forked from PaddlePaddle/PaddleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
starganv2_afhq.yaml
141 lines (133 loc) · 3.11 KB
/
starganv2_afhq.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
epochs: 200
output_dir: output_dir
model:
name: StarGANv2Model
latent_dim: &LATENT_DIM 16
lambda_sty: 1
lambda_ds: 2
lambda_cyc: 1
generator:
name: StarGANv2Generator
img_size: &IMAGE_SIZE 256
w_hpf: 0
style_dim: &STYLE_DIM 64
style:
name: StarGANv2Style
img_size: *IMAGE_SIZE
style_dim: *STYLE_DIM
num_domains: &NUM_DOMAINS 3
mapping:
name: StarGANv2Mapping
latent_dim: *LATENT_DIM
style_dim: *STYLE_DIM
num_domains: *NUM_DOMAINS
discriminator:
name: StarGANv2Discriminator
img_size: *IMAGE_SIZE
num_domains: *NUM_DOMAINS
dataset:
train:
name: StarGANv2Dataset
dataroot: data/stargan-v2/afhq/train
is_train: True
num_workers: 8
batch_size: 4
preprocess:
- name: LoadImageFromFile
key: src
- name: LoadImageFromFile
key: ref
- name: LoadImageFromFile
key: ref2
- name: Transforms
input_keys: [src, ref, ref2]
pipeline:
- name: RandomResizedCropProb
prob: 0.9
size: [*IMAGE_SIZE, *IMAGE_SIZE]
scale: [0.8, 1.0]
ratio: [0.9, 1.1]
interpolation: 'bilinear'
keys: [image, image, image]
- name: Resize
size: [*IMAGE_SIZE, *IMAGE_SIZE]
interpolation: 'bilinear'
keys: [image, image, image]
- name: RandomHorizontalFlip
prob: 0.5
keys: [image, image, image]
- name: Transpose
keys: [image, image, image]
- name: Normalize
mean: [127.5, 127.5, 127.5]
std: [127.5, 127.5, 127.5]
keys: [image, image, image]
test:
name: StarGANv2Dataset
dataroot: data/stargan-v2/afhq/val
is_train: False
num_workers: 8
batch_size: 16
test_count: 16
preprocess:
- name: LoadImageFromFile
key: src
- name: LoadImageFromFile
key: ref
- name: Transforms
input_keys: [src, ref]
pipeline:
- name: Resize
size: [*IMAGE_SIZE, *IMAGE_SIZE]
interpolation: 'bicubic' #cv2.INTER_CUBIC
keys: [image, image]
- name: Transpose
keys: [image, image]
- name: Normalize
mean: [127.5, 127.5, 127.5]
std: [127.5, 127.5, 127.5]
keys: [image, image]
lr_scheduler:
name: LinearDecay
learning_rate: 0.0001
start_epoch: 100
decay_epochs: 100
# will get from real dataset
iters_per_epoch: 365
optimizer:
generator:
name: Adam
net_names:
- generator
beta1: 0.0
beta2: 0.99
weight_decay: 0.0001
style_encoder:
name: Adam
net_names:
- style_encoder
beta1: 0.0
beta2: 0.99
weight_decay: 0.0001
mapping_network:
name: Adam
net_names:
- mapping_network
beta1: 0.0
beta2: 0.99
weight_decay: 0.0001
discriminator:
name: Adam
net_names:
- discriminator
beta1: 0.0
beta2: 0.99
weight_decay: 0.0001
validate:
interval: 3000
save_img: false
log_config:
interval: 100
visiual_interval: 3000
snapshot_config:
interval: 5