Aller au contenu

« Effet Auger » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Dirac66 (discuter | contributions)
Ajout de catégorie: Techniques d'analyse par rayon X
Kku (discuter | contributions)
m link [éÉ]nergie cinétique
 
(19 versions intermédiaires par 15 utilisateurs non affichées)
Ligne 3 : Ligne 3 :
(a) illustre séquentiellement les étapes impliquées dans la désexcitation Auger. Un électron incident (ou un photon) crée un trou de cœur dans le niveau 1s. Un électron du niveau 2s remplit le trou 1s et l'énergie de transition est transmise à un électron 2p qui est émis. Le niveau atomique final a ainsi deux trous, un sur l'orbitale 2s et un autre sur l'orbitale 2p.<br>
(a) illustre séquentiellement les étapes impliquées dans la désexcitation Auger. Un électron incident (ou un photon) crée un trou de cœur dans le niveau 1s. Un électron du niveau 2s remplit le trou 1s et l'énergie de transition est transmise à un électron 2p qui est émis. Le niveau atomique final a ainsi deux trous, un sur l'orbitale 2s et un autre sur l'orbitale 2p.<br>
(b) illustre le même processus en utilisant la notation spectroscopique KL<sub>1</sub>L<sub>2,3</sub>.]]
(b) illustre le même processus en utilisant la notation spectroscopique KL<sub>1</sub>L<sub>2,3</sub>.]]
Les '''électrons Auger''' sont des [[électron]]s émis lors de la [[Désexcitation atomique|désexcitation d'un atome]]. Ce phénomène a été découvert en 1922 par [[Lise Meitner]]<ref>L. Meitner : Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen, Z. Physik 9 (1922) 131-144.</ref> qui cherchait en fait les électrons bêta d'origine nucléaire, mais [[Pierre Auger]] s'y est également intéressé au même moment<ref>P. Auger, ''Sur les rayons β secondaires produits dans un gaz par des rayons X'', C.R.A.S. 177 (1923) 169-171. (//gallica.bnf.fr/ark:/12148/bpt6k3130n.image.f187.langFR)</ref> pour en faire le sujet de sa thèse, et c'est son nom qui a été donné à ce phénomène, d'abord à l'étranger<ref>O. Hardouin Duparc : Pierre Auger – Lise Meitner, ''Comparative contributions to the Auger effect'', ''Int. J. Mat. Res.'' 100 (2009) 1162-1166. DOI: 10.3139/146.110163</ref>{{,}}<ref>O. Hardouin Duparc : Pierre Auger - Lise Meitner, ''Contributions Comparées à l’effet Auger'', ''Reflets de la Physique'', 18 (2010) 23-25. DOI: 10.1051/refdp/2010006 </ref>.
'''L'effet Auger''' est un phénomène physique apparaissant lors de la [[Désexcitation atomique|désexcitation d'un atome]] qui se traduit par l'émission d'un [[électron]] dit Auger. Ce phénomène est découvert indépendamment par [[Lise Meitner]] et [[Pierre Auger]] à la même époque<ref>L. Meitner : Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen, Z. Physik 9 (1922) 131-144.</ref>{{,}}<ref>P. Auger, ''Sur les rayons β secondaires produits dans un gaz par des rayons X'', C.R.A.S. 177 (1923) 169-171. (//gallica.bnf.fr/ark:/12148/bpt6k3130n.image.f187.langFR)</ref>. Le phénomène a cependant gardé le seul nom de Pierre Auger par la suite. Une étude<ref>O. Hardouin Duparc : Pierre Auger – Lise Meitner, ''Comparative contributions to the Auger effect'', ''Int. J. Mat. Res.'' 100 (2009) 1162-1166. DOI: 10.3139/146.110163</ref>{{,}}<ref>O. Hardouin Duparc : Pierre Auger - Lise Meitner, ''Contributions Comparées à l’effet Auger'', ''Reflets de la Physique'', 18 (2010) 23-25. DOI: 10.1051/refdp/2010006</ref> sur les publications des deux chercheurs justifie cette attribution par le peu d'intérêt porté par Lise Meitner à cette découverte en physique atomique. En effet la physique nucléaire plutôt qu'atomique était au centre des recherches de Meitner, tandis que le nouvel effet en physique atomique était le sujet central de la thèse de Pierre Auger.


Lorsqu'un [[atome]] est bombardé par des rayonnements ionisants, un électron peut être retiré d’une [[Niveau d'énergie|couche interne atomique]], laissant une place vacante, qu'un électron d’une couche de plus haute énergie peut venir remplir, causant un dégagement d’énergie. Cette énergie peut :
Lorsqu'un [[atome]] est bombardé par des rayonnements ionisants, un électron peut être retiré d’une [[Niveau d'énergie|couche interne atomique]], laissant une place vacante, qu'un électron d’une couche de plus haute énergie peut venir remplir. L'énergie récupérée dans le processus peut être évacuée par l'atome de différentes façons, par exemple par émission d'un photon (c'est la [[spectrométrie de fluorescence des rayons X|fluorescence X]]), ou par éjection d'un autre électron de l'atome, qui emporte l'énergie en excès sous forme d'[[énergie cinétique]]. C'est ce second processus qui constitue l'effet Auger. L'électron éjecté est également appelé électron Auger.
* causer l’émission d’un photon : [[spectrométrie de fluorescence X|fluorescence X]] ;
* être transmise à un électron atomique qui sera éjecté de l’atome : émission d'électron Auger.


Ce processus de désexcitation ne fait pas intervenir de photon (on parle de processus non radiatif) et ne doit pas être confondu avec l'auto-absorption d'un rayon X par l'atome qui l'émettrait, un phénomène extrêmement peu probable. L'émission Auger est en compétition avec l'émission X, de la même façon que l'[[Rayon gamma|émission gamma]] est en compétition avec la [[conversion interne]] au niveau nucléaire.
Ce processus de désexcitation ne fait pas intervenir de photon (on parle de processus non radiatif) et ne doit pas être confondu avec l'auto-absorption d'un rayon X par l'atome qui l'émettrait, un phénomène extrêmement peu probable. L'émission Auger est en compétition avec l'émission X, de la même façon que l'[[Rayon gamma|émission gamma]] est en compétition avec la [[conversion interne]] au niveau nucléaire.


Ce phénomène est utilisé pour faire des analyses élémentaires de surface : c'est la « spectrométrie Auger ».
Ce phénomène est utilisé pour faire des analyses élémentaires de surface : c'est la « spectrométrie Auger ».
Ce phénomène a également été identifié début 2013 comme responsable de la perte d'efficacité des [[Diode électroluminescente|LED]] à hautes intensités<ref>[http://www.lemonde.fr/sciences/article/2013/05/06/on-sait-enfin-pourquoi-les-led-sont-peu-efficaces_3171882_1650684.html ''On sait enfin pourquoi les LED sont peu efficaces''], ''Le Monde'', 6 mai 2013</ref>, une partie de l'énergie transmise étant convertie en chaleur et non en lumière<ref>[http://prl.aps.org/abstract/PRL/v110/i17/e177406 ''Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection''], ''Physical Review Letters'', 25 avril 2013</ref>.
Ce phénomène a également été identifié début 2013 comme responsable de la perte d'efficacité des [[Diode électroluminescente|LED]] à hautes intensités<ref>[https://www.lemonde.fr/sciences/article/2013/05/06/on-sait-enfin-pourquoi-les-led-sont-peu-efficaces_3171882_1650684.html ''On sait enfin pourquoi les LED sont peu efficaces''], ''Le Monde'', 6 mai 2013</ref>, une partie de l'énergie transmise étant convertie en chaleur et non en lumière<ref>[http://prl.aps.org/abstract/PRL/v110/i17/e177406 ''Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection''], ''Physical Review Letters'', 25 avril 2013</ref>.


== Calcul des énergies ==
== Calcul des énergies ==
En prenant par exemple le cas où un électron est éjecté de la couche électronique K d'énergie <math>E_K</math>, un autre électron présent sur la couche L, d'énergie <math>E_L</math> peut descendre sur la couche K en transmettant son énergie à un troisième électron sur la couche M, d'énergie <math>E_M</math>, qui va quitter l'atome (c'est l'électron Auger).
En prenant par exemple le cas où un électron est éjecté de la couche électronique K d'énergie <math>E_K</math>, un autre électron présent sur la couche L, d'énergie <math>E_L</math> peut descendre sur la couche K en transmettant son énergie à un troisième électron sur la couche M, d'énergie <math>E_M</math>, qui va quitter l'atome (c'est l'électron Auger).


L'énergie <math>E</math> de l'électron Auger se calcule par : <math>E=\frac{1}{2}mv^2=(E_L-E_K)-E_M</math>.
L'énergie <math>E</math> de l'électron Auger se calcule par : <math>E=\frac{1}{2}mv^2=(E_L-E_K)-(0-E_M) = E_L+E_M-E_K</math>.


Ces calculs approximatifs doivent être affinés en pratique en tenant compte de nombreuses autres considérations, comme les niveaux hyperfins, en particulier dans les applications quantitatives de la [[spectrométrie Auger]] (voir la section « Liens externes »).
Ces calculs approximatifs doivent être affinés en pratique en tenant compte de nombreuses autres considérations, comme les niveaux hyperfins, en particulier dans les applications quantitatives de la [[spectrométrie Auger]] (voir la section « Liens externes »).


== Spectrométrie Auger ==
== Spectrométrie Auger ==
Ligne 27 : Ligne 25 :
L'appareil comporte un canon électronique qui bombarde l'échantillon, et un détecteur d'électrons qui détecte les électrons Auger et détermine leur énergie. L'énergie des électrons permet de déterminer la nature chimique des atomes, et le mode balayage permet de dresser une cartographie chimique de la surface de l'échantillon.
L'appareil comporte un canon électronique qui bombarde l'échantillon, et un détecteur d'électrons qui détecte les électrons Auger et détermine leur énergie. L'énergie des électrons permet de déterminer la nature chimique des atomes, et le mode balayage permet de dresser une cartographie chimique de la surface de l'échantillon.


Les électrons Auger ayant une faible énergie, seuls ceux provenant des premières couches atomiques sortent de l'échantillon, c'est donc une méthode d'analyse superficielle. Pour la même raison, il faut travailler en vide poussé ([[ultra-vide]], de l'ordre de {{unité|10<sup>-8</sup>|[[Pascal (unité)|Pa]]}}, {{unité|10<sup>-10</sup>|[[Torr]]}}).
Les électrons Auger ayant une faible énergie, seuls ceux provenant des premières couches atomiques sortent de l'échantillon, c'est donc une méthode d'analyse superficielle. Pour la même raison, il faut travailler en vide poussé ([[ultra-vide]], de l'ordre de {{unité|e−8|[[Pascal (unité)|Pa]]}}, {{unité|e−10|[[Torr]]}}).


Par ailleurs, ce sont les éléments légers (faible [[numéro atomique]], Z) qui produisent le plus d'électrons Auger, les atomes lourds (Z élevé) produisant surtout des {{nobr|photons X}}. L'[[Chimie analytique|analyse chimique]] est donc limitée aux éléments légers.
Par ailleurs, ce sont les éléments légers (faible [[numéro atomique]], Z) qui produisent le plus d'électrons Auger, les atomes lourds (Z élevé) produisant surtout des {{nobr|photons X}}. L'[[Chimie analytique|analyse chimique]] est donc limitée aux éléments légers.
Ligne 47 : Ligne 45 :


[[Catégorie:Spectroscopie]]
[[Catégorie:Spectroscopie]]
[[Catégorie:Techniques d'analyse par rayon X]]
[[Catégorie:Analyse par rayon X]]


[[de:Augerelektronenspektroskopie#Auger-Effekt]]
[[de:Augerelektronenspektroskopie#Auger-Effekt]]

Dernière version du 23 août 2023 à 21:14

Deux vues de l'effet Auger :
(a) illustre séquentiellement les étapes impliquées dans la désexcitation Auger. Un électron incident (ou un photon) crée un trou de cœur dans le niveau 1s. Un électron du niveau 2s remplit le trou 1s et l'énergie de transition est transmise à un électron 2p qui est émis. Le niveau atomique final a ainsi deux trous, un sur l'orbitale 2s et un autre sur l'orbitale 2p.
(b) illustre le même processus en utilisant la notation spectroscopique KL1L2,3.

L'effet Auger est un phénomène physique apparaissant lors de la désexcitation d'un atome qui se traduit par l'émission d'un électron dit Auger. Ce phénomène est découvert indépendamment par Lise Meitner et Pierre Auger à la même époque[1],[2]. Le phénomène a cependant gardé le seul nom de Pierre Auger par la suite. Une étude[3],[4] sur les publications des deux chercheurs justifie cette attribution par le peu d'intérêt porté par Lise Meitner à cette découverte en physique atomique. En effet la physique nucléaire plutôt qu'atomique était au centre des recherches de Meitner, tandis que le nouvel effet en physique atomique était le sujet central de la thèse de Pierre Auger.

Lorsqu'un atome est bombardé par des rayonnements ionisants, un électron peut être retiré d’une couche interne atomique, laissant une place vacante, qu'un électron d’une couche de plus haute énergie peut venir remplir. L'énergie récupérée dans le processus peut être évacuée par l'atome de différentes façons, par exemple par émission d'un photon (c'est la fluorescence X), ou par éjection d'un autre électron de l'atome, qui emporte l'énergie en excès sous forme d'énergie cinétique. C'est ce second processus qui constitue l'effet Auger. L'électron éjecté est également appelé électron Auger.

Ce processus de désexcitation ne fait pas intervenir de photon (on parle de processus non radiatif) et ne doit pas être confondu avec l'auto-absorption d'un rayon X par l'atome qui l'émettrait, un phénomène extrêmement peu probable. L'émission Auger est en compétition avec l'émission X, de la même façon que l'émission gamma est en compétition avec la conversion interne au niveau nucléaire.

Ce phénomène est utilisé pour faire des analyses élémentaires de surface : c'est la « spectrométrie Auger ». Ce phénomène a également été identifié début 2013 comme responsable de la perte d'efficacité des LED à hautes intensités[5], une partie de l'énergie transmise étant convertie en chaleur et non en lumière[6].

Calcul des énergies

[modifier | modifier le code]

En prenant par exemple le cas où un électron est éjecté de la couche électronique K d'énergie , un autre électron présent sur la couche L, d'énergie peut descendre sur la couche K en transmettant son énergie à un troisième électron sur la couche M, d'énergie , qui va quitter l'atome (c'est l'électron Auger).

L'énergie de l'électron Auger se calcule par : .

Ces calculs approximatifs doivent être affinés en pratique en tenant compte de nombreuses autres considérations, comme les niveaux hyperfins, en particulier dans les applications quantitatives de la spectrométrie Auger (voir la section « Liens externes »).

Spectrométrie Auger

[modifier | modifier le code]

Un spectromètre Auger est un appareil très semblable à un microscope électronique à balayage ; il permet d'ailleurs de faire des images du même type.

L'appareil comporte un canon électronique qui bombarde l'échantillon, et un détecteur d'électrons qui détecte les électrons Auger et détermine leur énergie. L'énergie des électrons permet de déterminer la nature chimique des atomes, et le mode balayage permet de dresser une cartographie chimique de la surface de l'échantillon.

Les électrons Auger ayant une faible énergie, seuls ceux provenant des premières couches atomiques sortent de l'échantillon, c'est donc une méthode d'analyse superficielle. Pour la même raison, il faut travailler en vide poussé (ultra-vide, de l'ordre de 10−8 Pa, 10−10 Torr).

Par ailleurs, ce sont les éléments légers (faible numéro atomique, Z) qui produisent le plus d'électrons Auger, les atomes lourds (Z élevé) produisant surtout des photons X. L'analyse chimique est donc limitée aux éléments légers.

Notes et références

[modifier | modifier le code]
  1. L. Meitner : Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen, Z. Physik 9 (1922) 131-144.
  2. P. Auger, Sur les rayons β secondaires produits dans un gaz par des rayons X, C.R.A.S. 177 (1923) 169-171. (//gallica.bnf.fr/ark:/12148/bpt6k3130n.image.f187.langFR)
  3. O. Hardouin Duparc : Pierre Auger – Lise Meitner, Comparative contributions to the Auger effect, Int. J. Mat. Res. 100 (2009) 1162-1166. DOI: 10.3139/146.110163
  4. O. Hardouin Duparc : Pierre Auger - Lise Meitner, Contributions Comparées à l’effet Auger, Reflets de la Physique, 18 (2010) 23-25. DOI: 10.1051/refdp/2010006
  5. On sait enfin pourquoi les LED sont peu efficaces, Le Monde, 6 mai 2013
  6. Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection, Physical Review Letters, 25 avril 2013

Articles connexes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]