You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Implement, demonstrate, reproduce and extend the results of the Risk articles 'Differential Machine Learning' (2020) and 'PCA with a Difference' (2021) by Huge and Savine, and cover implementation details left out from the papers.
Summary notebooks using derivative gaussian processes with tinygp. We implement a 2D derivative gaussian process and successfully use derivatives to regularize SVI fits with a gaussian process model..
I build the Micrograd autogradient engine, which is a functioning neural network with forward pass, backward propagation, and stochastic gradient descent, all built from scratch. This is derived from the great @karpathy micrograd lecture. Each notebook is complete with Andrei's lecture code and speech, as well as my own code, anecdotes and addition