
Efficiently Evaluating
Complex Boolean

Expressions
Yahoo! Research

Marcus Fontoura, Suhas Sadanadan, Jayavel
Shanmugasundaram, Sergei Vassilvitski, Erik Vee, Srihari

Venkatesan and Jason Zien

Friday, May 28, 2010

Agenda

• Motivation and problem definition

• System architecture

• Algorithms

• Experiments

Friday, May 28, 2010

Agenda

• Motivation and problem definition

• System architecture

• Algorithms

• Experiments

Friday, May 28, 2010

Simple example

• Display advertising

• Ads: Boolean expressions (contracts)
age IN {young}
age IN {old} AND income IN {high, veryHigh}
income IN {high} AND browser NOT_IN {ie}

• Publishers: assignments
age = old; income = high; browser = firefox

Friday, May 28, 2010

Simple example

• Display advertising

• Ads: Boolean expressions (contracts)
age IN {young}
age IN {old} AND income IN {high, veryHigh}
income IN {high} AND browser NOT_IN {ie}

• Publishers: assignments
age = old; income = high; browser = firefox

Friday, May 28, 2010

More complex example

• Display advertising exchange

Pub

age IN {young} OR

income IN {high}

Net Net

AdvNet

age IN {young, old} AND

interest IN {NFL, NBA}

Friday, May 28, 2010

More complex example

• Boolean expressions model the type
of inventory sold by each node

Pub

age IN {young} OR

income IN {high}

Net Net

AdvNet

age IN {young, old} AND

interest IN {NFL, NBA}

Friday, May 28, 2010

More complex example

• Each Boolean expression can be a
DNF/CNF

• Contracts for the publisher are
“complex” expressions

Pub

age IN {young} OR

income IN {high}

Net Net

AdvNet

age IN {young, old} AND

interest IN {NFL, NBA}

Friday, May 28, 2010

Other examples

• Automatic targeting in display advertising

• e.g. machine generated expressions to
maximize click-through

• Information dissemination in social network
graphs

Friday, May 28, 2010

State-of-the-art

• There are existing solutions for efficiently
evaluating CNF and DNF expressions

• Content-based publish-subscribe systems

• Normalizing complex Boolean expressions
into DNF incurs in an exponential blow-up
in size

Friday, May 28, 2010

DNF growth

• In KB, averaged over 20 DNFs of each size

• Data set is realistic

!"

#"

$"

%"

&"

'!"

'#"

'" #" ("

)*+",-./"

Friday, May 28, 2010

Normalization does not
work

• In environments where performance
requirements are strict

• Billions of queries per day

Friday, May 28, 2010

Problem definition

• Evaluate complex Boolean expressions
(e.g. AND of DNFs)

• Modeled as a tree of AND/OR nodes,
where leafs are conjunctions of IN and
NOT_IN operators

• Given an assignment, retrieve all valid
expressions

Friday, May 28, 2010

Agenda

• Motivation and problem definition

• System architecture

• Algorithms

• Experiments

Friday, May 28, 2010

Agenda

• Motivation and problem definition

• System architecture

• Algorithms

• Experiments

Friday, May 28, 2010

Intuition

• (Offline) Annotate the conjunctions with
their position on the complex Boolean
expression tree

• Evaluate conjunctions (leafs) using a state-
of-the-art algorithm

• Evaluate the trees bottom-up, using the
retrieved conjunctions and their positions

Friday, May 28, 2010

Overall architecture

!"#$%#&'"#((

)##"*+*",(

!"#$%#&'"#(

-#./0(1%23./,(

!"#$%#&'"#(

-#./0(

1""3/+#(

405,/662"#(

!"#$%&

)6627#8/#*(

-#./0(

49+3%+*",(

!"#$%#&'"#(

)##"*+'"#6(

405,/662"#(

49+3%+*",(

!$'#$%&

:+*&;2#7(

!"#$%#&'"#6(

:+*&;2#7(1""3/+#(405,/662"#(

Friday, May 28, 2010

Background:
conjunction evaluation

• Use an inverted index as the basic data
structure

• Similar to processing conjunction queries in
IR (but documents are queries)

Friday, May 28, 2010

Conjunction evaluation
example

• Conjunctions (documents)
age IN {young}
age IN {old} AND income IN {high, veryHigh}
income IN {high} AND browser NOT_IN {ie}

• Assignments (queries)
age = old; income = high; browser = firefox

Friday, May 28, 2010

Conjunction evaluation
example
D1 (1) D2 (2) D3 (1)

age IN {young}

age IN {old} AND

income IN {high, veryHigh}

income IN {high} AND

browser NOT_IN {ie}

age = young

age = old

income = high

income = veryHigh

browser = ie

browser = firefox

payload = 1

Friday, May 28, 2010

Conjunction evaluation
example
D1 (1) D2 (2) D3 (1)

age IN {young}

age IN {old} AND

income IN {high, veryHigh}

income IN {high} AND

browser NOT_IN {ie}

age = young

age = old

income = high

income = veryHigh

browser = ie

browser = firefox

payload = 1

Friday, May 28, 2010

Conjunction evaluation
example
D1 (1) D2 (2) D3 (1)

age IN {young}

age IN {old} AND

income IN {high, veryHigh}

income IN {high} AND

browser NOT_IN {ie}

age = young

age = old

income = high

income = veryHigh

browser = ie

browser = firefox

payload = 1

Friday, May 28, 2010

Conjunction evaluation
another example

D1 (1) D2 (2) D3 (1)

age IN {young}

age IN {old} AND

income IN {high, veryHigh}

income IN {high} AND

browser NOT_IN {ie}

age = young

age = old

income = high

income = veryHigh

browser = ie

browser = firefox

payload = 1

Friday, May 28, 2010

Agenda

• Motivation and problem definition

• System architecture

• Algorithms

• Experiments

Friday, May 28, 2010

Agenda

• Motivation and problem definition

• System architecture

• Algorithms

• Experiments

Friday, May 28, 2010

Overall architecture

!"#$%#&'"#((

)##"*+*",(

!"#$%#&'"#(

-#./0(1%23./,(

!"#$%#&'"#(

-#./0(

1""3/+#(

405,/662"#(

!"#$%&

)6627#8/#*(

-#./0(

49+3%+*",(

!"#$%#&'"#(

)##"*+'"#6(

405,/662"#(

49+3%+*",(

!$'#$%&

:+*&;2#7(

!"#$%#&'"#6(

:+*&;2#7(1""3/+#(405,/662"#(

Friday, May 28, 2010

Online problem

• Given a set of valid conjunctions, is the
Boolean expression satisfied

• Tree is never explicitly represented
AND

OR

AND

OR OR

AND

OR

OR OR OR OR OR OR

OR OR

OR

OR

AND AND AND

AND

Friday, May 28, 2010

Algorithm 1: Dewey ids

• Assign Dewey ids for every node in the
expression tree

• Ordering children of a node
AND

OR

AND

OR OR

AND

OR

OR OR OR OR OR OR

OR OR

OR

OR

AND AND AND

AND

1
1.1

1.1.1

1.2

1.1.1.1

2*
2*.4

2*.3.2*
2*.3.2*.1

Friday, May 28, 2010

Algorithm 1: Dewey ids

• Alternating AND/OR trees

• * denotes last child of an AND node

AND

OR

AND

OR OR

AND

OR

OR OR OR OR OR OR

OR OR

OR

OR

AND AND AND

AND

1
1.1

1.1.1

1.2

1.1.1.1

2*
2*.4

2*.3.2*
2*.3.2*.1

Friday, May 28, 2010

Algorithm 1: Dewey ids

• Index evaluator will return the leaf nodes,
which are the matching conjunctions

1.2

1.1.1.1
2*.1.1.2 2*.3.1.1 2*.3.2*.1

Friday, May 28, 2010

Algorithm 1: Dewey ids

• Index evaluator will return the leaf nodes,
which are the matching conjunctions

1.2

1.1.1.1
2*.1.1.2 2*.3.1.1 2*.3.2*.1

AND

OR

AND

OR

AND

OR OR

OR

OR

AND

Friday, May 28, 2010

Algorithm 2: Interval ids

• We map each Boolean tree to a one
dimensional interval [1,M]

• M is the maximum number of leaves

• Tree is satisfied if there is a subset of
intervals that cover all integer points on
[1,M] without overlap

Friday, May 28, 2010

Algorithm 2: Interval ids

• Look at: [1-5] [6-14] [15-M] : all integer
points covered without overlap

Friday, May 28, 2010

Assigning intervals

• Recursive procedure

• Children of an OR inherit the parent
interval

Friday, May 28, 2010

Assigning intervals

• Recursive procedure

• Children of an AND partition the interval

Friday, May 28, 2010

Slightly more complex
example

• B & D are not enough to satisfy, since
intervals overlap

• D & E & F are OK, since intervals don’t
overlap

Friday, May 28, 2010

Caveats in labeling

• Bad labeling: A, E & F (or D & B) would lead
us to satisfied contracts

Friday, May 28, 2010

Assignment algorithm

• Recursive procedure

• Children of an OR inherit the parent
interval

• Children of an AND partition the interval

• Extra technical condition

• No two children of non left-most AND
node children share the same starting

Friday, May 28, 2010

Assignment algorithm

• Let each leaf have size 1

• Let the size of an internal node = # of
leaves in its subtree

• For each node n, let n.leftLeaves = # of
leaves appearing before n in a pre-order
traversal of the tree

Friday, May 28, 2010

Assignment algorithm

A.size=1, A.leftLeaves = 0

Size = 3, leaftLeaves = 3

Friday, May 28, 2010

Assignment algorithm

• Label the root node [1,M] : entire interval

• Label children recursively

• For an OR node:

• Label of child = label of parent

Friday, May 28, 2010

Assignment algorithm

• Parent AND node n with interval: [s, t]

• Label children with partition of parent node

• First child c begins with s, ends with
n.leftLeaves + c.size

• Next child c’: begins with c.end+1, ends
with c’.begin + c’.size-1

• …

• Last child c’’: … ends with t
Friday, May 28, 2010

Assignment algorithm

Size = 3, leaftLeaves = 3

Interval: 1…10

First child: [1, 3+1]

Second child[5, 5]

Last child [6, 10]

Friday, May 28, 2010

Assignment algorithm

Size = 3, leaftLeaves = 3

Interval: 1…10

First child: [1, 3+1]

Second child[5, 5]

Last child [6, 10]

• Theorem: this assignment algorithm
produces a valid labeling

Friday, May 28, 2010

Evaluation

• Given a set of matched intervals, how do you find
if there exists a set of non overlapping ones
covering [1,M] ?

• Maintain a matched array

• matched[i] = true iff there exist non overlapping
segments that cover the interval [1,i]

• To evaluate:

• Sort all segments by their starting position

• Evaluate matched array

• Given [s,t], if matched[s-1] = true, then set
matched[t] = true

•Friday, May 28, 2010

Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Initialize matched by setting matched[0] =
true, rest false

• matched: 1 0 0 0 0 0 0 0 0 0 0

Friday, May 28, 2010

Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Process [1,1]. Since matched[0] = true, set
matched[1] = true

• matched: 1 1 0 0 0 0 0 0 0 0 0

Friday, May 28, 2010

Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Process [1,4]. Since matched[0] = true, set
matched[4] = true

• matched: 1 1 0 0 I 0 0 0 0 0 0

Friday, May 28, 2010

Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Process [5,5]. Since matched[4] = true, set
matched[5] = true

• matched: 1 1 0 0 I I 0 0 0 0 0

Friday, May 28, 2010

Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Process [6,10]. Since matched[5] = true, set
matched[10] = true.

• matched: 1 1 0 0 I I 0 0 0 0 1

Friday, May 28, 2010

Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Final matched array: 1 1 0 0 I I 0 0 0 0 1

Friday, May 28, 2010

Agenda

• Motivation and problem definition

• System architecture

• Algorithms

• Experiments

Friday, May 28, 2010

Agenda

• Motivation and problem definition

• System architecture

• Algorithms

• Experiments

Friday, May 28, 2010

Data

• Generated a synthetic data set of
expressions based on real logs

• Depth of the tree between 1 and 4

• Typical number of children of nodes
between 1 and 4

Friday, May 28, 2010

Performance of
different methods

• Running time in ms (y axis) vs. tree depth
(x axis). Scan does not scale wrt time

Friday, May 28, 2010

DNF performance

• Running time in ms (y axis) vs. tree depth
(x axis)

Friday, May 28, 2010

Interval and Dewey

• Running time of the tree evaluation in ms
(y axis) vs. #boolean expressions in test

Friday, May 28, 2010

Conjunction matching
time

• Running time of the tree evaluation in ms
(y axis) vs. tree depth

Friday, May 28, 2010

Excluding conjunction
matching

Friday, May 28, 2010

