
HAL Id: hal-00854260
https://hal.science/hal-00854260v1

Submitted on 26 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The JBotSim Library
Arnaud Casteigts

To cite this version:

Arnaud Casteigts. The JBotSim Library. 2013. �hal-00854260�

https://hal.science/hal-00854260v1
https://hal.archives-ouvertes.fr

1

The JBOTSIM Library
Arnaud Casteigts

LaBRI, University of Bordeaux
arnaud.casteigts@labri.fr

July 1, 2013

Abstract—JBOTSIM is a java library that offers basic
primitives for prototyping, running, and visualizing dis-
tributed algorithms in dynamic networks. With JBOTSIM,
one can implement an idea in minutes and interact with
it (e.g. add, move, or delete nodes) while it is running.
JBOTSIM is well suited to prepare live demonstrations
of your algorithms to colleagues or students; it can also
be used to evaluate performance at the algorithmic level
(number of messages, number of rounds, etc.). Unlike most
tools, JBOTSIM is not an integrated environment. It is a
lightweight library to be used in your program. In this
paper, we present an overview of its distinctive features
and architecture.

I. INTRODUCTION

JBotSim is an open source (LGPL) simulation library
dedicated to distributed algorithms in dynamic networks.
With it, you can prepare live demos of your algorithm,
interact with it while it is running, and evaluate its
performance. JBOTSIM is not a competitor of main-
stream simulators such as NS3, OMNet, or The One
(see [3, 6, 9]), in that it does not implement real-world
networking stacks. Quite the opposite, JBOTSIM aims to
remain a technology-insensitive tool to be used mostly at
the algorithmic level. It is closer, in spirit, to the ViSiDiA
project – a general purpose visualization environment for
distributed algorithms [4, 8].

Whether your algorithm is centralized or distributed,
the natural way of programming in JBOTSIM is event-
driven: algorithms are defined as subroutines to be
executed when particular events occur (appearance or
disappearance of a link, arrival of a message, timer pulse,
etc.). Movements of the nodes can be controlled either by
program or by means of live interaction with the mouse
(adding, deleting, or moving nodes around with left-
click, right-click, or drag and drop, respectively). These
movements are typically performed while the algorithm
is running, in order to visualize it or test its behavior in
challenging configurations.

The present document offers a broad view of JBOT-
SIM’s main features and design traits. We start with
some preliminaries regarding installation and documen-
tation. Section III reviews JBOTSIM’s main components

and specificities such as programming paradigms, clock
scheduling, user interaction, or global architecture. Sec-
tion IV zooms on key features such as the exchange
of messages between nodes, graph-level APIs, or the
creation of online demos. Finally, we discuss in Sec-
tion V some extensions of JBOTSIM, including a TikZ ex-
portation feature and an edge-markovian dynamic graph
generator.

Besides its features, the main asset of JBotSim is its
simplicity of use – an aim pursued at the cost of writing
it several times from scratch (the API is now stable).

II. PRACTICAL PRELIMINARIES

In this short section, we help you install JBOTSIM,
write, and run a first program. Useful links to online
documentation and examples are also given to explore
the API further and practice it beyond this paper.

A. Fetching JBOTSIM

The straightest (and safest) way to obtain JBOTSIM

is to fetch the latest official release, as a JAR pack-
age (http://jbotsim.sf.net/jbotsim.jar). If you are
more daring, you can get the latest development version
from SourceForge’s repository and compile it yourself
as shown below. Doing this, you likely get new features,
but less conformity to online documentation. Here is the
command:
> svn co svn://svn.code.sf.net/p/jbotsim/code/ target

where target is the place you want to put JBOTSIM’s
source code in. From within that directory, you can
produce the JAR package by typing make.

JBOTSIM does not use version numbers. So far it
proved more convenient. New features are released fre-
quently and users get in touch with me to discuss any
issue. This might change in the future.

B. HelloWorld with JBOTSIM

Whether you downloaded the JAR package or com-
piled it, you can check your setting with the following
program. To do so, copy the code from Algorithm 1 into
a file named HelloWorld.java.

ar
X

iv
:s

ub
m

it/
07

50
07

7
 [

cs
.D

C
]

 1
 J

ul
 2

01
3

2

Algorithm 1 HelloWorld with JBOTSIM

import jbotsim.Topology;
import jbotsim.ui.JViewer;

public class HelloWorld{
public static void main(String[] args){

new JViewer(new Topology());
}

}

If you are working from the terminal, you may add
jbotsim.jar to your CLASSPATH environment variable
or use the equivalent options as follows:

• javac -cp jbotsim.jar HelloWorld.java

(compilation)
• java -cp .:jbotsim.jar HelloWorld

(execution)

If you are running Eclipse or a similar IDE, add
jbotsim.jar to the build path of your project (Project >
Properties > Java build path > Librairies > Add exter-
nal jar). Now run your program. If you see an empty
surface where you can add nodes, move them, or delete
them with the mouse, then you are all set.

C. Sources of documentation

In this document, we provide a general overview
of what JBOTSIM is and how it is designed. This
is by no means a comprehensive programming hand-
book. The reader who wants to explore deeper some
features or develop complex programs with JBOTSIM

is referred to the API documentation, available at
http://jbotsim.sf.net/javadoc/.

Examples can also be found on JBOTSIM’s website, to-
gether with comments and explanations. These examples
offer a good starting point to learn specific components
of the API from an operational standpoint – the present
document essentially focuses on concepts. Most online
examples are augmented with interactive visualization,
which you can see if your browser supports java applets.
Finally, most examples given in this paper are available
on JBOTSIM’s website. Feel free to check them when
the code given here is incomplete (e.g. we often omit
package imports and main() methods for conciseness).

III. JBOTSIM’S FEATURES AND ARCHITECTURE

This section provides an overview of JBOTSIM’s key
features and discusses the reason why some design
choices were made. We review topics as varied as pro-
gramming paradigms, clock scheduling, user interaction,
and global architecture.

Figure 1. A highway scenario composed of vehicles, road-side units,
and central servers. Part of the network is ad hoc (and wireless); the
rest is infrastructured (and wired).

A. Basic features of nodes and links

JBOTSIM consists of a small number of classes, the
most central of which are Node, Link, and Topology.
The contexts in which dynamic networks manifest are
varied. In order to accommodate a majority of cases,
these classes offer a number of conceptual variations
around the notions of nodes and links. Nodes may or
may not possess wireless communication capabilities,
sensing abilities, or self-mobility. They may differ in
clock frequency, color, communication range, or any
other user-defined property. Links between the nodes
account for potential communication among them. The
nature of links varies as well; a link can be directed or
undirected, as well as it can be wired or wireless – in
the latter case JBOTSIM’s topology will update the set of
links automatically, as a function of nodes distances and
communication ranges.

Figures 1 and 2 illustrate this diversity of contexts.
Figure 1 depicts a highway scenario where three types
of nodes are used: vehicles, road-side units (towers),
and central servers. This scenario is semi-infrastructured:
Servers share a dedicated link with each tower. This
link is wired and exists independently from the distance.
On the other hand, towers and vehicles communicates
through wireless links that are automatically updated.

Figure 2. A swarming scenario, whereby mobiles robots and UAVs
collaborate to clean a public park.

Figure 2 illustrates a purely ad hoc scenario, whereby
a heterogeneous swarm of UAVs and robots strives to
clean a public park collectively. In this scenario, robots

3

can detect and clean wastes of a certain type (red or blue)
only if these are within their sensing range (depicted by
a surrounding circle). However, they are pretty slow to
move and cannot detect remote wastes. In the meantime,
a set of UAVs is patrolling over the park at higher speed
and with larger sensing range. Whenever they detect a
waste of some type, they store the position and start
searching for a capable robot. In addition to sensing
capabilities, UAVs can communicate wirelessly to share
environmental information.

Besides nodes and links, the concept of topology is
central in JBOTSIM. As far as we are concerned here,
they can be thought of as containers for nodes and links,
together with dedicated operations like updating wireless
links. They also play a central role in JBOTSIM’s event
architecture, as we will see later on.

B. Distributed vs. centralized algorithms

JBOTSIM supports the manipulation of centralized or
distributed algorithms (sometimes both simultaneously).
The natural way to implement a distributed algorithm
is by defining a class that inherits from the Node class.
Centralized algorithms are not constrained to a particular
model, they can take the form of any standard java class.

a) Distributed algorithm: JBOTSIM comes with a
default type of node that is implemented in the Node

class. This class provides the most general features
a node could have, including primitives for moving,
exchanging messages, or tuning basic parameters (e.g.
communication range and sensing range). Distributed
algorithms are naturally implemented through adding
specific features to this class. Algorithm 2 provides a
basic example in which the nodes are endowed with
self-mobility. The class relies on a key mechanism

Algorithm 2 Extending the Node class
import jbotsim.Node;
import jbotsim.Clock;
import jbotsim.event.ClockListener;

public class MovingNode extends Node
implements ClockListener{

public MovingNode(){
Clock.addClockListener(this, 5);
setDirection(Math.random() * 2*Math.PI);

}
public void onClock(){

move(2);
}

}

in JBOTSIM: performing periodical operations that are
triggered by the pulse of the system clock. This is
done by registering your object as a listener to the
static instance Clock, typically during construction, us-
ing addClockListener(), then filling in your code into

the onClock() method. This code will be executed by
JBOTSIM at the specified frequency – here, every five
pulses of the clock (whose rate can be set independently).
The rest of the code is responsible for moving the
node, setting a random direction at construction time (in
radian), then moving in this direction periodically. (More
details about the movement API can be found online.)

Once your class is defined, there are two ways of
using it, depending on whether the scenario is set up
by program or interactively. In the first case, simply
call JBOTSIM’s methods with instances of your class
instead of the original node instances. In Algorithm 3, we

Algorithm 3 Adding nodes manually
public static void main(String[] args){

Topology tp = new Topology(400,300);
for (int i=0; i<10; i++)

tp.addNode(-1,-1, new MovingNode());
new JViewer(tp);

}

create a new topology, then add ten randomly positioned
nodes of the new type using the addNode() method. In
order to use moving nodes in an interactive scenario,
you can register them as as a node model. This is done
by calling the static node method setModel() with a
prototypal instance of this class as argument, as shown
on Algorithm 4. JBOTSIM’s GUI (also called the viewer)
will consult the list of model whenever a new node is
added with the mouse and display a selection menu if
several models exist (in this case, only one model is
set and will be used automatically). In the scenario of

Algorithm 4 Using a defined node as default
public static void main(String[] args){

Node.setModel("default", new MovingNode());
new JViewer(new Topology(400,300));

}

Figure 1, left-clicking on the surface would give the
choice between car, tower, and server, the names of the
three registered models.

b) Centralized algorithms: There are many reasons
why a centralized algorithm can be preferred over a
distributed one. The object of study might be centralized
in itself (e.g. network optimization, scheduling, graph
algorithms in general). It may also be simpler to simulate
distributed things in a centralized way. Algorithm 5
implements such a version of the random waypoint
mobility model, in which nodes repeatedly move toward
a randomly selected destination, called target. Unlike
a distributed implementation, the movements of nodes
are here driven by a global loop every four pulses of
the clock. For each node, a target is created if it does

4

Algorithm 5 Centralized version of Random Waypoint
public class CentralizedRWP implements ClockListener{
Topology tp;
public CentralizedRWP (Topology tp){

this.tp = tp;
Clock.addClockListener(this, 4);

}
public void onClock(){

for (Node n : tp.getNodes()){
Point2D target=(Point2D)n.getProperty("target");
if (target == null ||

n.getLocation().distance(target)<2){
target = new Point2D.Double(Math.random()*400,

Math.random()*300);
n.setProperty("target", target);
n.setDirection(target);

}
n.move(2);

}
}
public static void main(String[] args){

Topology tp = new Topology(400,300);
new CentralizedRWP(tp);
new JViewer(tp);

}
}

not exists yet or has just been reached; then the node’s
direction is set accordingly and the node is moved (by 2
units). For convenience, we include the main() method
in the same class.

Notice the use of setProperty() and getProperty()

in this example. These methods allow to store any object
directly into the node, then retrieve it with a string
identifier (alike a map object). Both links and topologies
also have the same feature.

C. Architecture of the event system

Up to now, we have met one type of events – clock
pulses, to be listened to through the ClockListener

interface. JBOTSIM is architectured around a number
of such events and interfaces, some of which become
ubiquitous in any reasonably large program. The most
important of them are depicted on Figure 3 on the
following page. This architecture allows one to monitor
the network state and associate reactive operations to
various events. For instance, you may ask to be notified
whenever a link appears or disappears somewhere. This
can be done relative to a single node (local changes)
or relative to the whole topology. Same for messages,
which are typically listened to by the nodes themselves
or can be watched at a global scale (e.g. to keep a log
of all communications).

Algorithm 6 gives yet another example, consisting
of a mobility trace recorder. This program listens to
topological events at large, including appearance or
disappearance of nodes or links, and movements of the
nodes. Upon each of these events, it outputs a string

representation of the event using a dedicated human
readable format called DGS [5]. Similar code could be
written for Gephi [2].

Algorithm 6 Example of a mobility trace recorder
public MyRecorder implements TopologyListener,

ConnectivityListener,
MovementListener{

public MyRecorder(Topology tp){
tp.addTopologyListener(this);
tp.addConnectivityListener(this);
tp.addMovementListener(this);

}

// TopologyListener
public void nodeAdded(Node node) {

println("an " + node + " x:" + node.getX() +
" y:" + node.getY());

}
public void nodeRemoved(Node node) {

println("dn " + node);
}

// ConnectivityListener
public void linkAdded(Link link) {

println("ae " + link + " " + link.source +
" " + link.destination);

}
public void linkRemoved(Link link) {

println("de " + link);
}

// MovementListener
public void nodeMoved(Node node) {

println("cn " + node + " x:" + node.getX() +
" y:" + node.getY());

}
}

Note that other events exist beyond those represented
in Figure 3. In particular, the SelectionListener in-
terface allows us to be notified when a node is selected.
This feature is particularly helpful to trigger computation
during interaction, e.g., to have some node initiate a
broadcast.

D. Mono threading: why and how?

It seems natural to assign every node a dedicated
thread, so that each node executes its algorithm in
parallel – just as in the real world. Yet, it was decided
that JBOTSIM be mono threaded, and definitely so. This
section explains why and how this was done. Under-
standing these points can be instrumental in developing
well-organized and bug-free programs.

In JBOTSIM, all the nodes, and in fact all of JBOTSIM’s
life at large (GUI excepted) is articulated around a
single thread, which is driven by the central clock. The
clock wakes up at regular interval (default rate is 10ms)
and notifies its listeners in a specific order. JBOTSIM’s
internal engines, e.g. the message delivery engine, are
served first. Then comes the turn of those nodes whose

5

Link

Node

Topology

Clock

PropertyListener

MovementListener

ConnectivityListener TopologyListener

MessageListener

ClockListeneronClock()

nodeAdded()

nodeRemoved()

propertyChanged()onMessage()

nodeMoved()

linkAdded()

linkRemoved()

Figure 3. Main sources of events and corresponding interfaces in JBOTSIM.

wait period has expired (others remain asleep). They are
notified in a random order. Hence, if all nodes listen to
the clock at a rate of 1, they will all be notified in a
random order in each round, which makes JBOTSIM’s
scheduler a 2-bounded fair one. (Other policies could
similarly be realized by twicking the onClock() method.
Eventually, we will add explicit support for some of
them.) A simplified version of the scheduling process
is depicted on Figure 4.

Clock

timer
current time ++

for each listener L in random order
decrement countdown<L>
if countdown<L>== 0

notifies L and reset countdown<L>

1 time unit (default 10ms) setTimeUnit()

addClockListener()

removeClockListener()

onClock()

Figure 4. Simplified version of the internal scheduler.

One consequence of mono threading is that all com-
putations – again, GUI excepted – take place in a
sequential order that makes it possible to use unsyn-
chronized data structures and simpler code. This also
improves the scalability of JBOTSIM when the number
of nodes grows large. One should be careful, though,
not to interfer with this thread from another user-defined
thread. The canonical example is when a scenario is set
up by program from within the thread of the main()

method. If your initialization makes extensive use of
JBOTSIM’s API from within that thread, you will sooner
or later get a ConcurrentModificationException.
The easy way around this problem is to insert a
Clock.pause() instruction before your initialization
code, and Clock.resume() right after. This type of
measure is what the GUI does in some cases to avoid
conflicts.

E. Interactivity

JBOTSIM was designed with in mind a clear separation

between GUI and internal features. In particular, it can
be run without GUI – just omit creating the viewer
in your main() method, things will work the same
invisibly. Hence, JBOTSIM can be used to perform batch
simulations (e.g. sequences of unattended runs that log
the effects of some varying parameter). This also enables
to withstand heavier simulations if graphical drawing is
not required.

This being said, one of the most distinctive features
of JBOTSIM remains interactivity, e.g., the ability to
challenge your algorithm in difficult configurations by
adding, removing, or moving nodes while it is executing.
This approach also proves useful to think of a prob-
lem visually and intuitively. It also makes it possible
to explain someone an algorithm through showing its
behavior.

The architecture of JBOTSIM’s viewer is depicted on
Figure 5. As one can see, the viewer makes extensive

JTopology

MouseListener

Right click
Middle click
Left click
Drag & drop

noveMoved()

(via MovementListener)

propertyChanged()

(via PropertyListener)

nodeAdded()
nodeRemoved()

(via TopologyListener)

linkAdded()
linkRemoved()

(via ConnectivityListener)

Update
visualization

Node

Link

Topology

setLocation()

addNode()

selectNode()

removeNode()

JViewer

Figure 5. Internals of JBotSim’s viewer

use of events related to nodes, links, and topology. The

6

influence goes both ways, with mouse actions being
assigned to topological operations. These features are
realized by a class called JTopology. This class can
often be ignored by the developer, which creates and
manipulates the viewer through the higher JViewer class.
This class adds external features such as tuning slide
bars, popup menus, or self-containment in a system
window.

While natural to JBOTSIM’s users, the viewer remains,
in all technical aspects, an independent piece of software.
Alternative viewers could as well be designed with
specific uses in mind.

IV. A ZOOM ON SELECTED FEATURES

This section offers a zoom on some of JBOTSIM’s
features. We cover in particular the exchange of mes-
sages, fast prototyping of ideas at a graph level, and the
realization of java applets to prepare online demos.

A. Exchanging messages

The way messages are used in JBOTSIM is inde-
pendent from the technology considered. The API is
quite simple, messages are sent by calling the send()

method on the sender node. They are typically received
through a onMessage() method that comes from the
MessageListener interface. Another way to receive
messages, not event-based, is for a node to check its
mailbox manually – a relevant technique in rounded
communication models.

Algorithm 7 shows a message-based implementation
of the flooding principle, whereby informed nodes re-
transmit periodically. None of the nodes are informed
initially. Assume an external entity sets the informa-
tion at one of the nodes at some point. This node,

Algorithm 7 A message-based flooding algorithm
public class CommunicatingNode extends Node

implements ClockListener, MessageListener{
String information = null;
public CommunicatingNode(){

this.addMessageListener(this);
}
public void onClock() {

if (information != null)
send(null, information);

}
public void onMessage(Message msg) {

information = (String)msg.content;
}

}

and subsequently all informed node will send this
piece of information periodically based on clock pulses
(ClockListener interface). The information, here a ob-
ject of type String, is sent to all neighbors at once. The

choice of addressee is specified by the first parameter
of the send method: null to send the message to all
neighbors, or a reference of type Node to send the
message to that node only. Any object can be used
as message content. This object will be received as a
generic object by the receiver (be careful, this is not
a copy!), in the content field of the received Message.
Thus, it has to be explicitely cast. Finally, delivery is not
immediate, it occurs after a specified number of clock
pulses (one, by default). The message will successfully
be received if and only if the link is still present at
delivery time.

B. Working at the graph level

Implementing an idea in the message passing model
can reveal fastidious or even sometimes impossible.
Whether you want to visualize your idea, play with it,
or show it to others, a full implementation is uncessary
effort. JBOTSIM makes it possible to try an idea at a graph
level before switching to message-based implementation.

Consider the following example: we want to design a
type of node, the SocialNode, who likes the company of
others. Such a node is happy when it is in the vicinity of
other nodes, unhappy otherwise. Algorithm 8 proposes
a graph-based implementation of this node that is pretty
concise. Here the nodes can directly react to topological

Algorithm 8 A graph-based distributed algorithm
public class LonerNode extends Node

implements ConnectivityListener{
public LonerNode(){

setColor("red");
addConnectivityListener(this);

}
public void linkAdded(Link l){

setColor("green");
}
public void linkRemoved(Link l){

if (!hasNeighbors())
setColor("red");

}
}

events irrespective of messages. These events are notified
through the ConnectivityListener interface. In this
example, the nodes get only notified for those links that
are local, due to calling addConnectivityListener()

on their own instance rather than on the topology – both
nodes and topologies implement this method, the latter
doing it network-wide.

Of course, from a message passing perspective, this
implementation is cheating. Similarly, methods like
hasNeighbors() or getNeighbors() should be used
with caution as they work at a graph level. Note that
this level of abstraction is relevant in its own right and

7

has led many interesting studied in the field of distributed
computing, see for instance graph relabeling systems [7]
and population protocols [1].

C. Turning your demo into an applet

One of the features of JBOTSIM’s viewer is to create
a windowed frame automatically for your topology. This
is the default behavior of JViewer’s constructor when
a single parameter of type Topology or JTopology is
given as argument. Other behaviors can be obtained by
using other versions of the constructor. In particular, one
can specify that no windowed frame should be created,
and the JTopology object be plugged manually into a
different container. This feature enables the customiza-
tion of JBOTSIM’s UI at leisure, as well as it enables the
creation of java applets.

By way of example, Algorithm 9 shows an applet
version of the HelloWorld program from Algorithm 1.
Here, the JTopology object is created manually from a

Algorithm 9 Turning your demo into an applet
import javax.swing.JApplet;

import jbotsim.Clock;
import jbotsim.Topology;
import jbotsim.ui.JTopology;
import jbotsim.ui.JViewer;

@SuppressWarnings("serial")
public class HelloWorld_Applet extends JApplet{

public void init(){
JTopology jtp = new JTopology(new Topology());
new JViewer(jtp, false);
this.add(jtp);

}
public void destroy(){

Clock.pause();
}

}

new topology. Its reference is then used to augment it
with standard viewer features, and finally added to the
applet container. Another important step is to pause the
clock in the destroy() method. Omitting this step may
cause it to keep running in the background, even after
the applet page was left.

V. CONCLUDING REMARKS

I my view, JBOTSIM is a kernel, in the sense that it
encapsulates a small number of generic features whose
purpose is to be used by higher programs. As of today,
the plan is to keep it this way and try containing the
growth of the number of features, to the profit of quality
and simplicity. This does not mean, of course, that
JBOTSIM should not be extended externally.

In particular, JBOTSIM’s distribution already incorpo-
rates an extension package called jbotsimx, in which

more specific features could be found. For instance, it
incorporates a static class called Tikz that allows one
to export the current topology as a TikZ picture – a
powerful format for drawing pictures in LATEX documents
(among others). Figure 6 illustrates this with two pictures

N
p 1

2

(a) Geocasting in sensor networks

N A

(b) Robot relocation

Figure 6. Two examples of pictures that were first generated using
JBOTSIM and the Tikz extension, then twicked manually to fit the
need of a particular illustration.

that I had to generate for another paper. The Tikz class is
composed of a single method, exportAsTikz(), which
takes a mandatory Topology argument, and an optional
scaling argument.

Other extensions include basic topology algorithms
for testing, e.g., if a given topology is connected or 2-
connected, if a given node is critical (its removal would
disconnect the graph) or compute the diameter. A set
of extensions dedicated to dynamic graph are currently
being developped (by myself and others), some of which
are already available. For instance, the EMEGPlayer takes
as input a birth rate, death rate, and an underlying graph
(given as a Topology), and generates an edge-markovian
dynamic graph behavior based on these parameters, the
events of which can be listened to in your algorithm in
a classical way.

Contributions are most welcome, as well as sugges-
tions to add some particular feature or extension which
you think could be useful.

REFERENCES

[1] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer,
and R. Peralta, “Computation in networks of pas-
sively mobile finite-state sensors,” Distributed Com-
puting, vol. 18, no. 4, pp. 235–253, 2006.

[2] M. Bastian, S. Heymann, and M. Jacomy, “Gephi:
An open source software for exploring and manip-
ulating networks,” in International AAAI conference
on weblogs and social media, vol. 2. AAAI Press
Menlo Park, CA, 2009.

[3] Collective Authors, “The NS-3 network simulator,”
http://www.nsnam.org/, 2009.

[4] B. Derbel, “A Brief Introduction to ViSiDiA,”
USTL, Tech. Rep., 2007.

http://www.nsnam.org/

8

[5] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné,
“GraphStream: A Tool for bridging the gap between
Complex Systems and Dynamic Graphs,” EPNACS:
Emergent Properties in Natural and Artificial Com-
plex Systems, 2007.

[6] A. Keränen, J. Ott, and T. Kärkkäinen, “The one sim-
ulator for dtn protocol evaluation,” in Proceedings
of the 2nd International Conference on Simulation
Tools and Techniques. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2009, p. 55.

[7] I. Litovsky, Y. Métivier, and É. Sopena, “Graph re-
labelling systems and distributed algorithms,” Hand-
book of graph grammars and computing by graph
transformation, vol. 3, pp. 1–56, 1999.

[8] M. Mosbah and A. Sellami, “Visidia: A tool for
the visualization and simulation of distributed algo-
rithms,” University of Bordeaux, Tech. Rep., 2003.

[9] A. Varga et al., “The OMNeT++ discrete event
simulation system,” in Proceedings of the Euro-
pean Simulation Multiconference (ESM’01), 2001,
pp. 319–324.

	I Introduction
	II Practical preliminaries
	II-A Fetching JBotSim
	II-B HelloWorld with JBotSim
	II-C Sources of documentation

	III JBotSim's features and architecture
	III-A Basic features of nodes and links
	III-B Distributed vs. centralized algorithms
	III-C Architecture of the event system
	III-D Mono threading: why and how?
	III-E Interactivity

	IV A zoom on selected features
	IV-A Exchanging messages
	IV-B Working at the graph level
	IV-C Turning your demo into an applet

	V Concluding remarks

