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Sparse Representations and

Low-Rank Tensor Approximation

Pierre Comon∗, Fellow, IEEE, and Lek-Heng Lim‡

Abstract

Approximating a tensor by another of lower rank is in generalan ill posed problem. Yet, this

kind of approximation is mandatory in the presence of measurement errors or noise. We show how

tools recently developed in compressed sensing can be used to solve this problem. More precisely, a

minimal angle between the columns of loading matrices allows to restore both existence and uniqueness

of the best low rank approximation. We then show how these results can be applied to perform jointly

localization and extraction of multiple sources from the measurement of a noisy mixture recorded on

multiple sensors, in an entirely deterministic manner. Themain interest in deterministic approaches is

that they can be followed in the presence of strong channel nonstationarities.

Index Terms

Blind identification; under-determined linear mixtures; blind source separation; polyadic tensor

decompositions; tensors; tensor rank; localization; bestrank-r approximations; sparse representations;

spark; compressed sensing; Kruskal’s rank; coherence; multiarrays; multisensors

I. INTRODUCTION

Tensor decomposition and approximation models arise naturally in multiarray multisensor

signal processing, as already demonstrated in [1], [2], [3], [4], [5] when high-order statistics are

used, and in [6] when sensor arrays enjoy particular geometrical properties. However, the fact

that approximating a tensor by another of lower rank is generally an ill-posed problem has not

∗ Pierre Comon is with Lab. Informatique Signaux et Systèmesde Sophia-Antipolis (I3S), UMR6070 CNRS-UNS, 2000

route des Lucioles, BP.121, F06903 Sophia Antipolis cedex,France, and with INRIA, Galaad, 2004 route des Lucioles, BP.93,

F06902 Sophia Antipolis cedex, France.‡ Lek-Heng Lim is with the Department of Statistics, University of Chicago.
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been taken into account in the latter works. This explains why numerical algorithms sometimes

do not converge to the expected solution, and that they oftenconverge quite slowly.

We explain in Section II why the problem is ill-posed, and what remedies have already been

proposed to face it. Then we see in Section III how contributions borrowed from compressed

sensing can be used to address the problem in a more convenient manner. The termcompressed

sensingshould be understood in a broad sense, encompassing not onlythe ideas covered in [7],

[8], [9], [10], [11], [12] but also in [13], [14], [15], [16].Then, the usefulness of the proposed

approach is demonstrated in Section IV, where several applications are pointed out, with an

emphasis on the problem of joint localization and estimation of radiating sources with short data

lengths, which can be solved deterministically.

II. PROBLEM POSITION AND FIRST REMEDIES

A tensor of orderD is an object defined on a product ofD linear spaces,Sd, 1 ≤ d ≤ D. Such

a tensor may represent a map fromS1⊗· · ·⊗Sγ ontoSγ+1⊗· · ·⊗SD, for someγ, 0 < γ < D.

If γ = D, one has aD-linear form defined on⊗D
d=1Sd. Once the basis of each linear spaceSi

is fixed, such a tensor can be represented by aD-way array of coordinates,T = JTij..kK. The

background field is assumed to beR or C.

When a change of basis is operated in each linear spaceSd, defined by a matrixA(d), the

array of coordinatesT must be modified accordingly into an arrayT′. We shall be concerned

by the so-calledcontravarianttensors, which enjoy the multilinearity property below:

T ′
ij..k =

∑

i

A
(1)
ip

∑

j

A
(2)
jq · · ·

∑

k

A
(D)
kr Tpq..r

which we shall denote compactly as

T
′ = (A(1),A(2), . . . ,A(D)) ·T (1)

A. Canonical Polyadic decomposition

A tensorE of orderD is said to bedecomposableif it can be written as the tensor product

of D vectors:

E = u
(1)

⊗⊗⊗u
(2)

⊗⊗⊗ . . .⊗⊗⊗u
(D)
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In other words, its array of coordinates can be written asEij..k = u
(1)
i u

(2)
j .. u

(1)
k . Any tensorT

can always be decomposed in a sum of decomposable tensors [17]:

T =

R
∑

r=1

λr E(r), (2)

E(r) = u
(1)
r ⊗⊗⊗u

(2)
r ⊗⊗⊗ . . .⊗⊗⊗u

(D)
r

In addition,λr can be imposed to be real nonnegative, and vectorsu
(d)
r can be imposed to be

of unit norm, for some suitably chosen norm.

Definition 1. The minimal number of decomposable terms necessary to meet the exact fit in

equation (2) is referred to as therank of tensorT:

rank{T} = min

{

R

∣

∣

∣

∣

T =
R
∑

r=1

λr E(r)

}

(3)

In particular, decomposable tensors have a rank equal to one. When minimal, decomposition

(2) reveals the rank and is often called theCanonical Polyadic(CP) decomposition ofT. Other

terminologies have been used in various communities, including CanDecomp[18] andParafac

[19] in Psychometrics. The Linear Algebra community has taken the habit to use the acronym

CP, standing for CanDecomp/Parafac, which fortunately coincides with the former.

Note that the CP decomposition can be written in compact formas

T = (U(1),U(2), . . . ,U(D)) ·Λ (4)

if Λ denotes theD-way diagonal array, whose sole nonzero entries areΛrr..r = λr, and matrices

U
(d) are each built with theR = rank{T} column vectorsu(d)

r , 1 ≤ d ≤ D, 1 ≤ r ≤ R.

At this stage, it is convenient to make a comparison with matrix decompositions, which are

better known. Let a matrixM of rank R > 1. Then it can be decomposed in infinitely many

ways into a sum of rank-1 terms as

M =

R
∑

r=1

λr ur v
T

r

whereU = {ur} andV = {vr} are collections ofR unit-norm vectors. The Singular Value

decomposition (SVD) ofM yields one such decomposition, where vectors ofU (resp.V) are

orthogonal to each other.
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In (2-4), no orthogonality constraint is imposed. However,a sufficient condition for uniqueness

has still been derived whenD > 2 as now pointed out. We first need a definition

Definition 2. The Kruskal’s rank of a matrixM, or krank{M} in brief, is the maximal number

κ such that any subset ofκ columns ofM are linearly independent.

From this definition, originally introduced in [20], it is clear thatrank{M} ≥ krank{M}. Also

note that the notion ofspark introduced in compressed sensing [11], [12] is related to Kruskal’s

rank, since spark{M} = krank{M}+1. Let’s now turn to the following result, generally referred

to asKruskal’s lemma[20], [21], [22]:

Lemma 3. Let T be a tensor of orderD. Then its CP decomposition (4) is unique if

2 rank{T}+ 2 ≤
D
∑

d=1

krank{U(d)}. (5)

This condition has been proved to be sufficient but not provedto be necessary. We insist that

uniqueness is here to be understoodup to a scale factor. More precisely, there still remains a

whole equivalence class of CP decompositions in the sense that one can replace eachU(d) by

U
(d)
∆

(d), where matrices∆(d) are diagonal invertible, and satisfy the constraint
∏D

d=1 ∆
(d) = IR,

theR×R identity matrix.

B. Ill-posedness of the best low-rank approximation

The best rank-R approximate is defined by the minimum of the objective

Υ(U(1)
r , ..,U(D)

r ,Λ)=
∥

∥T− (U(1), . . . ,U(D)) ·Λ
∥

∥

2

F
(6)

where‖·‖F denotes the Frobenius norm defined by‖T‖2F =
∑

ij..k |Tij..k|2, and matricesU(d)
r

haveR columns,R < rank{T}. It turns out that this best approximate may not exist for tensors

of orderD > 2. In fact, the set of tensors of rank at mostβ is not closed ifβ > 1, except when

the latter set is the whole space,i.e. whenβ is maximal (but there is then no approximation).

This lack of closeness is now well known, and examples have been provided in the literature

[23], [24], which suffice to prove it.

February 21, 2011 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX 5

Example 4. Let’s for instance consider two non collinear vectors,a and b, and define the

sequence of rank-2 tensors:

T(n) = n

[

(a+
1

n
b)⊗⊗⊗ 4 − a

⊗⊗⊗ 4

]

As n tends to infinity, this sequence converges towards

T∞ = a
⊗⊗⊗ 3

⊗⊗⊗b+ a
⊗⊗⊗ 2

⊗⊗⊗b⊗⊗⊗a+ a⊗⊗⊗b⊗⊗⊗ a
⊗⊗⊗ 2 + b⊗⊗⊗a

⊗⊗⊗ 3

which may be shown to be of rank 4. This demonstrates that the set of tensors of rank at most

2 is not closed.

The limit of tensors of rankR is said to be ofborder rankR. In general, the actual tensor

rank is larger than the border rank, as in the above example. However, there are cases where they

always coincide. In particular, this is the case of real tensors with nonnegative entries, if they

are decomposed into a sum of real nonnegative decomposable tensors [25]. But in the present

framework, they differ, so that the lower rank approximation problem is ill-posed.

C. Searching a compact set via constrained optimization

The most natural way to face this problem is to change the set we are searching into a compact

set. This can be done in several ways. In [26], loading maricesU(d) are imposed to be orthogonal.

This solution is acceptable only in very restrictive conditions; in particular the rank ofT must

be smaller than its dimensions. In [27], it has been proposedto impose orthogonality between

the decomposable tensors; this constraint is less restrictive, but quite difficult to impose and still

too restrictive. The first available practical technique was that proposed in [28], consisting of

minimizing the objectiveΥ(U(1), . . . ,U(D)) + β
∑

d ‖U(d)‖2F , whereβ is an arbitrarily chosen

regularization parameter. It can be seen that this is equivalent to constrain matricesU(d) to lie

on a sphere
∑D

d=1 ‖U(d)‖2F = ρ, ρ being determined a posteriori fromβ. The drawback of this

efficient constraint is thatρ andβ are arbitrary, and that they generally have no physical meaning.

We posed the problem slightly differently in (6), where eachcolumn vector is imposed to

have a unit norm, which permits to define scale coefficientsλr properly. In other words, we

minimize the Lagrangian

Υ(U(1), . . . ,U(D),Λ) +

D
∑

d=1

R
∑

r=1

βd,r ‖u(d)
r ‖22
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whereβd,r denote Lagrange multipliers, and‖ · ‖2 theL2 norm. However, contrary to [28], the

set we are searching is not compact anymore, because of the presence of unbounded variables

λr (the entries ofΛ) in the objectiveΥ. The goal of the next section is to define physically

meaningful constraints, which will ensure the existence ofa unique minimum, even ifΛ is

unbounded.

III. A NGULAR CONSTRAINT

A. Existence

The goal is to prevent the phenomenon we observed in Example 4to occur, by imposing

natural and weak constraints; we do not want to reduce the search to a compact set. It is clear

that the objective (6) is not coercive, which explains why the minimum may not exist. But with

an additional condition on thecoherence, we shall be able to prove existence thanks to coercivity.

Definition 5. LetH be a Hilbert space provided with scalar product〈·〉, and letV = {v1, ..,vR}
be a finite collection of vectors of unit norm. The coherence of the collectionV is defined as

µ(V)
def
= maxp 6=q |〈vp,vq〉|.

This notion has received different names in the literature:muual incoherence of two

dictionaries [11], mutual coherence of two dictionaries [8], the coherence of a subspace projection

[14], etc. The version here follows that of [12]. We are interested in the case whenH is

finite dimensional, namelyCN . Usually, dictionaries are finite or countable, but we have here a

continuum of atoms. Clearly,0 ≤ µ(V) ≤ 1, andµ(V) = 0 iff v1, . . . ,vR are orthonormal, and

µ(V) = 1 iff V contains at least a pair of collinear vectors.

The following shows that a solution to the bounded coherencebest rank-R approxiamtion

problem always exists:

Proposition 6. Le T be a tensor of orderD and dimensionsNd, 1 ≤ d ≤ D, and define the

sets of dictionaries of unit vectors of coherence not largerthanµd:

U (d) = {U(d) ∈ C |µ(U(d)) ≤ µd} (7)

If
∏D

d=1 µd <
1
R

, then

η = inf

{

‖T− (U(1), . . . ,U(D)) ·Λ‖
∣

∣

∣

∣

λ ∈ C
R,U(d) ∈ U (d)

}

(8)

February 21, 2011 DRAFT
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is attained, where|| · || denotes any norm on⊗D
d=1C

Nd . Above, vectorλ contains the entriesλd

of the diagonal tensorΛ.

Proof: Since all norms are equivalent on a finite dimensional space,we may assume the

Frobenius norm‖ · ‖F . We have the following inequalities

‖(U(1), . . . ,U(D)) ·Λ‖ =

R
∑

p,q=1

λpλ̄q

D
∏

d=1

〈u(d)
p ,u(d)

q 〉

≥
R
∑

p=1

λpλ̄p

D
∏

d=1

||u(d)
p ||2 −

R
∑

p 6=q

∣

∣

∣

∣

∣

λpλ̄q

D
∏

d=1

〈u(d)
p ,u(d)

q 〉
∣

∣

∣

∣

∣

≥
R
∑

p=1

|λp|2 −
D
∏

d=1

µd

∑

p 6=q

|λpλ̄q|

≥ ||λ||22 −
D
∏

d=1

µd||λ||21

Now, use the fact that||λ||21 ≤
√
R ||λ||22 for any vectorλ of sizeR, to get eventually

‖(U(1), . . . ,U(D)) ·Λ‖ ≥
(

1− R
D
∏

d=1

µd

)

||λ||22 (9)

Since by assumptionR
∏D

d=1 µd < 1, it is clear that the left hand side of (9) tends to infinity as

||λ||2 → ∞. And because||T|| is fixed,‖T− (U(1), . . . ,U(D)) ·Λ‖ also tends to infinity. This

proves coercivity, and hence the proposition.

B. Uniqueness

In order to prove uniqueness, we shall call for Kruskal’s lemma. For that purpose, the following

lemma is needed.

Lemma 7. Let H be a Hilbert space and letV = {v1, ..,vR} be a finite collection of vectors

of unit norm. Then

krank{V} ≥ 1

µ(V)
(10)

Proof: Let s = krank{V}+1, the spark ofµ(V). Then there exists as-uple of distinct unit

vectors inV, {v1, . . . ,vs} such thatα1v1+ · · ·+αsvs = 0 with |α1| = max{|α1|, . . . , |αs|} > 0.

Taking inner product withv1 we get α1 = −α2〈v2,v1〉 − · · · − αs〈vs,v1〉 and so |α1| ≤
(|α2|+ · · ·+ |αs|)µ(V ). Dividing by |α1| then yields1 ≤ (s− 1)µ(V).

February 21, 2011 DRAFT
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Definition 8. We shall say that the CP decomposition (4) is unique up tounimodulus scalingif

each vectoru(d)
r can be multiplied by a scalar factorα(d)

r of unit modulus, such that
∏D

d=1 α
(d)
r =

1, ∀r, 1 ≤ r ≤ R.

We now characterize the uniqueness of the CP decomposition in terms of coherence introduced

in Definition 5.

Proposition 9. Let T be a tensor of orderD and a decompositionT =
∑R

r=1 λrE(r) into R

decomposable tensorsE(r) = u
(1)
r ⊗⊗⊗u

(2)
r ⊗⊗⊗ . . .⊗⊗⊗u

(D)
r , whereu(d)

r are of unit norm. DenoteU(d)
r

the matrices with columnsu(d)
r . If

1

2

D
∑

d=1

1

µ(U
(d)
r )

≥ R + 1 (11)

thenR = rank{T} and the decomposition is unique up to unimodulus scaling.

Proof: If inequality (11) is satisfied, then so is Kruskal’s condition (5) thanks to Lemma 7.

The results hence directly follows from Lemma 3.

Note that unlike thek-ranks in (5), the coherences in (11) are trivial to compute.In addition

to uniqueness, an easy but important consequence of Proposition 9 is that it provides a readily

checkable sufficient condition for tensor rank, which is NP-hard over any field [29], [30].

C. Existence and uniqueness

Now the following existence and uniqueness sufficient condition can be deduced from

Propositions 6 and 9.

Corollary 10. If D ≤ 5 and if coherencesµ(U(d)) satisfy
(

D
∏

d=1

µ(U(d))

)1/D

≤ D

2R + 2
(12)

then the bounded coherence best rank-R approximation problem has a unique solution up to

unimodulus scaling.

Proof: The existence in the caseR = 1 is ensured, because the set of tensors of rank 1 is

closed (it is in fact a determinantal variety). Consider thus the caseR ≥ 2. Since the function

f(x) = 1
x
− ( D

2x+2
)D is strictly positive forx ≥ 2 and D ≤ 5, condition (12) implies that

February 21, 2011 DRAFT
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∏D
d=1 µ(U

(d)) is smaller than1/R, which permits to claim that the solution exists by calling for

Proposition 6.

Next in order to prove uniqueness, we use the inequality between harmonic and geometric

means: if (12) is verified, then we also necessarily haveD [
∑D

d=1 µ(U
(d))−1]−1 ≤ D

2R+2
. Hence

∑D
d=1 µ(U

(d))−1 ≥ 2R + 2 and we can apply Proposition 9.

IV. A PPLICATIONS

The goal of this section is two-fold. First we want to show theusefulness of the CP

decomposition in real world problems, amd second we want to know the meaning of the

coherence conditions in terms of physical quantities.

A. Joint channel and source estimation

Consider a narrow band transmission problem in the far field.We assume here that we are in

the context of wireless telecommunications, but the same principle could apply in other fields.

Let P signals impinge on an array, so that their mixture is recorded. It is wished to recover the

original signals, and to estimate their directions of arrival and respective powers at the receiver.

If the channel is specular, some of these signals can correspond to different propagation paths

of the same radiating source, and are hence correlated. In other words,P does not denote the

number of sources, but the total number of distinct paths viewed from the receiver.

In the present framework, we assume that channels can be time-varying, but that they can be

assumed constant over a sufficiently short observation length. The goal is hence to be able to

work with extremely short samples.

In order to face this challenge, we assume that the sensor array is structured, as in [6]. More

precisely, the sensor array is composed of areference arraycontainingI sensors, whose location

is defined by a vectorbi ∈ R
3, andJ − 1 other subarrays, deduced from the reference array

by a translation in space defined by a vector∆j ∈ R
3, 1 < j ≤ J . The reference subarray is

numbered withj = 1 in the remainder.

Under these assumptions, the signal received at discrete time k on the ith sensor of the

reference subarray can be written as:

si,1(k) =

P
∑

p=1

σp(k) exp(ψi,p)

February 21, 2011 DRAFT
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with ψi,p =  ω
C
(bT

i dp) where the dotless denotes
√
−1, vectordp is unit norm and denotes

the direction of arrival of thepth path. Next, on thejth subarray,j > 1, we have

si,j(k) =
P
∑

p=1

σp(k) exp(ψi,j,p) (13)

with ψi,j,p =  ω
C
(bT

i dp +∆
T

j dp). If we let ∆1 be the null vector, then (13) also applies for the

reference subarray. The interest of this structure is that variablesi and j decouple in function

exp(ψi,j,p), yielding a relation resembling the CP decomposition:

si,j(k) =

P
∑

p=1

λp U
(1)
ip U

(2)
jp U

(3)
kp (14)

whereU (1)
ip = exp( ω

C
b
T

i dp), U
(2)
jp = exp( ω

C
∆

T

j dp) andU (3)
kp = σp(k)/||σp||, λp = ||σp||.

Hence, by computing the CP decomposition of theI × J × K tensorS = Jsi,j(k)K, it is

possible to jointly estimate: (i) signal waveformsσp(k), and (ii) the directions of arrivaldp of

each propagation path ifbi or ∆j are known.

However, the observation model (13) is not realistic, and anadditional error term should be

added in order to stand for modeling inaccuracies and background noise. It is customary (and

realistic thanks to the central limit theorem) to assume that this additive error has a continuous

probability distribution, so that tensorS has ageneric rank. Yet, the generic rank takes values

at least as large as⌈IJK/(I + J +K − 2)⌉, which is always larger than Kruskal’s bound [24].

Therefore, we have to face the problem of approximating tensor S by another of rankP . And

we have seen that the angular constraint imposed in Section III permits to deal with a well-posed

problem. In order to see the physical meaning of this constraint, it is convenient to define first

the tensor product between subarrays.

B. Towards the concept of tensor product between sensor subarrays

The sensor arrays we cope with are structured, in the sense that the whole array is generated

by one subarray, defined by the collection of vector locations {bi ∈ R
3, 1 ≤ i ≤ I}, and a

collection of translations in space,{∆j ∈ R
3, 1 ≤ j ≤ J}. If we define vectors

u
(1)
p = Jexp(

ω

C
b
T

i dp)K
I
i=1/

√
I

u
(2)
p = Jexp(

ω

C
∆

T

j dp)K
J
j=1/

√
J (15)

u
(3)
p = σp/||σp||

February 21, 2011 DRAFT
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then this means that we may see all measurements as the superimposition of decomposable

tensors:

λp u
(1)
p ⊗⊗⊗u

(2)
p ⊗⊗⊗u

(3)
p

The geometry of the sensor array is contained inu
(1)
p ⊗⊗⊗u

(2)
p , whereasλp andu(3)

p contain energy

and time information on each pathp, respectively. Note that the reference subarray and the setof

translations play symmetric roles, in the sense thatu
(1)
p andu(2)

p could be interchanged without

changing the whole array. This will become clear with a few examples.

When we are given a structured sensor array, there can be several ways of splitting it into a

tensor product of two (or more) subarrays, as now shown by simple examples.

Example 11. Define the matrix of sensor locations

[b1, b2, b3] =





0 0 1

0 1 1





This subarray is depicted in Figure 1.b. By translating it according to the translation defined

in Figure 1.c one obtains another subarray. The union of the two subarrays yields the array

of Figure 1.a. The same array is obtained by interchanging the roles of the two subarrays, i.e.

three subarrays of two sensors deduced from each other by twotranslations.

(a) (c)(b)

Fig. 1. Antenna array (a) is obtained as the tensor product between subarrays (b) and (c)

Example 12. Define the array by

[b1, b2, . . .b6] =





0 1 2 0 1 2

0 0 0 1 1 1





This array, depicted in Figure 2.a, can be obtained either bythe union of subarray of Figure

2.b and its translation defined by Figure 2.c, or by the array of Figure 2.c translated three times
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according to Figure 2.b. We agree to express this relationship by the equation:

= ⊗⊗⊗ = ⊗⊗⊗

Another decomposition may be obtained as

= ⊗⊗⊗ = ⊗⊗⊗

In fact, = ⊗⊗⊗ and = ⊗⊗⊗ . However, it is important to stress that the various

decompositions of the whole array into tensor products of subarrays are not equivalent from

the point of view of performance. In particular, the Kruskal’s bound can be different, as will be

pointed out next.

(b) (c)(a)

Fig. 2. Antenna array (a) is obtained as the tensor product between subarrays (b) and (c)

Similar obsevations can be made for grid arrays in general.

Example 13. Take an array of 9 sensors located at(x, y) ∈ {1, 2, 3} × {1, 2, 3}. We have the

relations

= ⊗⊗⊗ = ⊗⊗⊗ = ⊗⊗⊗

among others.

Let now have a look at the maximal number of sourcesPmax that can be extracted from a

tensor of sizeI × J × K. A sufficient condition is that the total number of paths,P , is smaller

than Kruskal’s bound (5). We shall simplify the bound by making two assumptions: (a) the

loading matrices are generic, that is, they are full rank, and (b) the number of paths is larger

than the sizesI andJ of the two subarrays entering the array tensor product, and smaller than

the number of time samples,K. Under these simplifying assumptions, Kruskal’s bound becomes

2P ≤ I + J + P − 2, or:

Pmax = I + J − 2 (16)
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The table below illustrates the fact that the choice of subarrays has an impact on this bound.

Array Subarray I J Pmax

product

⊗⊗⊗ 3 2 3

⊗⊗⊗ 4 2 4

⊗⊗⊗ 2 3 3

⊗⊗⊗ 3 3 4

⊗⊗⊗ 6 2 6

⊗⊗⊗ 4 4 6

C. Signification of the angular constraint

We are now in a position to interpret the meaning of angular constraints proposed in Section

III. According to the notations given in (15), the first coherence

µ(1) = max
p 6=q

|u(1)H
p u

(1)
q |

corresponds to the angular separation viewed from the reference subarray. In fact, vectorsbi and

dp having a unit norm, as well as vectorsup, the quantity|uH

puq| may be seen as a measure of

angular separation betweendp anddq, as we shall now subsequently show in Proposition 15.

Definition 14. We shall say that a collection of vectors{bi}1≤i≤I is resolvent w.r.t. direction

bk − bk0 if

0 < ‖bk − bk0‖ <
λ

2
(17)

whereλ = 2πC
ω

denotes the wavelength.

Let bi, dp anduq be defined as in (15),1 ≤ i ≤ I, 1 ≤ p, q ≤ P .

Proposition 15. If {bi}1≤i≤I is resolvent w.r.t. three linearly independent directions, then

|uH

puq| = 1 ⇔ dp = dq (18)
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Proof: Assume |uH

puq| = 1. Then because they are unit norm, vectorsup and uq are

collinear with a unit modulus proportionality factor. Hence from (15), for alli, k, 1 ≤ i, k ≤ I,

(bi−bk)
T(dp−dq) ∈ λZ, whereλ is defined in Definition 17. Since{bi} is resolvant, there exist

(i, i0) such that0 < ‖bi−bi0‖ < λ/2. Hence, because vectorsdp are unit norm,‖dp−dq‖ ≤ 2

so that we necessarily have that(bi − bi0)
T(dp − dq) = 0. Vector (dp − dq) is consequently

orthogonal to(bi − bi0). The same reasoning can be carried out with two other independent

vectors. Eventually, vector(dp−dq) is null because it is orthogonal to three linearly independent

vectors inR3. The converse is immediate, by the definition ofuq.

Note that the condition of Definition 17 is not very restrictive, since sensor arrays usually

contain sensors separated by half a wavelength or less.

From Section IV-B, one can claim that a similar interpretation can be put forward for the

second coherence, which measures the minimal angular separation between paths, viewed from

the subarray defining translations.

The third coherence is nothing else but the maximal correlation coefficient between signals

received from various paths on the array:

µ(3) = max
p 6=q

|σH

pσq|
||σp|| · ||σq||

As a conclusion, the tensor approximation exists and is unique if either signals propagating

through various paths are not too much correlated, or if their direction of arrival are not too close.

By “not too” it should be understood that the product of coherencies need to satisfy inequality

(12) of Corollary 10. In other words, one can separate paths with high correlation provided they

are sufficiently well separated in space.

Hence, the decomposition of an array into a tensor product oftwo (or more) subarrays should

not only take into account Kruskal’s bound, as elaborated inSection IV-B, but also the ability

of the latter subarrays to separate two distinct directionsof arrival (cf. Proposition 15).
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