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Simple example

• Display advertising

• Ads: Boolean expressions (contracts)    
age IN {young}                                  
age IN {old} AND income IN {high, veryHigh}          
income IN {high} AND browser NOT_IN {ie}

• Publishers: assignments                                                 
age = old; income = high; browser = firefox
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More complex example

• Display advertising exchange

Pub

age IN {young} OR 

income IN {high}

Net Net

AdvNet

age IN {young, old} AND

interest IN {NFL, NBA}
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More complex example

• Boolean expressions model the type 
of inventory sold by each node

Pub

age IN {young} OR 

income IN {high}

Net Net

AdvNet

age IN {young, old} AND

interest IN {NFL, NBA}
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More complex example

• Each Boolean expression can be a 
DNF/CNF

• Contracts for the publisher are 
“complex”  expressions

Pub

age IN {young} OR 

income IN {high}

Net Net

AdvNet

age IN {young, old} AND

interest IN {NFL, NBA}
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Other examples 

• Automatic targeting in display advertising 

• e.g. machine generated expressions to 
maximize click-through

• Information dissemination in social network 
graphs
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State-of-the-art

• There are existing solutions for efficiently 
evaluating CNF and DNF expressions

• Content-based publish-subscribe systems

• Normalizing complex Boolean expressions 
into DNF incurs in an exponential blow-up 
in size
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DNF growth

• In KB, averaged over 20 DNFs of each size

• Data set is realistic 
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Normalization does not 
work

• In environments where performance 
requirements are strict

• Billions of queries per day 
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Problem definition

• Evaluate complex Boolean expressions 
(e.g. AND of DNFs)

• Modeled as a tree of AND/OR nodes, 
where leafs are conjunctions of IN and 
NOT_IN operators

• Given an assignment, retrieve all valid 
expressions
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Intuition

• (Offline) Annotate the conjunctions with 
their position on the complex Boolean 
expression tree

• Evaluate conjunctions (leafs) using a state-
of-the-art algorithm

• Evaluate the trees bottom-up, using the 
retrieved conjunctions and their positions
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Overall architecture
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Background: 
conjunction evaluation

• Use an inverted index as the basic data 
structure

• Similar to processing conjunction queries in 
IR (but documents are queries)
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Conjunction evaluation 
example

• Conjunctions (documents)                                      
age IN {young}                                   
age IN {old} AND income IN {high, veryHigh}          
income IN {high} AND browser NOT_IN {ie}

• Assignments (queries)                                                 
age = old; income = high; browser = firefox
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Conjunction evaluation 
example
D1 (1) D2 (2) D3 (1)

age IN {young}

age IN {old} AND 

income IN {high, veryHigh}

income IN {high} AND 

browser NOT_IN {ie}

age = young

age = old

income = high

income = veryHigh

browser = ie

browser = firefox

payload = 1
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Conjunction evaluation 
another example

D1 (1) D2 (2) D3 (1)

age IN {young}

age IN {old} AND 

income IN {high, veryHigh}

income IN {high} AND 

browser NOT_IN {ie}

age = young

age = old

income = high

income = veryHigh

browser = ie

browser = firefox

payload = 1
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Overall architecture
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Online problem

• Given a set of valid conjunctions, is the 
Boolean expression satisfied

• Tree is never explicitly represented
AND 

OR 

AND 

OR OR 

AND 

OR 

OR OR OR OR OR OR 

OR OR 

OR 

OR 

AND AND AND 

AND 
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Algorithm 1: Dewey ids

• Assign Dewey ids for every node in the 
expression tree

• Ordering children of a node 
AND 

OR 

AND 

OR OR 

AND 

OR 

OR OR OR OR OR OR 

OR OR 

OR 

OR 

AND AND AND 

AND 

1
1.1

1.1.1

1.2

1.1.1.1

2*
2*.4

2*.3.2*
2*.3.2*.1
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Algorithm 1: Dewey ids

• Alternating AND/OR trees

• * denotes last child of an AND node

AND 

OR 

AND 

OR OR 

AND 

OR 

OR OR OR OR OR OR 

OR OR 

OR 

OR 

AND AND AND 

AND 

1
1.1

1.1.1

1.2

1.1.1.1

2*
2*.4

2*.3.2*
2*.3.2*.1
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Algorithm 1: Dewey ids

• Index evaluator will return the leaf nodes, 
which are the matching conjunctions 

1.2

1.1.1.1
2*.1.1.2 2*.3.1.1 2*.3.2*.1
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Algorithm 1: Dewey ids

• Index evaluator will return the leaf nodes, 
which are the matching conjunctions 

1.2

1.1.1.1
2*.1.1.2 2*.3.1.1 2*.3.2*.1

AND 

OR 

AND 

OR 

AND 

OR OR 

OR 

OR 

AND 
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Algorithm 2: Interval ids

• We map each Boolean tree to a one 
dimensional interval [1,M]

• M is the maximum number of leaves

• Tree is satisfied if there is a subset of 
intervals that cover all integer points on 
[1,M] without overlap
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Algorithm 2: Interval ids

• Look at: [1-5] [6-14] [15-M] : all integer 
points covered without overlap
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Assigning intervals

• Recursive procedure

• Children of an OR inherit the parent 
interval
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Assigning intervals

• Recursive procedure

• Children of an AND partition the interval
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Slightly more complex 
example

• B & D are not enough to satisfy, since 
intervals overlap

• D & E & F are OK, since intervals don’t 
overlap
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Caveats in labeling

• Bad labeling: A, E & F (or D & B) would lead 
us to satisfied contracts
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Assignment algorithm

• Recursive procedure

• Children of an OR inherit the parent 
interval

• Children of an AND partition the interval

• Extra technical condition

• No two children of non left-most AND 
node children share the same starting 
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Assignment algorithm

• Let each leaf have size 1

• Let the size of an internal node = # of 
leaves in its subtree

• For each node n, let n.leftLeaves = # of 
leaves appearing before n in a pre-order 
traversal of the tree
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Assignment algorithm

A.size=1, A.leftLeaves = 0 

Size = 3, leaftLeaves = 3 
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Assignment algorithm

• Label the root node [1,M] : entire interval

• Label children recursively

• For an OR node:

• Label of child = label of parent
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Assignment algorithm

• Parent AND node n with interval: [s, t]

• Label children with partition of parent node

• First child c begins with s, ends with 
n.leftLeaves + c.size

• Next child c’: begins with c.end+1, ends 
with c’.begin + c’.size-1

• …

• Last child c’’: … ends with t
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Assignment algorithm

Size = 3, leaftLeaves = 3 

Interval: 1…10 

First child: [1, 3+1] 

Second child[5, 5] 

Last child [6, 10] 
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Assignment algorithm

Size = 3, leaftLeaves = 3 

Interval: 1…10 

First child: [1, 3+1] 

Second child[5, 5] 

Last child [6, 10] 

• Theorem: this assignment algorithm 
produces a valid labeling
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Evaluation

• Given a set of matched intervals, how do you find 
if there exists a set of non overlapping ones 
covering [1,M] ?

• Maintain a matched array

• matched[i] = true iff there exist non overlapping 
segments that cover the  interval [1,i]

• To evaluate:

• Sort all segments by their starting position

• Evaluate matched array

• Given [s,t], if matched[s-1] = true, then set 
matched[t] = true
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Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Initialize matched by setting matched[0] = 
true, rest false

• matched: 1 0 0 0 0 0 0 0 0 0 0
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Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Process [1,1]. Since matched[0] = true, set 
matched[1] = true

• matched: 1 1 0 0 0 0 0 0 0 0 0
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Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Process [1,4]. Since matched[0] = true, set 
matched[4] = true

• matched: 1 1 0 0 I 0 0 0 0 0 0
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Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Process [5,5]. Since matched[4] = true, set 
matched[5] = true

• matched: 1 1 0 0 I I 0 0 0 0 0
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Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Process [6,10]. Since matched[5] = true, set 
matched[10] = true.

• matched: 1 1 0 0 I I 0 0 0 0 1
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Example

• Suppose intervals returned are

• [1,1], [1,4], [5,5], [6,10]

• Final matched array: 1 1 0 0 I I 0 0 0 0 1
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Data

• Generated a synthetic data set of 
expressions based on real logs

• Depth of the tree between 1 and 4

• Typical number of children of nodes 
between 1 and 4
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Performance of 
different methods

• Running time in ms (y axis) vs. tree depth 
(x axis). Scan does not scale wrt time
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DNF performance

• Running time  in ms (y axis) vs. tree depth 
(x axis)
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Interval and Dewey

• Running time of the tree evaluation in ms 
(y axis) vs. #boolean expressions in test
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Conjunction matching 
time

• Running time of the tree evaluation in ms 
(y axis) vs. tree depth
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Excluding conjunction 
matching
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