Skip to content

Latest commit

ย 

History

History
1169 lines (965 loc) ยท 48.8 KB

index.rst

File metadata and controls

1169 lines (965 loc) ยท 48.8 KB
og:description:ํŒŒ์ดํ† ์น˜(PyTorch) ํ•œ๊ตญ์–ด ํŠœํ† ๋ฆฌ์–ผ์— ์˜ค์‹  ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค. ํŒŒ์ดํ† ์น˜ ํ•œ๊ตญ ์‚ฌ์šฉ์ž ๋ชจ์ž„์€ ํ•œ๊ตญ์–ด๋ฅผ ์‚ฌ์šฉํ•˜์‹œ๋Š” ๋งŽ์€ ๋ถ„๋“ค๊ป˜ PyTorch๋ฅผ ์†Œ๊ฐœํ•˜๊ณ  ํ•จ๊ป˜ ๋ฐฐ์šฐ๋ฉฐ ์„ฑ์žฅํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

ํŒŒ์ดํ† ์น˜(PyTorch) ํ•œ๊ตญ์–ด ํŠœํ† ๋ฆฌ์–ผ์— ์˜ค์‹  ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค!

์•„๋ž˜ ํŠœํ† ๋ฆฌ์–ผ๋“ค์ด ์ƒˆ๋กœ ์ถ”๊ฐ€๋˜์—ˆ์Šต๋‹ˆ๋‹ค:

.. customcalloutitem::
   :description: PyTorch ๊ฐœ๋…๊ณผ ๋ชจ๋“ˆ์„ ์ตํž™๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ค๊ณ , ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง์„ ๊ตฌ์„ฑํ•˜๊ณ , ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ์ €์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค.
   :header: PyTorch ๊ธฐ๋ณธ ์ตํžˆ๊ธฐ
   :button_link: beginner/basics/intro.html
   :button_text: PyTorch ์‹œ์ž‘ํ•˜๊ธฐ

.. customcalloutitem::
   :description: ํ•œ ์ž… ํฌ๊ธฐ์˜, ๋ฐ”๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” PyTorch ์ฝ”๋“œ ์˜ˆ์ œ๋“ค์„ ํ™•์ธํ•ด๋ณด์„ธ์š”.
   :header: ํŒŒ์ดํ† ์น˜(PyTorch) ๋ ˆ์‹œํ”ผ
   :button_link: recipes/recipes_index.html
   :button_text: ๋ ˆ์‹œํ”ผ ์ฐพ์•„๋ณด๊ธฐ

All

.. customcarditem::
   :header: PyTorch ๊ธฐ๋ณธ ์ตํžˆ๊ธฐ
   :card_description: PyTorch๋กœ ์ „์ฒด ML์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•œ ๋‹จ๊ณ„๋ณ„ ํ•™์Šต ๊ฐ€์ด๋“œ์ž…๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/60-min-blitz.png
   :link: beginner/basics/intro.html
   :tags: Getting-Started

.. customcarditem::
   :header: Introduction to PyTorch on YouTube
   :card_description: An introduction to building a complete ML workflow with PyTorch. Follows the PyTorch Beginner Series on YouTube.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: beginner/introyt.html
   :tags: Getting-Started

.. customcarditem::
   :header: ์˜ˆ์ œ๋กœ ๋ฐฐ์šฐ๋Š” ํŒŒ์ดํ† ์น˜(PyTorch)
   :card_description: ํŠœํ† ๋ฆฌ์–ผ์— ํฌํ•จ๋œ ์˜ˆ์ œ๋“ค๋กœ PyTorch์˜ ๊ธฐ๋ณธ ๊ฐœ๋…์„ ์ดํ•ดํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/learning-pytorch-with-examples.png
   :link: beginner/pytorch_with_examples.html
   :tags: Getting-Started

.. customcarditem::
   :header: torch.nn์ด ์‹ค์ œ๋กœ ๋ฌด์—‡์ธ๊ฐ€์š”?
   :card_description: torch.nn์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹ ๊ฒฝ๋ง์„ ์ƒ์„ฑํ•˜๊ณ  ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/torch-nn.png
   :link: beginner/nn_tutorial.html
   :tags: Getting-Started

.. customcarditem::
   :header: TensorBoard๋กœ ๋ชจ๋ธ, ๋ฐ์ดํ„ฐ, ํ•™์Šต ์‹œ๊ฐํ™”ํ•˜๊ธฐ
   :card_description: TensorBoard๋กœ ๋ฐ์ดํ„ฐ ๋ฐ ๋ชจ๋ธ ๊ต์œก์„ ์‹œ๊ฐํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/visualizing-with-tensorboard.png
   :link: intermediate/tensorboard_tutorial.html
   :tags: Interpretability,Getting-Started,Tensorboard

.. customcarditem::
   :header: TorchVision ๊ฐ์ฒด ๊ฒ€์ถœ ๋ฏธ์„ธ์กฐ์ •(Finetuning) ํŠœํ† ๋ฆฌ์–ผ
   :card_description: ์ด๋ฏธ ํ›ˆ๋ จ๋œ Mask R-CNN ๋ชจ๋ธ์„ ๋ฏธ์„ธ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/TorchVision-Object-Detection-Finetuning-Tutorial.png
   :link: intermediate/torchvision_tutorial.html
   :tags: Image/Video

.. customcarditem::
   :header: ์ปดํ“จํ„ฐ ๋น„์ „์„ ์œ„ํ•œ ์ „์ดํ•™์Šต(Transfer Learning) ํŠœํ† ๋ฆฌ์–ผ
   :card_description: ์ „์ดํ•™์Šต์œผ๋กœ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Transfer-Learning-for-Computer-Vision-Tutorial.png
   :link: beginner/transfer_learning_tutorial.html
   :tags: Image/Video

.. customcarditem::
   :header: Optimizing Vision Transformer Model
   :card_description: Apply cutting-edge, attention-based transformer models to computer vision tasks.
   :image: _static/img/thumbnails/cropped/60-min-blitz.png
   :link: beginner/vt_tutorial.html
   :tags: Image/Video

.. customcarditem::
   :header: ์ ๋Œ€์  ์˜ˆ์ œ ์ƒ์„ฑ(Adversarial Example Generation)
   :card_description: ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ๊ณต๊ฒฉ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ FGSM (Fast Gradient Sign Attack)์„ ์ด์šฉํ•ด MNIST ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ์†์ด๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Adversarial-Example-Generation.png
   :link: beginner/fgsm_tutorial.html
   :tags: Image/Video

.. customcarditem::
   :header: DCGAN Tutorial
   :card_description: Train a generative adversarial network (GAN) to generate new celebrities.
   :image: _static/img/thumbnails/cropped/DCGAN-Tutorial.png
   :link: beginner/dcgan_faces_tutorial.html
   :tags: Image/Video

.. customcarditem::
   :header: Spatial Transformer Networks Tutorial
   :card_description: Learn how to augment your network using a visual attention mechanism.
   :image: _static/img/stn/Five.gif
   :link: intermediate/spatial_transformer_tutorial.html
   :tags: Image/Video

.. customcarditem::
   :header: Inference on Whole Slide Images with TIAToolbox
   :card_description: Learn how to use the TIAToolbox to perform inference on whole slide images.
   :image: _static/img/thumbnails/cropped/TIAToolbox-Tutorial.png
   :link: intermediate/tiatoolbox_tutorial.html
   :tags: Image/Video

.. customcarditem::
   :header: Semi-Supervised Learning Tutorial Based on USB
   :card_description: Learn how to train semi-supervised learning algorithms (on custom data) using USB and PyTorch.
   :image: _static/img/usb_semisup_learn/code.png
   :link: advanced/usb_semisup_learn.html
   :tags: Image/Video

.. customcarditem::
   :header: Audio IO
   :card_description: Learn to load data with torchaudio.
   :image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
   :link: beginner/audio_io_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Audio Resampling
   :card_description: Learn to resample audio waveforms using torchaudio.
   :image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
   :link: beginner/audio_resampling_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Audio Data Augmentation
   :card_description: Learn to apply data augmentations using torchaudio.
   :image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
   :link: beginner/audio_data_augmentation_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Audio Feature Extractions
   :card_description: Learn to extract features using torchaudio.
   :image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
   :link: beginner/audio_feature_extractions_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Audio Feature Augmentation
   :card_description: Learn to augment features using torchaudio.
   :image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
   :link: beginner/audio_feature_augmentation_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Audio Datasets
   :card_description: Learn to use torchaudio datasets.
   :image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
   :link: beginner/audio_datasets_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Automatic Speech Recognition with Wav2Vec2 in torchaudio
   :card_description: Learn how to use torchaudio's pretrained models for building a speech recognition application.
   :image: _static/img/thumbnails/cropped/torchaudio-asr.png
   :link: intermediate/speech_recognition_pipeline_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Speech Command Classification
   :card_description: Learn how to correctly format an audio dataset and then train/test an audio classifier network on the dataset.
   :image: _static/img/thumbnails/cropped/torchaudio-speech.png
   :link: intermediate/speech_command_classification_with_torchaudio_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Text-to-Speech with torchaudio
   :card_description: Learn how to use torchaudio's pretrained models for building a text-to-speech application.
   :image: _static/img/thumbnails/cropped/torchaudio-speech.png
   :link: intermediate/text_to_speech_with_torchaudio.html
   :tags: Audio

.. customcarditem::
   :header: Forced Alignment with Wav2Vec2 in torchaudio
   :card_description: Learn how to use torchaudio's Wav2Vec2 pretrained models for aligning text to speech
   :image: _static/img/thumbnails/cropped/torchaudio-alignment.png
   :link: intermediate/forced_alignment_with_torchaudio_tutorial.html
   :tags: Audio

.. customcarditem::
   :header: Fast Transformer Inference with Better Transformer
   :card_description: Deploy a PyTorch Transformer model using Better Transformer with high performance for inference
   :image: _static/img/thumbnails/cropped/pytorch-logo.png
   :link: beginner/bettertransformer_tutorial.html
   :tags: Production,Text

.. customcarditem::
   :header: ๊ธฐ์ดˆ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋Š” NLP: ๋ฌธ์ž-๋‹จ์œ„ RNN์œผ๋กœ ์ด๋ฆ„ ๋ถ„๋ฅ˜ํ•˜๊ธฐ
   :card_description: torchtext๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ๊ธฐ๋ณธ์ ์ธ ๋ฌธ์ž-๋‹จ์œ„ RNN์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹จ์–ด๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ชจ๋ธ์„ ๊ธฐ์ดˆ๋ถ€ํ„ฐ ๋งŒ๋“ค๊ณ  ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค. ์ด 3๊ฐœ๋กœ ์ด๋ค„์ง„ ํŠœํ† ๋ฆฌ์–ผ ์‹œ๋ฆฌ์ฆˆ์˜ ์ฒซ๋ฒˆ์งธ ํŽธ์ž…๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/NLP-From-Scratch-Classifying-Names-with-a-Character-Level-RNN.png
   :link: intermediate/char_rnn_classification_tutorial
   :tags: Text

.. customcarditem::
   :header: ๊ธฐ์ดˆ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋Š” NLP: ๋ฌธ์ž-๋‹จ์œ„ RNN์œผ๋กœ ์ด๋ฆ„ ์ƒ์„ฑํ•˜๊ธฐ
   :card_description: ๋ฌธ์ž-๋‹จ์œ„ RNN์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฆ„์„ ๋ถ„๋ฅ˜ํ•ด๋ดค์œผ๋‹ˆ, ์ด๋ฆ„์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค. ์ด 3๊ฐœ๋กœ ์ด๋ค„์ง„ ํŠœํ† ๋ฆฌ์–ผ ์‹œ๋ฆฌ์ฆˆ ์ค‘ ๋‘๋ฒˆ์งธ ํŽธ์ž…๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/NLP-From-Scratch-Generating-Names-with-a-Character-Level-RNN.png
   :link: intermediate/char_rnn_generation_tutorial.html
   :tags: Text

.. customcarditem::
   :header: ๊ธฐ์ดˆ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋Š” NLP: ์‹œํ€€์Šค-ํˆฌ-์‹œํ€€์Šค ๋„คํŠธ์›Œํฌ์™€ ์–ดํ…์…˜์„ ์ด์šฉํ•œ ๋ฒˆ์—ญ
   :card_description: โ€œ๊ธฐ์ดˆ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋Š” NLPโ€์˜ ์„ธ๋ฒˆ์งธ์ด์ž ๋งˆ์ง€๋ง‰ ํŽธ์œผ๋กœ, NLP ๋ชจ๋ธ๋ง ์ž‘์—…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ์— ์‚ฌ์šฉํ•  ์ž์ฒด ํด๋ž˜์Šค์™€ ํ•จ์ˆ˜๋“ค์„ ์ž‘์„ฑํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/NLP-From-Scratch-Translation-with-a-Sequence-to-Sequence-Network-and-Attention.png
   :link: intermediate/seq2seq_translation_tutorial.html
   :tags: Text

.. customcarditem::
   :header: torchtext๋กœ ํ…์ŠคํŠธ ๋ถ„๋ฅ˜ํ•˜๊ธฐ
   :card_description: torchtext ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์–ด๋–ป๊ฒŒ ํ…์ŠคํŠธ ๋ถ„๋ฅ˜ ๋ถ„์„์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“œ๋Š”์ง€๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Text-Classification-with-TorchText.png
   :link: beginner/text_sentiment_ngrams_tutorial.html
   :tags: Text

.. customcarditem::
   :header: Language Translation with Transformer
   :card_description: Train a language translation model from scratch using Transformer.
   :image: _static/img/thumbnails/cropped/Language-Translation-with-TorchText.png
   :link: beginner/translation_transformer.html
   :tags: Text

.. customcarditem::
   :header: Pre-process custom text dataset using Torchtext
   :card_description: Learn how to use torchtext to prepare a custom dataset
   :image: _static/img/thumbnails/cropped/torch_text_logo.png
   :link: beginner/torchtext_custom_dataset_tutorial.html
   :tags: Text


.. customcarditem::
   :header: (optional) Exporting a PyTorch model to ONNX using TorchDynamo backend and Running it using ONNX Runtime
   :card_description: Build a image classifier model in PyTorch and convert it to ONNX before deploying it with ONNX Runtime.
   :image: _static/img/thumbnails/cropped/Exporting-PyTorch-Models-to-ONNX-Graphs.png
   :link: beginner/onnx/export_simple_model_to_onnx_tutorial.html
   :tags: Production,ONNX,Backends

.. customcarditem::
   :header: Introduction to ONNX Registry
   :card_description: Demonstrate end-to-end how to address unsupported operators by using ONNX Registry.
   :image: _static/img/thumbnails/cropped/Exporting-PyTorch-Models-to-ONNX-Graphs.png
   :link: advanced/onnx_registry_tutorial.html
   :tags: Production,ONNX,Backends


.. customcarditem::
   :header: ๊ฐ•ํ™” ํ•™์Šต(DQN) ํŠœํ† ๋ฆฌ์–ผ
   :card_description: PyTorch๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ OpenAI Gym์˜ CartPole-v0 ํƒœ์Šคํฌ์—์„œ DQN(Deep Q Learning) ์—์ด์ „ํŠธ๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค.
   :image: _static/img/cartpole.gif
   :link: intermediate/reinforcement_q_learning.html
   :tags: Reinforcement-Learning

.. customcarditem::
   :header: Reinforcement Learning (PPO) with TorchRL
   :card_description: Learn how to use PyTorch and TorchRL to train a Proximal Policy Optimization agent on the Inverted Pendulum task from Gym.
   :image: _static/img/invpendulum.gif
   :link: intermediate/reinforcement_ppo.html
   :tags: Reinforcement-Learning

.. customcarditem::
   :header: Train a Mario-playing RL Agent
   :card_description: Use PyTorch to train a Double Q-learning agent to play Mario.
   :image: _static/img/mario.gif
   :link: intermediate/mario_rl_tutorial.html
   :tags: Reinforcement-Learning

.. customcarditem::
   :header: Recurrent DQN
   :card_description: Use TorchRL to train recurrent policies
   :image: _static/img/rollout_recurrent.png
   :link: intermediate/dqn_with_rnn_tutorial.html
   :tags: Reinforcement-Learning

.. customcarditem::
   :header: Code a DDPG Loss
   :card_description: Use TorchRL to code a DDPG Loss
   :image: _static/img/half_cheetah.gif
   :link: advanced/coding_ddpg.html
   :tags: Reinforcement-Learning

.. customcarditem::
   :header: Writing your environment and transforms
   :card_description: Use TorchRL to code a Pendulum
   :image: _static/img/pendulum.gif
   :link: advanced/pendulum.html
   :tags: Reinforcement-Learning


.. customcarditem::
   :header: Flask๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Python์—์„œ PyTorch๋ฅผ REST API๋กœ ๋ฐฐํฌํ•˜๊ธฐ
   :card_description: Flask๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ PyTorch ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๊ณ , ๋ฏธ๋ฆฌ ํ•™์Šต๋œ DenseNet 121 ๋ชจ๋ธ์„ ์˜ˆ์ œ๋กœ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ ์ถ”๋ก (inference)์„ ์œ„ํ•œ REST API๋ฅผ ๋งŒ๋“ค์–ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Deploying-PyTorch-in-Python-via-a-REST-API-with-Flask.png
   :link: intermediate/flask_rest_api_tutorial.html
   :tags: Production

.. customcarditem::
   :header: TorchScript ์†Œ๊ฐœ
   :card_description: C++๊ณผ ๊ฐ™์€ ๊ณ ์„ฑ๋Šฅ ํ™˜๊ฒฝ์—์„œ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก (nn.Module์˜ ํ•˜์œ„ ํด๋ž˜์Šค์ธ) PyTorch ๋ชจ๋ธ์˜ ์ค‘๊ฐ„ ํ‘œํ˜„(intermediate representation)์„ ์ œ๊ณตํ•˜๋Š” TorchScript๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Introduction-to-TorchScript.png
   :link: beginner/Intro_to_TorchScript_tutorial.html
   :tags: Production,TorchScript

.. customcarditem::
   :header: C++์—์„œ TorchScript ๋ชจ๋ธ ๋กœ๋”ฉํ•˜๊ธฐ
   :card_description: PyTorch๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ธฐ์กด์˜ Python ๋ชจ๋ธ์„ ์ง๋ ฌํ™”๋œ ํ‘œํ˜„์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ Python ์˜์กด์„ฑ ์—†์ด ์ˆœ์ˆ˜ํ•˜๊ฒŒ C++์—์„œ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ๋Š”์ง€ ๋ฐฐ์›๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Loading-a-TorchScript-Model-in-Cpp.png
   :link: advanced/cpp_export.html
   :tags: Production,TorchScript

.. customcarditem::
   :header: (์„ ํƒ) PyTorch ๋ชจ๋ธ์„ ONNX์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ONNX ๋Ÿฐํƒ€์ž„์—์„œ ์‹คํ–‰ํ•˜๊ธฐ
   :card_description: PyTorch๋กœ ์ •์˜ํ•œ ๋ชจ๋ธ์„ ONNX ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ONNX ๋Ÿฐํƒ€์ž„์—์„œ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/optional-Exporting-a-Model-from-PyTorch-to-ONNX-and-Running-it-using-ONNX-Runtime.png
   :link: advanced/super_resolution_with_onnxruntime.html
   :tags: Production,ONNX

.. customcarditem::
   :header: Profiling PyTorch
   :card_description: Learn how to profile a PyTorch application
   :link: beginner/profiler.html
   :tags: Profiling

.. customcarditem::
   :header: Profiling PyTorch
   :card_description: Introduction to Holistic Trace Analysis
   :link: beginner/hta_intro_tutorial.html
   :tags: Profiling

.. customcarditem::
   :header: Profiling PyTorch
   :card_description: Trace Diff using Holistic Trace Analysis
   :link: beginner/hta_trace_diff_tutorial.html
   :tags: Profiling


.. customcarditem::
   :header: Building a Convolution/Batch Norm fuser in FX
   :card_description: Build a simple FX pass that fuses batch norm into convolution to improve performance during inference.
   :image: _static/img/thumbnails/cropped/Deploying-PyTorch-in-Python-via-a-REST-API-with-Flask.png
   :link: intermediate/fx_conv_bn_fuser.html
   :tags: FX

.. customcarditem::
   :header: Building a Simple Performance Profiler with FX
   :card_description: Build a simple FX interpreter to record the runtime of op, module, and function calls and report statistics
   :image: _static/img/thumbnails/cropped/Deploying-PyTorch-in-Python-via-a-REST-API-with-Flask.png
   :link: intermediate/fx_profiling_tutorial.html
   :tags: FX

.. customcarditem::
   :header: (๋ฒ ํƒ€) PyTorch์˜ Channels Last ๋ฉ”๋ชจ๋ฆฌ ํ˜•์‹
   :card_description: Channels Last ๋ฉ”๋ชจ๋ฆฌ ํ˜•์‹์— ๋Œ€ํ•œ ๊ฐœ์š”๋ฅผ ํ™•์ธํ•˜๊ณ  ์ฐจ์› ์ˆœ์„œ๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ ๋ฉ”๋ชจ๋ฆฌ ์ƒ์˜ NCHW ํ…์„œ๋ฅผ ์ •๋ ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ดํ•ดํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/experimental-Channels-Last-Memory-Format-in-PyTorch.png
   :link: intermediate/memory_format_tutorial.html
   :tags: Memory-Format,Best-Practice,Frontend-APIs

.. customcarditem::
   :header: Using the PyTorch C++ Frontend
   :card_description: Walk through an end-to-end example of training a model with the C++ frontend by training a DCGAN โ€“ a kind of generative model โ€“ to generate images of MNIST digits.
   :image: _static/img/thumbnails/cropped/Using-the-PyTorch-Cpp-Frontend.png
   :link: advanced/cpp_frontend.html
   :tags: Frontend-APIs,C++

.. customcarditem::
   :header: Custom C++ and CUDA Extensions
   :card_description:  Create a neural network layer with no parameters using numpy. Then use scipy to create a neural network layer that has learnable weights.
   :image: _static/img/thumbnails/cropped/Custom-Cpp-and-CUDA-Extensions.png
   :link: advanced/cpp_extension.html
   :tags: Extending-PyTorch,Frontend-APIs,C++,CUDA

.. customcarditem::
   :header: Extending TorchScript with Custom C++ Operators
   :card_description:  Implement a custom TorchScript operator in C++, how to build it into a shared library, how to use it in Python to define TorchScript models and lastly how to load it into a C++ application for inference workloads.
   :image: _static/img/thumbnails/cropped/Extending-TorchScript-with-Custom-Cpp-Operators.png
   :link: advanced/torch_script_custom_ops.html
   :tags: Extending-PyTorch,Frontend-APIs,TorchScript,C++

.. customcarditem::
   :header: Extending TorchScript with Custom C++ Classes
   :card_description: This is a continuation of the custom operator tutorial, and introduces the API weโ€™ve built for binding C++ classes into TorchScript and Python simultaneously.
   :image: _static/img/thumbnails/cropped/Extending-TorchScript-with-Custom-Cpp-Classes.png
   :link: advanced/torch_script_custom_classes.html
   :tags: Extending-PyTorch,Frontend-APIs,TorchScript,C++

.. customcarditem::
   :header: Dynamic Parallelism in TorchScript
   :card_description: This tutorial introduces the syntax for doing *dynamic inter-op parallelism* in TorchScript.
   :image: _static/img/thumbnails/cropped/TorchScript-Parallelism.jpg
   :link: advanced/torch-script-parallelism.html
   :tags: Frontend-APIs,TorchScript,C++

.. customcarditem::
   :header: Real Time Inference on Raspberry Pi 4
   :card_description: This tutorial covers how to run quantized and fused models on a Raspberry Pi 4 at 30 fps.
   :image: _static/img/thumbnails/cropped/realtime_rpi.png
   :link: intermediate/realtime_rpi.html
   :tags: TorchScript,Model-Optimization,Image/Video,Quantization

.. customcarditem::
   :header: Autograd in C++ Frontend
   :card_description: The autograd package helps build flexible and dynamic nerural netorks. In this tutorial, exploreseveral examples of doing autograd in PyTorch C++ frontend
   :image: _static/img/thumbnails/cropped/Autograd-in-Cpp-Frontend.png
   :link: advanced/cpp_autograd.html
   :tags: Frontend-APIs,C++

.. customcarditem::
   :header: Registering a Dispatched Operator in C++
   :card_description: The dispatcher is an internal component of PyTorch which is responsible for figuring out what code should actually get run when you call a function like torch::add.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: advanced/dispatcher.html
   :tags: Extending-PyTorch,Frontend-APIs,C++

.. customcarditem::
   :header: Extending Dispatcher For a New Backend in C++
   :card_description: Learn how to extend the dispatcher to add a new device living outside of the pytorch/pytorch repo and maintain it to keep in sync with native PyTorch devices.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: advanced/extend_dispatcher.html
   :tags: Extending-PyTorch,Frontend-APIs,C++

.. customcarditem::
   :header: Facilitating New Backend Integration by PrivateUse1
   :card_description: Learn how to integrate a new backend living outside of the pytorch/pytorch repo and maintain it to keep in sync with the native PyTorch backend.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: advanced/privateuseone.html
   :tags: Extending-PyTorch,Frontend-APIs,C++

.. customcarditem::
   :header: Custom Function Tutorial: Double Backward
   :card_description: Learn how to write a custom autograd Function that supports double backward.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/custom_function_double_backward_tutorial.html
   :tags: Extending-PyTorch,Frontend-APIs

.. customcarditem::
   :header: Custom Function Tutorial: Fusing Convolution and Batch Norm
   :card_description: Learn how to create a custom autograd Function that fuses batch norm into a convolution to improve memory usage.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/custom_function_conv_bn_tutorial.html
   :tags: Extending-PyTorch,Frontend-APIs

.. customcarditem::
   :header: Forward-mode Automatic Differentiation
   :card_description: Learn how to use forward-mode automatic differentiation.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/forward_ad_usage.html
   :tags: Frontend-APIs

.. customcarditem::
   :header: Jacobians, Hessians, hvp, vhp, and more
   :card_description: Learn how to compute advanced autodiff quantities using torch.func
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/jacobians_hessians.html
   :tags: Frontend-APIs

.. customcarditem::
   :header: Model Ensembling
   :card_description: Learn how to ensemble models using torch.vmap
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/ensembling.html
   :tags: Frontend-APIs

.. customcarditem::
   :header: Per-Sample-Gradients
   :card_description: Learn how to compute per-sample-gradients using torch.func
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/per_sample_grads.html
   :tags: Frontend-APIs

.. customcarditem::
   :header: Neural Tangent Kernels
   :card_description: Learn how to compute neural tangent kernels using torch.func
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/neural_tangent_kernels.html
   :tags: Frontend-APIs

.. customcarditem::
   :header: Performance Profiling in PyTorch
   :card_description: Learn how to use the PyTorch Profiler to benchmark your module's performance.
   :image: _static/img/thumbnails/cropped/profiler.png
   :link: beginner/profiler.html
   :tags: Model-Optimization,Best-Practice,Profiling

.. customcarditem::
   :header: Performance Profiling in TensorBoard
   :card_description: Learn how to use the TensorBoard plugin to profile and analyze your model's performance.
   :image: _static/img/thumbnails/cropped/profiler.png
   :link: intermediate/tensorboard_profiler_tutorial.html
   :tags: Model-Optimization,Best-Practice,Profiling,TensorBoard

.. customcarditem::
   :header: Hyperparameter Tuning Tutorial
   :card_description: Learn how to use Ray Tune to find the best performing set of hyperparameters for your model.
   :image: _static/img/ray-tune.png
   :link: beginner/hyperparameter_tuning_tutorial.html
   :tags: Model-Optimization,Best-Practice

.. customcarditem::
   :header: Parametrizations Tutorial
   :card_description: Learn how to use torch.nn.utils.parametrize to put constraints on your parameters (e.g. make them orthogonal, symmetric positive definite, low-rank...)
   :image: _static/img/thumbnails/cropped/parametrizations.png
   :link: intermediate/parametrizations.html
   :tags: Model-Optimization,Best-Practice

.. customcarditem::
   :header: ๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ๋ฒ•(pruning) ํŠœํ† ๋ฆฌ์–ผ
   :card_description: torch.nn.utils.prune์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹ ๊ฒฝ๋ง์„ ํฌ์†Œํ™”(sparsify)ํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ, ์ด๋ฅผ ํ™•์žฅํ•˜์—ฌ ์‚ฌ์šฉ์ž ์ •์˜ ๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ๋ฒ•์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ด…๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Pruning-Tutorial.png
   :link: intermediate/pruning_tutorial.html
   :tags: Model-Optimization,Best-Practice

.. customcarditem::
   :header: How to save memory by fusing the optimizer step into the backward pass
   :card_description: Learn a memory-saving technique through fusing the optimizer step into the backward pass using memory snapshots.
   :image: _static/img/thumbnails/cropped/pytorch-logo.png
   :link: intermediate/optimizer_step_in_backward_tutorial.html
   :tags: Model-Optimization,Best-Practice,CUDA,Frontend-APIs

.. customcarditem::
   :header: (beta) Accelerating BERT with semi-structured sparsity
   :card_description: Train BERT, prune it to be 2:4 sparse, and then accelerate it to achieve 2x inference speedups with semi-structured sparsity and torch.compile.
   :image: _static/img/thumbnails/cropped/Pruning-Tutorial.png
   :link: advanced/semi_structured_sparse.html
   :tags: Text,Model-Optimization

.. customcarditem::
   :header: (๋ฒ ํƒ€) LSTM ๊ธฐ๋ฐ˜ ๋‹จ์–ด ๋‹จ์œ„ ์–ธ์–ด ๋ชจ๋ธ์˜ ๋™์  ์–‘์žํ™”
   :card_description: ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ์–‘์žํ™” ๊ธฐ๋ฒ•์ธ ๋™์  ์–‘์žํ™”(dynamic quantization)๋ฅผ LSTM ๊ธฐ๋ฐ˜์˜ ๋‹จ์–ด ์˜ˆ์ธก ๋ชจ๋ธ์— ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/experimental-Dynamic-Quantization-on-an-LSTM-Word-Language-Model.png
   :link: advanced/dynamic_quantization_tutorial.html
   :tags: Text,Quantization,Model-Optimization

.. customcarditem::
   :header: (๋ฒ ํƒ€) BERT ๋ชจ๋ธ ๋™์  ์–‘์žํ™”ํ•˜๊ธฐ
   :card_description: BERT(Bidirectional Embedding Representations from Transformers) ๋ชจ๋ธ์— ๋™์  ์–‘์žํ™”(dynamic quantization)๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/experimental-Dynamic-Quantization-on-BERT.png
   :link: intermediate/dynamic_quantization_bert_tutorial.html
   :tags: Text,Quantization,Model-Optimization

.. customcarditem::
   :header: (๋ฒ ํƒ€) ์ปดํ“จํ„ฐ ๋น„์ „ ํŠœํ† ๋ฆฌ์–ผ์„ ์œ„ํ•œ ์–‘์žํ™”๋œ ์ „์ดํ•™์Šต(Quantized Transfer Learning)
   :card_description: ์–‘์žํ™”๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „์ดํ•™์Šต์„ ์ปดํ“จํ„ฐ ๋น„์ „ ํŠœํ† ๋ฆฌ์–ผ์— ํ™•์žฅํ•ฉ๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/60-min-blitz.png
   :link: intermediate/quantized_transfer_learning_tutorial.html
   :tags: Image/Video,Quantization,Model-Optimization

.. customcarditem::
   :header: (beta) Static Quantization with Eager Mode in PyTorch
   :card_description: This tutorial shows how to do post-training static quantization.
   :image: _static/img/thumbnails/cropped/60-min-blitz.png
   :link: advanced/static_quantization_tutorial.html
   :tags: Quantization

.. customcarditem::
   :header: Grokking PyTorch Intel CPU Performance from First Principles
   :card_description: A case study on the TorchServe inference framework optimized with Intelยฎ Extension for PyTorch.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/torchserve_with_ipex
   :tags: Model-Optimization,Production

.. customcarditem::
   :header: Grokking PyTorch Intel CPU Performance from First Principles (Part 2)
   :card_description: A case study on the TorchServe inference framework optimized with Intelยฎ Extension for PyTorch (Part 2).
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/torchserve_with_ipex_2
   :tags: Model-Optimization,Production

.. customcarditem::
   :header: Multi-Objective Neural Architecture Search with Ax
   :card_description: Learn how to use Ax to search over architectures find optimal tradeoffs between accuracy and latency.
   :image: _static/img/ax_logo.png
   :link: intermediate/ax_multiobjective_nas_tutorial.html
   :tags: Model-Optimization,Best-Practice,Ax,TorchX

.. customcarditem::
   :header: torch.compile Tutorial
   :card_description: Speed up your models with minimal code changes using torch.compile, the latest PyTorch compiler solution.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/torch_compile_tutorial.html
   :tags: Model-Optimization

.. customcarditem::
   :header: Inductor CPU Backend Debugging and Profiling
   :card_description: Learn the usage, debugging and performance profiling for ``torch.compile`` with Inductor CPU backend.
   :image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
   :link: intermediate/inductor_debug_cpu.html
   :tags: Model-Optimization

.. customcarditem::
   :header: (beta) Implementing High-Performance Transformers with SCALED DOT PRODUCT ATTENTION
   :card_description: This tutorial explores the new torch.nn.functional.scaled_dot_product_attention and how it can be used to construct Transformer components.
   :image: _static/img/thumbnails/cropped/pytorch-logo.png
   :link: intermediate/scaled_dot_product_attention_tutorial.html
   :tags: Model-Optimization,Attention,Transformer

.. customcarditem::
   :header: Knowledge Distillation in Convolutional Neural Networks
   :card_description:  Learn how to improve the accuracy of lightweight models using more powerful models as teachers.
   :image: _static/img/thumbnails/cropped/knowledge_distillation_pytorch_logo.png
   :link: beginner/knowledge_distillation_tutorial.html
   :tags: Model-Optimization,Image/Video


.. customcarditem::
   :header: PyTorch Distributed Overview
   :card_description: Briefly go over all concepts and features in the distributed package. Use this document to find the distributed training technology that can best serve your application.
   :image: _static/img/thumbnails/cropped/PyTorch-Distributed-Overview.png
   :link: beginner/dist_overview.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Distributed Data Parallel in PyTorch - Video Tutorials
   :card_description: This series of video tutorials walks you through distributed training in PyTorch via DDP.
   :image: _static/img/thumbnails/cropped/PyTorch-Distributed-Overview.png
   :link: beginner/ddp_series_intro.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: ๋‹จ์ผ ๋จธ์‹ ์„ ์‚ฌ์šฉํ•œ ๋ชจ๋ธ ๋ณ‘๋ ฌํ™” ๋ชจ๋ฒ” ์‚ฌ๋ก€
   :card_description: ๊ฐœ๋ณ„ GPU๋“ค์— ์ „์ฒด ๋ชจ๋ธ์„ ๋ณต์ œํ•˜๋Š” ๋Œ€์‹ , ํ•˜๋‚˜์˜ ๋ชจ๋ธ์„ ์—ฌ๋Ÿฌ GPU์— ๋ถ„ํ• ํ•˜์—ฌ ๋ถ„์‚ฐํ•™์Šต์„ ํ•˜๋Š” ๋ชจ๋ธ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Model-Parallel-Best-Practices.png
   :link: intermediate/model_parallel_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Getting Started with Distributed Data Parallel
   :card_description: Learn the basics of when to use distributed data paralle versus data parallel and work through an example to set it up.
   :image: _static/img/thumbnails/cropped/Getting-Started-with-Distributed-Data-Parallel.png
   :link: intermediate/ddp_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: PyTorch๋กœ ๋ถ„์‚ฐ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ฐœ๋ฐœํ•˜๊ธฐ
   :card_description: PyTorch์˜ ๋ถ„์‚ฐ ํŒจํ‚ค์ง€๋ฅผ ์„ค์ •ํ•˜๊ณ , ์„œ๋กœ ๋‹ค๋ฅธ ํ†ต์‹  ์ „๋žต์„ ์‚ฌ์šฉํ•˜๊ณ , ๋‚ด๋ถ€๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค.
   :image: _static/img/thumbnails/cropped/Writing-Distributed-Applications-with-PyTorch.png
   :link: intermediate/dist_tuto.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Large Scale Transformer model training with Tensor Parallel
   :card_description: Learn how to train large models with Tensor Parallel package.
   :image: _static/img/thumbnails/cropped/Large-Scale-Transformer-model-training-with-Tensor-Parallel.png
   :link: intermediate/TP_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Customize Process Group Backends Using Cpp Extensions
   :card_description: Extend ProcessGroup with custom collective communication implementations.
   :image: _static/img/thumbnails/cropped/Customize-Process-Group-Backends-Using-Cpp-Extensions.png
   :link: intermediate/process_group_cpp_extension_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Getting Started with Distributed RPC Framework
   :card_description: Learn how to build distributed training using the torch.distributed.rpc package.
   :image: _static/img/thumbnails/cropped/Getting Started with Distributed-RPC-Framework.png
   :link: intermediate/rpc_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Implementing a Parameter Server Using Distributed RPC Framework
   :card_description: Walk through a through a simple example of implementing a parameter server using PyTorchโ€™s Distributed RPC framework.
   :image: _static/img/thumbnails/cropped/Implementing-a-Parameter-Server-Using-Distributed-RPC-Framework.png
   :link: intermediate/rpc_param_server_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Distributed Pipeline Parallelism Using RPC
   :card_description: Demonstrate how to implement distributed pipeline parallelism using RPC
   :image: _static/img/thumbnails/cropped/Distributed-Pipeline-Parallelism-Using-RPC.png
   :link: intermediate/dist_pipeline_parallel_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Implementing Batch RPC Processing Using Asynchronous Executions
   :card_description: Learn how to use rpc.functions.async_execution to implement batch RPC
   :image: _static/img/thumbnails/cropped/Implementing-Batch-RPC-Processing-Using-Asynchronous-Executions.png
   :link: intermediate/rpc_async_execution.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Combining Distributed DataParallel with Distributed RPC Framework
   :card_description: Walk through a through a simple example of how to combine distributed data parallelism with distributed model parallelism.
   :image: _static/img/thumbnails/cropped/Combining-Distributed-DataParallel-with-Distributed-RPC-Framework.png
   :link: advanced/rpc_ddp_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Training Transformer models using Distributed Data Parallel and Pipeline Parallelism
   :card_description: Walk through a through a simple example of how to train a transformer model using Distributed Data Parallel and Pipeline Parallelism
   :image: _static/img/thumbnails/cropped/Training-Transformer-Models-using-Distributed-Data-Parallel-and-Pipeline-Parallelism.png
   :link: advanced/ddp_pipeline.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Getting Started with Fully Sharded Data Parallel(FSDP)
   :card_description: Learn how to train models with Fully Sharded Data Parallel package.
   :image: _static/img/thumbnails/cropped/Getting-Started-with-FSDP.png
   :link: intermediate/FSDP_tutorial.html
   :tags: Parallel-and-Distributed-Training

.. customcarditem::
   :header: Advanced Model Training with Fully Sharded Data Parallel (FSDP)
   :card_description: Explore advanced model training with Fully Sharded Data Parallel package.
   :image: _static/img/thumbnails/cropped/Getting-Started-with-FSDP.png
   :link: intermediate/FSDP_adavnced_tutorial.html
   :tags: Parallel-and-Distributed-Training


.. customcarditem::
   :header: Exporting to ExecuTorch Tutorial
   :card_description: Learn about how to use ExecuTorch, a unified ML stack for lowering PyTorch models to edge devices.
   :image: _static/img/ExecuTorch-Logo-cropped.svg
   :link: https://pytorch.org/executorch/stable/tutorials/export-to-executorch-tutorial.html
   :tags: Edge

.. customcarditem::
   :header: Running an ExecuTorch Model in C++ Tutorial
   :card_description: Learn how to load and execute an ExecuTorch model in C++
   :image: _static/img/ExecuTorch-Logo-cropped.svg
   :link: https://pytorch.org/executorch/stable/running-a-model-cpp-tutorial.html
   :tags: Edge

.. customcarditem::
   :header: Using the ExecuTorch SDK to Profile a Model
   :card_description: Explore how to use the ExecuTorch SDK to profile, debug, and visualize ExecuTorch models
   :image: _static/img/ExecuTorch-Logo-cropped.svg
   :link: https://pytorch.org/executorch/stable/tutorials/sdk-integration-tutorial.html
   :tags: Edge

.. customcarditem::
   :header: Building an ExecuTorch iOS Demo App
   :card_description: Explore how to set up the ExecuTorch iOS Demo App, which uses the MobileNet v3 model to process live camera images leveraging three different backends: XNNPACK, Core ML, and Metal Performance Shaders (MPS).
   :image: _static/img/ExecuTorch-Logo-cropped.svg
   :link: https://pytorch.org/executorch/stable/demo-apps-ios.html
   :tags: Edge

.. customcarditem::
   :header: Building an ExecuTorch Android Demo App
   :card_description: Learn how to set up the ExecuTorch Android Demo App for image segmentation tasks using the DeepLab v3 model and XNNPACK FP32 backend.
   :image: _static/img/ExecuTorch-Logo-cropped.svg
   :link: https://pytorch.org/executorch/stable/demo-apps-android.html
   :tags: Edge

.. customcarditem::
   :header: Lowering a Model as a Delegate
   :card_description: Learn to accelerate your program using ExecuTorch by applying delegates through three methods: lowering the whole module, composing it with another module, and partitioning parts of a module.
   :image: _static/img/ExecuTorch-Logo-cropped.svg
   :link: https://pytorch.org/executorch/stable/examples-end-to-end-to-lower-model-to-delegate.html
   :tags: Edge


.. customcarditem::
   :header: Introduction to TorchRec
   :card_description: TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems.
   :image: _static/img/thumbnails/torchrec.png
   :link: intermediate/torchrec_tutorial.html
   :tags: TorchRec,Recommender

.. customcarditem::
   :header: Exploring TorchRec sharding
   :card_description: This tutorial covers the sharding schemes of embedding tables by using <code>EmbeddingPlanner</code> and <code>DistributedModelParallel</code> API.
   :image: _static/img/thumbnails/torchrec.png
   :link: advanced/sharding.html
   :tags: TorchRec,Recommender

.. customcarditem::
   :header: Introduction to TorchMultimodal
   :card_description: TorchMultimodal is a library that provides models, primitives and examples for training multimodal tasks
   :image: _static/img/thumbnails/torchrec.png
   :link: beginner/flava_finetuning_tutorial.html
   :tags: TorchMultimodal



์ถ”๊ฐ€ ์ž๋ฃŒ

.. customcalloutitem::
   :header: ํŒŒ์ดํ† ์น˜(PyTorch) ์˜ˆ์ œ
   :description: ๋น„์ „, ํ…์ŠคํŠธ, ๊ฐ•ํ™”ํ•™์Šต ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด ์ฝ”๋“œ์— ํ†ตํ•ฉํ•˜์—ฌ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” PyTorch ์˜ˆ์ œ ๋ชจ์Œ
   :button_link: https://pytorch.org/examples?utm_source=examples&utm_medium=examples-landing
   :button_text: Checkout Examples

.. customcalloutitem::
   :header: PyTorch Cheat Sheet
   :description: Quick overview to essential PyTorch elements.
   :button_link: beginner/ptcheat.html
   :button_text: Open

.. customcalloutitem::
   :header: ๊ณต์‹ ํŠœํ† ๋ฆฌ์–ผ ์ €์žฅ์†Œ(GitHub)
   :description: GitHub์—์„œ ๊ณต์‹ ํŠœํ† ๋ฆฌ์–ผ์„ ๋งŒ๋‚˜๋ณด์„ธ์š”.
   :button_link: https://github.com/pytorch/tutorials
   :button_text: Go To GitHub

.. customcalloutitem::
   :header: ํŠœํ† ๋ฆฌ์–ผ์„ Google Colab์—์„œ ์‹คํ–‰ํ•˜๊ธฐ
   :description: Google Colab์—์„œ ํŠœํ† ๋ฆฌ์–ผ์„ ์‹คํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํŠœํ† ๋ฆฌ์–ผ ๋ฐ์ดํ„ฐ๋ฅผ Google Drive๋กœ ๋ณต์‚ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค.
   :button_link: beginner/colab.html
   :button_text: Open

.. customcalloutitem::
   :header: (๋น„๊ณต์‹) ํ•œ๊ตญ์–ด ํŠœํ† ๋ฆฌ์–ผ ์ €์žฅ์†Œ(GitHub)
   :description: GitHub์—์„œ (๋น„๊ณต์‹) ํ•œ๊ตญ์–ด ํŠœํ† ๋ฆฌ์–ผ์„ ๋งŒ๋‚˜๋ณด์„ธ์š”.
   :button_link: https://github.com/PyTorchKorea/tutorials-kr
   :button_text: Go To GitHub

.. customcalloutitem::
   :header: ํŒŒ์ดํ† ์น˜ ํ•œ๊ตญ์–ด ์ปค๋ฎค๋‹ˆํ‹ฐ
   :description: ํŒŒ์ดํ† ์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋‹ค๋ฅธ ์‚ฌ์šฉ์ž๋“ค๊ณผ ์˜๊ฒฌ์„ ๋‚˜๋ˆ ๋ณด์„ธ์š”.
   :button_link: https://discuss.pytorch.kr
   :button_text: Open

.. toctree::
   :maxdepth: 2
   :hidden:
   :includehidden:
   :caption: ํŒŒ์ดํ† ์น˜(PyTorch) ๋ ˆ์‹œํ”ผ

   ๋ชจ๋“  ๋ ˆ์‹œํ”ผ ๋ณด๊ธฐ <recipes/recipes_index>
   ๋ชจ๋“  ํ”„๋กœํ† ํƒ€์ž… ๋ ˆ์‹œํ”ผ ๋ณด๊ธฐ <prototype/prototype_index>

.. toctree::
   :maxdepth: 2
   :hidden:
   :includehidden:
   :caption: ํŒŒ์ดํ† ์น˜(PyTorch) ์‹œ์ž‘ํ•˜๊ธฐ

   beginner/basics/intro
   beginner/basics/quickstart_tutorial
   beginner/basics/tensorqs_tutorial
   beginner/basics/data_tutorial
   beginner/basics/transforms_tutorial
   beginner/basics/buildmodel_tutorial
   beginner/basics/autogradqs_tutorial
   beginner/basics/optimization_tutorial
   beginner/basics/saveloadrun_tutorial

.. toctree::
   :maxdepth: 2
   :hidden:
   :includehidden:
   :caption: Introduction to PyTorch on YouTube

   beginner/introyt
   beginner/introyt/introyt1_tutorial
   beginner/introyt/tensors_deeper_tutorial
   beginner/introyt/autogradyt_tutorial
   beginner/introyt/modelsyt_tutorial
   beginner/introyt/tensorboardyt_tutorial
   beginner/introyt/trainingyt
   beginner/introyt/captumyt

.. toctree::
   :maxdepth: 2
   :hidden:
   :includehidden:
   :caption: ํŒŒ์ดํ† ์น˜(PyTorch) ๋ฐฐ์šฐ๊ธฐ

   beginner/deep_learning_60min_blitz
   beginner/pytorch_with_examples
   beginner/nn_tutorial
   intermediate/tensorboard_tutorial

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ์ด๋ฏธ์ง€/๋น„๋””์˜ค

   intermediate/torchvision_tutorial
   beginner/transfer_learning_tutorial
   beginner/fgsm_tutorial
   beginner/dcgan_faces_tutorial
   beginner/vt_tutorial
   intermediate/tiatoolbox_tutorial

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ์˜ค๋””์˜ค

   beginner/audio_io_tutorial
   beginner/audio_resampling_tutorial
   beginner/audio_data_augmentation_tutorial
   beginner/audio_feature_extractions_tutorial
   beginner/audio_feature_augmentation_tutorial
   beginner/audio_datasets_tutorial
   intermediate/speech_recognition_pipeline_tutorial
   intermediate/speech_command_classification_with_torchaudio_tutorial
   intermediate/text_to_speech_with_torchaudio
   intermediate/forced_alignment_with_torchaudio_tutorial

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ํ…์ŠคํŠธ

   beginner/bettertransformer_tutorial
   intermediate/char_rnn_classification_tutorial
   intermediate/char_rnn_generation_tutorial
   intermediate/seq2seq_translation_tutorial
   beginner/text_sentiment_ngrams_tutorial
   beginner/translation_transformer
   beginner/torchtext_custom_dataset_tutorial

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ๋ฐฑ์—”๋“œ

   beginner/onnx/intro_onnx

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ๊ฐ•ํ™”ํ•™์Šต

   intermediate/reinforcement_q_learning
   intermediate/reinforcement_ppo
   intermediate/mario_rl_tutorial
   advanced/pendulum

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: PyTorch ๋ชจ๋ธ์„ ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ์— ๋ฐฐํฌํ•˜๊ธฐ

   beginner/onnx/intro_onnx
   intermediate/flask_rest_api_tutorial
   beginner/Intro_to_TorchScript_tutorial
   advanced/cpp_export
   advanced/super_resolution_with_onnxruntime
   intermediate/realtime_rpi

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: PyTorch ํ”„๋กœํŒŒ์ผ๋ง

   beginner/profiler
   beginner/hta_intro_tutorial
   beginner/hta_trace_diff_tutorial

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: Code Transforms with FX

   intermediate/fx_conv_bn_fuser
   intermediate/fx_profiling_tutorial

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ํ”„๋ก ํŠธ์—”๋“œ API

   intermediate/memory_format_tutorial
   intermediate/forward_ad_usage
   intermediate/jacobians_hessians
   intermediate/ensembling
   intermediate/per_sample_grads
   intermediate/neural_tangent_kernels.py
   advanced/cpp_frontend
   advanced/torch-script-parallelism
   advanced/cpp_autograd

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: PyTorch ํ™•์žฅํ•˜๊ธฐ

   intermediate/custom_function_double_backward_tutorial
   intermediate/custom_function_conv_bn_tutorial
   advanced/cpp_extension
   advanced/torch_script_custom_ops
   advanced/torch_script_custom_classes
   advanced/dispatcher
   advanced/extend_dispatcher
   advanced/privateuseone

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ๋ชจ๋ธ ์ตœ์ ํ™”

   beginner/profiler
   intermediate/tensorboard_profiler_tutorial
   beginner/hyperparameter_tuning_tutorial
   beginner/vt_tutorial
   intermediate/parametrizations
   intermediate/pruning_tutorial
   advanced/dynamic_quantization_tutorial
   intermediate/dynamic_quantization_bert_tutorial
   intermediate/quantized_transfer_learning_tutorial
   advanced/static_quantization_tutorial
   intermediate/torchserve_with_ipex
   intermediate/torchserve_with_ipex_2
   intermediate/nvfuser_intro_tutorial
   intermediate/ax_multiobjective_nas_tutorial
   intermediate/torch_compile_tutorial
   intermediate/inductor_debug_cpu
   intermediate/scaled_dot_product_attention_tutorial
   beginner/knowledge_distillation_tutorial

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ๋ณ‘๋ ฌ ๋ฐ ๋ถ„์‚ฐ ํ•™์Šต

   distributed/home
   beginner/dist_overview
   beginner/ddp_series_intro
   intermediate/model_parallel_tutorial
   intermediate/ddp_tutorial
   intermediate/dist_tuto
   intermediate/FSDP_tutorial
   intermediate/FSDP_adavnced_tutorial
   intermediate/TP_tutorial
   intermediate/process_group_cpp_extension_tutorial
   intermediate/rpc_tutorial
   intermediate/rpc_param_server_tutorial
   intermediate/dist_pipeline_parallel_tutorial
   intermediate/rpc_async_execution
   advanced/rpc_ddp_tutorial
   advanced/ddp_pipeline
   advanced/generic_join

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: Edge with ExecuTorch

   Exporting to ExecuTorch Tutorial <https://pytorch.org/executorch/stable/tutorials/export-to-executorch-tutorial.html>
   Running an ExecuTorch Model in C++ Tutorial < https://pytorch.org/executorch/stable/running-a-model-cpp-tutorial.html>
   Using the ExecuTorch SDK to Profile a Model <https://pytorch.org/executorch/stable/tutorials/sdk-integration-tutorial.html>
   Building an ExecuTorch iOS Demo App <https://pytorch.org/executorch/stable/demo-apps-ios.html>
   Building an ExecuTorch Android Demo App <https://pytorch.org/executorch/stable/demo-apps-android.html>
   Lowering a Model as a Delegate <https://pytorch.org/executorch/stable/examples-end-to-end-to-lower-model-to-delegate.html>

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: ์ถ”์ฒœ ์‹œ์Šคํ…œ

   intermediate/torchrec_tutorial
   advanced/sharding

.. toctree::
   :maxdepth: 2
   :includehidden:
   :hidden:
   :caption: Multimodality

   beginner/flava_finetuning_tutorial