forked from PaddlePaddle/PaddleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ugatit_selfie2anime_light.yaml
126 lines (120 loc) · 2.67 KB
/
ugatit_selfie2anime_light.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
epochs: 300
output_dir: output_dir
model:
name: UGATITModel
generator:
name: ResnetUGATITGenerator
input_nc: 3
output_nc: 3
ngf: 64
n_blocks: 4
img_size: 256
light: True
discriminator_g:
name: UGATITDiscriminator
input_nc: 3
ndf: 64
n_layers: 7
discriminator_l:
name: UGATITDiscriminator
input_nc: 3
ndf: 64
n_layers: 5
l1_criterion:
name: L1Loss
mse_criterion:
name: MSELoss
bce_criterion:
name: BCEWithLogitsLoss
adv_weight: 1.0
cycle_weight: 10.0
identity_weight: 10.0
cam_weight: 1000.0
dataset:
train:
name: UnpairedDataset
dataroot_a: data/selfie2anime/trainA
dataroot_b: data/selfie2anime/trainB
num_workers: 0
batch_size: 1
is_train: True
max_size: inf
preprocess:
- name: LoadImageFromFile
key: A
- name: LoadImageFromFile
key: B
- name: Transforms
input_keys: [A, B]
pipeline:
- name: Resize
size: [286, 286]
interpolation: 'bicubic' #cv2.INTER_CUBIC
keys: ['image', 'image']
- name: RandomCrop
size: [256, 256]
keys: ['image', 'image']
- name: RandomHorizontalFlip
prob: 0.5
keys: ['image', 'image']
- name: Transpose
keys: ['image', 'image']
- name: Normalize
mean: [127.5, 127.5, 127.5]
std: [127.5, 127.5, 127.5]
keys: ['image', 'image']
test:
name: UnpairedDataset
dataroot_a: data/selfie2anime/testA
dataroot_b: data/selfie2anime/testB
num_workers: 0
batch_size: 1
max_size: inf
is_train: False
preprocess:
- name: LoadImageFromFile
key: A
- name: LoadImageFromFile
key: B
- name: Transforms
input_keys: [A, B]
pipeline:
- name: Resize
size: [256, 256]
interpolation: 'bicubic' #cv2.INTER_CUBIC
keys: ['image', 'image']
- name: Transpose
keys: ['image', 'image']
- name: Normalize
mean: [127.5, 127.5, 127.5]
std: [127.5, 127.5, 127.5]
keys: ['image', 'image']
lr_scheduler:
name: LinearDecay
learning_rate: 0.0001
start_epoch: 150
decay_epochs: 150
# will get from real dataset
iters_per_epoch: 1
optimizer:
optimG:
name: Adam
net_names:
- genA2B
- genB2A
weight_decay: 0.0001
beta1: 0.5
optimD:
name: Adam
net_names:
- disGA
- disGB
- disLA
- disLB
weight_decay: 0.0001
beta1: 0.5
log_config:
interval: 10
visiual_interval: 500
snapshot_config:
interval: 30