Saltar ao contido

Subtracción: Diferenzas entre revisións

Na Galipedia, a Wikipedia en galego.
Contido eliminado Contido engadido
EmausBot (conversa | contribucións)
m r2.6.4) (Bot: Modifico: id:Perkurangan
Vagobot (conversa | contribucións)
m r2.7.2) (Bot: Engado: nn:Subtraksjon
Liña 125: Liña 125:
[[ml:വ്യവകലനം]]
[[ml:വ്യവകലനം]]
[[nl:Aftrekken (wiskunde)]]
[[nl:Aftrekken (wiskunde)]]
[[nn:Subtraksjon]]
[[no:Subtraksjon]]
[[no:Subtraksjon]]
[[nov:Subtraktione]]
[[nov:Subtraktione]]

Revisión como estaba o 2 de novembro de 2011 ás 17:35

5 – 2 = 3

La subtracción ou resta é unha das catro operacións básicas da aritmética; trátase dunua operación de descomposición que consiste en, dada certa cantidade, eliminar unha parte dela, e o resultado coñécese como diferenza.

É a operación inversa á suma. Por exemplo, se a+b=c, entón c–b=a.

Na subtracción, o primeiro número denomínase minuendo e o segundo é o subtraendo. O resultado da subtracción denomínase diferenza.

No conxunto dos números naturais, N, só se poden subtraer dous números se o minuendo é maior que o subtraendo. Do contrario, a diferenza sería un número negativo que, por definición, estaría excluído do conxunto. Isto é así para outros conxuntos con certas restricións, como os números reais positivos.

En matemáticas avanzadas non se fala de "subtraer" ou "restar" senón de "sumar o oposto". Noutras palabras, non se ten a – b senón a + (–b), onde –b é o elemento oposto de b respecto da suma.

O que implica a ampliación do conxunto dos números naturais cun novo concepto de número, o conxunto dos números enteiros, que inclúe aos naturais.

Táboa de restar

As táboas lesen De --- a ---- igual a ----

TÁBOA DE RESTAR
De 1 - 1 = 0 De 2 - 2 = 0 De 3 - 3 = 0 De 4 - 4 = 0 De 5 - 5 = 0 De 6 - 6 = 0 De 7 - 7 = 0 De 8 - 8 = 0 De 9 - 9 = 0
2 - 1 = 1 3 - 2 = 1 4 - 3 = 1 5 - 4= 1 6 - 5 = 1 7 - 6 = 1 8 - 7 = 1 9 - 8 = 1 10 - 9 = 1
3 - 1 = 2 4 - 2 = 2 5 - 3 = 2 6 - 4 = 2 7 - 5 = 2 8 - 6 = 2 9 - 7 = 2 10 - 8 = 2 11 - 9 = 2
4 - 1 = 3 5 - 2 = 3 6 - 3 = 3 7 - 4 = 3 8 - 5 = 3 9 - 6 = 3 10 - 7 = 3 11 - 8 = 3 12 - 9 = 3
5 - 1 = 4 6 - 2 = 4 7 - 3 = 4 8 - 4 = 4 9 - 5 = 4 10 - 6 = 4 11 - 7 = 4 12 - 8 = 4 13 - 9 = 4
6 - 1 = 5 7 - 2 = 5 8 - 3 = 5 9 - 4 = 5 10 - 5 = 5 11 - 6 = 5 12 - 7 = 5 13 - 8 = 5 14 - 9 = 5
7 - 1 = 6 8 - 2 = 6 9 - 3 = 6 10 - 4 = 6 11 - 5 = 6 12 - 6 = 6 13 - 7 = 6 14 - 8 = 6 15 - 9 = 6
8 - 1 = 7 9 - 2 = 7 10 - 3 = 7 11 - 4 = 7 12 - 5 = 7 13 - 6 = 7 14 - 7 = 7 15 - 8 = 7 16 - 9 = 7
9 - 1 = 8 10 - 2 = 8 11 - 3 = 8 12 - 4 = 8 13 - 5 = 8 14 - 6 = 8 15 - 7 = 8 16 - 8 = 8 17 - 9 = 8

Procédese colocando o minuendo enriba do subtraendo, ordenando as cifras en columnas de dereita a esquerda segundo a orde de unidades, deceas, centeas etc., igual que na suma.

A subtracción dos números 1419 e 751 estes ordenaríanse da seguinte forma:

Aplícase a táboa elemental na columna das unidades, tendo en conta que se a cifra do minuendo é menor ca do subtraendo, súmanse á cifra 10 unidades, colocando na liña de carrexo sobre as centeas un 1, que se suma á cifra do subtraendo das centeas, procedendo de igual forma na columna das unidades de millar.

A cifra 0 no minuendo considérase como un 10, mentres que no subtraendo non ten ningún efecto.

A comprobación do resultado como "Resto" ou "Diferenza" faise sumando dito resultado co subtraendo. O resultado de dita suma debe ser o minuendo. Por exemplo:

En toda subtracción cúmprese: Subtraendo + Diferenza = Minuendo. Así, por exemplo a verdadeira subtracción: 1007 – 428 = 579. E ao aplicar a fórmula anterior para averiguar se está ben ou saber un termo sin achar: 428 + 579 =1007.

O método usado en América e nalgúns países europeos, como España é o seguinte:

No caso de que unha cifra do minuendo sexa menor ca do subtraendo, decreméntase nunha unidade a cifra do minuendo que está inmediatamente á esquerda da que estamos tratando e súmase 10 á cifra do minuendo tratada.

Por exemplo, 1419 – 751 = 668. Empezaremos polas unidades, 9 – 1, que non presentan ningún problema quedando 9 – 1 = 8. No caso das deceas, temos 1 – 5 e, como a cifra do minuendo é menor ca do subtraendo, restamos unha unidade das centeas do minuendo (4 – 1 = 3) e sumamos 10 ás deceas do minuendo (10 + 1 = 11), quedando 11 – 5 = 6. Para as centeas, temos 3 – 7 e como antes, restamos unha unidade ás unidades de millar (1 – 1 = 0) e sumamos 10 ás centeas (10 + 3 = 13), quedando 13 – 7 = 6. Ao dar 0 as unidades de millar (0 – 0 = 0) dá por finalizado o algoritmo dando como resultado 668.

Nalgúns países de Europa úsase o mesmo método que en América coa diferenza seguinte:

No caso de que unha cifra do minuendo sexa menor ca do subtraendo, increméntase nunha unidade a cifra do subtraendo que está inmediatamente á esquerda da que estamos tratando e súmase 10 á cifra do minuendo tratada.

Para o mesmo exemplo anterior, 1419 – 751 = 668. Empezaremos polas unidades, 9 – 1, que non presentan ningún problema, quedando 9 – 1 = 8. No caso das deceas, temos 1 – 5, e como a cifra do minuendo é menor ca do subtraendo, sumamos unha unidad ás centeas do subtraendo (7 + 1 = 8) e sumamos 10 ás deceas do minuendo (10 + 1 = 11), quedando 11 – 5 = 6. Para as centeas, temos 4 – 8 e, como antes, sumamos unha unidade ás unidades de millar (0 + 1 = 1) e sumamos 10 ás centeas (10 + 4 = 14), quedando 14 – 8 = 6. No caso das unidades de millar, que non presentan problema, queda 1 – 1 = 0 finalizando o algoritmo dando como resultado 668.

Ligazón externa