Efficiently Evaluating
Complex Boolean
Expressions

Yahoo! Research
Marcus Fontoura, Suhas Sadanadan, Jayavel
Shanmugasundaram, Sergei Vassilvitski, Erik Vee, Srihari

Venkatesan and Jason Zien
@]

Agenda

Motivation and problem definition
System architecture
Algorithms

Experiments

Agenda

Motivation and problem definition
System architecture
Algorithms

Experiments

Simple example

® Display advertising

® Ads: Boolean expressions (contracts)
age IN {young}

age IN {old} AND income IN {high, wveryHigh}
income IN {high} AND browser NOT IN {ie}

® Publishers: assignments

age = old; income = high; browser = firefox

Friday, May 28, 2010

Simple example

® Display advertising

® Ads: Boolean expressions (contracts)
age—IN—tyoung}
age IN {old} AND income IN {high, wveryHigh}
income IN {high} AND browser NOT IN {ie}

® Publishers: assignments

age = old; income = high; browser = firefox

Friday, May 28, 2010

More complex example

® Display advertising exchange

Net >

age IN {young} OR age IN {young, old} AND
income IN {high} interest IN {NFL, NBA}

Friday, May 28, 2010

More complex example

® Boolean expressions model the type
of inventory sold by each node

Net >

age IN {young} OR age IN {young, old} AND
income IN {high} interest IN {NFL, NBA}

Friday, May 28, 2010

More complex example

® FEach Boolean expression can be a
DNF/CNF

® Contracts for the publisher are
“complex” expressions

Net >

age IN {young} OR age IN {young, old} AND
income IN {high} interest IN {NFL, NBA}

Friday, May 28, 2010

Other examples

® Automatic targeting in display advertising

® c.g. machine generated expressions to
maximize click-through

® |nformation dissemination in social network
graphs

State-of-the-art

® There are existing solutions for efficiently
evaluating CNF and DNF expressions

® Content-based publish-subscribe systems

® Normalizing complex Boolean expressions
into DNF incurs in an exponential blow-up
In size

DNF growth

® |n KB, averaged over 20 DNFs of each size

® Data set is realistic

12

10

DNF size

Friday, May 28, 2010

Normalization does not
work

® |n environments where performance
requirements are strict

® Billions of queries per day

!

Problem definition

® Evaluate complex Boolean expressions
(e.s. AND of DNFs)

® Modeled as a tree of AND/OR nodes,
where leafs are conjunctions of IN and
NOT IN operators

® Given an assighment, retrieve all valid

Y g

expressions

'/

4

Agenda

Motivation and problem definition
System architecture
Algorithms

Experiments

Agenda

Motivation and problem definition
System architecture
Algorithms

Experiments

Intuition

e (Offline) Annotate the conjunctions with

their position on the complex Boolean
expression tree

® Evaluate conjunctions (leafs) using a state-
of-the-art algorithm

® Evaluate the trees bottom-up, using the
retrieved conjunctions and their positions

Friday, May 28, 2010

Overall architecture

Matching Boolean Expression Assighment
:"'bnline
Expression | N Index
, Evaluator Matching Evaluator
I Conjunctions
R
¥/
Conjunction
Annotations
Offiine |
Boolean | Conjunction | Conjunction
Expression ! Annotator Index Builder

N e e e e e e e e e e e e e e e e e e e o e

Friday, May 28, 2010

Backgrouna:
conjunction evaluation

® Use an inverted index as the basic data
structure

® Similar to processing conjunction queries in

IR (but documents are queries)
@l

Conjunction evaluation
example

® Conjunctions (documents)

age IN {young}
age IN {old} AND income IN {high, wveryHigh}
income IN {high} AND browser NOT IN {ie}

® Assignments (queries)

age = old; income = high; browser = firefox

Friday, May 28, 2010

Conjunction evaluation

age = young

age = old

income = high
income = veryHigh
browser = 1e

browser = firefox

example

D1 (1) D2 (2) D3 (1)

©

©

—¢

©

:‘payload =1

income IN {high} AND
browser NOT IN {ie}
age IN {old} AND

income IN {high, wveryHigh}

age IN {young}

Friday, May 28, 2010

Conjunction evaluation
example

D1 (1) D2 (2) D3 (1)

7\
T\

age = old

: ‘]
income = high Q Q
i N
g

browser = firefox

age IN {young} E income IN {high} AND
browser NOT IN {ie}
age IN {old} AND

income IN {high, wveryHigh}

Friday, May 28, 2010

Conjunction evaluation
example

D1 (1) D2 (2) D3 (1)

7\
T\

age = old

: ‘]
income = high Q Q
i N
g

browser = firefox

age IN {young} E income IN {high} AND
browser NOT IN {ie}
age IN {old} AND

income IN {high, wveryHigh}

Friday, May 28, 2010

Conjunction evaluation
another example

age = old

income = high

browser = 1ie

D1 (1) D2 (2) D3 (1)
~
et ,
©- -
@ O-
~ ’
T

:‘payload =1

age IN {young} E income IN {high} AND
browser NOT IN {ie}
age IN {old} AND

income IN {high, wveryHigh}

Friday, May 28, 2010

Agenda

Motivation and problem definition
System architecture
Algorithms

Experiments

Agenda

Motivation and problem definition
System architecture
Algorithms

Experiments

Overall architecture

Matching Boolean Expression Assighment
:"'bnline
Expression | N Index
, Evaluator Matching Evaluator
I Conjunctions
R
¥/
Conjunction
Annotations
Offiine |
Boolean | Conjunction | Conjunction
Expression ! Annotator Index Builder

N e e e e e e e e e e e e e e e e e e e o e

Friday, May 28, 2010

Online problem

® Given a set of valid conjunctions, is the
Boolean expression satisfied

® Tree is never explicitly represented

AND

-
OR OR
/E
AND AND AND | O
OR OR OR OR OlR OlR
D AN i et
AND AND AND
N N .

Friday, May 28, 2010

Algorithm |: Dewey ids

® Assign Dewey ids for every node in the
expression tree

® Ordering children of a node

AND

/\
or] 2%

|
|| A/EIZ AND] o 2% .4

OR OR OR OR OR OR

.11
s b ey Tt 8263250

O O .
OR OR OR OR OR OR

| | | | | |
]]]]]]

Algorithm |: Dewey ids

® Alternating AND/OR trees

® * denotes last child of an AND node

AND

A

S

OR

RR
NERE 4

3

OR

7

}Elz

AND

T

OR

/

N

AND

T

OR

N

AND

.

OR

2*

AND

N

o 2*.4

OR

OR 2%.3.2%

/ —_

AND

/\

2% 3.2% |

OR

OR OR

OR

OR

OR

|
]

]]

]

]

]

Algorithm |: Dewey ids

® |ndex evaluator will return the leaf nodes,
which are the matching conjunctions

=].2

N N
11T e 21y 2K3L1 0 2R32%]

Algorithm |: Dewey ids

® |ndex evaluator will return the leaf nodes,
which are the matching conjunctions

AND

OR/ OR
AND E |2 AND AND
OR/ O/ \OR OR
I L
L w3 30k

2%.1.1.2

Algorithm 2: Interval ids

® VWe map each Boolean tree to a one
dimensional interval [|,M]

® M is the maximum number of leaves

® Tree is satisfied if there is a subset of
intervals that cover all integer points on
[I,M] without overlap

Algorithm 2: Interval ids

® | ook at:[I-5] [6-14] [I15-M] :all integer
points covered without overlap

And | 1-M

or | 1-5 Or |6-M

Am 1-5 And 6-M And | 6-M LI 6-M

1-2 or |35 or [6-8 or |9-M

O N Ly L

And And
12 12 35 35 ZoN 6-8 o~ 7
Or Or Or Or Or Or
6-6 7-8 9-9 10-M 9-11 12-M

|

)

Assigning intervals

® Recursive procedure

® Children of an OR inherit the parent

interval

OR

=il

12345678910

12345678910

12345678910

¢,

Assigning intervals

® Recursive procedure

® Children of an AND partition the interval

AND 12345678910

/\ :
A All12 34 ___________.:

B B 5678910

Slightly more complex
example

® B & D are not enough to satisfy, since
intervals overlap

® D & E&F are OK, since intervals don’t

overlap

OR AR
/\ 8l bz4s5678910

AND AND
/ ! cli2345678910
c |\ /|l—
A F Dl1234
5 = e Bl
D F 678910

Friday, May 28, 2010

Caveats in labeling

® Bad labeling:A,E & F (or D & B) would lead
us to satisfied contracts

OR Al
/\ B-234567891O
AND AND

| Cl12345678910

/ C \ _________________
A F D1

B E el psas]

D F ::::_678910

Assignment algorithm

® Recursive procedure

® Children of an OR inherit the parent
interval

® Children of an AND partition the interval
® Extra technical condition

® No two children of non left-most AND
node children share the same starting

Assignment algorithm

® | et each leaf have size |

® | et the size of an internal node = # of
leaves in its subtree

® For each node n, let n.leftLeaves = # of
leaves appearing before n in a pre-order
traversal of the tree

Assignment algorithm

A.size=1, A.leftLeaves =0

Size = 3, leaftLeaves = 3

> |
RSN
W,

Y g

|

&

Assignment algorithm

® |abel the root node [I,M] : entire interval
® |abel children recursively
® For an OR node:

® |abel of child = label of parent

OR 12345678910

A \ Al12345678910
B B[12345678910

Assignment algorithm

® Parent AND node n with interval: [s, t]
® |abel children with partition of parent node

® First child c begins with s, ends with
n.leftLeaves + c.size

® Next child ¢’: begins with c.end+1, ends
with c’.begin + C’.size-|

® |ast child c’:... ends with t @

'/

¥

Assignment algorithm

OR AT Size = 3, leaftLeaves = 3
/\ </1§’_E4567891o Interval: 1...10
AND AND
e 1229507850 First child: [1, 3+1]
A F D123 4 |
Second child[5, 5]
B E el Bl '
S | erae Last child [6, 10]

Friday, May 28, 2010

Assignment algorithm

® [heorem: this assighment algorithm
produces a valid labeling

OR AT Size = 3, leaftLeaves = 3

/\ 5l 345678910 Interval: 1...10

AND ANDl <

Al c12345578910 First child: [1, 3+1]
A F D123 4 |
Second child([5, 5]
B E | Bl '
3 N 78910 Last child [6, 10]

Friday, May 28, 2010

Evaluation

® Given a set of matched intervals, how do you find

if there exists a set of non overlapping ones
covering [|,M] ?

® Maintain a matched array

® matched]i] = true iff there exist non overlapping
segments that cover the interval [I,i]

® TJo evaluate:
® Sort all segments by their starting position
® FEvaluate matched array

® Given [s,t], if matched[s-1] = true, then set
matched|[t] = true

Friday, May 28, 2010

Example

® Suppose intervals returned are

o [I,I],[1,4], [5,5],[6,10]

® |nitialize matched by setting matched[0] =
true, rest false

® Mmatched: 1 0000000000

!

Example

® Suppose intervals returned are

o [I,I],[1,4], [5,5],[6,10]

® Process [I,1].Since matched[0] = true, set
matched[|] = true

® matched: | 1000000000

!

Example

® Suppose intervals returned are

o [I,I],[1,4], [5,5],[6,10]

® Process [1,4].Since matched[0] = true, set
matched[4] = true

® matched: 1 001000000

!

Example

® Suppose intervals returned are

o [I,I],[1,4], [5,5],[6,10]

® Process [5,5].Since matched[4] = true, set
matched[5] = true

® matched: | 001100000

!

Example

® Suppose intervals returned are

o [I,I],[1,4], [5,5],[6,10]

® Process [6,10]. Since matched[5] = true, set
matched[0] = true.

® matched: 1| 100110000 |

!

Example

® Suppose intervals returned are

o [I,I],[1,4], [5,5], [6,10]
® Final matchedarray: | 00110000 |

2345678910

12345678910

J>»\
0 |
O k
m\
=R
T m (W) @) w >
o
N
N
a1

678910

Agenda

Motivation and problem definition
System architecture
Algorithms

Experiments

Agenda

Motivation and problem definition
System architecture
Algorithms

Experiments

Data

® Generated a synthetic data set of
expressions based on real logs

® Depth of the tree between | and 4

® Typical number of children of nodes
between | and 4

Performance of
different methods

® Running time in ms (y axis) vs. tree depth
(x axis). Scan does not scale wrt time

35000

30000

25000

20000

15000

10000

5000

0

=&—Interval
== Dewey
DNF
=>&=Scan with conjunction

match

==&=Scan

Friday, May 28, 2010

DNF performance

® Running time in ms (y axis) vs. tree depth
(X axis)

350
300

250

200 =@ |nterval
150 == Dewey

DNF
100

50 ./.

0

Friday, May 28, 2010

Interval and Dewey

® Running time of the tree evaluation in ms
(y axis) vs. #boolean expressions in test

=@ |nterval
== Dewey

o [N w B~ (92 (@) ~ (00]

10k 20k 50k 100k 150k

Friday, May 28, 2010

Conjunction matching
time

® Running time of the tree evaluation in ms
(y axis) vs. tree depth

350
300
250

200 =@ |nterval

== Dewey

150
Index time
100

50

0

Friday, May 28, 2010

Excluding conjunction
matching

50
45
40
35
30

25 =®=|nterval

20 == Dewey
15

10

