forked from PaddlePaddle/PaddleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
styleganv2fitting.py
120 lines (99 loc) · 4.12 KB
/
styleganv2fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
from ppgan.apps import StyleGANv2FittingPredictor
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_image", type=str, help="path to source image")
parser.add_argument("--need_align",
action="store_true",
help="whether to align input image")
parser.add_argument("--start_lr",
type=float,
default=0.1,
help="learning rate at the begin of training")
parser.add_argument("--final_lr",
type=float,
default=0.025,
help="learning rate at the end of training")
parser.add_argument("--latent_level",
type=int,
nargs="+",
default=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
help="indices of latent code for training")
parser.add_argument("--step",
type=int,
default=100,
help="optimize iterations")
parser.add_argument("--mse_weight",
type=float,
default=1,
help="weight of the mse loss")
parser.add_argument("--pre_latent",
type=str,
default=None,
help="path to pre-prepared latent codes")
parser.add_argument("--output_path",
type=str,
default='output_dir',
help="path to output image dir")
parser.add_argument("--weight_path",
type=str,
default=None,
help="path to model checkpoint path")
parser.add_argument("--model_type",
type=str,
default=None,
help="type of model for loading pretrained model")
parser.add_argument("--size",
type=int,
default=1024,
help="resolution of output image")
parser.add_argument("--style_dim",
type=int,
default=512,
help="number of style dimension")
parser.add_argument("--n_mlp",
type=int,
default=8,
help="number of mlp layer depth")
parser.add_argument("--channel_multiplier",
type=int,
default=2,
help="number of channel multiplier")
parser.add_argument("--cpu",
dest="cpu",
action="store_true",
help="cpu mode.")
args = parser.parse_args()
if args.cpu:
paddle.set_device('cpu')
predictor = StyleGANv2FittingPredictor(
output_path=args.output_path,
weight_path=args.weight_path,
model_type=args.model_type,
seed=None,
size=args.size,
style_dim=args.style_dim,
n_mlp=args.n_mlp,
channel_multiplier=args.channel_multiplier)
predictor.run(args.input_image,
need_align=args.need_align,
start_lr=args.start_lr,
final_lr=args.final_lr,
latent_level=args.latent_level,
step=args.step,
mse_weight=args.mse_weight,
pre_latent=args.pre_latent)