-
Notifications
You must be signed in to change notification settings - Fork 16
/
main.py
237 lines (198 loc) · 10.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import argparse
import datetime
import random
import json
import time
from pathlib import Path
from tensorboardX import SummaryWriter
import clr
import numpy as np
import torch
from copy import deepcopy
torch.multiprocessing.set_sharing_strategy('file_system')
from torch.utils.data import DataLoader, DistributedSampler
import data
#from mmdet import datasets
import util.misc as utils
from data import build
from engines import train_one_epoch
from inference import infer, evaluate
from models import build_model
def get_args_parser():
# define task, label values, and output channels
tasks = {
'MR': {'lab_values': [0, 1, 2, 3, 4, 5], 'out_channels': 4}
}
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=6000, type=int)
parser.add_argument('--lr_drop', default=2000, type=int)
parser.add_argument('--tasks', default=tasks, type=dict)
parser.add_argument('--model', default='MSCMR', required=False)
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
parser.add_argument('--in_channels', default=1, type=int)
# Puzzle Mix
parser.add_argument('--in_batch', type=str2bool, default=False, help='whether to use different lambdas in batch')
parser.add_argument('--mixup_alpha', type=float, help='alpha parameter for mixup')
parser.add_argument('--box', type=str2bool, default=False, help='true for CutMix')
parser.add_argument('--graph', type=str2bool, default=False, help='true for PuzzleMix')
parser.add_argument('--neigh_size', type=int, default=4, help='neighbor size for computing distance beteeen image regions')
parser.add_argument('--n_labels', type=int, default=3, help='label space size')
parser.add_argument('--beta', type=float, default=1.2, help='label smoothness')
parser.add_argument('--gamma', type=float, default=0.5, help='data local smoothness')
parser.add_argument('--eta', type=float, default=0.2, help='prior term')
parser.add_argument('--transport', type=str2bool, default=True, help='whether to use transport')
parser.add_argument('--t_eps', type=float, default=0.8, help='transport cost coefficient')
parser.add_argument('--t_size', type=int, default=-1, help='transport resolution. -1 for using the same resolution with graphcut')
parser.add_argument('--adv_eps', type=float, default=10.0, help='adversarial training ball')
parser.add_argument('--adv_p', type=float, default=0.0, help='adversarial training probability')
parser.add_argument('--clean_lam', type=float, default=0.0, help='clean input regularization')
parser.add_argument('--mp', type=int, default=8, help='multi-process for graphcut (CPU)')
# * Loss coefficients
parser.add_argument('--multiDice_loss_coef', default=0, type=float)
parser.add_argument('--CrossEntropy_loss_coef', default=1, type=float)
parser.add_argument('--Rv', default=1, type=float)
parser.add_argument('--Lv', default=1, type=float)
parser.add_argument('--Myo', default=1, type=float)
parser.add_argument('--Avg', default=1, type=float)
# dataset parameters
parser.add_argument('--dataset', default='MSCMR_dataset', type=str,
help='multi-sequence CMR segmentation dataset')
# set your outputdir
parser.add_argument('--output_dir', default='/data/MSCMR_cycleMix/',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', type=str,
help='device to use for training / testing')
parser.add_argument('--GPU_ids', type=str, default = '5', help = 'Ids of GPUs')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', default = False , action='store_true')
parser.add_argument('--num_workers', default=0, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def main(args):
writer = SummaryWriter(log_dir=args.output_dir + '/summary')
args.mean = torch.tensor([0.5], dtype=torch.float32).reshape(1,1,1,1).cuda()
args.std = torch.tensor([0.5], dtype=torch.float32).reshape(1,1,1,1).cuda()
device = torch.device(args.device)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.allow_tf32 = True
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors, visualizer = build_model(args)
model.to(device)
print(model)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [{"params": [p for n, p in model_without_ddp.named_parameters() if p.requires_grad]}]
optimizer = torch.optim.Adam(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
print('Building training dataset...')
dataset_train_dict = build(image_set='train', args=args)
num_train = [len(v) for v in dataset_train_dict.values()]
print('Number of training images: {}'.format(sum(num_train)))
print('Building validation dataset...')
dataset_val_dict = build(image_set='val', args=args)
num_val = [len(v) for v in dataset_val_dict.values()]
print('Number of validation images: {}'.format(sum(num_val)))
sampler_train_dict = {k : torch.utils.data.RandomSampler(v) for k, v in dataset_train_dict.items()}
sampler_val_dict = {k : torch.utils.data.SequentialSampler(v) for k, v in dataset_val_dict.items()}
batch_sampler_train = {
k : torch.utils.data.BatchSampler(v, args.batch_size, drop_last=True) for k, v in sampler_train_dict.items()
}
dataloader_train_dict = {
k : DataLoader(v1, batch_sampler=v2, collate_fn=utils.collate_fn, num_workers=args.num_workers)
for (k, v1), v2 in zip(dataset_train_dict.items(), batch_sampler_train.values())
}
dataloader_val_dict = {
k : DataLoader(v1, args.batch_size, sampler=v2, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
for (k, v1), v2 in zip(dataset_val_dict.items(), sampler_val_dict.values())
}
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.whst.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
# if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
if not args.eval and 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
infer(model, criterion, dataloader_train_dict, device)
print("Start training")
start_time = time.time()
best_dic = None
best_dice = None
for epoch in range(args.start_epoch, args.epochs):
# use cyclic learning rate
# optimizer.param_groups[0]['lr'] = clr.cyclic_learning_rate(epoch, mode='exp_range', gamma=1)
train_stats = train_one_epoch(model, criterion, dataloader_train_dict, optimizer, device, epoch,args,writer)
## lr_scheduler
lr_scheduler.step()
test_stats = evaluate(
model, criterion, postprocessors, dataloader_val_dict, device, args.output_dir, visualizer, epoch, writer
)
# save checkpoint for high dice score
dice_score = test_stats["Avg"]
print("dice score:", dice_score)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
if best_dice == None or dice_score > best_dice:
best_dice = dice_score
print("Update best model!")
checkpoint_paths.append(output_dir / 'best_checkpoint.pth')
# You can change the threshold
if dice_score > 0.50:
print("Update high dice score model!")
file_name = str(dice_score)[0:6]+'new_checkpoint.pth'
checkpoint_paths.append(output_dir / file_name)
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('MSCMR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(args.GPU_ids)
main(args)