forked from PaddlePaddle/PaddleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
esrgan_x4_div2k.yaml
133 lines (124 loc) · 2.73 KB
/
esrgan_x4_div2k.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
total_iters: 250000
output_dir: output_dir
find_unused_parameters: True
# tensor range for function tensor2img
min_max:
(0., 1.)
model:
name: ESRGAN
generator:
name: RRDBNet
in_nc: 3
out_nc: 3
nf: 64
nb: 23
discriminator:
name: VGGDiscriminator128
in_channels: 3
num_feat: 64
pixel_criterion:
name: L1Loss
loss_weight: !!float 1e-2
perceptual_criterion:
name: PerceptualLoss
layer_weights:
'34': 1.0
perceptual_weight: 1.0
style_weight: 0.0
norm_img: False
gan_criterion:
name: GANLoss
gan_mode: vanilla
loss_weight: !!float 5e-3
export_model:
- {name: 'generator', inputs_num: 1}
dataset:
train:
name: SRDataset
gt_folder: data/DIV2K/DIV2K_train_HR_sub
lq_folder: data/DIV2K/DIV2K_train_LR_bicubic/X4_sub
num_workers: 6
batch_size: 32
scale: 4
preprocess:
- name: LoadImageFromFile
key: lq
- name: LoadImageFromFile
key: gt
- name: Transforms
input_keys: [lq, gt]
pipeline:
- name: SRPairedRandomCrop
gt_patch_size: 128
scale: 4
keys: [image, image]
- name: PairedRandomHorizontalFlip
keys: [image, image]
- name: PairedRandomVerticalFlip
keys: [image, image]
- name: PairedRandomTransposeHW
keys: [image, image]
- name: Transpose
keys: [image, image]
- name: Normalize
mean: [0., 0., 0.]
std: [255., 255., 255.]
keys: [image, image]
test:
name: SRDataset
gt_folder: data/Set14/GTmod12
lq_folder: data/Set14/LRbicx4
scale: 4
preprocess:
- name: LoadImageFromFile
key: lq
- name: LoadImageFromFile
key: gt
- name: Transforms
input_keys: [lq, gt]
pipeline:
- name: Transpose
keys: [image, image]
- name: Normalize
mean: [0., 0., 0.]
std: [255., 255., 255.]
keys: [image, image]
lr_scheduler:
name: MultiStepDecay
learning_rate: 0.0001
milestones: [50000, 100000, 200000, 300000]
gamma: 0.5
optimizer:
optimG:
name: Adam
net_names:
- generator
weight_decay: 0.0
beta1: 0.9
beta2: 0.99
optimD:
name: Adam
net_names:
- discriminator
weight_decay: 0.0
beta1: 0.9
beta2: 0.99
validate:
interval: 5000
save_img: false
metrics:
psnr: # metric name, can be arbitrary
name: PSNR
crop_border: 4
test_y_channel: false
ssim:
name: SSIM
crop_border: 4
test_y_channel: false
lpips:
name: LPIPSMetric
log_config:
interval: 100
visiual_interval: 500
snapshot_config:
interval: 5000