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A MORTAR FINITE ELEMENT METHOD USING DUAL SPACES
FOR THE LAGRANGE MULTIPLIER

BARBARA I. WOHLMUTH*

Abstract. The mortar finite element method allows the coupling of different discretization
schemes and triangulations across subregion boundaries. In the original mortar approach the match-
ing at the interface is realized by enforcing an orthogonality relation between the jump and a modified
trace space which serves as a space of Lagrange multipliers. In this paper, this Lagrange multiplier
space is replaced by a dual space without losing the optimality of the method. The advantage of this
new approach is that the matching condition is much easier to realize. In particular, all the basis
functions of the new method are supported in a few elements. The mortar map can be represented
by a diagonal matrix; in the standard mortar method a linear system of equations must be solved.
The problem is considered in a positive definite nonconforming variational as well as an equivalent
saddle-point formulation.

Key words. mortar finite elements, Lagrange multiplier, dual norms, non-matching triangula-
tions, a priori estimates

AMS subject classifications. 65N15, 65N30, 65N55

1. Introduction. Discretization methods based on domain decomposition tech-
niques are powerful tools for the numerical approximation of partial differential equa-
tions. The coupling of different discretization schemes or of nonmatching triangula-
tions along interior interfaces can be analyzed within the framework of the mortar
methods [6, 7]. In particular, for time dependent problems, diffusion coefficients with
jumps, problems with local anisotropies as well as corner singularities, these domain
decomposition techniques provide a more flexible approach than standard conform-
ing formulations. One main characteristic of such methods is that the condition of
pointwise continuity across the interfaces is replaced by a weaker one. In a standard
primal approach, an adequate weak continuity condition can be expressed by appro-
priate orthogonality relations of the jumps of the traces across the interfaces of the
decomposition of the domain [6, 7]. If a saddle point formulation arising from a mixed
finite element discretization is used, the jumps of the normal components of the fluxes
are relevant [29]. To obtain optimal results, the consistency error should be at least of
the same order as the best approximation error. Most importantly, the quality of the
a priori error bounds depends strongly on the choice of weak continuity conditions at
the interfaces.

Section 2 contains a short overview of the mortar finite element method restricted
to the coupling of P;-Lagrangian finite elements and a geometrically conforming sub-
division of the given region. We briefly review the definition of the discrete Lagrange
multiplier space and the weak continuity condition imposed on the product space as
it is given in the literature. In Section 3, we introduce local dual basis functions,
which span the modified Lagrange multiplier space. We also give an explicit formula
of projection-like operators and establish stability estimates as well as approxima-
tion properties. Section 4 is devoted to the proof of the optimality of the modified
nonconforming variational problem. It is shown that we can define a nodal basis
function satisfying the constraints at the interface and which at the same time has
local support. This is a great advantage of this modified method compared with the
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2 BARBARA I. WOHLMUTH

standard mortar methods. Central results such as uniform ellipticity, approximation
properties and consistency error are given in separate lemmas. A saddle point formu-
lation, which is equivalent to these nonconforming variational problems is considered
in Section 5. Here, the weak continuity condition at the interface enters explicitly
in the variational formulation. As in the standard mortar case, we obtain a priori
estimates for the discretization error for the Lagrange multiplier. Here, we analyze
the error in the dual norm of HééQ, as well as in a mesh dependent L?-norm. Finally,
in Section 6, numerical results indicate that the discretization errors are comparable
with the errors obtained when using the original mortar method.

2. Problem setting. We consider the following model problem

Lu := —div (aVu) + bu
u

f in Q,
0 on I':=09Q,

(2.1)

where Q is a bounded, polygonal domain in R?, and that f € L?*(Q). Furthermore,
we assume a € L*°(Q) to be an uniformly positive function and 0 < b € L>(Q).

We will consider a non-overlapping decomposition of € into polyhedral subdo-
mains 0, 1 <k < K,

K
Q=™ with@nQ, =0, k#1
k=1

Each subdomain  is associated with a family of shape regular simplicial triangula-
tions Th,, by < hg,0, where hy is the maximum of the diameters of the elements in
Th,, - The sets of vertices and edges of the subdomains 2, and of Q2 are denoted by Py, ,
Enys and P, &y, respectively. We use Pj-conforming finite elements Sy (Qy, 7y, ) on
individual subdomains and enforce the homogeneous Dirichlet boundary conditions
on 90 N ONy,.

We restrict ourselves to the geometrical conforming situation where the intersec-
tion between the boundary of any two different subdomains 9Q; NOQ, k # 1, is either
empty, a vertex, or a common edge. We only call it an interface in the latter case. The
mortar method is characterized by introducing Lagrange multiplier spaces given on
the interfaces. A suitable triangulation on the interface is necessary for the definition
of a discrete Lagrange multiplier space. Each interface 0€ N 99y, is associated with
a one dimensional triangulation, inherited either from 7, or from 7p,. In general,
these triangulations do not coincide. The interface in question will be denoted by
'y and Ty if its triangulation is given by that of €, and ), respectively. We call
the inherited one dimensional triangulation on I'y; and 'y, ¥g; and Y, respectively
with the elements of ¥j; and ¥,;; being edges of 73, and 7j,, respectively. We remark
that geometrically I'jx and ['y; are the same.

Thus, each 99y can be decomposed, without overlap, into

ou = J Tw,
leM(k)

where M (k) denotes the subset of {1,2,..., K} such that 9Q; N 08 is an interface

3 3

for I € M(k). The union of all interfaces S can be decomposed uniquely in

5:0 U Tu-

k=11eM(k)
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Here, M(k) C M(k) such that for each set {k,1}, 1 < k < K, 1 € M(k) either
le /\/l( ;) or k € M(I) but not both. The elements of {T'y; | 1 < k< K, I € M(k)} are
called the mortars and those of {I'); | 1 < k < K, I € M(k)} the non-mortars. The
choice of mortars and non-mortars is arbitrary but fixed. We note that the discrete
Lagrange multiplier space will be associated with the non-mortars. To simplify the
analysis, we will assume that the coefficients a and b are constant in each subdomain,
with ay := g, > 1<Ek<K.
It is well known that the unconstrained product space

K
Xp = H Sl(Qk:%k)

k=1

is not suitable as a discretization of (2.1). We also note that in case of non-matching
meshes at the interfaces, it is in general not possible to construct a global continuous
space with optimal approximation properties. It is shown [6, 7] that weak constraints
across the interface are sufficient to guarantee an approximation and consistency error
of order h if the weak solution u is smooth enough. The nonconforming formulation
of the mortar method is given by:

Find uj € V}, such that

(2.2) a(tup,vp) = f(op), wvp € Vi
where a(v,w) := Z,le ka aVv -Vw + bvwdz, v,w € H,i(:l H' () and f(v) :=
fQ fvdz, v € L3(9). Here, the global space ‘7,1 is defined by
Vii={veXy| blo,u) =0, u€ M},
where the bilinear form b(-,-) is given by the duality pairing on S
!
ZZ )T s UGHH (), NGHH( %sz)
k=11e M(k k=11 M(k

. Here, (Hz(T;;,))’ denotes the dual space of H= (T;).

Of crucial importance is the suitable choice of M}, in (2.2)

Mh—H H Mp(Ty),

k=11e M(k)

and [v] := v, — v,

where in general the local space Mh([‘lk) is chosen as a modified trace space of finite
element functions in S;(€Q;; 7p,). Appropriate spaces [6, 7] can be found satisfying

dim My (Ty) = dim (H3(Tix) N Wa(Tix)),  Mp(Tig) © Wi (Tik)
where W}, (T, is the trace space of S;(Qy; Ty, ):
Wh(l“lk) = {’U S CO(Flk) ‘ v = ’LU‘F”C,’LU e S (Ql'ﬁ”)}

Mh(l“lk) is a subspace of W}, (T'jx) of codimension 2 and given by

My(Ti) = {veC(Tu)|v=wy, ,we ST,
v|, € Py(e),e € &y contains an endpoint of Ty}
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and Ny = dith(Flk) = N, — 1 where N, denotes the number of elements in X;;.

Here, we assume that N, > 2. The nodal basis functions {¢z},N:“{ of Mh([‘lk) are
associated with the interior vertices p;, 1 < j < Ny, of I'yy, and given by

¢i(pj) = dij.
Nig

The space My, (I;) and its nodal basis functions {¢:};** are illustrated in Figure 2.1;
for a detailed analysis of M}, see [4, 6, 7, §].

Fia. 2.1. Lagrange multiplier space

Let us remark that continuity was imposed at the vertices of the decomposition
in the first papers about mortar methods. However, this condition can be removed
without loss of stability. Both these settings guarantee uniform ellipticity of the
bilinear form a(-,-) on V}, x V},, as well as a best approximation error and a consistency
error of O(h) [6, 7]. Combining the Lemmas of Lax Milgram and Strang, it can be
shown that a unique solution of (2.2) exists and that the discretization error is of
order h if the solution of (2.1) is smooth; see [6, 7]

In a second, equivalent approach the space M explicitly plays the role of a
Lagrange multiplier space. This approach is studied in [4] and used further in [11, 25,
26]. The resulting variational formulation gives rise to a saddle-point problem:

Find (’fth,j\h) € Xp X Mh such that

(2 3) a(ﬂh,vh) + b(;\h,’l)h) = f(’l)h), vp € Xy,
. b(n, ip) = 0, jun € My,

In particular, it can be easily seen that the first component of the solution of (2.3)
is the unique solution of (2.2). Observing that X, is an approximation of the normal
derivative of u on the interface, it makes sense to consider a priori estimates for
aVu-ng — /N\h in suitable norms. Here ny; is the outer unit normal of )}, restricted to
I'jx. This issue was first addressed in [4] where a priori estimates in the (Hééz)’—norm
were established. Similar bounds are given in [26] for a weighted L?>-norm. As in the
general saddle-point approach [13], the essential point is to establish adequate inf-sup
conditions; such bounds have been established with constants independent of h for
both these norms; see [4, 26].

In the following, all constants 0 < ¢ < C' < oo are generic depending on the local
ratio between the coefficients b and a, the aspect ratio of the elements and subdomains
but not on the mesh size and not on a. We use standard Sobolev notations and

K K
ol =D llolhian,  [oh = [0
k=1 k=1

stand for the broken H'-norm and semi-norm. The dual space of a Hilbert space X
is denoted by X' and the associated dual norm is defined by

K
1;Q0 UEHH](Qk)
k=1

(2.4 sl = sup ¥
veEX ||,“||X
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3. Dual basis functions. The crucial point for the unique solvability of (2.2)
and (2.3) is the definition of the discrete space Mj,. As we have seen, the discrete
space of Lagrange multipliers is closely related to the trace space in the earlier work on
mortar methods; these spaces are only modified in the neighborhood of the interface
boundaries where the degree of the elements of the test space is lower. We note that
it has been shown only recently, see [23], that for P,-conforming finite elements the
finite dimensional space of piecewise polynomials of only degree < n — 1 can be used
instead of degree n in the definition of the Lagrange multiplier space without losing
the optimality of the discretization error u —uj. However, in none of these studies has
duality been used to construct an adequate finite element space for the approximation
of the Lagrange multiplier. We recall that the Lagrange multiplier in the continuous
setting represents the flux on the interfaces. Even if the weak solution of (2.1) is
H’-regular it does not have to be continuous on the interfaces. This observation has
motivated us to introduce a new type of discrete Lagrange multiplier space. We note
that local dual basis functions have been used in [22] to define global projection-like
operators which satisfy stability and approximation properties; in this paper we use
the same dual basis functions to define the discrete Lagrange multiplier space.

Let o be an edge and P; (o) be a polynomial space satisfying Py(0) C Pi(0) C
Pi(o), and let {¢y;;}X,. N € {1,2}, be a basis satisfying [ ¢,,; ds # 0. We can then
define a dual basis {ty.i} ¥, Yo € P (o) by the following relation

(3.5) [ bnitngds by [ bnids, 1<ig <.

The definition (3.5) guarantees that {t,.;}I¥, is well defined. Each 1),.; can be written
as a linear combination of the ¢,,;, 1 < i < NN and the coefficients are obtained by
solving a N x N mass matrix system. Furthermore (3.5) yields

N
/m;j (Z%l) ds=0, 1<j<N
pa i=1

and thus Zf\; Yo:i = 1. The {1, }~, also form a linearly independent set. To see
this, let us assume that Zf\;] a;i¥s,; = 0. Then, it follows

[ ¢0:i Z;\rzl @jthg;j ds

o = = 0.
’ f(lsa;i

As a consequence, we obtain 151((7) =span{¢,,;, 1 <j < N}
Let us consider the case that {\,.;}?_, are the nodal basis functions of P;(o).
Then, the dual basis is given by

wo’;i = 2)\0';1' - )‘U;(i+l)m0d27 1 S i S 2.

Based on these observations, we introduce a global space M, (I'y) on each non-
mortar [, 1 < k < K, 1 € M(k) satisfying

dim Mh(Flk) = dim Mh([‘lk).
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Let {¢;} ' be the nodal basis function of My, (1) as introduced in Section 2. Then,
each ¢; can be written as the sum of its local contributions

Gi= > bi, = bou

cEX
oCsupp ¢;

where the local contributions are linearly independent. We set ﬁl( ) :=span{¢y.i, 1 <
i < Nig, o C supp ¢;}. In particular by construction, it is guaranteed that Py(o) C
Pi(5) C Pi(0) and for 85 N Oy, = 0, we have P () = Pi(0). Using the local dual
basis functions on each o, the global basis functions of M, (T';;) are defined as

1'[)2' = Z 1/)0;1'-

gEX
o Csupp ¢;

The support of ¢; is the same as that of ¢; and the {wl}N““ form a linear independent
system. Figure 3.2 depicts the two different types of dual basis functions.

r
Ik Ik

Fi1G. 3.2. Dual basis functions in the neighborhood of the boundary of Ty, (left) and in the
interior (right)

REMARK 3.1. The following global orthogonality relation holds

/%wmwf > %/%M&JW/@%

TED ) cEX
o Csupp ®; o Csupp ®;

30) [owids= 3

We note the similarity with (3.5).
The central point in the analysis of the consistency and approximation error will
be the construction of adequate projection-like operators. We refer to [6, 7] for the

standard mortar approach. Here, we use different operators onto My (Tx), Mp(Tix)
and W, (F]k) N H(] (Q)
P L] (F]k) — Mh (F]k) is defined by

(3.7) P = 2”71/)

A dual operator Q. : L'(Tjx) — Mh(I‘lk), is now given by

Nik vd
(3.8) Qv = Z M

A detailed discussion of this type of operator can be found in [22]. It is easy to see
that Py, and Q. restricted to Mp(T'y,) and My (T ), respectively, is the identity

(39) Prv=v, vE€ Mh(Flk)-
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In addition, using (3.6), (3.7) and (3.8), we find that for v,w € L?(I';)

3 3

(v = Ppo,w)or, = (v —Ppv,w— Quw)or, = (v, w — QurWw)or

and it therefore makes sense to call ();r a dual operator to FPj;. Furthermore, the
operators are L2-stable. We have

'frlk ¢72 ds ./‘(7 d)? ds
Zv (Jr,, ids)?

oNsupp ¢; #0

(3.10)  [[Pwollg,, < 10lssuppo; < ClIVllon, -

where the domain D, is defined by

Dy =\ J{0" € Zux | 90" N o # 0}.

Here, we have used the fact that D, contains at most three elements and that
|¥ill Lo (1) is bounded by 2 independently of the length of the edges. The same
type of estimate holds true for @

Z szk YZds [ @7 ds

1<i< Ny, (frlk ¢Z d8)2

oNsupp ¢; #0

(311) ||Qlkv||(2);a' S ||’U||(2);supp¢;i S CtH’UH(Q),D17

Thus, Py and Q are L2?-projection-like operators which preserve the constants.
Using (3.9) and (3.10), it is easy to establish an approximation result.
LEMMA 3.2. There exist constants such that for v e H*(T)), 0 < s <1,

(3.12) o~ Pyolfgr,, <C D h2lof2,.

oEY

(3.13) ||1)7P1k11||?H%(FM))I <e Y hgllo— Pyoll§, <C > BT,

gEY Ik oEY

Proof. The proof of (3.12) follows by applying the Bramble-Hilbert Lemma and
using the stability (3.10) and the identity (3.9); it is important that the constants are
contained in the space My (T'). For each v we define a constant ¢, in the following

way
]
Cy 1= vds,
1D, |

D,

where |D,| is the length of D,. We remark that the constant ¢, depends only on the
values of v restricted on D,. Now, by means of Pj.c, = ¢, we find

v = Puwvlloe < v =culloe + [|1Pik(v = co)lloso

3.14 -
(3.14) < Clo-cillon, < Chifo

5Dy -

The global estimate (3.12) is obtained by summing over all local contributions and
observing that each ¢’ is only contained in a fixed number of D,,.

Although dim M (T'y) < dimWpy(Ty,), we get the same type of estimate as (3.14)
for @y, instead of Py by using (3.11).



8 BARBARA I. WOHLMUTH

For the estimate (3.13) in the dual norm, we use the definition (2.4)

fl"” Plkv ¢d8

N L
GEH?Z (Tyy) H3 (T'ix)
me U= Plk7))(¢ — Qlk¢) ds
- sup —
d’EH%(Flk) ||¢||H%(sz)

In a next step, we consider the last integral in more detail. Using (3.14) for Qi
instead of Py and setting s = 1/2, we find

14 2 2
(3.15) by ll¢ — Quedllp., < C|¢|H%(D |

Summing over all ¢ € ¥, and using that the sum over \gzﬁ\fql/z(D ) is bounded by

81551/, Yield
o= Pusll?y S S hello— Pl
TEX
Combining this upper bound with (3.14) gives (3.13). O

4. Nonconforming formulation. Replacing the space Mh in the definition of
Vi by Vi, we get a new nonconforming space

Vi:={veXy| blo,u) =0, u € Myp}.

The original nonconforming variational problem (2.2) is then replaced by:
Find uy € Vj, such that

(4.16) a(up,vp) = f(vn), vn € Vh.

In what follows, we analyze the structure of an element v, € V;. Each v € X,
restricted to a non-mortar side I';; can be written as

Nip+1

Uy, = Z a;d;,

i=0

(4.17)

where ¢;, 1 < i < Ny, are defined in Section 2 and ¢ and ¢n,, +1 are the nodal basis
functions of Wy (T'y;,) associated with the two endpoints of I'j;. The following lemma
characterizes the elements of V/,.

LEMMA 4.1. Let v € Xy, restricted on Ty, be given as in (4.17). Then, v € V}, if
and only if for each non-mortar T'y,

[ (U\nk — oo — aNzk+1¢Nzk+1)dJi ds

(4.18) a; = T , 1<i< Ny

Tk

The proof follows easily from (4.17) and the global orthogonality relation (3.6).

As in case of Vj, the values of a function v € Vj at the nodal Lagrange interpolation
points in the interior, p;, 1 < i < Ny, of any non-mortar I';; are uniquely determined
by its values on the corresponding mortar side I'y; and the values at the endpoints of
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I'jx. The nodal values in the interior of the non-mortars I'j;, are obtained by combining
(4.18) with a basis transformation. In particular, these values can be directly obtained
by the simple formula

Ik Vg, ;i ds

Uik

Tk

For the two interior nodal points p; and py,, next to the endpoints of I'j;,, we get

f (”\nk wl*”\gl (po)¢o) ds

_ T
Ylq, (pl) = /‘(¢17¢0)d5
4.20 o
( ) f (”\nk wNzkfv\nl (PN +1) DNy +1) ds
Tig
Vlq, (lek)

f (N, — PNy +1) ds

Tige

Here, we have used that v|, (po) = a0 + a1, v, (PNu+1) = @n,, + @n,+1 and that
(I and Yn,, are identically 1 on the edges next to the endpoints of I';;. We note that
by definition of the basis functions there exist 1/2 < (1, 82 < 1 such that

(4.21) /(¢1 — ¢o)ds = B /<Z51 ds, /(¢5le — ONy+1) ds = B / Oy, ds.

Tk ik i Tk

If we have a closer look at the nodal basis functions of IN/h and V}, we realize that
there is a main difference in the structure of the basis functions. Figures 4.3 and
4.4 illustrate this difference for the special situation that we have a uniform but
nonmatching triangulation on the mortar and the non-mortar side.

1 1 1
2 2 2
s 08 5 0.8 5 08
5 k3 g
5 0.6 5 0.6 S 0.6
0 k] 0
z 0.4 2 0.4 g 0.4
= 0.2 = 0.2 = 0.2
8 E 8
< 0 < 0 c 0
-0.2 -0.2 -0.2
mortar side non-mortar side non-mortar side

F1G. 4.3. Nodal basis function on a mortar side (left) and on the non-mortar side in Vi (middle)
and in Vi, (right)

In Figure 4.3, the mortar side is associated with the finer triangulation whereas
in Figure 4.4 it is associated with the coarser one.

As in the standard finite element context, nodal basis functions can be defined for
Vi, with support contained in a circle of diameter Ch. This is in general not possible
for V4. In the latter case, the support of a nodal basis function associated with a
nodal point on the mortar side is a strip of length |T';| and width h, see Figure 4.5,
and the locality of the basis functions is lost.

We conclude this section, by establishing a priori bounds for the discretization
error. As in [6, 7] a mortar projection will be a basic tool in the analysis of the
best approximation error. We now use the new Lagrange multiplier space M}, in
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1 1 1
@ 0 0
2 2 2
2 0.8 2 0.8 2 0.8
2 g g
2 0.6 2 0.6 2 0.6
2 a a
< 0.4 3 0.4 3 0.4
38 ] ]
€ o2 g 02 g 02
2 2 2

0 0 0

mortar side non-mortar side non-mortar side

F1G. 4.4. Nodal basis function on a mortar side (left) and on the non-mortar side in Vi (middle)
and in Vi, (right)

Q, M Qi Q) Tk Q

Fia. 4.5. Support of a nodal basis function in \N/h (left) and in Vi, (right)

the definition of suitable projection-like operators. For each non-mortar side the new
mortar projection is given by Ty : L2(Ty) — Wi (Ti) N Ho(Tix),

/(U —Mpv)pds =0, p€ Mp(Ty).
T

By using (4.19) and (4.20), it can be easily seen that the operator IIj;, is well defined.
To analyze the approximation error, it is sufficient to show that the mortar projection
is uniformly stable in suitable norms. The stability in the L?- and H'-norms is given
in the following lemma.

LEMMA 4.2. The mortar projection Iy, is L?>- and H'-stable

(4.22) Moo, < Cllvlloiry,. v € L*(Ti)

(4'23) |Hlkv‘]§rlk < O"U‘];r”“ CAS H&(Flk)

Proof. Using the explicit representation (4.19) and (4.20) where v, has to be
replaced by v and v|, (po) and v}, (pn,,+1) have to be set to zero, (4.22) is obtained.
It can be easily seen that even the local estimate

||H”€U||0;o' S CH’U”O;DU

holds true. By means of an inverse inequality, we find for each p € W}, (T;.) N H} (Tyx)
satisfying p = 0if dD,NAT;; # 0 and otherwise pj,, = const. and [, pds = [, vds

C c
ikolye = k(v = p)lie < 7=k = p)lloie < 7—llv = pllo;p, < Cloliip, -
he he
We remark that if 8D, N Oy, # (0, then p was set to zero. However, due to the
boundary conditions of v we obtain ||v|jo;p, < Chs|v|1,p, in this case. O
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The mortar projection can be extended to the space Hgf(l“lk) in the following
way:
Iy - H&éz(rzk) — Wi (T) N HS(Ty)

/(U —Mpv)pds =0, p€ Mp(Ty).
T

Then, an interpolation argument together with Lemma 4.2 gives the HééQ—stability

(4.24) ol 3 < Cllollg 0 € Hi (T,

1

020 Ik
It is of interest to compute the stability constant in (4.22) in the special case of

a uniform triangulation of T, with h := |o|. Then,

1
Mo,y = gh((ﬂlkv(Po))2 + (Mv(p))? + (Mikv(po) + Mk (pr))?)
where pg and p; are the two endpoints of o. Using the mortar definition and summing
over all elements in X5, we get

. 17
2 2
Mkl < 2ol
In general, the constants in a priori estimates depend on the coefficients. Here,
we will give a priori estimates which depends explicitly on the coefficient a. For each

subdomain €, 1 < k < K, we define constants ay, ay in the following way

ap = max ( sup min (1 + 21+ (Z—’)Q) sup min (1 + 2k 14 (Z_k)Q)>7
leM(k) k k 1<i<K j j
KEM()
ap = max( sup 14 24, sup 1+%>-
leM(k) k 159K ’
(4.25)

We note that a; and a; are bounded by 2 if the non-mortar side is chosen as that
with the smaller value of a.

The uniform ellipticity of the bilinear form a(-,-) on V,, x V}, is important for
the a priori estimates. For the standard mortar space, it is well known, see [6, 7, 8].
Moreover in [8], it is shown that the bilinear form a(-,-) is uniform elliptic on ¥ x Y,
where

YV:={ve HHl(Qk) \ /[v]ds =0, 1<k<K,le M), v,, =0}

k=1 Iy

The starting point of the proof is a suitable Poincaré-Friedrichs type inequality. For
general considerations on Poincaré-Friedrichs type inequalities in the mortar situation,
we refer to [24]. In [17, Theorem IV.1], it is shown that the ellipticity constant does
not depend on the number of subdomains. A similar estimate is given for the three
field formulation in [14]. We refer to [17] for a detailed analysis of the constants
in the a priori estimates in terms of the number of subdomains and their diameter.
Observing that V}, is a subspace of Y, it is obvious that that the bilinear form af(,-)
on V}, x V4 is uniform elliptic.
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4.1. Approximation property. To establish an approximation property for
Vi, we follow [6, 7]. One central point in the analysis is an extension theorem. In
[9], a discrete extension is used such that the H'-norm of the extension on Q is
bounded by a constant times the H'/?-norm on the boundary 89y,. The support of
such an extension is in general 0 and it is assumed that the triangulation is quasi-
uniform. However, it can be generalized to the locally quasi-uniform case. Combining
the approximation property of Hf:] S1(Q; Tn,,) and using the mortar projection I,
we obtain the following lemma.

LEMMA 4.3. Under the assumption that u € H,le H'™5(), 0 < s <1, the best
approzimation error is of order h®,

K
. 2s 2
1}:I€1£/h a(u —vp,u—wp) < Ckz::l arhi’apl|ullf 4.0,
where the oy are defined in (4.25).

Proof. The proof follows exactly the same lines as for Vi, and the Laplace operator;
we therefore omit the details and refer to [6, 7]. For each subdomain 2, we use the
Lagrange interpolation operator I,. Then, we define w, € X by Whq, = Iv. We
note that wy, is not in general, contained in Vj. To obtain an element in V},, we
have to add appropriate corrections. For each interface 'y, we consider the jump
[wp] € HE(T'yx) and apply the mortar projection. The result is extended as a discrete
harmonic function into the interior of €2;. Finally, we define

K

vy 1= W — Z Z H (I [wp])

k=11eM(k)
where H; denotes the discrete harmonic extension operator

vl < Clol g3 o

see [9, Lemma 5.1]. Here, Ij;[wy] is extended by zero onto 0 \ Ty, and H,; (I1; [wp])
vanishes outside ;. By construction, we have

/ [on]uds = / ([wn] — Myefwonl)ids = 0. i€ My(Typ),
T T

and thus v, € V},.
A coloring argument yields,

K
alu—vp,u—vy) < Clalu—wpu—wy)+ Y Y al|Mg[wy]|* .
k=11le M(k) H?2 (0%)
K
<0 (akhiSIIUII?ﬂ;Qk + 3 a|[gfws]|? ,
k=1 le M(k) 2 (Ti)
X 2 2 2
< O X | arhifllulliyso, + 2 alllu—wn]l” ,
k=1 le M(k) HZ(Tk)
K
< C aph?®||ull?, .o + a(h?s ull? + h2%||u|l? >
= kZ_:]( kg || ||1+s,Qk le/\zxt:(k) 1 1 || HH%“(M) k || HH%J’S(M)

IN
Q
M=

ararhi® |lullf .0, -

=~
Il
—
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Here, we have used the stability of the harmonic extension; see [9], the stability of the
mortar projection (4.24) and the approximation property of the Lagrange interpolant.
O

4.2. Consistency error. The space V}, is in general not a subspace of Hg ().
Therefore, we are in a nonconforming setting and in addition to uniform ellipticity and
the approximation property we need to consider the consistency error [10] to obtain
a stable and convergent finite element discretization. In Strang’s second Lemma, the
discretization error is bounded by the best approximation error and the consistency
error [10].

LEMMA 4.4. The consistency error for u € H,i(:] HY5(Qp), 1/2 < s < 1 and
[aVuny] = 0 is of order h*

“11eM(k
Zakhisak||“‘||?+s,ﬂk

k=1

sup .
whEVy a(wh, wp)?

Z Z fr,k 3nzk h]d K %
<c( )

where ay, is defined in (4.25).

Proof. The proof generalizes that given for V, in [6, 7]. Here, the Lagrange
multiplier space M}, is used and we also consider the effect of discontinuous coefficients.
By the definition of V},, we have

Z Z pnlwp]ds =0,  up € Mp,

k=11eM(k) " Tx
and thus
ou Oou

ou K
Z Z / 8nlk [wn] ds = Z Z (aale *Plk((lanl‘k))[um]ds.

k=11eM(k) " Tk k=11eM(k) " T1x

where Py is defined in (3.7). Using a duality argument and the continuity of the
trace, we get

zz/

n
k=11eM(k) ’ Ttk tk

)

[wp]ds < Z Z [|A — Plk)\” ui(r )),(|’U)h‘1;gl + |wp,

k=1le M(k

where \ := aaa"k. To replace, in the last inequality, the H'-norm by the H!-semi-

norm, we take into account that

Wipwn o, = Migwnq,

where II;;, denotes the L2-projection onto piecewise constant functions on I'y;. In the
duality argument, the H'/2-norm can therefore be replaced by the H'/2-semi-norm

IN

||[wh]||H2 o) ||“’h\nl — Hlkwh\gl | + ||“’h\nk — Hlk“)h\nk HH%(M)

+ wno, — ikwnq |

1
H?2 (Flk)
C ( ‘“)h\n, — Hlkwh\gl \H%

A

- (T1) H%(r,k)

Finally, Lemma 3.2, which states the approximation property of Pjz\ in the (H'/?)'-
norm, yields

1A= BuXl 3 gy < ORI

HE (1))’ < Ch; min(al|““1+s;917ak‘“‘|1+s;9k)'

1
2(Tik)
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REMARK 4.5. In case that the coefficient a is smaller on the non-mortar side
then ay, is bounded by 2 independently of the jumps in a. Otherwise the upper bound
for ay, depends on the jumps in a. A possibly better bound might depend on the ratio of
the mesh size across the interface; see (4.25). However, numerical results have shown
that in case of adaptive mesh refinement controlled by an a posteriori error estimator,
ay remains bounded independently of the jump in the coefficients; see [26, 27].

Using Lemmas 4.3 and 4.4, we obtain a standard a priori estimate for the mod-
ified mortar approach (4.16). Under the assumptions that [aVun;] = 0 and u €
TIR_, H* (%), 3/2 < s < 2, we find

K
(4.26) a(u —up,u—up) <C Z akakhi(sq) ||“||§ka
k=1

REMARK 4.6. The a priori estimates in the literature [6, 7] are often given in
the following form

K
llu —unll < CY by Hull s,
k=1

This is weaker than the estimate (4.26), since for s = 2 generally we only have

K 2 K
(zhknunm) < KSRl
k=1

k=1

4.3. A priori estimates in the L?-norm. Finite element discretizations pro-
vide, in general, better a priori estimates in the L2-norm than in the energy norm.
In particular, if we assume H2-regularity, we have the following a priori estimate for
U — @y, in the L2-norm

lu = tnlloe < Cla)h?[lullzo-

The proof can be found in [11] and is based on the Aubin-Nitsche trick. In addition,
the nonconformity of the discrete space has to be taken into account. An essential
role in the proof of the a priori bound is the following lemma. It shows a relation
between the jumps of an element v € V}, across the interfaces and its nonconformity.
The same type of result for v € V}, can be found in [26].

LEMMA 4.7. The weighted L?-norm of the jumps of an element v € V}, is bounded
by its monconformity

K

K

aj 2 . -

—|[olll5., < inf ara|lv — wl|q.
> S X el < S sl - wlha,

k=11eM(k) 0EX =1

Proof. The proof follows the same ideas as in case for vy € ‘7;“ see [26]. We use
the orthogonality of the jump and the definition (3.8) to obtain

Quev)g, = Qurvyg, -

Now, it is sufficient to consider an interface I';; at a time, and we find

a a
> h_H[Uh]H(Q];(T = > 7 1va, — Quevia, — (V) — Qurvia )lpio-
g

cexy 7 TEY Ik
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Using (3.15) and the continuity of the trace operator, we get for each w € H}(Q)

IN

> atllfoallld.,

oEX

+alv, — w|H%(FM))

C (a”vml - w|H%(FM)

IN

Car ([lv = wlir;0, + llv = wlli0,) -

Summing over the subdomains and using the definition for a; give the assertion. O
Using the dual problems:
Find w € H}(Q) and wy, € V}, such that

a(w,v) = (u —up, )00, v € Hy(Q), alwn,v)=(u—upv)0a, vEV

gives

K

Ow Ou
lu— unllp.o = a(w — whp,u—up) + Z Z ( ' a [un] ds + / azg [wh] ds).

onyy, gy
k=11eM(k) T g

Then, the H2-regularity, Lemma 3.2, Lemma, 4.7, and observing that the jump of an
element in V}, is orthogonal on M}, yield

u—upllo < alu —up,u—up 120(w — Wh, W — W 1/2
0;Q ] ;

K 12 1/2

+ ( )RDIEEDY Z—jll[?th]llﬁ;g> ( ¥ XX el szxllﬁ;a>
k=11e M(k) 0€X % k=11e M(k) 0€X &
K 12, 1/2

+1 X X 2 lwallE, XXX N PuAl,
k=11e M(k) c€X k=11e M(k) 0€EX 1%

< C(a) (llu = unlluellw = wallie + hllu = unlliollwllze + bllw —walliellullz)
where . = a%. Using the a priori estimate for the energy norm (4.26), we

obtain an a priori estimate for the L2-norm. The following lemma gives the a priori
estimate for the modified mortar approach.

LEMMA 4.8. Assuming H?2-reqularity, the discretization error u — uy, in the L2-
norm is of order h2.

5. Saddle point formulation. A saddle point formulation for mortar methods
was introduced in [4]. In particular, a priori estimates involving the (H&f)’—norm
for the Lagrange multiplier were established in that paper whereas estimates in a
weighted L?-norm were given in [26]. Here, we analyze the error in the Lagrange
multiplier for both norms and obtain a priori estimates of the same quality as for the
standard mortar approach.

The norm for the Lagrange multiplier is defined by

X 1
2
Z Z a—l||ll||(H0%(

k=11eM(k) 0(Te))

K

Cowe ] T Ha@w).

lul?
( k=11eM(k)

1 =
50 (S))’

The weight a;] is related to the fact that we use the energy norm for u — uy in the a
priori estimates.

Working within the saddle point framework, the approximation property on V,
which is given in Lemma 4.3, is a consequence of the approximation property on Xp,
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the continuity of the bilinear form b(-,-), and an inf-sup condition [13]. A discrete
inf-sup condition is necessary to obtain a priori estimates for the Lagrange multiplier.
The saddle point problem associated with the new nonconforming formulation
(4.16) involves the space (X, M},) instead of (X, Mj). We get a new saddle point
problem, with exactly the same structure as (2.3):
Find (un, An) € (Xn, Mp) such that

a(uh,vh) + b(/\h,’l)h) = f(’l)h), v € Xy,

(5.27)
b(uh,uh) = 0, wn € Mp.

The inf-sup condition, established in [4] for the pairing (Xh,Mh) also holds for
(Xh7Mh)'
LEMMA 5.1. There exists a constant independent of h such that

b
(5.28) 12}& sup Tl (vh“u(h) 72 > c.
Hh v a(vp,v
A0 a(,,,'l',ew),j?#o Hn H%o(s))’ h> TR

Proof. Using the definition of the dual norm (2.4), we get

||//fh|| . _ sup (Hn 9)oir, _ sup (en ik @)osr,
HZ () 1 ol 1 1 ol 1
00 ¢EH020(sz) H020(Fm) ¢€H020(sz) H020(Flk)
T ; ,®)o;
< C su (en ik d)oir, <C max (KR P)oir '
= P Tl =Y CaonE () 19T 3
(ZJEHOEO(FU@) HOQO(rlk) - 0 Hio(Tik)

The maximizing element in Wj, (Iyx) N HY (Ty) with Hyl (T )-norm 1, is called ¢,
and a vy, € X, is defined in the following way

Ulk|gyo, = 00 Uikl = Hidu,,
where ¢, is extended by zero on 9€Q; \ I';,. We then find

0 < (in, dup)oire = bpn, vin)

and a(vik, vik) < Caglui|i g, Finally, we set

Z Z Nh i)

k=11le M(k

and observe that a(vy,,v,,) = 0 if and only if g, = 0. A coloring argument gives
a(vy, s vu,) < Cllpnll? . Summing over all interfaces yields

(Hyl*(S))"
lunll® 4 < CZ > bl o) = Cb(pn,vp,)
(5.29) (Hgo(8))! =lleM(k)
b(pn,vu,, )
< Ot .
— a(vy, v / ||:uh|| 00(5)):

By construction, we have found for each py € My, pun # 0, a vy, € Xp with
a(vy, ,vyu,) # 0 such that

< oMt )

leanl (v, V) /2
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The proof of the inf-sup condition (5.28) together with the approximation Lemma
3.2 and the first equation of the saddle point problem gives an a priori estimate similar
o (4.26) for the Lagrange multiplier.

LEMMA 5.2. Under the assumptions u € Hf:] H*(Q), 3/2 < s < 2 and
[aVung] = 0, the following a priori estimate for the Lagrange multiplier holds true

(5.30) =Ml 2 <O ek |2
(HE(S))" kzl e

Proof. Following [4] and using the first equation of the saddle point problem, we
get

(5.31) b(pun — An,vn) = alup — u,vp) + b(pn — Nop), vp € Xp.

Taking (5.29) into account, we find that the inf-sup condition even holds if the supre-
mum over X, is replaced by the supremum over a suitable subspace of X,. For the
proof of (5.30), we start with (5.29) and not with the inf-sup condition (5.28)

(5.32) e — Anll® 4 < Cb(pn — An,w),
(H3(S))!

00

where w := vy, _, and vy, _», is constructed as in the proof of Lemma 5.1. We recall
that w is defined as a linear combination of discrete harmonic functions

w—Z Z wwm

k=11le M(k

where wy, = 0 on S\ I'x and ||[wlk]||H1/2( = 1. A coloring argument shows that
00

Tix)

the energy norm of w is bounded by the H&ffdual norm of pp — Ap, moreover we
find

2 K 2
wlll? (b(n —An,win)) w 2 — (b(n —Anwin))
2y =3 3 ey = 3 el
K
< L\ — Anll? 2 = [|ln — Anll? :
<2, A%: arllin = Ao g M0 g = i "’”(Hoi(sw
Now, combining (5.31) and (5.32), we obtain
—\ll? . < Calu —up,u—up)2a(w,w)® + Al 2 wl 1
s hH(Ho%(S))’ > ( h n)2a(w,w) ||Mh1 ||(H020(S))’|| ||H020(S)
< C lpn = Anll (a(u — up,uw—up)® + [|un — All ).

1 1
(Hgo(S)) (Hgo(S))'
Applying the triangle inequality, choosing [h) = P A and using

lloll 4 < vl v e (H> (),
HOO

2 (Ty)) H (D))

we find that (3.13) yields, for s =1/2

K
ey < O fatm )+ 52
H( )

50(8)) k=11le M(k)

IN

K
C'kz agarhillul3.q, -
=1
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Here, we have used that A restricted on I'j;, is aVuny; and a trace theorem. 0
We note that in spite of Lemma 3.2 we cannot obtain a priori estimates of order h
for the norm of the dual of H'/?(S). This is due to the fact that the inf-sup condition
(5.28) cannot be established for that norm.
1/2

REMARK 5.3. The a priori estimate (5.30) also holds if we replace the (Hy)™) -
norm by the weighted L?-norm

K
lizs =3 3 % ’;—jnunﬁ;m ie IX(S).

k=11e M (k) 0€X 1%

Using (3.12) and the techniques of the proof of Lemma 5.2, it is sufficient to have
a discrete inf-sup condition similar to (5.28) for the weighted L?-norm, i.e.

b
inf sup (v, p1n) 5 > C
B SR Tl alon,on)7
HR#0  a(up vp)#£0

The only difference in the proof is the definition of wvj;. Instead of using a discrete
harmonic extension onto );, we use a trivial extension by zero, i.e. we set all nodal
values on 0 \I'j;, and on € to zero. Then, vy is non zero only on a strip of length |T'|
and width h; and a(vg, vix) is bounded form below and above by > v Z—i||vlk||%;g.

6. Numerical results. We get a priori estimates of the same quality for the
error in the weak solution and the Lagrange multiplier as in the standard mortar case
[4, 6, 7]. In contrast to V},, we can define nodal basis functions for V} which have local
supports. Efficient iterative solvers for linear equation systems arising from mortar
finite element discretization are very often based on the saddle point formulation or
work with the product space X}, instead of the nonconforming mortar space. Different
types of efficient iterative solvers are developed in [1, 2, 3, 11, 15, 16, 19, 20, 18, 25].
However, most of these techniques require that each iterate satisfies the constraints
exactly. In most studies of multigrid methods, these constraints have to be satisfied
even in each smoothing step [11, 12, 18, 25]. If we replace V}, by V}, the constraints
are much easier to satisfy, since instead of solving a mass matrix system, the nodal
values on the non-mortar side can be given explicitly.

F1G. 6.6. Decomposition and initial triangulation (left) and solution (right) (Ezample 1)

Here, we will present some numerical results illustrating the discretization errors
for the standard and the new mortar methods in the case of P, Lagrangian finite
elements. We recall that in the standard mortar approach the Lagrange multipliers
belong to M} whereas we use M}y in the new method. We have used a multigrid
method which satisfies the constraints in each smoothing step; see [11, 25] for a
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discussion of the standard mortar case. This multigrid method can be also applied
without any modifications to our modified mortar setting. It does not take advantage
of the diagonal mass matrix on the non—mortar side of the new formulation. To obtain
a speedup in the numerical computations, special iterative solvers for the new mortar
setting have to be designed. We will address this issue in a forthcoming paper [28].
We start with an initial triangulation 75, and obtain the triangulation 7; on level I by
uniform refinement of 7;_1.

Both discretization techniques have been applied to the following test example:
—Au = fon (0,1)2, where the right hand side f and the Dirichlet boundary conditions
are chosen so that the exact solution is (exp(—500z21) — 1) * (exp(—500zx2) — 1) %
(exp(—500yy) — 1) x (1 — 3rr)%. Here zxl := (v —1/3)?, 222 := (v — 2/3)?, 22 := (v —
1/2)? ,yy := (y — 1/2)% and rr := xz + yy. The solution and the initial triangulation
are given in Figure 6.6. The domain is decomposed into nine subdomains defined by
Qi :=((0—1)/3,i/3) x((j —1)/3,5/3) , 1 <i,j <3 and the triangulations do not
match at the interfaces. We observe two different situations at the interface, e.g. the
isolines of the solution are almost parallel at 911 N 912 whereas at 9Q1; NI the
angle between the isolines and the interface is bounded away from zero. In case that
the isolines are orthogonal on the interface the exact Lagrange multiplier will be zero.

TABLE 6.1
Discretization errors (Exzample 1)

standard approach modified approach
Lagrange multiplier Mh Lagrange multiplier M},
level | # elem. | L?-err. | energy err. | L%-err. | energy err.
0 72 2.021163e + 0 | 11.47900 2.021306e + 0 | 11.47984

288 1.017372e — 1 | 3.042101 1.014502e — 1 | 3.034778
1152 1.166495e — 1 | 1.945246 1.166435e — 1 | 1.946163
4608 9.482530e — 3 | 1.114075 9.476176e — 3 | 1.113506
18432 | 2.802710e — 3 | 0.5928275 | 2.797809e — 3 | 0.5923121
73728 | 7.130523e — 4 | 0.2981975 | 7.121334e —4 | 0.2980159

284912 | 1.789436e — 4 | 0.1492382 | 1.788082e¢ — 4 | 0.1491841

O O = W N =

In Table 6.1, the discretization errors are given in the energy norm as well as in the
L?-norm for the two different mortar methods. We observe that the energy error is
of order h whereas the error in the L?-norm is of order h?. There is no significant
difference in the accuracy between the two mortar algorithm. The discretization errors
in the energy norm as well as in the L2-norm are almost the same.

F1G. 6.7. Decomposition and initial triangulation (left) and solution (right) (Ezample 2)
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In our second example, we consider the union square with a slit decomposed
into four subdomains, see Figure 6.7. Here, the right hand side f and the Dirichlet
boundary conditions of —Au = f are chosen so that the exact solution is given by
(1 —3r%)2r"/25in(1/2¢), where  — 1/2 = rcos ¢, and y — 1/2 = rsin ¢. The solution
has a singularity in the center of the domain. We do not have H2-regularity, and we
therefore cannot expect an O(h) behavior for the discretization error in the energy
norm.

TABLE 6.2
Discretization errors (Example 2), Energy error in le — 01

standard approach modified approach
Lagrange multiplier M, Lagrange multiplier M},
level | # elem. | L2-err. | energy err. | L-err. | energy err.
0 44 4.896283e — 02 | 6.000955 4.861265e — 02 | 6.050778

176 1.651238e — 02 | 3.553279 1.619017e — 02 | 3.584246

704 4.488552e — 03 | 2.045833 4.281367e — 03 | 2.069586
2816 1.254716e — 03 | 1.232939 1.125460e — 03 | 1.252113
11264 | 3.878438e — 04 | 0.7824813 | 3.046049e — 04 | 0.7975380
45056 | 1.401538e — 04 | 0.5184650 | 8.680669e — 05 | 0.5298379
180224 | 5.883500e — 05 | 0.3536026 | 2.649174e — 05 | 0.3619496

DO | W N =

The discretization errors are compared in Table 6.2. In this case, we observe a differ-
ence in the performance of the different mortar methods. The L2-error of the modified
mortar method is asymptotically better than that of the standard method. The sit-
uation is different for the energy error; the standard mortar approach gives slightly
better results. A non-trivial difference can only be observed in this example where
there is no H?-regularity. In that case, the modified mortar method gives better
results in the L2-norm.

Our last example illustrates the influence of discontinuous coefficients. We con-
sider the diffusion equation —divaVu = f, on (0,1)2, where the coefficient a is dis-
continuous. The unit square 2 is decomposed into four subdomains Q;; = ((i —
1)/2,i/2) x ((j —1)/2,7/2) as in Figure 6.8.

Fi1G. 6.8. Decomposition and initial triangulation (left) and solution (right) (Ezample 3)

The coefficients on the subdomains are given by a7 = a2 = 0.00025, a12 = a2 = 1.
The right hand side f and the Dirichlet boundary conditions are chosen to match
a given exact solution, (z — 0.5)(y — 0.5) exp(—10((z — 0.5)? + (y — 0.5)?))/a. This
solution is continuous with vanishing [aVun] on the interfaces. Because of the discon-
tinuity of the coefficients, we use a highly non-matching triangulation at the interface,
see Figure 6.8.
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The discretization errors in the energy norm as well as in the L?-norm are given
for the two different mortar algorithms in Table 6.3. We observe that the energy error
is of order h. As in Example 1, there is only a minimal difference in the performance
of the two mortar approaches.

TABLE 6.3

Discretization errors (Example 3), Energy error in le — 01

standard approach modified approach

Lagrange multiplier Mh Lagrange multiplier M}
level | # elem. | L?-err. | energy err. | L%-err. | energy err.

0 68 3.184810e + 00 | 11.73889 2.981474e + 00 | 11.99259

1 272 9.416096e — 01 | 6.115732 9.358117e — 01 | 6.187439

2 1088 2.425569e — 01 | 3.083728 2.431694e — 01 | 3.094938

3 4352 6.093936e — 02 | 1.545031 6.103994e — 02 | 1.546515
4 17408 | 1.524479¢ — 02 | 0.7729229 | 1.525489e¢ — 02 | 0.7731113
5 69632 | 3.811271e — 03 | 0.3865144 | 3.812137¢ — 03 | 0.3865380
6 278528 | 9.527881e — 04 | 0.1932641 | 9.528569e — 04 | 0.1932670

The following two figures illustrate the numbers given in Tables 6.1

6.3. In

Figure 6.9, the errors in the energy norm are visualized whereas in Figure 6.10 the
errors in the L2-norm are shown. In each figure a straight dashed line is drawn below
the obtained curves to indicate the asymptotic behavior of the discretization errors.
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F1G. 6.10. Discretization errors in the I.2—norm versus number of elements

In Examples 1 and 2, almost from the beginning on the predicted order h for the energy
norm and the order h? for the L? norm can be observed. In these two examples only
one plotted curve for the standard and the new mortar approach can be seen. The

numerical results are too close to see a difference in the pictures.

In Example 2,

where we have no full H2-regularity, the asymptotic starts late. We observe for both
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mortar methods an O(h'/?) behavior for the discretization error in the energy norm.
During the first refinement steps the error decreases more rapidly. For the L2-norm
the asymptotic rate is given by O(h?/?). Moreover, it seems to be the case that the
new mortar method performs asymptotically better than the standard one. However,
this cannot be observed for other examples without full regularity.
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