def get_blas_gomp_arch_deps(): return [ ("x86_64", [ "third-party//IntelComposerXE:{}".format(native.read_config("fbcode", "mkl_lp64", "mkl_lp64_omp")), ]), ("aarch64", [ "third-party//OpenBLAS:OpenBLAS", "third-party//openmp:omp", ]), ] default_compiler_flags = [ "-Wall", "-Wextra", "-Wno-unused-function", "-Wno-unused-parameter", "-Wno-error=strict-aliasing", "-Wno-shadow-compatible-local", "-Wno-maybe-uninitialized", # aten is built with gcc as part of HHVM "-Wno-unknown-pragmas", "-Wno-strict-overflow", # See https://fb.facebook.com/groups/fbcode/permalink/1813348245368673/ # These trigger on platform007 "-Wno-stringop-overflow", "-Wno-class-memaccess", "-DHAVE_MMAP", "-DUSE_GCC_ATOMICS=1", "-D_FILE_OFFSET_BITS=64", "-DHAVE_SHM_OPEN=1", "-DHAVE_SHM_UNLINK=1", "-DHAVE_MALLOC_USABLE_SIZE=1", "-DCPU_CAPABILITY_DEFAULT", "-DTH_INDEX_BASE=0", "-DMAGMA_V2", "-DNO_CUDNN_DESTROY_HANDLE", "-DUSE_EXPERIMENTAL_CUDNN_V8_API", # enable cudnn v8 api "-DUSE_FBGEMM", "-DUSE_QNNPACK", "-DUSE_PYTORCH_QNNPACK", # The dynamically loaded NVRTC trick doesn't work in fbcode, # and it's not necessary anyway, because we have a stub # nvrtc library which we load canonically anyway "-DUSE_DIRECT_NVRTC", "-DUSE_RUY_QMATMUL", ] + select({ # XNNPACK depends on an updated version of pthreadpool interface, whose implementation # includes - a header not available on Windows. "DEFAULT": ["-DUSE_XNNPACK"], "ovr_config//os:windows": [], }) + (["-O1"] if native.read_config("fbcode", "build_mode_test_label", "") == "dev-nosan" else []) compiler_specific_flags = { "clang": [ "-Wno-absolute-value", "-Wno-pass-failed", "-Wno-braced-scalar-init", ], "gcc": [ "-Wno-error=array-bounds", ], } def get_cpu_parallel_backend_flags(): parallel_backend = native.read_config("pytorch", "parallel_backend", "openmp") defs = [] if parallel_backend == "openmp": defs.append("-DAT_PARALLEL_OPENMP_FBCODE=1") elif parallel_backend == "tbb": defs.append("-DAT_PARALLEL_NATIVE_TBB_FBCODE=1") elif parallel_backend == "native": defs.append("-DAT_PARALLEL_NATIVE_FBCODE=1") else: fail("Unsupported parallel backend: " + parallel_backend) if native.read_config("pytorch", "exp_single_thread_pool", "0") == "1": defs.append("-DAT_EXPERIMENTAL_SINGLE_THREAD_POOL=1") mkl_ver = native.read_config("fbcode", "mkl_lp64", "mkl_lp64_omp") if mkl_ver == "mkl_lp64_seq": defs.append("-DATEN_MKL_SEQUENTIAL_FBCODE=1") return defs def is_cpu_static_dispatch_build(): mode = native.read_config("fbcode", "caffe2_static_dispatch_mode", "none") return mode == "cpu"