf(µ)(s2) = µ(f−1(s2))
for eachs2 ∈ S2. For the probabilistic timed automataPTA1 andPTA2 with
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disjoint clock sets,[[PTA1‖PTA2]]T and[[PTA1]]T‖[[PTA2]]T are isomorphic,
both for the integral and dense-time semantics.

3.4. PROBABILISTIC AND EXPECTEDREACHABILITY

In this section, we consider two performance measures for probabilistic timed
automata. In fact these measures are defined at the level of timed probabilistic
systems, in terms of which the semantics of probabilistic timed automata are
defined. The first measure isprobabilistic reachability, namely the maximal
and minimal probability of reaching, from the initial state, a certain set of
target states. For a timed probabilistic systemTPS = (S, s̄,Act , T,Steps),
setF ⊆ S of target states, and adversaryA ∈ AdvTPS, let:

pA
s̄ (F ) def= ProbA

s̄ {ω ∈ PathA
ful (s̄) | ∃i ∈ N . ω(i) ∈ F} .

Definition 14. Themaximal and minimal reachability probabilitiesof reach-
ing the set of statesF of the timed probabilistic systemTPS are defined as
follows:

pmax
TPS(F ) = sup

A∈AdvTPS

pA
s̄ (F ) and pmin

TPS(F ) = inf
A∈AdvTPS

pA
s̄ (F ) .

The second measure we consider isexpected reachability, which allows
us to compute the expected cost (or reward) accumulated before reaching a
certain set of states. Expected reachability is defined with respect to a set
F ⊆ S of target states and a cost function mapping state-action and state-
duration pairs to real values (the cost of performing an action or letting a
certain amount of time pass in the corresponding state, respectively). This
measure corresponds to the expected cost (with respect to the given cost
function) of reaching a state inF . More formally, for a timed probabilistic
systemTPS = (S, s̄,Act , T,Steps), cost functionC : S × (Act ∪ T) → R
(recall, R denotes the non-negative reals), setF ⊆ S of target states, and
adversaryA ∈ AdvTPS, let eA

s̄ (cost(C, F )) denote the usual expectation
of the functioncost(C, F ) (which returns, for a given pathω, the total cost
accumulated until a state inF is reached alongω) with respect to the measure
ProbA

s̄ overPathA
ful (s̄). That is:

eA
s̄ (cost(C, F )) =

∫
ω∈PathA

ful (s̄)
cost(C, F )(ω) dProbA

s̄

where for anyω ∈ PathA
ful (s̄):

cost(C, F )(ω) def=
min{j |ω(j)∈F}∑

i=1

C(ω(i−1), step(ω, i−1))
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14 Kwiatkowska, Norman, Parker and Sproston

if there existsj ∈ N such thatω(j) ∈ F , andcost(C, F )(ω) def= ∞ otherwise.
Note that, for simplicity, we define the cost of a path which does not reach

F to be∞, even though the total cost of the path may not be infinite. Hence,
the expected cost of reachingF from s is finite if and only if a state inF is
reached froms with probability 1.Expected time reachability(the expected
time with which a given set of states can be reached) is a special case of
expected reachability, corresponding to the case whenC(s, a) = 0 for all
s ∈ S anda ∈ Act andC(s, t) = t for all s ∈ S andt ∈ T.

Definition 15. Themaximal and minimal expected costsof reaching a set of
statesF under the cost functionC in the timed probabilistic systemTPS are
defined as follows:

emax
TPS(C, F ) = sup

A∈AdvTPS

eA
s̄ (cost(C, F ))

emin
TPS(C, F ) = inf

A∈AdvTPS

eA
s̄ (cost(C, F )) .

We note that calculating expected reachability is equivalent to thestochas-
tic shortest path problemfor Markov decision processes; see for example
[12, 23].

In practice, cost functions are defined not at the level of timed probabilis-
tic systems, but in terms of probabilistic timed automata. At this level cost
functions are often defined using a pair(cΣ, r), wherecΣ : L × Σ → R
is a function assigning the cost, in each location, of executing each event in
Σ, andr ∈ R gives the rate at which cost is accumulated as time passes
(independent of the current location). The associated cost functionCcΣ,r is
defined as follows, for each(l, v) ∈ L× RX anda ∈ Σ ∪ T:

CcΣ,r((l, v), a) def=
{

cΣ(l, a) if a ∈ Σ
a · r otherwise.

A probabilistic timed automaton equipped with a pair(cΣ, r) is a probabilistic
generalisation of uniformly priced timed automata [9]. In Section 4.3 we
will restrict attention to such cost functions, while in Section 4.4 we will
consider more general cost functions where the cost per unit of time can vary
depending on the current location, which can be considered as a probabilistic
extension of linearly priced timed automata [10]. More precisely, cost func-
tions of the formCcΣ,r wherer : L → R is a function assigning to each
location the rate at which costs are accumulated as time passes in that location
and for any(l, v) ∈ L× RX anda ∈ Σ ∪ R:

CcΣ,r((l, v), a) def=
{

cΣ(l, a) if a ∈ Σ
a · r(l) otherwise.

Note that we only consider non-negative cost functions (R is the set of
non-negative reals). However, all the results presented also hold for the cor-
responding non-positive cost functions.
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For both probabilistic and expected reachability, we can consider reaching
a state satisfying a formulaφ which is a conjunction of propositions identi-
fying locations and clock constraints (that is, constraints of the formx ∼ c
for x ∈ X , ∼∈ {6,=,>} andc ∈ N). Instead of considering these cases
separately, we just note that such reachability problems can be reduced to
those referring to locations only by modifying syntactically the probabilistic
timed automaton of interest (see [38]). Note that, if all the clock constraints
appearing in thePTA and present in the formulaφ are closed and diagonal-
free, then all the clock constraints appearing in the modifiedPTA are also
closed and diagonal-free.

In the case of probabilistic reachability the types of properties which can
be expressed can be classified as follows:

Probabilistic reachability: The system reaches a certain set of states with a
given maximal or minimal probability. For example, ‘with probability at
least 0.999, a data packet is correctly delivered’.

Probabilistic time-bounded reachability: The system reaches a certain set
of states within a certain time deadline and probability threshold. For
example, ‘with probability 0.01 or less, a data packet is lost within 5
time units’.

Probabilistic cost-bounded reachability: The system reaches a certain set
of states within a certain cost and probability bound. For example, ‘with
probability 0.75 or greater, a data packet is correctly delivered with at
most 4 retransmissions’.

Invariance: The system does not leave a certain set of states with a given
probability. For example, ‘with probability 0.875 or greater, the system
never aborts’.

Bounded response:The system inevitably reaches a certain set of states within
a certain time deadline with a given probability. For example, ‘with
probability 0.99 or greater, a data packet will always be delivered within
5 time units’.

On the other hand, expected time reachability allows us to express, for ex-
ample, ‘the (maximum) expected time until a data packet is delivered is at
most 20ms’ and ‘the (minimum) expected time until a packet collision occurs
is at least 100 seconds’. In general, expected reachability allows us to vali-
date properties including: ‘the expected number of retransmissions before the
message is correctly delivered is less than 3’, ‘the expected number of packets
sent before failure is at least 300’ and ‘the expected number of lost messages
within the first 200 seconds is at most 10’.

We illustrate the expected reachability approach using the final property as
an example. We would first need to modify the probabilistic timed automaton
under study by adding a distinct clock (to represent the elapsed time) and
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16 Kwiatkowska, Norman, Parker and Sproston

location such that, from all locations, once this clock has reached 200 seconds
the only transition is to this new location. The set of target states would then
be the set containing only the new location. The cost function would equal
0 on all time transitions and events except the event(s) corresponding to a
message being lost, whose cost would be set to 1.

Finally, using the more general cost functionsCcΣ,r, we can consider per-
formance measures such as:

− the expected time the channel is free beforeN messages are sent (by
settingr(l) to be 1 if locationl corresponds to a state in which the
channel is free, and 0 otherwise);

− the expected time a sender spends waiting for an acknowledgement (by
settingr(l) to be 1 if locationl corresponds to a state in which the sender
is waiting for an acknowledgement, and 0 otherwise);

− the expected energy consumption within the firstT (∈ N) seconds (by
settingr(l) to the power usage (Watts) of the locationl ∈ L andcΣ(l, σ)
to be the energy consumption associated with performing the eventσ in
locationl).

3.5. MODEL CHECKING

To apply model checking methods we must first ensure that the system we
consider has only finitely many states and is finitely branching. From the
construction, the integral semantics has only finitely many states. However,
to ensure finite branching, we must restrict the delays in the integral semantic
models fromN to some finite set. For example, since we have not permitted
probabilistic choices over delays, we can restrict delays to have duration 1
only and, since any time transition of duration inN can be modelled by a se-
quence of time transitions of duration 1 and we restrict attention to divergent
adversaries, nothing is lost by omitting delays of duration greater than 1 or of
duration 0.

The model checking algorithms for both probabilistic and expected reach-
ability are available in the literature; for probabilistic reachability see [15, 8],
and for expected reachability see [22, 23]. In both cases verification reduces
to solving a linear optimization problem for which one can apply iterative
methods. We also note that, in [22], algorithms for checking for the presence
of divergent adversaries are given.

The integral semantic model can suffer from the state space explosion
problem; in particular, the size of the models is exponential in the number of
clocks and the largest constant that the clocks are compared to. An abstraction
technique which can be used to reduce the size of the model under study is
that of changing thetime scale, since this can reduce the constants that clocks
are compared to. More formally, one can increase the time unit and then round
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upper bounds on the values of the constraints up, lower bounds down. For
(non-probabilistic) timed automata, it is established in [4] that the trace set of
the timed automaton after such a transformation includes that of the original
model. It follows that, in the probabilistic setting, carrying out our model-
checking on the transformed automaton gives bounds on the performance
indices of the original automaton. More precisely, the computedmaximum
probabilistic and expected reachability measures on the transformed model
areupperbounds and the minimum probabilistic and expected reachability
measures are lower bounds on those that would be obtained for the original
automaton.

3.5.1. The probabilistic model checker PRISM
PRISM [35, 47] is a probabilistic model checker developed at the University
of Birmingham. The current implementation of PRISM supports the analy-
sis offinite-state probabilistic models of the following three types: discrete-
time Markov chains, Markov decision processes and continuous-time Markov
chains. Discrete-time Markov chains are defined in Section 2.2, while Markov
decision processes extend DTMCs by allowing both probabilistic and nonde-
terministic behaviour. Continuous-time Markov chains allow transitions to
occur in real-time as opposed to discrete steps, but differ from probabilistic
timed automata in that delays are represented by exponential distributions.
Furthermore, there is no nondeterminism in continuous-time Markov chains.

Models in PRISM are described in a high-level language, a variant of
reactive modules [3] based on guarded commands. The basic components of
the language aremodulesandvariables. A system is constructed as a number
of modules which can interact with each other. A module contains a number
of variables which express the state of the module, and its behaviour is given
by a set of guarded commands of the form:

[<action>] <guard> → <updates>;

The guard is a predicate over the variables of the system and the updates
describe transitions which the module can make if the guard is true (using
primed variables to denote the next values of variables). Updates are specified
as follows:

<prob> : <atomic update> + · · · + <prob> : <atomic update>

PRISM accepts specifications in probabilistic temporal logics. This allows
us to express various probabilistic properties such as ‘eventE happens with
probability 1’, and ‘the probability of cost exceedingC is 95%’. The model
checker then analyses the model and checks if the property holds in each
state. In the case of Markov decision processes, specifications are written
in the logic PCTL, and for the analysis PRISM implements the algorithms
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of [27, 15, 8]. The tool also supports verification of expected reachability
properties using the algorithms of [22, 23].

The underlying data structures used in PRISM are BDDs (binary decision
diagrams) and MTBDDs (multi-terminal BDDs) [19]. Model construction is
always performed using MTBDDs and BDDs. For numerical computation,
PRISM includes three separateengines. The first uses MTBDDs to store the
model and iteration vector, while the second uses conventional data struc-
tures for numerical analysis: sparse matrices and arrays. The latter nearly
always provides faster numerical computation than its MTBDD counterpart,
but sacrifices the ability to conserve memory by exploiting structure. The
third, hybrid, engine provides a compromise by storing the models in an
MTBDD-like structure, which is adapted so that numerical computation can
be carried out in combination with array-based storage for iteration vectors.
This hybrid approach is generally faster than MTBDDs, while handling larger
systems than sparse matrices. For further details and comparisons between
the engines see [36, 46].

We note that, by using integral semantics and PRISM, and hence MTB-
DDs, we see similar advantages to those reported in [13, 14] for modelling
and verifying classical timed automata using integral semantics and BDDs.
In particular, by using only MTBDDs we are able to model and verify large
and complex probabilistic real-time systems.

3.5.2. Modelling probabilistic timed automata in PRISM
We now explain the techniques used for modelling (the integral semantic
models of) probabilistic timed automata as Markov decision processes in
PRISM. First, due to the compositionality of the integral semantic model,
if the system under study is a parallel composition of a number of proba-
bilistic timed automata, then the integral semantics of each automaton can be
modelled by a PRISM module and the system can be defined as the parallel
composition of the modules. The only complication in this approach is repre-
senting passage of time; this is accomplished by including a distinct action,
time, and then labelling the transitions of each module which correspond
to time passing with this action. Hence, when a time action is executed, all
modules must synchronize on this action.

Since, in the integral semantic model, the possible values of any clock
x are in the range{0, 1, 2, . . . ,kx,kx + 1}, we can model each clock as a
bounded integer-valued variable. Furthermore, we can use bounded integer-
valued variables to model the locations of an automaton. The possible transi-
tions of an automaton are then defined by a guarded command expressed in
terms of these variables. In the case of time transitions, supposing in location
l the invariant is(y64) and the automaton has two clocksx andy, then the
time passage transitions (of duration 1) in locationl can be modelled by the
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guarded command:

[time] l=1 & y<4 → (x’=min(x+1,kx+1))&(y’=min(y+1,ky+1)) ;

Note that the non-strict upper bound in the invariant condition is made strict,
because, if the clockx equals 4, no more time can pass (if one more time unit
could elapse, then the value ofy would become 5 and the invariant would be
false).

In the case of discrete transitions, if in locationl there is a discrete tran-
sition which has the enabling condition46x66, performs the eventa, and
moves to location 2 with probability 0.25, and to location 3 while resetting
the clocksx andy with probability 0.75, then this transition can be modelled
by the following guarded command:

[a] l=1 & x>=4 & x<=6 → 0.25:(l’=2) + 0.75:(l’=3)&(x’=0)&(y’=0) ;

4. Correctness of the Integral Semantics

In this section we show, under the restriction that the probabilistic timed
automaton under study is closed and diagonal-free, that probabilistic and
expected reachability values are the same in the integral and dense-time se-
mantics. Therefore, for this class of probabilistic timed automata, it suffices
to study the integral semantic model.

LetPTA = (L, l̄,X ,Σ, inv , prob) be a probabilistic timed automaton. For
any set of locationsF ⊆ L, we denote byFT the set of all states of[[PTA]]⊕T
which correspond to these locations; that is

FT = {(l, v) | l ∈ F, v ∈ TX andv / inv(l)} .

4.1. ε-DIGITIZATION

In this section we extend the techniques developed in the classical timed
automata case. We begin with the following definition and lemma which are
taken from [28, 30].

Definition 16. For anyt ∈ R andε ∈ [0, 1] let:

[t]ε =
{
btc if t 6 btc+ ε
dte otherwise.

Note that, from Definition 16, it trivially follows that:

[t]1 6 t 6 [t]0 for all t ∈ R. (1)
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Lemma 17. For any t, t′ ∈ R, c ∈ N and∼∈ {6,=,>}, if t − t′ ∼ c then
[t]ε − [t′]ε ∼ c for all ε ∈ [0, 1].

Next, we introduce the following property on paths of probabilistic timed
automata.

Lemma 18. For any pathω = (l0, v0)
a0,µ0−−−→ (l1, v1)

a1,µ1−−−→ · · · , x ∈ X and
i ∈ N, there existsj 6 i such thatvi(x) = dur(ω, i)− dur(ω, j).

Proof. The proof follows from choosingj 6 i such that(lj , vj) is the most
recent state where the clockx was reset. ut

Using the above, we now define theε-digitizationof a path [30, 28].

Definition 19 (ε-digitization). For any path:

ω = (l̄,0)
a0,µ0−−−→ (l1, v1)

a1,µ1−−−→ · · ·

of [[PTA]]R, its ε-digitization is the path

[ω]ε = (l̄,0)
a′0,µ′0−−−→ (l1, [v1]ε)

a′1,µ′1−−−→ · · ·

of [[PTA]]N where for anyi ∈ N andx ∈ X :

− [vi]ε(x) = min([dur(ω, i)]ε − [dur(ω, j)]ε,kx + 1) andj 6 i such that
vi(x) = dur(ω, i)− dur(ω, j) which exists by Lemma 18;

− if ai ∈ Σ andµi is constructed from a probabilistic edge ofPTA which
is of the form(−,−, ai, pi), thena′i = ai and for any(l′, v′) ∈ L×NX :

µ′i(l
′, v′) =

∑
X⊆X &

v′=[vi]ε[X:=0]

pi(X, l′) ;

− if ai ∈ R, thena′i = [dur(ω, i+1)]ε−[dur(ω, i)]ε andµ′i = µ(li,[vi]ε⊕a′i)
.

The well-definedness of this construction – that is, the fact that[ω]ε is
a path of[[PTA]]N – follows from Lemma 17, Lemma 18, and the fact that
the clock constraints appearing inPTA are closed and diagonal-free. For
example, for anyx ∈ X and i > 0 such thatai ∈ R, by Definition 19
there existsj 6 i such that:

min([vi]ε(x)+a′i,kx+1) = min([dur(ω, i)]ε − [dur(ω, j)]ε + a′i,kx+1)
= min([dur(ω, i)]ε−[dur(ω, j)]ε+[dur(ω, i+1)]ε−[dur(ω, i)]ε,kx+1)

by construction

= min([dur(ω, i+1)]ε − [dur(ω, j)]ε,kx+1) rearranging

= [vi+1]ε(x) by Definition 19.

We now introduce the following lemmas which relate the time and cost of a
path with those of its digitization.
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Lemma 20. For any pathω ∈ Path ful (s̄), ε ∈ [0, 1] andi ∈ N:

dur([ω]ε, i) = [dur(ω, i)]ε .

Proof. Consider any pathω = (l̄,0)
a0,µ0−−−→ (l1, v1)

a1,µ1−−−→ · · · ∈ Path ful (s̄).
We prove the lemma by induction oni ∈ N. If i = 0, then by definition
dur([ω]ε, i) = [dur(ω, i)]ε = 0 as required.

Now suppose that the lemma holds for somei ∈ N. We have two cases to
consider.

− If ai ∈ Σ, then[dur(ω, i+1)]ε = [dur(ω, i)]ε and from Definition 19
we havedur([ω]ε, i+1) = dur([ω]ε, i), and hence the lemma holds by
induction.

− If ai ∈ R, then by Definition 19 we have

dur([ω]ε, i+1) = dur([ω]ε, i) + ([dur(ω, i+1)]ε − [dur(ω, i)]ε)
= [dur(ω, i)]ε + ([dur(ω, i+1)]ε − [dur(ω, i)]ε) by induction

= [dur(ω, i+1)]ε as required.

Since these are the only cases to consider, the lemma holds by induction on
i ∈ N. ut

Lemma 21. For any pathω ∈ Path ful (s̄), set of locationsF ⊆ L and cost
functionCcΣ,r we have:

cost(CcΣ,r, FN)([ω]1) 6 cost(CcΣ,r, FR)(ω) 6 cost(CcΣ,r, FN)([ω]0) .

Proof. Consider any pathω ∈ Path ful (s̄), set of locationsF ⊆ L and cost
functionCcΣ,r.

− If there does not existi ∈ N such thatω(i) ∈ FR, then, for anyε ∈ [0, 1],
from Definition 19, there does not existi ∈ N such that[ω(i)]ε ∈ FN.
Therefore, by definition ofcost(CcΣ,r, FT), we have:

cost(CcΣ,r, FN)([ω]ε) = cost(CcΣ,r, FR)(ω) = ∞

for all ε ∈ [0, 1], and hence the lemma holds in this case.
− If there existsi ∈ N such thatω(i) ∈ FR, then, by definition ofdur(ω, ·)

andcost(CcΣ,r, FR), it follows that:

cost(CcΣ,r, FR)(ω) = cost(CcΣ,0, FR)(ω) + r · dur(ω, iF ) . (2.1)

whereiF = min{j |ω(j) ∈ FR}. Next, from Definition 19 we have, for
anyε ∈ [0, 1], i ∈ N andσ ∈ Σ:

• ω(i) ∈ FR if and only if [ω]ε(i) ∈ FN;
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• step(ω, i) = σ if and only if step([ω]ε, i) = σ.

It then follows that:

cost(CcΣ,0, FN)([ω]ε) = cost(CcΣ,0, FR)(ω) for all ε ∈ [0, 1]. (2.2)

Furthermore, using Lemma 20 and (1) (see page 19) we have:

dur([ω]1, iF ) 6 dur(ω, iF ) 6 dur([ω]0, iF ) . (2.3)

Finally, combining (2.1)-(2.3) and using the fact thatr > 0 we have

cost(CcΣ,r, FN)([ω]1) 6 cost(CcΣ,r, FR)(ω) 6 cost(CcΣ,r, FN)([ω]0)

as required.

Since these are the only cases to consider the lemma holds. ut

We now extend the notion of digitization from paths to adversaries. Note
that we extend the digitization notation[·]ε to setsof paths: for a setΩ of
infinite paths, let[Ω]ε = {[ω]ε |ω ∈ Ω}. To simplify the presentation, when
considering a fixed adversaryA ∈ Adv [[PTA]]R , we suppose that the domain of
the mapping[·]ε is restrictedto the sets of pathsPathA

fin(s̄) andPathA
ful (s̄).

More precisely, for any pathπ of [[PTA]]N:

[π]−1
ε =

{
{ω ∈ PathA

fin(s̄) | [ω]ε = π} if π is finite
{ω ∈ PathA

ful (s̄) | [ω]ε = π} otherwise
(3)

Using this interpretation we have the following result.

Lemma 22. For any adversaryA ∈ Adv [[PTA]]R , pathπ of [[PTA]]N andε ∈
[0, 1], the set of paths[π]−1

ε ⊆ PathA
fin(s̄) is finite.

Proof. Consider any adversaryA ∈ Adv [[PTA]]R , pathπ of [[PTA]]N andε ∈
[0, 1], then the result is a direct consequence of the following two facts:

− for anyn ∈ N the set of paths{ω ∈ PathA
fin(s̄) | |ω|=n} is finite;

− |ω| = |[ω]ε| for all ω ∈ PathA
fin(s̄). ut

We now extend the notion of digitization to adversaries through the following
proposition in which we useFPathA

ful (s̄)
to denote theσ-algebra generated by

the adversaryA over the set of infinite pathsPathA
ful (s̄).

Proposition 23. For any adversaryA ∈ Adv [[PTA]]R and ε ∈ [0, 1], there

exists a (randomized) adversaryBε ∈ Adv [[PTA]]N such that:ProbBε

s̄ (Π) =
ProbA

s̄ ([Π]−1
ε ) for all Π ∈ FPathBε

ful (s̄).
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Proof. Consider any adversaryA of [[PTA]]R. First, to ease notation, for any
set of finite pathsΩ ⊆ PathA

fin(s̄) let:

ProbA
s̄ (Ω) = ProbA

s̄ {ω′ ∈ PathA
ful (s̄) |ω 6 ω′ for someω ∈ Ω}

and for any finite pathπ ∈ PathA
fin(s̄) and(a, µ) ∈ Steps(last(π)) let:

(π
a,µ−−→) def= {π′ ∈ PathA

fin(s̄) | ∃s ∈ S. π′ = π
a,µ−−→ s} .

We define the adversaryBε as follows. The set of paths ofBε is given
by {[ω]ε |ω ∈ PathA

ful (s̄)}, and, as usual, letPathBε

fin (s̄) be the set of fi-
nite prefixes of these paths. For any pathπ ∈ PathBε

fin (s̄) and (a, µ) ∈
Steps(last(π)), the probability ofBε choosing(a, µ) afterπ has been per-
formed is given by:

Bε(π)(a, µ) def=
ProbA

s̄ ([π
a,µ−−→ ]−1

ε )
ProbA

s̄ ([π]−1
ε )

.

Note that the above probabilities are well defined since, from (3), the sets of
paths[π

a,µ−−→ ]−1
ε and[π]−1

ε are both finite. We are now in a position, using
the cylinder construction (see Section 2.2), to define the probability measure
ProbBε

s̄ overPathBε

ful (s̄).
To complete the proof it remains to show thatProbBε

s̄ (Π) = ProbA
s̄ ([Π]−1

ε )
for all Π ∈ FPathBε

ful (s̄). Now, from the cylinder construction (see Section 2.2),

it follows that it is sufficient to show that:

ProbBε

s̄ (π) = ProbA
s̄ ([π]−1

ε ) for all π ∈ PathBε

fin (s̄) (4)

which we now prove by induction on the length ofπ. Note that, again, it
follows from (3) that the set of paths[π]−1

ε is finite.
Therefore, consider any pathπ ∈ PathBε

fin (s̄). If |π| = 0 thenProbBε

s̄ (π) =
1 = ProbA

s̄ ([π]−1
ε ) as required.

Next, suppose by induction the lemma holds for all paths of lengthn and
π is of lengthn + 1. Now, π is of the formπ′

a,µ−−→ s′ for some pathπ′ of
lengthn such that(a, µ) ∈ Steps(last(π′)) ands′ ∈ S, and therefore:

ProbBε

s̄ (π) = ProbBε

s̄ (π′) ·Bε(π′)(a, µ) · µ(s′)

= ProbA
s̄ ([π′]−1

ε ) ·Bε(π′)(a, µ) · µ(s′) by induction

= ProbA
s̄ ([π′]−1

ε ) · ProbA
s̄ ([π′

a,µ−−→ ]−1
ε )

ProbA
s̄ ([π′]−1

ε )
· µ(s′) by definition ofBε

= ProbA
s̄ ([π′

a,µ−−→ ]−1
ε ) · µ(s′) rearranging

= ProbA
s̄ {ω ∈ PathA

fin(s̄) | [ω]ε = π′
a,µ−−→ s′} by definition ofProbA

s̄

= ProbA
s̄ ([π]−1

ε ) by construction ofπ
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and hence (4) holds by induction.
Finally, to show thatBε ∈ Adv [[PTA]]N , we must show thatBε is divergent.

This result follows from (4), the fact thatA is divergent, and since from
Lemma 20 any (infinite) path is divergent if and only if itsε-digitization is
divergent. ut

4.2. PROBABILISTIC REACHABILITY

In this section we show that it is sufficient to consider the integral semantics
when computing probabilistic reachability properties. Note that an alternative
proof of Theorem 24 appears in [41].

Theorem 24. For any (closed, diagonal-free) probabilistic timed automaton
PTA and set of locationsF ⊆ L:

pmax
[[PTA]]R

(FR) = pmax
[[PTA]]N

(FN)

pmin
[[PTA]]R

(FR) = pmin
[[PTA]]N

(FN) .

Proof. First, from Definition 19, we have thatω(i) ∈ FR if and only if
[ω]ε(i) ∈ FN for any pathω of [[PTA]]R. We have seen in Proposition 23
that for any adversaryA ∈ Adv [[PTA]]R and ε ∈ [0, 1], we can define an
adversaryBε ∈ Adv [[PTA]]N such that:ProbBε

s̄ (Π) = ProbA
s̄ ([Π]−1

ε ) for
all Π ∈ FPathBε

ful (s̄). Combining these results it follows that, for any adver-

saryA ∈ Adv [[PTA]]R andε ∈ [0, 1], we can construct an adversaryBε ∈
Adv [[PTA]]N such that:

pA
s̄ (FR) = pBε

s̄ (FN) ,

and hence:
inf

A∈Adv [[PTA]]R

pA
s̄ (FR) > inf

B∈Adv [[PTA]]N

pB
s̄ (FN)

and
sup

A∈Adv [[PTA]]R

pA
s̄ (FR) 6 sup

B∈Adv [[PTA]]N

pB
s̄ (FN) .

On the other hand, by definition of the integral and dense-time semantics, for
any adversaryB ∈ Adv [[PTA]]N , there exists an adversaryA ∈ Adv [[PTA]]R

such thatpA
s̄ (FR) = pB

s̄ (FN). Intuitively, the adversaryA behaves like the
integral semantic adversaryB; that is, it chooses to make timed transitions of
only integral duration. The result of Theorem 24 then follows. ut
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4.3. EXPECTEDREACHABILITY AND UNIFORM COST FUNCTIONS

In this section we consider expected reachability while restricting attention to
cost functions defined by pairs(cΣ, r), wherecΣ : L × Σ → R andr ∈ R.
Note that an alternative characterization of the cost functions we consider is
those that satisfy the following property:

− C(s, t) = C(s′, t) for all s, s′ ∈ S andt ∈ R;

− C(s, t + t′) = C(s, t) + C(s, t′) for all s ∈ S andt, t′ ∈ R.

Before we give the proof of correctness under these assumptions, we require
the following lemma and proposition. Recall the definition of a measurable
function (Definition 2).

Lemma 25. For any adversaryA ∈ Adv [[PTA]]R , the mapping[·]ε is a mea-

surable function from(PathA
ful (s̄),FPathA

ful (s̄)
) to the measurable space in-

duced from the set of paths{[ω]ε |ω ∈ PathA
ful (s̄)}.

Proof. Recall, from Section 2.2, that for any finite pathω, the cylinder set of
ω is given bycyl(ω). The proof follows from the fact that for any finite path
π ∈ {[ω]ε |ω ∈ PathA

fin(s̄)}:

[cyl(π)]−1
ε =

⋃
{cyl(ω) |ω ∈ PathA

fin(s̄) ∧ [ω]ε = π} ,

and the set of paths{ω ∈ PathA
fin(s̄) | [ω]ε = π} is finite. That is, the set

[cyl(π)]−1
ε is the finite union of measurable sets ofPathA

ful (s̄), and hence a
measurable set. ut

Proposition 26. For any set of locationsF ⊆ L, adversaryA ∈ Adv [[PTA]]R

and cost functionCcΣ,r, if the adversariesB0, B1 ∈ Adv [[PTA]]N are con-
structed following Proposition 23, then:

eB1

s̄ (cost(CcΣ,r, FN)) 6 eA
s (cost(CcΣ,r, FR)) 6 eB0

s̄ (cost(CcΣ,r, FN))

Proof. Consider any adversaryA ∈ Adv [[PTA]]R and cost functionCcΣ,r.
First, for anyε ∈ [0, 1], sinceCcΣ,r is non-negative,cost(CcΣ,r, FN) is a real
non-negative function on(PathBε

ful (s̄),FPathBε
ful (s̄)), and hence using Proposi-

tion 23 and Lemma 25 we can apply Theorem 3 which gives:∫
ω∈PathA

ful (s̄)
cost(CcΣ,r, FN)([ω]ε) dProbA

s̄

=
∫

π∈PathBε
ful (s̄)

cost(CcΣ,r, FN)(π) dProbBε

s̄ . (5)
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Now by definition ofeA
s̄ :

eA
s̄ (cost(CcΣ,r, FR)) =

∫
ω∈PathA

ful (s̄)
cost(CcΣ,r, FR)(ω) dProbA

s̄

6
∫

ω∈PathA
ful (s̄)

cost(CcΣ,r, FN)([ω]0) dProbA
s̄ by Lemma 21

=
∫

π∈PathB0
ful (s̄)

cost(CcΣ,r, FN)(π) dProbB0

s̄ by (5)

= eB0

s̄ (cost(CcΣ,r, FN)) by definition.

Similarly, we can showeB1

s (cost(CcΣ,r, FN)) 6 eA
s (cost(CcΣ,r, FR)). ut

Theorem 27. For any (closed, diagonal-free) probabilistic timed automaton
PTA, set of locationsF ⊆ L and cost functionCcΣ,r:

emax
[[PTA]]R

(CcΣ,r, FR) = emax
[[PTA]]N

(CcΣ,r, FN)

emin
[[PTA]]R

(CcΣ,r, FR) = emin
[[PTA]]N

(CcΣ,r, FN) .

Proof. Consider any set of locationsF ⊆ L and cost functionCcΣ,r. We
have seen in Proposition 23 and Proposition 26 that for any adversaryA ∈
Adv [[PTA]]R we can construct adversariesB0, B1 ∈ Adv [[PTA]]N such that:

eB1

s̄ (cost(CcΣ,r, FN)) 6 eA
s (cost(CcΣ,r, FR)) 6 eB0

s̄ (cost(CcΣ,r, FN)) ,

and hence it follows that:

inf
A∈Adv [[PTA]]R

eA
s̄ (cost(CcΣ,r, FR)) > inf

B∈Adv [[PTA]]N

eB
s̄ (cost(CcΣ,r, FN))

and

sup
A∈Adv [[PTA]]R

eA
s̄ (cost(CcΣ,r, FR)) 6 sup

B∈Adv [[PTA]]N

eB
s̄ (cost(CcΣ,r, FN)) .

On the other hand, as in the proof of Theorem 24, for any adversaryB ∈
Adv [[PTA]]N , there exists an adversaryA ∈ Adv [[PTA]]R such that:

eA
s̄ (cost(CcΣ,r, FR)) = eB

s̄ (cost(CcΣ,r, FN)). ut

4.4. EXPECTEDREACHABILITY AND VARIABLE COST FUNCTIONS

In this section we extend our results on expected reachability to the case
when, as in (non-probabilistic) linearly priced timed automata [10], the costs
associated with the time spent in locations can vary between locations. More
precisely, we consider cost functions of the formCcΣ,r where:
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− cΣ : L× Σ → R is a function assigning the cost of executing events;

− r : L → R is a function assigning to each location the rate at which
costs are accumulated as time passes in that location;

− for any(l, v) ∈ L× RX anda ∈ Σ ∪ R:

CcΣ,r((l, v), a) def=
{

cΣ(l, a) if a ∈ Σ
a · r(l) otherwise.

Note that, an alternative characterization of such cost functions are those that
satisfy:

C(s, t+t′) = C(s, t) + C(s, t′) for all s ∈ S andt, t′ ∈ R.

As in the previous section, the proof demonstrating that digital clocks are suf-
ficient for calculating expected reachability properties for such cost functions
relies on showing that, for any fixed (dense-time semantic) adversary, there
exist integral-time semantic adversaries whose expected costs of reaching a
set of target states withinn transitions bound that ofA. First, we require the
following results from linear programming.

Definition 28. A matrixA is totally unimodularif each subdeterminant ofA
is 0, +1 or −1.

Theorem 29 ([49] Theorem 19.3).LetA be a matrix with entries0, +1 and
−1. Then the following are equivalent:

1. A is totally unimodular;

2. each collection of columns ofA can be split into two parts so that the
sum of the columns in one part minus the sum of the columns in the other
part is a vector with entries only0, +1 and−1.

Theorem 30 ([49] Corollary 19.1.a).Let A be a totally unimodular ma-
trix, and letb and c be integral vectors. Then both problems in the linear
programming duality equation

max{cx |x > 0 ∧ Ax 6 b} = min{yb |y > 0 ∧ yA > c}

have integral optimum solutions.

We next define, for any adversaryA, a sequence of functions(eA
n )n∈N, where,

for any states, cost functionCcΣ,r and set of target locationsF , eA
n (CcΣ,r, FT, s)

equals the expected cost, under the adversaryA, of reachingF from s within
n transitions. Since adversaries can choose on the basis of history, we first
defineeA

n over paths, then restrict to the case of the initial state (paths of
length 0).
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Definition 31. Let PTA = (L, l̄,X ,Σ, inv , prob) be a probabilistic timed
automaton andTPS = (S, s̄,Act , T,Steps) be its semantics for the time
domainT. For any subset of target locationsF ⊆ L, cost functionCcΣ,r,
adversaryA ∈ AdvTPS andω ∈ PathA

fin , if last(ω) = (l, v) andA(ω) =
(a, µ), let eA

0 (CcΣ,r, FT, ω) = 0 and for anyn>0 :

eA
n+1(CcΣ,r, FT, ω)

=

 0 if (l, v) ∈ FT
CcΣ,r(l, a) +

∑
s′∈S

µ(s′) · eA
n (CcΣ,r, FT, ω

a,µ−−→ s′) otherwise.

Lemma 32. Let PTA = (L, l̄,X ,Σ, inv , prob) be a probabilistic timed au-
tomaton andTPS = (S, s̄,Act , T,Steps) be its semantics for the time do-
main T. For any subset of target locationsF , cost functionCcΣ,r and ad-
versaryA ∈ AdvTPS, 〈eA

n (CcΣ,r, FT, s̄)〉n∈N is a non-decreasing sequence
converging toeA

s̄ (cost(CcΣ,r, FT)).

Lemma 33. Let PTA = (L, l̄,X ,Σ, inv , prob) be a probabilistic timed au-
tomaton andCcΣ,r a (non-negative) cost function with rational coefficients.
For any adversaryA ∈ Adv [[PTA]]R , set of target locationsF and n ∈ N,
there exist adversariesB,C ∈ Adv [[PTA]]N such that:

eB
n (CcΣ,r, FN, s̄) 6 eA

n (CcΣ,r, FR, s̄) 6 eC
n (CcΣ,r, FN, s̄) .

Proof. The first step in the proof involves constructing a set of constraints
on the time steps of the adversaries which follow the same choices asA
(except in the actual duration of time transitions) up until thenth discrete
transition. Using these constraints we then formulate a linear programming
problem, whose objective is either to maximize or minimize the expected cost
of reaching a set of target states withinn transitions. The result then follows
from showing that there exist integer solutions which achieve the maximum
and minimum. Below, we consider only the construction of the adversaryC
(the construction ofB follows similarly).

We therefore begin by constructing a set of linear constraints from which
we can derive a set of adversaries that behave ‘almost’ the same asA. More
precisely, we consider any sequence of real valuest = 〈tω〉ω∈PathA

fin
which

satisfy, for anyω ∈ PathA
fin , the following constraints:

− if |ω| = 0, then

tω > 0 (6.1)

−tω > 0 (6.2)

− if |ω| > 0, then

tω − tω(k) > bdur(ω, |ω|)− dur(ω, k)c for all k < |ω| (6.3)

−tω + tω(k) > −ddur(ω, |ω|) + dur(ω, k)e for all k < |ω|. (6.4)
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Note that there exists a sequence of valuest which satisfy these constraints;
for example, lettingtω equaldur(ω, |ω|) or [dur(ω, |ω|)]ε for anyε ∈ [0, 1]
gives one possible solution.

Now suppose that we fix a sequence of real valuest which satisfy the
above constraints. From these values we can construct an adversaryCt which
‘almost’ matches the behaviour ofA. The set of finite paths ofCt is given by
{[ω]t |ω ∈ PathA

fin}, which we define inductively as follows: ifω = (l̄,0),
then[ω]t

def= ω, and ifω is of the formω′
a,µ−−→ (l, v), then:

[ω]t
def= [ω′]t

a′,µ′−−−→ (l, v′)

where

− v′(x) = tω−tω(j) andj 6 |ω| such thatv(x) = dur(ω, |ω|)−dur(ω, j),
which exists by Lemma 18;

− if a ∈ Σ, last([ω′]t) = (l̃, ṽ) andµ′ is constructed from a probabilistic
edge ofPTA which is of the form(·, ·, a, p), thena′ = a and for any
(l′′, v′′) ∈ L× NX :

µ′(l′′, v′′) =
∑

X⊆X &
ṽ[X:=0]=v′′

p(X, l′′) ;

− if a ∈ R, thena′ = tω − tω′ andµ′ = µ(l,v′).

Following the approach used in Proposition 23, we can then use these paths
to construct an adversaryCt. The fact thatCt is an adversary of[[PTA]]N
follows from Lemma 18, equations (6.1)–(6.4) and since we restrict attention
to closed, diagonal-free probabilistic timed automata. For any state(l, v) ∈ S,
let r(l, v) = r(l). Now, from the construction ofCt and Definition 31, it

follows thate
Ct
n (CcΣ,r, FR, s̄) equals:∑

ω∈PathA
fin∧|ω|6n

∧∀i6|ω|. ω(i) 6∈FR

ProbCt(ω) · (tω−tω|ω|−1) · r(last(ω)) + e
Ct
n (CcΣ,0, FR, s̄)

=
∑

ω∈PathA
fin∧|ω|6n

∧∀i6|ω|. ω(i) 6∈FR

ProbA(ω) · (tω−tω|ω|−1) · r(last(ω)) + eA
n (CcΣ,0, FR, s̄) (7)

sinceA andCt make the same discrete choices.
Now, suppose we fix somen ∈ N and consider the following linear

programming problem over the variables〈tω〉ω∈PathA
n (s̄), wherePathA

n (s̄)
is the set of paths ofPathA

fin(s̄) with length at mostn: maximize (7) such
that the constraints given by (6.1)-(6.4) are satisfied. First note that, under
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the assumption that all costs and probabilities are rational, we can scale the
objective function such that it contains only integer values. Furthermore,
from the construction of the constraints it follows that the corresponding
matrix is totally unimodular(using Theorem 29 and the fact that, for any
collection of columns of the constraint matrix, the sum of the columns is
a vector with entries only0, +1 and−1). Therefore, using Theorem 30, it
follows that the maximum solution is achieved by an integer vector. More pre-
cisely, there exists an adversaryC ∈ Adv [[PTA]]N such thateA

n (CcΣ,r, FR, s̄) 6
eC
n (CcΣ,r, FN, s̄) as required. ut

Theorem 34. For any (closed, diagonal-free) probabilistic timed automaton
PTA (where all probability values are rational), set of locationsF ⊆ L and
(non-negative) cost functionCcΣ,r with rational coefficients, we have:

emax
[[PTA]]R

(CcΣ,r, FR) = emax
[[PTA]]N

(CcΣ,r, FN)

emin
[[PTA]]R

(CcΣ,r, FR) = emin
[[PTA]]N

(CcΣ,r, FN) .

Proof. From Lemma 33 it follows that for anyn ∈ N and adversaryA ∈
Adv [[PTA]]R :

inf
B∈Adv [[PTA]]N

eB
n (CcΣ,r, FN, s̄) 6 eA

n (CcΣ,r, FR, s̄) 6 sup
C∈Adv [[PTA]]N

eC
n (CcΣ,r, FN, s̄) ,

and hence, taking limits asn tends to infinity together with Lemma 32, we
have:

lim
n→∞

inf
B∈Adv [[PTA]]N

eB
n (CcΣ,r, FN, s̄) 6 eA

s̄ (CcΣ,r, FR)

6 lim
n→∞

sup
C∈Adv [[PTA]]N

eC
n (CcΣ,r, FN, s̄) .

Now, from [22, 23], we need only consider the (finite) subset of simple adver-
saries1 when verifying expected reachability properties for[[PTA]]N. It then
follows, again using Lemma 32, that:

inf
B∈Adv [[PTA]]N

eB
s̄ (CcΣ,r, FN) 6 eA

s̄ (CcΣ,r, FR) 6 sup
C∈Adv [[PTA]]N

eC
s̄ (CcΣ,r, FN) .

The proof then concludes similarly to that of Theorem 27. ut

1 An adversaryB is simple, if for any finite pathsπ, π′ such thatlast(π) = last(π′) we
haveB(π) = B(π′).
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Figure 3. Example demonstrating that probabilistic stopwatch-bounded reachability proper-
ties are not preserved.

5. Limitations of Digital Clocks

In this section we investigate the limitations of digital clocks when analysing
probabilistic timed automata. In particular, in Section 5.1 we show that the
integral-time semantics does not preserve probabilistic stopwatch-bounded
reachability properties, while in Section 5.2 we show that the integral-time se-
mantics does not preserve the satisfaction of the probabilistic timed temporal
logic PTCTL [38].

5.1. PROBABILISTIC STOPWATCH-BOUNDED REACHABILITY

We now show, by means of a counter-example, that the integral-time seman-
tics does not preserve probabilistic stopwatch-bounded reachability proper-
ties; that is, properties concerned with the probability of reaching a certain
set of states before the time spent in a certain set of locations reaches a
bound. This means that properties such as ‘the probability that a message
is correctly delivered while spending at mostT time units waiting for an
acknowledgement is greater than 0.9’ cannot, in general, be verified correctly
using the integral-time semantics.

Consider the probabilistic timed automaton of Figure 3, and suppose that
we associate a stopwatch with this automaton which increases at the same
rate as real-time (‘running’) in the locationsl1 andl3, and remains constant
(‘stopped’) in all other locations. The property we consider is the minimum
probability of reaching the locationl4 while the stopwatch (i.e. time spent in
l1 andl3) remains (less than or) equal to zero. First, under the integral-time
semantic model, the transition from̄l can be taken either when the clockx
equals 0 or 1.

− If x equals 0 when the transition from̄l is taken, then, on the upper
branch, 1 time unit is spent in locationl1 before the locationl4 is reached,
while, on the lower branch, 0 time units are spent in locationl3 before
the locationl4 is reached.

− If x equals 1 when the transition from̄l is taken, then, on the upper
branch, 0 time units are spent in locationl1 before the locationl4 is
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reached, while, on the lower branch, 1 time unit is spent in locationl3
before the locationl4 is reached.

It then follows that, under the integral-time semantic model, the minimum
probability of reachingl4 while the stopwatch remains equal to zero ismin(λ, 1−
λ).

On the other hand, for the dense-time semantic model, suppose that the
transition froml̄ is taken whenx = δ ∈ (0, 1). Then, on the upper branch,
1− δ(>0) time units are spent in locationl1 before the locationl4 is reached,
while, on the lower branch,δ(>0) time units are spent in locationl3 before the
locationl4 is reached. Therefore, for the dense-time semantic model, the min-
imum probability of reaching locationl4 while the stopwatch remains equal
to zero is 0 (consider any adversary which lets someδ ∈ (0, 1) time units
pass before taking the discrete transition froml̄), and hence the minimum
probabilities in the integral and dense-time semantic models disagree.

Note that, for the corresponding minimum and maximum expected reach-
ability properties, i.e. the expected time spent in the locationsl1 andl3 until
the locationl4 is reached, the integral and dense-time models agree. More
precisely, for the cost functionCcΣ,r such thatcΣ(l, a) = 0 for all l ∈ L
anda ∈ Σ andr(l) = 1 if l ∈ {l1, l3} and 0 otherwise, then, for both the
integral and dense-time semantics, the minimum and maximum expected cost
of reaching locationl4 equalmin(λ, 1−λ) andmax(λ, 1−λ) respectively.

5.2. THE LOGIC PTCTL

PTCTL is a combination of two extensions of the branching temporal logic
CTL, the real-time temporal logic TCTL [31] and the probabilistic tempo-
ral logic PCTL [27, 15]. The logic TCTL can express timing constraints
referring to the clocks of the probabilistic timed automaton and a new set
of formula clocks, and includes the reset quantifierz.φ, used to reset the
formula clockz so thatφ is evaluated from a state at whichz = 0. PTCTL
is obtained by enhancing TCTL with the probabilistic operatorP∼λ[·] from
PCTL. In the derived logic we can express properties such as ‘with prob-
ability 0.95 or greater, the value of the system clockx does not exceed 3
before 8 time units have elapsed’, which is represented as the PTCTL formula
z.P>0.95[(x63) U (z=8)]. For details on the formal syntax and semantics of
PTCTL see, for example, [38].

Note that, if we restrict attention to formulae which do not contain nested
P∼λ[·] operators, it is straightforward to extend our results to show that the
satisfaction, in the initial state, of such formulae is preserved by the integral
semantics (under the restriction that all clock constraints appearing in the
formula are closed and diagonal-free). This result follows from the fact that
the satisfaction of such a formula reduces to computing either the maximum
or minimum reachability probability on a closed diagonal-free probabilistic
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l̄
06x63

l1
true

x>3

x61

Figure 4. Example demonstrating that the satisfaction of PTCTL formulae is not preserved.

timed automaton. However, as the following example demonstrates, digi-
tal clocks do not suffice for the verification of PTCTL formulae containing
nestedP∼λ[·] operators.

Consider the (probabilistic) timed automaton given in Figure 4. In the
integral-time semantic model, no state of the corresponding timed proba-
bilistic system satisfies the formulaφ = z.P<1[true U (locl1 ∧ z61)] (for
all adversaries the probability of reaching the locationl1 within 1 time unit
is less than 1). More precisely, if the automaton is in locationl̄ and the
clock x has an integer value, then there exists an adversary such that (with
probability 1) locationl1 is reached within 1 time unit. Therefore, since no
state of the integral-time semantic model can reach a state satisfyingφ, the
formulaP<1[true U φ] (for all adversaries the probability of reaching a state
satisfying the formulaφ is less than 1) is trivially true in the initial state(l̄,0).

On the other hand, for the dense-time semantics, when the automaton is in
location l̄ and the clockx is in the interval(1, 2), thenl1 cannot be reached
without letting more than 1 time unit elapse. Hence, starting from the initial
state(l̄,0) and letting time pass untilx ∈ (1, 2) the formulaφ becomes true,
and thusP<1[true U φ] is not satisfied in the initial state.

6. Case Studies

In this section, we illustrate the utility of the integral-time semantics of prob-
abilistic timed automata by considering three case studies, where all experi-
ments were performed using the probabilistic symbolic model checker PRISM.
Further details on the case studies, including the model checking statistics,
can be found on the PRISM web page [47]. This section also includes experi-
mental results to compare the performance of the techniques described in this
paper with alternative approaches from the literature.

6.1. ZEROCONF DYNAMIC CONFIGURATION PROTOCOL FORIPV4
LINK -LOCAL ADDRESSES

The first case study concerns the ZeroConf dynamic configuration protocol
for IPv4 link-local addresses [18], which offers a distributed ‘plug-and-play’
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solution in which IP address configuration is managed by individual devices
connected to a local network. This work extends the results presented in [37].
The protocol has also been studied in [17, 54, 6].

The aim of the protocol is to configure an IP address for a device which
newly joins the local network. The IP address is then used to facilitate local
communication between the devices of the network. Henceforth, we refer
to devices which partake of the protocol ashosts. When a host connects to
the network, it first randomly selects an IP address from a pool of 65024
available addresses (the Internet Assigned Number Authority has allocated
the addresses from 169.254.1.0 to 169.254.254.255 for the purpose of such
link-local networks). The host waits a random time of between 0 and 2 sec-
onds before starting to send fourAddress Resolution Protocol(ARP) packets,
calledprobes, to all of the other hosts of the network. Probes contain the IP
address selected by the host, operate as requests to use the address, and are
sent at 2 second intervals. A host which is already using the address will
respond with an ARP reply packet, asserting its claim to the address, and the
original host will restart the protocol by reconfiguring, where reconfiguration
involves randomly choosing a new address and sending new probes. Each
time a host witnesses an ARP packet with an address which conflicts with the
address that it has chosen, a counter is incremented. If the counter reaches the
value 10, then the host ‘backs off’ and remains idle for at least one minute.
If the host sends four probes without receiving an ARP reply packet, then it
commences to use the chosen IP address. The host also sends confirmation of
this fact to the other hosts of the network by means of two further messages,
calledgratuitousARPs, which are also sent at 2 second intervals. The pro-
tocol has an inherent degree of redundancy, for example with regard to the
number of repeated ARP packets sent, in order to cope with message loss.
Indeed, message loss makes possible the undesirable situation in which two
or more hosts use the same IP address simultaneously.

A host which has commenced using an IP address must reply to ARP
packets containing the same IP addresses that it receives from other hosts.
It continues using the address unless it receives any ARP packet other than
a probe (for example, a gratuitous ARP) containing the IP address that it is
using currently. In such a case, the host can eitherdefendits IP address, or
deferto the host which sent the conflicting ARP packet. The host may only
defend its address if it has not received a previous conflicting ARP packet
within the previous ten seconds; otherwise it is forced to defer. A defending
host replies by sending an ARP packet, thereby indicating that it is using, and
will continue to use, the IP address. A deferring host does not send a reply;
instead, it ceases using its current IP address, and reconfigures its IP address
by restarting the protocol.

As in [54], we assume a broadcast-based communication medium with no
routers (for example, a single wire), in which messages arrive in the order
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in which they are sent. In contrast to the analytic analysis of the protocol
by Bohnenkamp et al. [17], we model the possibility that a device could
surrender an IP address that it is using to another host; and in contrast to
the timed-automata-based analysis of Zhang and Vaandrager [54], we model
some important probabilistic characteristics of the protocol, and consider pa-
rameters more faithful to the standard (such as the maximum number of times
a device can witness an ARP packet with the same IP address as that which it
wishes to use before ‘backing off’ and remaining idle for at least one minute).

In the standard [18], there is no mention of what a host should do with
messages corresponding to its current IP address (i.e. the probes and gratu-
itous ARP packets specified in the standard) which are in its output buffer
(i.e. those that have yet to be sent), when it reconfigures (chooses a new IP
address). However, when the host does reconfigure, unless it picks the same
IP address, which happens with a very small probability (1/65024), these
messages are not relevant. In fact, such messages will slow down the network
and may even make hosts reconfigure when they do not need to. We therefore
considered two different versions of the protocol: one where the host leaves
the messages within its output buffer (NoReset) and another where the host
clears its buffer when it is about to choose a new IP address (Reset).

6.1.1. Modelling the dynamic configuration protocol
We consider in detail oneconcrete host, which is attempting to configure an
IP address for a network in which there areN abstract hostswhich have al-
ready configured IP addresses. These hosts are called abstract because we do
not study their behaviour in depth. When the concrete host picks an address,
the probability of this address beingfresh(not in use by an abstract host) is
(65024−N)/65024. We also assume that the concrete host never picks the
same IP address twice, as this happens with a very small probability. Also,
the (continuous) uniform choice over [0,2], made by the concrete host to
determine the delay before it sends its first probe, is abstracted to a discrete
uniform choice over{0, 1, 2}.

To enable the analysis of the protocol under various network scenarios we
consider two different values ofN corresponding to networks with a different
numbers of hosts. More precisely, we consider the cases whenN=1000 (the
value taken in [17]) andN=20.

Following the above assumptions, we require only threeabstractIP ad-
dresses:

0 - an address of an abstract host which the concrete host previously chose;

1 - an address of an abstract host which is the concrete host’s current choice;

2 - a fresh address which is the concrete host’s current choice.
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Table 1. Integer variables used in the probabilistic timed automata

variable description range

coll the number of collisions detected by the concrete host 0 . . . 10

iph the current address of the concrete host 1 . . . 2

defend equals 1 when the host is defending its address 0 . . . 1

probes the number of probes/ARPs sent by the concrete host 0 . . . K

ip the address of the ARP packet currently being sent 0 . . . 2

n the number of packets in the concrete host’s output buffer 0 . . . 8

b[i] the address of packeti in the concrete host’s output buffer 0 . . . 2

m0 the number of packets containing an IP address 0 . . . 20

of type 0 in the buffers of the abstract hosts

m1 the number of packets containing an IP address 0 . . . 8

of type 1 in the buffers of the abstract hosts

As in the standard [18], we suppose that it takes between 0 and 1 seconds
to send a packet between hosts (where the choice of the exact time delay is
nondeterministic).

Since we suppose that the abstract hosts always defend their addresses
and have already picked their IP address, the concrete host will never receive
probes. Therefore, we do not need to record the type of message being sent,
but instead only the IP address in the message, and whether it is sent from the
concrete host to the abstract hosts or vice versa.

As in [54], we consider the case in which hosts use output buffers to store
the packets they want to send. We have chosen the size of the buffers such
that the probability of any buffer becoming full is negligible. We suppose that
the concrete host can send a packet to all the abstract hosts at the same time,
and only one of the abstract hosts can send a packet to the concrete host at a
time.

Variables. The set of variables of our probabilistic timed automata includes
both clocks (x, y andz) andinteger variableswhich are described in Table 1.
Note that the range of the integer variableprobes is changed for different
verification instances, and since the abstract IP address 2 corresponds to a
fresh address chosen by the concrete host we need only two buffers for the
abstract hosts (corresponding to addresses of type 0 and 1).

Events. We model the protocol using two probabilistic timed automata, one
for the concrete host and one for the environment (which comprises both
abstract hosts and the output buffer of the concrete host); these models com-
municate through the three eventsrec, send andreset as described in Table 2.
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Table 2. Events used in the probabilistic timed automata

event description

rec concrete host receives an ARP packet from the environment

send concrete host sends an ARP packet to the environment

reset concrete host (re)configures a new IP address

urgent the environment starts sending a packet

In Table 2 we have also included the eventurgent, which, although it is not
a communicating event, is urgent (no time can pass if it is enabled), since
a packet should be sent as soon as it is possible. Note that, in the model
Reset, we use the eventreset to model the environment resetting the packets
in the buffers of both the concrete and abstract hosts when the concrete host
reconfigures.

6.1.2. Probabilistic timed automata for the protocol
In the following, we describe the modelling of theReset version of the pro-
tocol only. Recall that we use two probabilistic timed automata, one to model
the concrete host and one to model the environment (which contains the ab-
stract hosts and the output buffers ofall hosts). Note that, in the description
below, we have omitted the labelling of the non-urgent events on which the
two automata do not synchronize, that is, the non-urgent events which do not
appear in the set of events of both automata.

The concrete host.The model for the concrete host is shown in Figure 5.
The host commences in the locationRECONF (the double border indicates
the initial location). The locationRECONF is a committed location, and
therefore must be left immediately. InRECONF, the host chooses a new IP
address by moving to the locationCHOOSE if it has experienced less than
ten address collisions, and toCHOOSEWAIT otherwise. These transitions
are labelled with the eventreset to inform the environment that the host’s
buffer is to be reset (all messages in its buffer are to be removed).

In both CHOOSE and CHOOSEWAIT, the address selection is repre-
sented by the assignmentiph := RAND(1, 2), which corresponds to the
host randomly selecting an IP address. That is, with probabilityN/65024
the host setsiph equal to 1 (selects an IP address already in use) and, with
probability (65024−N)/65024, setsiph equal to 2 (selects a fresh IP ad-
dress). Note that, inCHOOSEWAIT, since the host has already experienced
at least ten address collisions, it waits 60 seconds before choosing a new
address. The assignment to the clockx (a uniform choice between{0, 1, 2}),
which labels the transitions fromCHOOSE andCHOOSEWAIT to WAITSP,
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RECONF
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defend=0∨y>10
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ip = iph
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x=2∧probes<1

x:=0
probes:=probes+1

send

Figure 5. Probabilistic timed automaton for the concrete host (modelReset)

approximates the random delay of between 0 and 2 made by the host before
sending the first probe.

In the locationWAITSP, the host sendsK probes at 2 second intervals
(denoted by the self-loop labelled withsend). The host may also receive
packets by means of the eventrec. If it receives a packet which has a dif-
ferent IP address(ip 6= iph), then the host ignores the packet (and remains in
WAITSP); however, if the packet has the same address, the host immediately
reconfigures (moves toRECONF).

After sending theKth probe, the host remains in locationWAITSP for 2
seconds before moving toWAITSG. The host then sends two ARPs separated
by a delay of 2 seconds. Note that the variableprobesis used to count these
ARPs. After these ARPs have been sent, the host moves toUSE. However,
if while in WAITSG the host receives a packet with the same IP address,
it moves toRESPOND. In this location, the host can decide to reconfigure
(return toRECONF), or defend its IP address (by sending an ARP packet) if
it has either not yet defended the address (defend = 0) or 10 seconds have
passed since it previously defended the address (y > 10). This defence takes
the form of the sending of a defending packet, as denoted by thesend labelled
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ENV SEND

z 6 1

send
n<8

n:=n+1
b[n]:=iph

IDLE
z 6 1
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z:=0
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m1:= min(m1+1, 8)

reset
n:=0
ip:=0
m1:=0
m0:= min(m0+m1, 20)

Figure 6. Probabilistic timed automaton for the environment (modelReset)

transition fromRESPOND to WAITSG. Note that the clocky cannot actually
reach10 in the locationWAITSG, and therefore this transition is only enabled
if the address has not been defended, although to be faithful to the standard
we have not removed this condition.

The environment. The model for the environment is shown in Figure 6. The
probabilistic transitions are indicated by thicker grey arrows. The dotted box
labelled with three transitions which surrounds the model denotes that these
transitions are available inall of the locations of the model. More precisely,
in all locations, the environment may receive asend event from the concrete
host and, if the host’s buffer is not full (n<8), add the corresponding packet
to the buffer (otherwise it is lost). Also, in all locations, the environment may
receive areset event and clear the buffer of the concrete host (n := 0) and,
since we assume that the concrete host will never choose the same IP address
twice, set the IP address in any packet being sent or to be sent to type 0 (i.e.
ip := 0, m1 := 0 andm0 := min(m0+m1, 20)).

The behaviour of the environment commences in the locationIDLE. The
transition which probabilistically moves to eitherIDLE or CONC SEND cor-
responds to the sending of a packet from the concrete host’s buffer. Theurgent
labelling denotes that the transition should be taken as soon as it is enabled,
i.e. it should be taken as soon as there is a packet to send. Similarly, the transi-
tions which move probabilistically to eitherIDLE or ENV SEND correspond
to an abstract host sending a packet, and are again urgent. There are two such
transitions, since the address in the packet can either be of type 0 (m0>0)
or 1 (m1>0). For each of these transitions, the loop (remaining inIDLE)
corresponds to the packet being lost by the medium, while the other edge
corresponds to the packet being sent correctly (therefore the required buffers
are updated when one of these transitions is taken). Note that, since each of
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Table 3. Minimum probabilistic reachability results

number of abstract hosts equals 1000

no. of probes message loss rate 0.1 message loss rate 0.001 message loss rate 0

sent (K) NoReset Reset NoReset Reset NoReset Reset

1 5.6e-4 5.6e-4 6.2e-8 6.2e-8 0 0

2 1.1e-4 1.1e-4 1.2e-10 1.2e-10 0 0

3 2.0e-5 2.0e-5 2.5e-13 2.5e-13 0 0

4 3.9e-6 3.9e-6 5.0e-16 5.0e-16 0 0

5 7.3e-7 7.3e-7 <1.0e-16 <1.0e-16 0 0

6 1.4e-7 1.4e-7 <1.0e-16 <1.0e-16 0 0

number of abstract hosts equals 20

no. of probes message loss rate 0.1 message loss rate 0.001 message loss rate 0

sent (K) NoReset Reset NoReset Reset NoReset Reset

1 1.1e-5 1.1e-5 1.2e-9 1.2e-9 0 0

2 2.1e-6 2.1e-6 2.4e-12 2.4e-12 0 0

3 4.0e-7 4.0e-7 4.9e-15 4.9e-15 0 0

4 7.6e-8 7.6e-8 <1.0e-16 <1.0e-16 0 0

5 1.4e-8 1.4e-8 <1.0e-16 <1.0e-16 0 0

6 2.8e-9 2.8e-9 <1.0e-16 <1.0e-16 0 0

these transitions corresponds to a message from a different host, when more
than one of these transitions is enabled, there is a nondeterministic choice as
to which one is taken. We vary the probability of message loss depending on
the verification instance. Once in eitherCONC SEND or ENV SEND, after a
delay of between 0 and 1 seconds, the model returns toIDLE; this corresponds
to the message taking between 0 and 1 seconds to send.

6.1.3. Performance Analysis
In this section, we outline our results of using PRISM to verify the integral-
time models of the probabilistic timed automata of the dynamic configuration
protocol given in Section 6.1.2. In the experiments, as explained above we
consider the cases when the number of hosts (N ) equals 1000 and 20, and
vary both the number of probes a host sends (K) and the probability of
message loss.

Note that, because we have abstracted certain aspects of the network (for
example, the time taken to send a message), the presented results will give
upper and lower bounds on the performance of the protocol, for example the
actual reachability probability will lie between the minimum and maximum
reachability probabilities computed for the model under study.
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Table 4. Maximum probabilistic reachability results

number of abstract hosts equals 1000

no. of probes message loss rate 0.1 message loss rate 0.001 message loss rate 0

sent (K) NoReset Reset NoReset Reset NoReset Reset

1 0.01538 0.0154 0.0154 0.0154 0.0154 0.0154

2 0.00304 0.00296 1.9e-4 3.1e-5 1.6e-4 0

3 6.1e-4 5.6e-4 8.0e-5 6.2e-8 8.0e-5 0

4 1.1e-4 1.1e-4 1.2e-6 1.2e-10 1.2e-6 0

5 2.0e-5 2.0e-5 4.1e-7 2.5e-13 4.2e-7 0

6 3.9e-6 3.9e-6 8.4e-9 5.0e-16 8.5e-9 0

number of abstract hosts equals 20

no. of probes message loss rate 0.1 message loss rate 0.001 message loss rate 0

sent (K) NoReset Reset NoReset Reset NoReset Reset

1 3.1e-4 3.1e-4 3.1e-4 3.1e-4 3.1e-4 3.1e-4

2 5.8e-5 5.8e-5 6.8e-7 6.2e-7 6.3e-8 0

3 1.1e-5 1.1e-5 3.3e-8 1.2e-9 3.2e-8 0

4 2.1e-6 2.1e-6 1.2e-11 2.5e-12 9.7e-12 0

5 4.0e-7 4.0e-7 3.2e-12 4.9e-15 3.2e-12 0

6 7.6e-8 7.6e-8 1.3e-15 <1.0e-16 1.3e-15 0

Probabilistic reachability. The probabilistic reachability property we con-
sider is the (minimum and maximum) probability of the host using an IP
address which is already in use by another host. In Tables 3 and 4 we present
the minimum and maximum probabilistic reachability results obtained in the
cases when the number of abstract hosts (N ) is fixed at 1000 and 20.

For both models the results demonstrate that the probabilities decrease as
the number of probes increases, which is to be expected: if more probes are
sent then there is a greater chance of receiving a reply to a probe when an IP
address already in use is chosen (i.e. the chance that not all the probes and
responses get lost). Furthermore, the probabilities in the case whenN = 20
are smaller than whenN = 1000; again this is to be expected, because when
N is smaller there are fewer abstract hosts, hence fewer IP addresses in use,
and therefore there is a smaller chance of the host choosing an IP address
which is already in use.

When the probability of message loss is 0, Table 4 shows that the maxi-
mum probability is 0 for the modelReset (the model where the host clears its
buffer) provided the host sends more than one probe. On the other hand, for
the modelNoReset (when the host does not clear its buffer), even if the host
sends more than one probe, this maximum reachability probability is greater
than 0. To understand this result, consider the fact that, if a host does not clear
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Figure 7. Minimum probabilistic time-bounded reachability results (N=1000)
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Figure 8. Maximum probabilistic time-bounded reachability results (N=1000)

its buffer, then there is a chance that the probes corresponding to its new IP
address will get delayed, and hence the host will not receive a reply to these
probes until after it starts using the address (since the probability of message
loss is 0, the host will eventually get a reply).

In the cases where the message loss probability is greater than 0, the results
presented in Tables 3 and 4 demonstrate that, by allowing the host to clear its
buffer, the performance of the protocol improves; that is, the maximum reach-
ability probabilities decrease while the minimum reachability probabilities
remain the same.

Time-bounded probabilistic reachability.The time-bounded property we con-
sider is the (minimum and maximum) probability of the host using a fresh IP
address within timeT . For the modelReset whenN=1000, the minimum
and maximum time-bounded reachability results are presented in Figure 7
and Figure 8, respectively. Note that the graphs use a log scale and plot 1
minus the actual probabilities under study. The time-bounded reachability
results whenN=20 are similar except that the probabilities are higher and
the explanation for this is the same as for the probabilistic reachability case;
namely, whenN=20 there is a greater chance that the host will choose a fresh
IP address.

The results demonstrate that, for small time bounds, the probability of
the property is higher whenK is smaller. This is to be expected since sending
more probes takes more time. However, for larger time bounds the probability

digital.tex; 30/03/2006; 10:07; p.42



Performance Analysis of Probabilistic Timed Automata using Digital Clocks 43

2 4 6 8 10 12 14 16

102

104

106106

108

1010

number of probes sent (K)

ex
pe

ct
ed

 c
os

t

N=1000 & E=1012

N=20 & E=1012

N=1000 & E=106

N=20 & E=106

2 4 6 8 10 12 14 16

102

104

106

108

1010

number of probes sent (K)

ex
pe

ct
ed

 c
os

t

N=1000 & E=1012

N=20 & E=1012

N=1000 & E=106

N=20 & E=106

2 4 6 8 10 12 14 16

102

104

106

108

1010

number of probes sent (K)

ex
pe

ct
ed

 c
os

t

N=1000 & E=1012

N=20 & E=1012

N=1000 & E=106

N=20 & E=106

(a) message loss rate 0.1 (b) message loss rate 0.01 (c) message loss rate 0.001

Figure 9. Maximum (dotted) and Minimum (solid) expected cost results

is larger when more probes are sent. This is due to the fact that, when more
probes are sent, there is less chance of using an IP address already in use, and
hence not reaching a state where the host uses a fresh IP address.

The results for the modelNoReset are similar to those presented for the
Reset, although, as for the maximum probabilistic reachability results, the
probabilities are larger for the modelNoReset.

Expected reachability. We consider the expected cost of a host choosing an
IP address and using it. As in [17], the cost is defined as the time to start
using an IP address plus an additional cost (E) associated with the host using
an address which is already in use. We consider two different values forE,
namely106 and1012. Note that the choice of the value of this additional cost
will depend on how damaging it is for two hosts to use the same IP address,
which in turn depends on the network and the nature of its devices.

The results for the modelReset are presented in Figure 9. In each graph
a log scale has been used to improve readability. The results for the model
NoReset are similar, although both the minimum and maximum costs are
larger for the modelNoReset (see [47] for further details). This agrees with
our intuition, since, as the results for probabilistic reachability demonstrate,
when the host does not clear its buffer, there is a greater chance of using an
IP address which is already in use, and hence of incurring a greater cost.

These results are similar to those of [17]: as the message loss probability
increases, one must increase the number of probes sent in order to reduce the
expected cost; however, if too many probes are sent, the expected cost may
start to increase. The rationale for this is that, although increasing the number
of probes sent decreases the probability of the host using an IP address which
is already in use (that is, decreases the chance of incurring the additional
cost), it increases the expected time to choose an IP address (because sending
more probes takes more time).

Figure 9 also shows that, as the probability of message loss increases, to
minimize the expected costs one must send more probes (increase the value
of K). Similarly, the results presented demonstrate the fact that, when the
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cost of using an IP address which is already in use by another host increases,
one must send more probes to minimize the expected cost.

6.2. IEEE 802.11 WIRELESSLAN

This case study concerns the IEEE 802.11 wireless local area network pro-
tocol [33] and focuses on the contention resolution protocol for ‘ad hoc net-
works’. Such networks comprise a number of stations communicating over a
shared channel, in a peer-to-peer manner and without a centralized medium
access control protocol to arbitrate requests to transmit on the channel. The
protocol includes a randomized, slotted exponential backoff procedure, which
is designed to break the symmetry between stations that are repeating previ-
ously failed transmissions, i.e. those which collided.

We assume a fixed network topology, consisting of two sending stations
and two destination stations, and consider the scenario in which both senders
are attempting to send a packet to their destinations. For detailed information
on the probabilistic timed automaton model, see [40, 47]. Preliminary results
concerning time-bounded probabilistic reachability can also be found in [40].
In our experiments, we investigate both the effect of changing the maximum
time it takes for a station to send a packet (TTmax ), which is specified in the
standard as 15,800µsec, and the maximum value which a station’s backoff
counter can take (bcmax ), which the standard specifies to be 6. Note that a
station increases its backoff counter (up to the value ofbcmax ) each time a
collision occurs and that the value of the backoff counter influences the range
over which its next backoff is chosen. More precisely, a station chooses its
next backoff value uniformly from the range{0, 1, . . . , 2k+4−1} when its
backoff counter equalsk.

Probabilistic reachability. First we calculate the minimal probability of both
stations eventually sending their packet. As expected, this has probability
1, regardless of the values ofTTmax andbcmax . The second probabilistic
reachability property we consider is the maximum probability of the stations
colliding at leastk times.

The results obtained as the value ofbcmax varies are presented in Table 5
(changing the value ofTTmax does not influence the results). Observe that
the greater the value of the backoff counters, the greater the number of col-
lisions, and hence the longer it takes for a data packet to be sent correctly.
We observe that the probability falls rapidly ask increases. This result is
to be expected since after each collision (up to thebcmax th collision), the
range over which each station chooses its backoff grows exponentially. Since
a station’s backoff counter is only incremented after a collision it follows that,
if the stations collide for theith time, wherei>2, their backoff counters equal
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Table 5. Performance results relating to the number of of collisions.

value of Maximum probability of at leastk collisions max expected

bcmax k=2 k=4 k=6 k=7 k=8 no. of collisions

0 0.183594 0.006188 0.000209 0.000038 7.03e-6 1.224872

1 0.183594 0.001580 0.000014 1.26e-6 1.17e-7 1.202366

2 0.183594 0.000794 1.73e-6 8.05e-8 3.75e-9 1.201459

3 0.183594 0.000794 4.34e-7 1.01e-8 2.37e-10 1.201440

4 0.183594 0.000794 2.17e-7 2.54e-9 2.98e-11 1.201439

5 0.183594 0.000794 2.17e-7 1.27e-9 7.45e-12 1.201439

6 0.183594 0.000794 2.17e-7 1.27e-9 3.72e-12 1.201439
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Figure 10. Model checking results for the time-bounded reachability properties

min(i−2, bcmax ) at this point, and hence for anyk the results agree for all
bcmax such thatbcmax > k−2.

Time-bounded probabilistic reachability.The time bounded probabilistic
reachability properties we consider concern reaching states in which pack-
ets have been successfully delivered. More formally, we verify the following
properties: the minimum probability of both stations correctly delivering their
packets within timeT (P1); the minimum probability of either station cor-
rectly delivering its packet within timeT (P2); and the minimum probability
of station 1 correctly delivering its packet within timeT (P3).

In Figure 10 we have plotted the results forP1–P3 when using the max-
imum backoff value taken from the standard (bcmax=6) in the cases when
TTmax equals500, 1, 250 and2, 500. Note that, since stations initially col-
lide with probability 1, the probability will be zero for any deadline which
does not allow the stations to collide, enter the backoff procedure, and then re-
send their data packets. In Figure 10 the dotted line in the graphs corresponds
to the minimum probability of a station sending a packet correctly while not
entering backoff more than once; the results below this line correspond to
deadlines where only the first backoff procedure can influence the outcome
(that is, for these deadlines there is insufficient time for a station to enter the
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Table 6. Model checking results for the maximum expected time properties

TTmax E1 (Maximum expected time (µ sec) until both stations correctly deliver packets)

(µs) bcmax=0 bcmax=1 bcmax=2 bcmax=3 bcmax=4 bcmax=6

500 3,792 3,865 3,882 3,883 3,883 3,883

10,000 34,401 34,265 34,274 34,275 34,275 34,275

15,800 52,944 52,677 52,680 52,682 52,682 52,682

TTmax E2 (Maximum expected time (µ sec) until a station correctly delivers a packet)

(µs) bcmax=0 bcmax=1 bcmax=2 bcmax=3 bcmax=4 bcmax=6

500 2,525 2,551 2,558 2,559 2,559 2,559

10,000 23,636 23,451 23,450 23,451 23,451 23,451

15,800 36,429 36,113 36,107 36,108 36,108 36,108

TTmax E3 (Maximum expected time (µ sec) until station 1 correctly delivers a packet)

(µs) bcmax=0 bcmax=1 bcmax=2 bcmax=3 bcmax=4 bcmax=6

500 3,322 3,352 3,359 3,360 3,360 3,360

10,000 31,899 31,685 31,679 31,680 31,680 31,680

15,800 49,200 48,839 48,826 48,826 48,826 48,826

backoff procedure more than once and send its data correctly). Furthermore,
the portions of the graph where the probability does not increase correspond
to deadlines which are not large enough for a station to enter backoff more
than once and successfully send its data packet, but are sufficient for all cases
when backoff is entered at most once.

Expected reachability. The first expected reachability property concerns the
maximum expected number of collisions before both stations correctly send
their packets. Similarly to the corresponding probabilistic reachability prop-
erty (maximum probability of the stations colliding at leastk times), the
expected number of collisions decreases as the value ofbcmax increases.

The remaining expected reachability properties we consider are the maxi-
mum expected time until both stations correctly deliver their packets (E1); the
maximum expected time until either station correctly delivers its packet (E2);
and the maximum expected time until station 1 correctly delivers its packet
(E3). In Table 6 we present the results forE1–E3 asbcmax varies using both
the maximum transmission delay length from the standard (15, 800) and two
other smaller delays. For each ofE1-E3, as the maximum value of the backoff
counter increases, the expected time initially decreases and then increases
slightly. The initial decrease is due to the fact that, as the backoff counter
increases, there is less chance of the stations colliding when they attempt to
retransmit, and hence the packets are sent sooner. The subsequent increase
arises from the fact that for larger values ofbcmax the time that stations
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Figure 11. Maximum expected time to elect a leader

spend in backoff dominates the time that it takes for the stations to collide
and retransmit their packets correctly. More precisely, as the backoff counter
increases, the decrease in collisions is out-weighed by the increase in the time
that each station spends in backoff. The results for the other values ofTTmax
demonstrate the same pattern and, because for smaller values ofTTmax the
time to send a packet decreases, the value of the maximum backoff for which
the time spent in backoff out-weighs the time needed to retransmit packets
becomes smaller.

6.3. IEEE 1394 FIREWIRE ROOT CONTENTION PROTOCOL

The third case study we consider is the IEEE FireWire root contention pro-
tocol [32]. In this protocol, in order to elect a leader (the root), nodes ex-
change “be my parent” requests with their neighbours. However,contention
may arise when two nodes simultaneously send “be my parent” requests to
each other. The solution adopted by the standard to overcome this conflict
is both probabilistic and timed: each node will flip a coin in order to decide
whether to wait for a short or for a long time for a request. For details on the
probabilistic timed automaton used in this case study see [41, 47].

In our analysis, we will consider two cases for the maximum transmission
delay: 360 nanoseconds (ns) and 30ns. This models the distance between the
two nodes, i.e. the length of the connecting wires. A delay of 360ns repre-
sents the assumption that the nodes are separated by a distance close to the
maximum required for the correctness of the protocol (from the analysis of
[52]). A delay of 30ns corresponds more closely to the maximum separation
specified in the IEEE standard. In the following paragraphs, we will refer to
the two cases as ‘long wire’ and ‘short wire’, respectively.

Analysis with respect to probabilistic reachability and time-bounded prob-
abilistic reachability can be found in [41, 20]. We concentrate instead on the
effect of using a biased coin with respect to expected reachability in terms of
the time to elect a leader, the power consumption before a leader is elected
and the number of rounds before a leader is elected. Note that we suppose the
nodes in root contention use coins of the same bias. Although it is possible
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Figure 12. Maximum expected costs before a leader is elected

to improve the performance of the protocol by supposing that the nodes’
coins have different biases, this is not feasible in practice since each node
follows the same procedure and it is not known in advance which nodes of
the network will take part in the root contention protocol.

In Figures 11 and 12 we have plotted the effect of using a biased coin
on the maximum expected time until a leader is elected, and the maximum
expected number of rounds and expected power consumption (assuming that
the power usage when sending messages along the wires is 30W and all re-
maining power consumption is negligible). To consider the expected power
consumption we use a cost function which is of the form given in Section 4.4;
more precisely, we set the cost (per second) to be60 in locations where both
processes are sending messages, 30 in the locations where only one process
is sending a message and 0 otherwise.

The results for expected time reachability demonstrate that the (timing)
performance of the root contention protocol can be improved using a biased
coin which has a higher probability of flipping ‘fast’. The intuition behind this
result is that, although the use of such a biased coin decreases the likelihood
of the nodes flipping different values, when nodes flip the same values there
is a greater chance that less time passes before they flip again (i.e. when both
flip ‘fast’) [53]. There is a compromise here, because as the coin becomes
more biased towards ‘fast’, the probability of the nodes actually flipping
different values (which is required for a leader to be elected) decreases even
though the delay between coin flips will on average decrease. This decrease in
probability is demonstrated in Figure 12 since the expected number of rounds
increases as the bias of the coin increases. The results in Figure 11 further
demonstrate that, for a shorter wire length, there is a greater advantage when
using a biased coin. The reasoning behind this result is that for the short
wire length there is a greater saving in time when both nodes flip fast than
for a longer wire length, since the time required when both nodes flip fast is
dependent on a constant delay given by the protocol specification plus a delay
dependent on the wire length.
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On the other hand, the expected power consumption and expected number
of rounds obtain their minimum for a fair coin. This is unsurprising since, if
the nodes used a biased coin, the probability of them flipping the same value
would increase, and hence the expected number of rounds would also in-
crease. Similarly, the number of messages will increase if the coins are biased
leading to a higher power consumption. Furthermore, because increasing the
wire length leads to an increase in the time to send a message, and hence the
power consumed when sending a message, the expected power consumption
is greater for the longer wire length.

6.4. COMPARISON WITH ALTERNATIVE APPROACHES

In this section we compare the digital clocks approach for verifying prob-
abilistic timed automata with techniques already present in the literature2,
namely those based onforwards reachability[38, 20] andbackwards reach-
ability [39, 42]. The following summarises the different approaches:

− the forwards reachability approach is applicable to general probabilistic
timed automata, but is restricted to computing upper bounds on maxi-
mum reachability probabilities;

− the backwards reachability approach is applicable to general probabilis-
tic timed automata and full PTCTL, but, at the time of writing, there
do not exist backwards reachability methods for the computation of
expected reachability values;

− as shown in this paper, the digital clocks approach is applicable to closed
and diagonal free probabilistic timed automata; it can be used to com-
pute probabilistic and expected reachability measures, but cannot be
used to verify general PTCTL formulae.

There are clear advantages in using the backwards and digital clocks methods
if one requires a comprehensive analysis of the automaton under study. On
the other hand, as one would expect, the applicability of these approaches is
restricted by both time and space requirements. It is difficult to provide a fair
comparison between these methods especially as one can use the “mature”
model checker PRISM for the digital clocks approach, while the other ap-
proaches have only prototype implementations. In particular, we could not
provide direct comparison for all the examples presented in the previous
sections as these models require complex interaction between sub-automata
which is not yet available in the prototype implementations. Below we try and
give some indication as to the difference in the time and space-complexity of

2 Note that we do not include results for theregion equivalencebased approach given in
[38], as this leads to prohibitively large state spaces even for relatively simple automata.
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Table 7. State spaces and MTBDD sizes (KB) when verifying maximal time-bounded
reachability probabilities for the FireWire case study

Time bound backwards [42] forwards [20] digital clocks

(103ns) states size (KB) states size (KB) states size (KB)

2 1,219 7.24 825 18.9 80,980 554

4 4,844 30.6 2,329 35.2 434,364 730

6 10,981 55.0 3,833 51.9 1,093,658 860

8 - - 6,841 74.1 1,915,291 875

10 - - 9,661 90.1 2,746,691 875

20 - - 35,041 204 6,903,691 890

the approaches. Note that both the forwards and backwards approaches re-
quire a zone-based reachability analysis to construct a finite state probabilistic
system followed by the model checking of this system.

In situations where each approach can be applied, the digital clocks ap-
proach leads to the largest state space while the forwards and backwards
approaches lead to similar model sizes (sometimes the forwards approach
leads to a smaller state space, while at other times a smaller state space is
generated by the backwards approach). Note that the digital clocks approach
is the only one where the size of the model is highly dependent on the con-
stants appearing in the automaton under study; however, the impact of the
dependence of the state space size on verification experiments is overcome
partially by using the “symbolic” techniques available in PRISM, which take
advantage of any regularity of the automaton under study. Note that, because
such regularity is to some degree lost in the forwards and backwards approach
because only a subset of the state space is constructed, symbolic techniques
are not as applicable to these approaches. To illustrate this fact, in Table 7 we
present the results for the FireWire case study (see Section 6.3) when com-
puting maximum reachability probabilities. Note that the results presented in
Table 7 do not take into account the space required by both the forwards and
backwards approaches when performing the initial zone-based reachability
analysis.

With regard to the time for model construction, the backwards reacha-
bility approach requires complex operations on zones which means that this
approach is, in general, the most time intensive. The forwards approach also
involves operations on zones but these operations are much simpler; the fact
that the forwards approach has been implemented using an adaptation of
the established tool KRONOS, whereas the implementation of the backward
approach is an early prototype, is another reason why model construction
is much faster for the forwards approach. The model construction with the
digital clocks approach is more straightforward than the other approaches,
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Table 8. Construction and model checking (m/c) times when verifying maximal time-bounded
reachability probabilities for the FireWire case study

Time bound backwards [42] forwards [20] digital clocks

(103ns) construction m/c construction m/c construction m/c

2 544+33.0 0.106 0.42+ 0.69 0.383 10.2 7.87

4 26,992+753 0.345 0.94+ 2.08 0.802 38.3 43.9

6 618,493+4,388 1.31 1.64+ 3.76 1.40 85.8 145

8 - - 2.93+ 10.3 1.60 145 228

10 - - 4.27+ 20.3 2.54 205 335

20 - - 18.7+ 226 5.11 549 469

again for the reason that the symbolic techniques of PRISM exploit the regu-
larity which is present in the system. However, due to the larger state space,
the construction in the digital clocks case usually takes longer than that of
the forwards reachability approach (but less than that of the backwards ap-
proach). In terms of model checking times there is no significant difference
between the three approaches. Note that, although the digital clocks approach
generates much larger state spaces, this does not have a drastic effect on
the model checking times because of the regularity in the model and the
symbolic approach employed by PRISM. To illustrate these observations, in
Table 8 we have presented the model construction and model checking times
for the FireWire case study. The model construction times for the forwards
and backwards approaches have been separated into the time required by the
zone-based reachability computation and the time of the model construction
in PRISM.

7. Conclusions

In this paper, we have presented results demonstrating that digital clocks
are sufficient for analysing a large class of probabilistic timed automata and
performance properties. Since many of today’s protocols include both timing
and probabilistic behaviour, this approach is applicable to a wide area, which
we demonstrated by analysing the performance of three real-world protocols.

In particular, we have demonstrated that digital clocks are sufficient for the
analysis of probabilistic (timed-bounded) reachability and expected reacha-
bility against closed, diagonal-free probabilistic timed automata. In the case
of expected reachability, these results extend to the cases when the rate of cost
accumulation varies in different locations, as in priced or weighted timed au-
tomata [10, 5]. Furthermore, we have shown the limitations of this approach:
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digital clocks are not sufficient for checking stopwatch properties or general
PTCTL specifications.

One possible area of future work is to apply the results presented in [13,
14], concerning the verification of classical timed automata using integral
semantics and BDDs, to this setting (verifying probabilistic timed automata
using integral semantics and MTBDDs) in an attempt to improve efficiency.

There are still limitations in the size of the models that can be considered
using digital clocks. In the case of probabilistic reachability a more efficient
approach is to consider the symbolic model checking technique for prob-
abilistic timed automata against PTCTL introduced in [42, 39]. However, in
the case of expected reachability, and in particular expected time reachability,
it is not clear if there is an alternative, since by using zones the exact timing
information may be lost, and hence the best one could hope for would be
approximate results. The application of zones to the verification of priced
timed automata [43] may be instructive to this line of research.
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