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A MORTAR FINITE ELEMENT METHOD USING DUAL SPACESFOR THE LAGRANGE MULTIPLIERBARBARA I. WOHLMUTH�Abstract. The mortar �nite element method allows the coupling of di�erent discretizationschemes and triangulations across subregion boundaries. In the original mortar approach the match-ing at the interface is realized by enforcing an orthogonality relation between the jump and a modi�edtrace space which serves as a space of Lagrange multipliers. In this paper, this Lagrange multiplierspace is replaced by a dual space without losing the optimality of the method. The advantage of thisnew approach is that the matching condition is much easier to realize. In particular, all the basisfunctions of the new method are supported in a few elements. The mortar map can be representedby a diagonal matrix; in the standard mortar method a linear system of equations must be solved.The problem is considered in a positive de�nite nonconforming variational as well as an equivalentsaddle-point formulation.Key words. mortar �nite elements, Lagrange multiplier, dual norms, non-matching triangula-tions, a priori estimatesAMS subject classi�cations. 65N15, 65N30, 65N551. Introduction. Discretization methods based on domain decomposition tech-niques are powerful tools for the numerical approximation of partial di�erential equa-tions. The coupling of di�erent discretization schemes or of nonmatching triangula-tions along interior interfaces can be analyzed within the framework of the mortarmethods [6, 7]. In particular, for time dependent problems, di�usion coe�cients withjumps, problems with local anisotropies as well as corner singularities, these domaindecomposition techniques provide a more exible approach than standard conform-ing formulations. One main characteristic of such methods is that the condition ofpointwise continuity across the interfaces is replaced by a weaker one. In a standardprimal approach, an adequate weak continuity condition can be expressed by appro-priate orthogonality relations of the jumps of the traces across the interfaces of thedecomposition of the domain [6, 7]. If a saddle point formulation arising from a mixed�nite element discretization is used, the jumps of the normal components of the uxesare relevant [29]. To obtain optimal results, the consistency error should be at least ofthe same order as the best approximation error. Most importantly, the quality of thea priori error bounds depends strongly on the choice of weak continuity conditions atthe interfaces.Section 2 contains a short overview of the mortar �nite element method restrictedto the coupling of P1-Lagrangian �nite elements and a geometrically conforming sub-division of the given region. We briey review the de�nition of the discrete Lagrangemultiplier space and the weak continuity condition imposed on the product space asit is given in the literature. In Section 3, we introduce local dual basis functions,which span the modi�ed Lagrange multiplier space. We also give an explicit formulaof projection-like operators and establish stability estimates as well as approxima-tion properties. Section 4 is devoted to the proof of the optimality of the modi�ednonconforming variational problem. It is shown that we can de�ne a nodal basisfunction satisfying the constraints at the interface and which at the same time haslocal support. This is a great advantage of this modi�ed method compared with the� Math. Institut, Universit�at Augsburg, Universit�atsstr. 14, D-86 159 Augsburg, Germany.Email: wohlmuth@math.uni-augsburg.de, http://wwwhoppe.math.uni-augsburg.de/~wohlmuth1



2 BARBARA I. WOHLMUTHstandard mortar methods. Central results such as uniform ellipticity, approximationproperties and consistency error are given in separate lemmas. A saddle point formu-lation, which is equivalent to these nonconforming variational problems is consideredin Section 5. Here, the weak continuity condition at the interface enters explicitlyin the variational formulation. As in the standard mortar case, we obtain a prioriestimates for the discretization error for the Lagrange multiplier. Here, we analyzethe error in the dual norm of H1=200 , as well as in a mesh dependent L2-norm. Finally,in Section 6, numerical results indicate that the discretization errors are comparablewith the errors obtained when using the original mortar method.2. Problem setting. We consider the following model problemLu := �div (aru) + b u = f in 
;u = 0 on � := @
;(2.1)where 
 is a bounded, polygonal domain in IR2, and that f 2 L2(
). Furthermore,we assume a 2 L1(
) to be an uniformly positive function and 0 � b 2 L1(
).We will consider a non-overlapping decomposition of 
 into polyhedral subdo-mains 
k, 1 � k � K, 
 = K[k=1
k with 
l \
k = ;; k 6= l:Each subdomain 
k is associated with a family of shape regular simplicial triangula-tions Thk , hk � hk;0, where hk is the maximum of the diameters of the elements inThk . The sets of vertices and edges of the subdomains 
k and of 
 are denoted by Phk ,Ehk , and Ph, Eh, respectively. We use P1-conforming �nite elements S1(
k; Thk ) onindividual subdomains and enforce the homogeneous Dirichlet boundary conditionson @
 \ @
k.We restrict ourselves to the geometrical conforming situation where the intersec-tion between the boundary of any two di�erent subdomains @
l\@
k, k 6= l, is eitherempty, a vertex, or a common edge. We only call it an interface in the latter case. Themortar method is characterized by introducing Lagrange multiplier spaces given onthe interfaces. A suitable triangulation on the interface is necessary for the de�nitionof a discrete Lagrange multiplier space. Each interface @
l \ @
k is associated witha one dimensional triangulation, inherited either from Thk or from Thl . In general,these triangulations do not coincide. The interface in question will be denoted by�kl and �lk if its triangulation is given by that of 
k and 
l, respectively. We callthe inherited one dimensional triangulation on �kl and �lk, �kl and �lk, respectivelywith the elements of �kl and �lk being edges of Thk and Thl , respectively. We remarkthat geometrically �lk and �kl are the same.Thus, each @
k can be decomposed, without overlap, into@
k = [l2 �M(k) ��kl;where �M(k) denotes the subset of f1; 2; : : : ;Kg such that @
l \ @
k is an interfacefor l 2 �M(k): The union of all interfaces S can be decomposed uniquely inS = K[k=1 [l2M(k) ��lk:



A Mortar Method Using Dual Spaces 3Here, M(k) � �M(k) such that for each set fk; lg, 1 � k � K, l 2 �M(k) eitherl 2M(k) or k 2M(l) but not both. The elements of f�kl j 1 � k � K; l 2M(k)g arecalled the mortars and those of f�lk j 1 � k � K; l 2 M(k)g the non-mortars. Thechoice of mortars and non-mortars is arbitrary but �xed. We note that the discreteLagrange multiplier space will be associated with the non-mortars. To simplify theanalysis, we will assume that the coe�cients a and b are constant in each subdomain,with ak := aj
k , 1 � k � K.It is well known that the unconstrained product spaceXh := KYk=1S1(
k; Thk)is not suitable as a discretization of (2.1). We also note that in case of non-matchingmeshes at the interfaces, it is in general not possible to construct a global continuousspace with optimal approximation properties. It is shown [6, 7] that weak constraintsacross the interface are su�cient to guarantee an approximation and consistency errorof order h if the weak solution u is smooth enough. The nonconforming formulationof the mortar method is given by:Find ~uh 2 eVh such that a(~uh; vh) = f(vh); vh 2 eVh(2.2)where a(v; w) := PKk=1 R
k arv � rw + bv w dx, v; w 2 QKk=1H1(
k) and f(v) :=R
 fv dx, v 2 L2(
). Here, the global space eVh is de�ned byeVh := fv 2 Xh j b(v; �) = 0; � 2 fMhg;where the bilinear form b(�; �) is given by the duality pairing on Sb(v; �) := KXk=1 Xl2M(k)h[v]; �i�lk ; v 2 KYk=1H1(
k); � 2 KYk=1 Yl2M(k)�H 12 (�lk)�0and [v] := vj
l � vj
k . Here, (H 12 (�lk))0 denotes the dual space of H 12 (�lk).Of crucial importance is the suitable choice of fMh in (2.2)fMh := KYk=1 Yl2M(k) fMh(�lk);where in general the local space fMh(�lk) is chosen as a modi�ed trace space of �niteelement functions in S1(
l; Thl). Appropriate spaces [6, 7] can be found satisfyingdim fMh(�lk) = dim (H10 (�lk) \Wh(�lk)); fMh(�lk) �Wh(�lk)where Wh(�lk) is the trace space of S1(
l; Thl):Wh(�lk) := fv 2 C0(�lk) j v = wj�lk ; w 2 S1(
l; Thl)g:fMh(�lk) is a subspace of Wh(�lk) of codimension 2 and given byfMh(�lk) := fv 2 C0(�lk) j v = wj�lk ; w 2 S1(
l; Thl);vje 2 P0(e); e 2 Ehlcontains an endpoint of �lkg



4 BARBARA I. WOHLMUTHand Nlk := dimfMh(�lk) = Ne � 1 where Ne denotes the number of elements in �lk.Here, we assume that Ne � 2. The nodal basis functions f�igNlki=1 of fMh(�lk) areassociated with the interior vertices pj , 1 � j � Nlk of �lk and given by�i(pj) = �ij :The space fMh(�lk) and its nodal basis functions f�igNlki=1 are illustrated in Figure 2.1;for a detailed analysis of fMh see [4, 6, 7, 8].
Fig. 2.1. Lagrange multiplier spaceLet us remark that continuity was imposed at the vertices of the decompositionin the �rst papers about mortar methods. However, this condition can be removedwithout loss of stability. Both these settings guarantee uniform ellipticity of thebilinear form a(�; �) on eVh� eVh, as well as a best approximation error and a consistencyerror of O(h) [6, 7]. Combining the Lemmas of Lax Milgram and Strang, it can beshown that a unique solution of (2.2) exists and that the discretization error is oforder h if the solution of (2.1) is smooth; see [6, 7].In a second, equivalent approach the space fMh explicitly plays the role of aLagrange multiplier space. This approach is studied in [4] and used further in [11, 25,26]. The resulting variational formulation gives rise to a saddle-point problem:Find (~uh; ~�h) 2 Xh � fMh such thata(~uh; vh) + b(~�h; vh) = f(vh); vh 2 Xh;b(�h; ~uh) = 0; �h 2 fMh:(2.3)In particular, it can be easily seen that the �rst component of the solution of (2.3)is the unique solution of (2.2). Observing that ~�h is an approximation of the normalderivative of u on the interface, it makes sense to consider a priori estimates foraru �nlk� ~�h in suitable norms. Here nlk is the outer unit normal of 
k restricted to�lk. This issue was �rst addressed in [4] where a priori estimates in the (H1=200 )0-normwere established. Similar bounds are given in [26] for a weighted L2-norm. As in thegeneral saddle-point approach [13], the essential point is to establish adequate inf-supconditions; such bounds have been established with constants independent of h forboth these norms; see [4, 26].In the following, all constants 0 < c � C <1 are generic depending on the localratio between the coe�cients b and a, the aspect ratio of the elements and subdomainsbut not on the mesh size and not on a. We use standard Sobolev notations andkvk1 := KXk=1 kvk1;
k ; jvj1 := KXk=1 jvj1;
k ; v 2 KYk=1H1(
k)stand for the broken H1-norm and semi-norm. The dual space of a Hilbert space Xis denoted by X 0 and the associated dual norm is de�ned byk�kX0 := supv2X h�; vik�kX :(2.4)



A Mortar Method Using Dual Spaces 53. Dual basis functions. The crucial point for the unique solvability of (2.2)and (2.3) is the de�nition of the discrete space fMh. As we have seen, the discretespace of Lagrange multipliers is closely related to the trace space in the earlier work onmortar methods; these spaces are only modi�ed in the neighborhood of the interfaceboundaries where the degree of the elements of the test space is lower. We note thatit has been shown only recently, see [23], that for Pn-conforming �nite elements the�nite dimensional space of piecewise polynomials of only degree � n� 1 can be usedinstead of degree n in the de�nition of the Lagrange multiplier space without losingthe optimality of the discretization error u�uh. However, in none of these studies hasduality been used to construct an adequate �nite element space for the approximationof the Lagrange multiplier. We recall that the Lagrange multiplier in the continuoussetting represents the ux on the interfaces. Even if the weak solution of (2.1) isH2-regular it does not have to be continuous on the interfaces. This observation hasmotivated us to introduce a new type of discrete Lagrange multiplier space. We notethat local dual basis functions have been used in [22] to de�ne global projection-likeoperators which satisfy stability and approximation properties; in this paper we usethe same dual basis functions to de�ne the discrete Lagrange multiplier space.Let � be an edge and eP1(�) be a polynomial space satisfying P0(�) � eP1(�) �P1(�), and let f��;igNi=1, N 2 f1; 2g, be a basis satisfying R� ��;i ds 6= 0. We can thende�ne a dual basis f �;igNi=1,  �;i 2 eP1(�) by the following relationZ� ��;i �;j ds = �ij Z� ��;i ds; 1 � i; j � N:(3.5)The de�nition (3.5) guarantees that f �;igNi=1 is well de�ned. Each  �;i can be writtenas a linear combination of the ��;i, 1 � i � N and the coe�cients are obtained bysolving a N �N mass matrix system. Furthermore (3.5) yieldsZ� ��;j  NXi=1  �;i � 1! ds = 0; 1 � j � Nand thus PNi=1  �;i = 1. The f �;igNi=1 also form a linearly independent set. To seethis, let us assume that PNi=1 �i �;i = 0. Then, it follows�i = R� ��;iPNj=1 �j �;j dsR� ��;i = 0:As a consequence, we obtain eP1(�) = span f �;j ; 1 � j � Ng.Let us consider the case that f��;ig2i=1 are the nodal basis functions of P1(�).Then, the dual basis is given by �;i := 2��;i � ��;(i+1)mod2; 1 � i � 2:Based on these observations, we introduce a global space Mh(�lk) on each non-mortar �lk , 1 � k � K, l 2M(k) satisfyingdimMh(�lk) = dimfMh(�lk):



6 BARBARA I. WOHLMUTHLet f�igNlki=1 be the nodal basis function of fMh(�lk) as introduced in Section 2. Then,each �i can be written as the sum of its local contributions�i = X�2�lk��supp �i �ij� =: ��;iwhere the local contributions are linearly independent. We set eP1(�) := spanf��;i; 1 �i � Nlk; � � supp �ig. In particular by construction, it is guaranteed that P0(�) �eP1(�) � P1(�) and for @� \ @�lk = ;, we have eP1(�) = P1(�). Using the local dualbasis functions on each �, the global basis functions of Mh(�lk) are de�ned as i := X�2�lk��supp �i  �;i:The support of  i is the same as that of �i and the f igNlki=1 form a linear independentsystem. Figure 3.2 depicts the two di�erent types of dual basis functions.
Γ

lk
Γ

lkFig. 3.2. Dual basis functions in the neighborhood of the boundary of �lk (left) and in theinterior (right)Remark 3.1. The following global orthogonality relation holdsZ�lk �i j ds = X�2�lk��supp �i Z� ��;i �;j ds = X�2�lk��supp �i �ij Z� ��;i ds = �ij Z�lk �i ds:(3.6)We note the similarity with (3.5).The central point in the analysis of the consistency and approximation error willbe the construction of adequate projection-like operators. We refer to [6, 7] for thestandard mortar approach. Here, we use di�erent operators onto Mh(�lk), fMh(�lk)and Wh(�lk) \H10 (
).Plk : L1(�lk) �!Mh(�lk); is de�ned byPlkv := NlkXi=1 R�lk �iv dsR�lk �i ds  i:(3.7)A dual operator Qlk : L1(�lk) �! fMh(�lk), is now given byQlkv := NlkXi=1 R�lk  iv dsR�lk �i ds �i:(3.8)A detailed discussion of this type of operator can be found in [22]. It is easy to seethat Plk and Qlk restricted to Mh(�lk) and fMh(�lk), respectively, is the identityPlkv = v; v 2Mh(�lk):(3.9)



A Mortar Method Using Dual Spaces 7In addition, using (3.6), (3.7) and (3.8), we �nd that for v; w 2 L2(�lk),(v � Plkv; w)0;�lk = (v � Plkv; w �Qlkw)0;�lk = (v; w �Qlkw)0;�lk ;and it therefore makes sense to call Qlk a dual operator to Plk . Furthermore, theoperators are L2-stable. We havekPlkvk20;� � X1�i�Nlk�\supp �i 6=; R�lk �2i ds R�  2i ds(R�lk �i ds)2 kvk20;supp�i � Ckvk20;D� ;(3.10)where the domain D� is de�ned by�D� :=[ f�0 2 �lk j @�0 \ @� 6= ;g:Here, we have used the fact that D� contains at most three elements and thatk ikL1(�lk) is bounded by 2 independently of the length of the edges. The sametype of estimate holds true for QlkkQlkvk20;� � X1�i�Nlk�\supp �i 6=; R�lk  2i ds R� �2i ds(R�lk �i ds)2 kvk20;supp�i � Ckvk20;D� :(3.11)Thus, Plk and Qlk are L2-projection-like operators which preserve the constants.Using (3.9) and (3.10), it is easy to establish an approximation result.Lemma 3.2. There exist constants such that for v 2 Hs(�lk), 0 � s � 1,kv � Plkvk20;�lk � C X�2�lk h2s� jvj2s;� :(3.12) kv � Plkvk2(H 12 (�lk))0 � c X�2�lk h�kv � Plkvk20;� � C X�2�lk h1+2s� jvj2s;� :(3.13)Proof. The proof of (3.12) follows by applying the Bramble-Hilbert Lemma andusing the stability (3.10) and the identity (3.9); it is important that the constants arecontained in the space Mh(�lk). For each v we de�ne a constant cv in the followingway cv := 1jD�j ZD� v ds;where jD�j is the length of D�. We remark that the constant cv depends only on thevalues of v restricted on D� . Now, by means of Plkcv = cv we �ndkv � Plkvk0;� � kv � cvk0;� + kPlk(v � cv)k0;�� Ckv � cvk0;D� � Chs� jvjs;D� :(3.14)The global estimate (3.12) is obtained by summing over all local contributions andobserving that each �0 is only contained in a �xed number of D� .Although dimfMh(�lk) < dimWh(�lk), we get the same type of estimate as (3.14)for Qlk instead of Plk by using (3.11).



8 BARBARA I. WOHLMUTHFor the estimate (3.13) in the dual norm, we use the de�nition (2.4)kv � Plkvk(H 12 (�lk))0 = sup�2H 12 (�lk) R�lk (v � Plkv)� dsk�kH 12 (�lk)= sup�2H 12 (�lk) R�lk (v � Plkv)(� �Qlk�) dsk�kH 12 (�lk) :In a next step, we consider the last integral in more detail. Using (3.14) for Qlkinstead of Plk and setting s = 1=2, we �ndh�1� k��Qlk�k20;� � Cj�j2H 12 (D�):(3.15)Summing over all � 2 �lk and using that the sum over j�j2H1=2(D�) is bounded byj�j2H1=2(�lk) yield kv � Plkvk2(H 12 (�lk))0 � X�2�lk h�kv � Plkvk20;�:Combining this upper bound with (3.14) gives (3.13).4. Nonconforming formulation. Replacing the space fMh in the de�nition ofeVh by Vh, we get a new nonconforming spaceVh := fv 2 Xh j b(v; �) = 0; � 2Mhg:The original nonconforming variational problem (2.2) is then replaced by:Find uh 2 Vh such that a(uh; vh) = f(vh); vh 2 Vh:(4.16)In what follows, we analyze the structure of an element vh 2 Vh. Each v 2 Xhrestricted to a non-mortar side �lk can be written asvj�lk = Nlk+1Xi=0 �i�i;(4.17)where �i, 1 � i � Nlk are de�ned in Section 2 and �0 and �Nlk+1 are the nodal basisfunctions of Wh(�lk) associated with the two endpoints of �lk. The following lemmacharacterizes the elements of Vh.Lemma 4.1. Let v 2 Xh restricted on �lk be given as in (4.17). Then, v 2 Vh ifand only if for each non-mortar �lk�i = R�lk (vj
k � �0�0 � �Nlk+1�Nlk+1) i dsR�lk �i ds ; 1 � i � Nlk:(4.18)The proof follows easily from (4.17) and the global orthogonality relation (3.6).As in case of eVh the values of a function v 2 Vh at the nodal Lagrange interpolationpoints in the interior, pi, 1 � i � Nlk, of any non-mortar �lk are uniquely determinedby its values on the corresponding mortar side �kl and the values at the endpoints of



A Mortar Method Using Dual Spaces 9�lk. The nodal values in the interior of the non-mortars �lk are obtained by combining(4.18) with a basis transformation. In particular, these values can be directly obtainedby the simple formulavj
l (pi) = �i = R�lk vj
k i dsR�lk �i ds ; 2 � i � Nlk � 1:(4.19)For the two interior nodal points p1 and pNlk next to the endpoints of �lk, we getvj
l (p1) = R�lk (vj
k  1�vj
l (p0)�0) dsR�lk (�1��0) ds ;vj
l (pNlk) = R�lk (vj
k  Nlk�vj
l (pNlk+1)�Nlk+1) dsR�lk (�Nlk��Nlk+1) ds :(4.20)Here, we have used that vj
l (p0) = �0 + �1, vj
l (pNlk+1) = �Nlk + �Nlk+1 and that 1 and  Nlk are identically 1 on the edges next to the endpoints of �lk. We note thatby de�nition of the basis functions there exist 1=2 < �1; �2 < 1 such thatZ�lk (�1 � �0) ds = �1 Z�lk �1 ds; Z�lk (�Nlk � �Nlk+1) ds = �2 Z�lk �Nlk ds:(4.21)If we have a closer look at the nodal basis functions of eVh and Vh we realize thatthere is a main di�erence in the structure of the basis functions. Figures 4.3 and4.4 illustrate this di�erence for the special situation that we have a uniform butnonmatching triangulation on the mortar and the non-mortar side.
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non-mortar sideFig. 4.3. Nodal basis function on a mortar side (left) and on the non-mortar side in eVh (middle)and in Vh (right)In Figure 4.3, the mortar side is associated with the �ner triangulation whereasin Figure 4.4 it is associated with the coarser one.As in the standard �nite element context, nodal basis functions can be de�ned forVh with support contained in a circle of diameter Ch: This is in general not possiblefor eVh. In the latter case, the support of a nodal basis function associated with anodal point on the mortar side is a strip of length j�lkj and width h, see Figure 4.5,and the locality of the basis functions is lost.We conclude this section, by establishing a priori bounds for the discretizationerror. As in [6, 7] a mortar projection will be a basic tool in the analysis of thebest approximation error. We now use the new Lagrange multiplier space Mh in
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non-mortar sideFig. 4.4. Nodal basis function on a mortar side (left) and on the non-mortar side in eVh (middle)and in Vh (right)
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Fig. 4.5. Support of a nodal basis function in eVh (left) and in Vh (right)the de�nition of suitable projection-like operators. For each non-mortar side the newmortar projection is given by �lk : L2(�lk) �! Wh(�lk) \H0(�lk),Z�lk (v ��lkv)� ds = 0; � 2Mh(�lk):By using (4.19) and (4.20), it can be easily seen that the operator �lk is well de�ned.To analyze the approximation error, it is su�cient to show that the mortar projectionis uniformly stable in suitable norms. The stability in the L2- and H1-norms is givenin the following lemma.Lemma 4.2. The mortar projection �lk is L2- and H1-stablek�lkvk0;�lk � Ckvk0;�lk ; v 2 L2(�lk);(4.22) j�lkvj1;�lk � Cjvj1;�lk ; v 2 H10 (�lk):(4.23)Proof. Using the explicit representation (4.19) and (4.20) where vj
k has to bereplaced by v and vj
l (p0) and vj
l (pNlk+1) have to be set to zero, (4.22) is obtained.It can be easily seen that even the local estimatek�lkvk0;� � Ckvk0;D�holds true. By means of an inverse inequality, we �nd for each p 2 Wh(�lk)\H10 (�lk)satisfying p = 0 if @D�\@�lk 6= ; and otherwise pjD� = const. and RD� p ds = RD� v dsj�lkvj1;� = j�lk(v � p)j1;� � Ch� k�lk(v � p)k0;� � Ch� kv � pk0;D� � Cjvj1;D� :We remark that if @D� \ @�lk 6= ;, then p was set to zero. However, due to theboundary conditions of v we obtain kvk0;D� � Ch� jvj1;D� in this case.



A Mortar Method Using Dual Spaces 11The mortar projection can be extended to the space H1=200 (�lk) in the followingway:�lk : H1=200 (�lk) �! Wh(�lk) \H10 (�lk)Z�lk (v ��lkv)� ds = 0; � 2Mh(�lk):Then, an interpolation argument together with Lemma 4.2 gives the H1=200 -stabilityk�lkvkH 1200(�lk) � CkvkH 1200(�lk); v 2 H 1200(�lk):(4.24)It is of interest to compute the stability constant in (4.22) in the special case ofa uniform triangulation of �lk with h := j�j. Then,k�lkvk20;� = 16h((�lkv(p0))2 + (�lkv(p1))2 + (�lkv(p0) + �lkv(p1))2)where p0 and p1 are the two endpoints of �. Using the mortar de�nition and summingover all elements in �lk, we getk�lkvk20;�lk � 176 kvk20;�lk :In general, the constants in a priori estimates depend on the coe�cients. Here,we will give a priori estimates which depends explicitly on the coe�cient a. For eachsubdomain 
k, 1 � k � K, we de�ne constants �k, ~�k in the following way�k := max� supl2M(k)min�1 + alak ; 1 + ( hlhk )2�; sup1�j�Kk2M(j) min�1 + akaj ; 1 + (hkhj )2��;~�k := max� supl2M(k) 1 + alak ; sup1�j�Kk2M(j) 1 + akaj �:(4.25)We note that �k and ~�k are bounded by 2 if the non-mortar side is chosen as thatwith the smaller value of a.The uniform ellipticity of the bilinear form a(�; �) on Vh � Vh is important forthe a priori estimates. For the standard mortar space, it is well known, see [6, 7, 8].Moreover in [8], it is shown that the bilinear form a(�; �) is uniform elliptic on Y � Y ,where Y := fv 2 KYk=1H1(
k) j Z�lk [v]ds = 0; 1 � k � K; l 2 M(k); vj@
 = 0g:The starting point of the proof is a suitable Poincar�e-Friedrichs type inequality. Forgeneral considerations on Poincar�e-Friedrichs type inequalities in the mortar situation,we refer to [24]. In [17, Theorem IV.1], it is shown that the ellipticity constant doesnot depend on the number of subdomains. A similar estimate is given for the three�eld formulation in [14]. We refer to [17] for a detailed analysis of the constantsin the a priori estimates in terms of the number of subdomains and their diameter.Observing that Vh is a subspace of Y , it is obvious that that the bilinear form a(�; �)on Vh � Vh is uniform elliptic.



12 BARBARA I. WOHLMUTH4.1. Approximation property. To establish an approximation property forVh, we follow [6, 7]. One central point in the analysis is an extension theorem. In[9], a discrete extension is used such that the H1-norm of the extension on 
k isbounded by a constant times the H1=2-norm on the boundary @
k. The support ofsuch an extension is in general 
k and it is assumed that the triangulation is quasi-uniform. However, it can be generalized to the locally quasi-uniform case. Combiningthe approximation property ofQKk=1 S1(
k; Thk) and using the mortar projection �lk,we obtain the following lemma.Lemma 4.3. Under the assumption that u 2 QKk=1H1+s(
k), 0 < s � 1, the bestapproximation error is of order hs,infvh2Vh a(u� vh; u� vh) � C KXk=1�kh2sk akkuk21+s;
kwhere the �k are de�ned in (4.25).Proof. The proof follows exactly the same lines as for eVh and the Laplace operator;we therefore omit the details and refer to [6, 7]. For each subdomain 
k, we use theLagrange interpolation operator Ik . Then, we de�ne wh 2 Xh by whj
k := Ikv. Wenote that wh is not in general, contained in Vh. To obtain an element in Vh, wehave to add appropriate corrections. For each interface �lk, we consider the jump[wh] 2 H10 (�lk) and apply the mortar projection. The result is extended as a discreteharmonic function into the interior of 
l. Finally, we de�nevh := wh � KXk=1 Xl2M(k)Hl(�lk [wh])where Hl denotes the discrete harmonic extension operatorkHlvk1;
l � CkvkH 12 (@
l);see [9, Lemma 5.1]. Here, �lk[wh] is extended by zero onto @
l n�lk and Hl(�lk[wh])vanishes outside 
l. By construction, we haveZ�lk [vh]� ds = Z�lk ([wh]��lk [wh])� ds = 0; � 2Mh(�lk);and thus vh 2 Vh.A coloring argument yields,a(u� vh; u� vh) � C  a(u� wh; u� wh) + KPk=1 Pl2M(k) alk�lk[wh]k2H 12 (@
l)!� C KPk=1 akh2sk kuk21+s;
k + Pl2M(k) alk�lk[wh]k2H 1200(�lk)!� C KPk=1 akh2sk kuk21+s;
k + Pl2M(k) alk[u� wh]k2H 1200(�lk)!� C KPk=1 akh2sk kuk21+s;
k + Pl2M(k) al�h2sl kuk2H 12+s(�lk) + h2sk kuk2H 12+s(�lk)�!� C KPk=1�kakh2sk kuk21+s;
k :



A Mortar Method Using Dual Spaces 13Here, we have used the stability of the harmonic extension; see [9], the stability of themortar projection (4.24) and the approximation property of the Lagrange interpolant.4.2. Consistency error. The space Vh is in general not a subspace of H10 (
).Therefore, we are in a nonconforming setting and in addition to uniform ellipticity andthe approximation property we need to consider the consistency error [10] to obtaina stable and convergent �nite element discretization. In Strang's second Lemma, thediscretization error is bounded by the best approximation error and the consistencyerror [10].Lemma 4.4. The consistency error for u 2 QKk=1H1+s(
k), 1=2 < s � 1 and[arunlk] = 0 is of order hssupwh2Vh KPk=1 Pl2M(k) R�lk a @u@nlk [wh] dsa(wh; wh) 12 � C  KXk=1�kh2sk akkuk21+s;
k! 12where �k is de�ned in (4.25).Proof. The proof generalizes that given for eVh in [6, 7]. Here, the Lagrangemultiplier spaceMh is used and we also consider the e�ect of discontinuous coe�cients.By the de�nition of Vh, we haveKXk=1 Xl2M(k) Z�lk �h[wh] ds = 0; �h 2Mh;and thusKXk=1 Xl2M(k) Z�lk a @u@nlk [wh] ds = KXk=1 Xl2M(k) Z�lk(a @u@nlk � Plk(a @u@nlk ))[wh] ds:where Plk is de�ned in (3.7). Using a duality argument and the continuity of thetrace, we getKXk=1 Xl2M(k) Z�lk a @u@nlk [wh] ds � KXk=1 Xl2M(k) k�� Plk�k(H 12 (�lk))0(jwhj1;
l + jwhj1;
k )where � := a @u@nlk . To replace, in the last inequality, the H1-norm by the H1-semi-norm, we take into account that�lkwhj
l = �lkwhj
k ;where �lk denotes the L2-projection onto piecewise constant functions on �lk. In theduality argument, the H1=2-norm can therefore be replaced by the H1=2-semi-normk[wh]kH 12 (�lk) � kwhj
l ��lkwhj
lkH 12 (�lk) + kwhj
k ��lkwhj
k kH 12 (�lk)� C � jwhj
l ��lkwhj
l jH 12 (�lk) + jwhj
k ��lkwhj
k jH 12 (�lk)� :Finally, Lemma 3.2, which states the approximation property of Plk� in the (H1=2)0-norm, yieldsk�� Plk�k(H 12 (�lk))0 � Chsl j�jHs� 12 (�lk) � Chsl min(aljuj1+s;
l ; akjuj1+s;
k):



14 BARBARA I. WOHLMUTHRemark 4.5. In case that the coe�cient a is smaller on the non-mortar sidethen �k is bounded by 2 independently of the jumps in a. Otherwise the upper boundfor �k depends on the jumps in a. A possibly better bound might depend on the ratio ofthe mesh size across the interface; see (4.25). However, numerical results have shownthat in case of adaptive mesh re�nement controlled by an a posteriori error estimator,�k remains bounded independently of the jump in the coe�cients; see [26, 27].Using Lemmas 4.3 and 4.4, we obtain a standard a priori estimate for the mod-i�ed mortar approach (4.16). Under the assumptions that [arunlk] = 0 and u 2QKK=1Hs(
k), 3=2 < s � 2, we �nda(u� uh; u� uh) � C KXk=1�kakh2(s�1)k kuk2s;
k :(4.26)Remark 4.6. The a priori estimates in the literature [6, 7] are often given inthe following form ku� uhk1 � C KXk=1 hs�1k kuks;
k :This is weaker than the estimate (4.26), since for s = 2 generally we only have KXk=1 hkkuk2;
k!2 � K KXk=1 h2kkuk22;
k :4.3. A priori estimates in the L2-norm. Finite element discretizations pro-vide, in general, better a priori estimates in the L2-norm than in the energy norm.In particular, if we assume H2-regularity, we have the following a priori estimate foru� ~uh in the L2-norm ku� ~uhk0;
 � C(a)h2kuk2;
:The proof can be found in [11] and is based on the Aubin-Nitsche trick. In addition,the nonconformity of the discrete space has to be taken into account. An essentialrole in the proof of the a priori bound is the following lemma. It shows a relationbetween the jumps of an element v 2 Vh across the interfaces and its nonconformity.The same type of result for v 2 eVh can be found in [26].Lemma 4.7. The weighted L2-norm of the jumps of an element v 2 Vh is boundedby its nonconformityKXk=1 Xl2M(k) X�2�lk alh� k[v]k20;� � infw2H10 (
) KXk=1 ~�kakkv � wk1;
kProof. The proof follows the same ideas as in case for vh 2 eVh, see [26]. We usethe orthogonality of the jump and the de�nition (3.8) to obtainQlkvj
l = Qlkvj
k :Now, it is su�cient to consider an interface �lk at a time, and we �ndX�2�lk alh� k[vh]k20;� = X�2�lk alh� kvj
l �Qlkvj
l � (vj
k �Qlkvj
k )k20;�:



A Mortar Method Using Dual Spaces 15Using (3.15) and the continuity of the trace operator, we get for each w 2 H10 (
)P�2�lk alh� k[vh]k20;� � C � aljvj
l � wjH 12 (�lk) + aljvj
k � wjH 12 (�lk)�� Cal ( kv � wk1;
l + kv � wk1;
k ) :Summing over the subdomains and using the de�nition for ~�k give the assertion.Using the dual problems:Find w 2 H10 (
) and wh 2 Vh such thata(w; v) = (u� uh; v)0;
; v 2 H10 (
); a(wh; v) = (u� uh; v)0;
; v 2 Vhgivesku� uhk20;
 = a(w �wh; u� uh) + KXk=1 Xl2M(k)� Z�lk a @w@nlk [uh] ds+ Z�lk a @u@nlk [wh] ds�:Then, the H2-regularity, Lemma 3.2, Lemma 4.7, and observing that the jump of anelement in Vh is orthogonal on Mh yieldku� uhk20;
 � a(u� uh; u� uh)1=2a(w � wh; w � wh)1=2+  KPk=1 Pl2M(k) P�2�lk alh� k[uh]k20;�!1=2 KPk=1 Pl2M(k) P�2�lk h�al k�� Plk�k20;�!1=2+  KPk=1 Pl2M(k) P�2�lk alh� k[wh]k20;�!1=2 KPk=1 Pl2M(k) P�2�lk h�al k�� Plk�k20;�!1=2� C(a) ( ku� uhk1;
kw � whk1;
 + hku� uhk1;
kwk2;
 + hkw � whk1;
kuk2;
) ;where �j�lk := a @w@nlk . Using the a priori estimate for the energy norm (4.26), weobtain an a priori estimate for the L2-norm. The following lemma gives the a prioriestimate for the modi�ed mortar approach.Lemma 4.8. Assuming H2-regularity, the discretization error u� uh in the L2-norm is of order h2.5. Saddle point formulation. A saddle point formulation for mortar methodswas introduced in [4]. In particular, a priori estimates involving the (H1=200 )0-normfor the Lagrange multiplier were established in that paper whereas estimates in aweighted L2-norm were given in [26]. Here, we analyze the error in the Lagrangemultiplier for both norms and obtain a priori estimates of the same quality as for thestandard mortar approach.The norm for the Lagrange multiplier is de�ned byk�k2(H 1200(S))0 := KXk=1 Xl2M(k) 1al k�k2(H 1200(�lk))0 ; � 2 KYk=1 Yl2M(k)(H 1200(�lk))0:The weight a�1l is related to the fact that we use the energy norm for u�uh in the apriori estimates.Working within the saddle point framework, the approximation property on Vh,which is given in Lemma 4.3, is a consequence of the approximation property on Xh,



16 BARBARA I. WOHLMUTHthe continuity of the bilinear form b(�; �), and an inf-sup condition [13]. A discreteinf-sup condition is necessary to obtain a priori estimates for the Lagrange multiplier.The saddle point problem associated with the new nonconforming formulation(4.16) involves the space (Xh;Mh) instead of (Xh; fMh). We get a new saddle pointproblem, with exactly the same structure as (2.3):Find (uh; �h) 2 (Xh;Mh) such thata(uh; vh) + b(�h; vh) = f(vh); vh 2 Xh;b(�h; uh) = 0; �h 2Mh:(5.27)The inf-sup condition, established in [4] for the pairing (Xh; fMh) also holds for(Xh;Mh).Lemma 5.1. There exists a constant independent of h such thatinf�h2Mh�h 6=0 supvh2Xha(vh;vh)6=0 b(vh; �h)k�hk(H 1200(S))0a(vh; vh)1=2 � c:(5.28)Proof. Using the de�nition of the dual norm (2.4), we getk�hk(H 1200(�lk))0 = sup�2H 1200(�lk) (�h;�)0;�lkk�kH 1200(�lk) = sup�2H 1200(�lk) (�h;�lk�)0;�lkk�kH 1200(�lk)� C sup�2H 1200(�lk) (�h;�lk�)0;�lkk�lk�kH 1200(�lk) � C max�2Wh(�lk)\H10 (�lk) (�h;�)0;�lkk�kH 1200(�lk) :The maximizing element in Wh(�lk) \H10 (�lk) with H1=200 (�lk)-norm 1, is called ��hand a vlk 2 Xh is de�ned in the following wayvlk j
n
l := 0; vlk j�
l := Hl��h ;where ��h is extended by zero on @
l n �lk . We then �nd0 � (�h; ��h )0;�lk = b(�h; vlk)and a(vlk; vlk) � Caljvlk j21;
l . Finally, we setv�h := KXk=1 Xl2M(k) b(�h; vlk)al vlk ;and observe that a(v�h ; v�h ) = 0 if and only if �h = 0. A coloring argument givesa(v�h ; v�h) � Ck�hk2(H1=200 (S))0 . Summing over all interfaces yieldsk�hk2(H 1200(S))0 � C KPk=1 Pl2M(k) 1al b(�h; vlk)2 = C b(�h; v�h)� C b(�h;v�h )a(v�h ;v�h )1=2 k�hk(H 1200(S))0 :(5.29)By construction, we have found for each �h 2 Mh, �h 6= 0, a v�h 2 Xh witha(v�h ; v�h) 6= 0 such that k�hk(H 1200(S))0 � C b(�h; v�h)a(v�h ; v�h)1=2 :



A Mortar Method Using Dual Spaces 17The proof of the inf-sup condition (5.28) together with the approximation Lemma3.2 and the �rst equation of the saddle point problem gives an a priori estimate similarto (4.26) for the Lagrange multiplier.Lemma 5.2. Under the assumptions u 2 QKk=1Hs(
), 3=2 < s � 2 and[arunlk] = 0, the following a priori estimate for the Lagrange multiplier holds truek�� �hk2(H 1200(S))0 � C KXk=1�kakh2(s�1)k kuk2s;
k :(5.30)Proof. Following [4] and using the �rst equation of the saddle point problem, weget b(�h � �h; vh) = a(uh � u; vh) + b(�h � �; vh); vh 2 Xh:(5.31)Taking (5.29) into account, we �nd that the inf-sup condition even holds if the supre-mum over Xh is replaced by the supremum over a suitable subspace of Xh. For theproof of (5.30), we start with (5.29) and not with the inf-sup condition (5.28)k�h � �hk2(H 1200(S))0 � Cb(�h � �h; w);(5.32)where w := v�h��h and v�h��h is constructed as in the proof of Lemma 5.1. We recallthat w is de�ned as a linear combination of discrete harmonic functionsw = KXk=1 Xl2M(k) b(�h � �h; wlk)al wlkwhere wlk = 0 on S n �lk and k[wlk ]kH1=200 (�lk) = 1. A coloring argument shows thatthe energy norm of w is bounded by the H1=200 {dual norm of �h � �h, moreover we�ndk[w]k2H 1200(S) = KPk=1 Pl2M(k) (b(�h��h;wlk))2al k[wlk]k2H1=200 (�lk) = KPk=1 Pl2M(k) (b(�h��h;wlk))2al� KPk=1 Pl2M(k) 1al k�h � �hk2(H1=200 (�lk))0k[wlk]k2H1=200 (�lk) = k�h � �hk2(H 1200(S))0 :Now, combining (5.31) and (5.32), we obtaink�h � �hk2(H 1200(S))0 � Ca(u� uh; u� uh) 12 a(w;w) 12 + k�h � �k(H 1200(S))0kwkH 1200(S)� C k�h � �hk(H 1200(S))0�a(u� uh; u� uh) 12 + k�h � �k(H 1200(S))0�:Applying the triangle inequality, choosing �hj�lk := Plk� and usingkvk(H 1200(�lk))0 � kvk(H 12 (�lk))0 ; v 2 (H 12 (�lk))0;we �nd that (3.13) yields, for s = 1=2k�� �hk2(H 1200(S))0 � C  a(u� uh; u� uh) + KPk=1 Pl2M(k) h2lal j�j212 ;�lk!� C KPk=1�kakh2kkuk22;
k :



18 BARBARA I. WOHLMUTHHere, we have used that � restricted on �lk is arunlk and a trace theorem.We note that in spite of Lemma 3.2 we cannot obtain a priori estimates of order hfor the norm of the dual of H1=2(S). This is due to the fact that the inf-sup condition(5.28) cannot be established for that norm.Remark 5.3. The a priori estimate (5.30) also holds if we replace the (H1=200 )0-norm by the weighted L2-normk�k2h;S := KXk=1 Xl2M(k) X�2�lk h�al k�k20;�; � 2 L2(S):Using (3.12) and the techniques of the proof of Lemma 5.2, it is su�cient to havea discrete inf-sup condition similar to (5.28) for the weighted L2-norm, i.e.inf�h2Mh�h 6=0 supvh2Xha(vh;vh)6=0 b(vh; �h)k�hkh;S a(vh; vh)1=2 � c:The only di�erence in the proof is the de�nition of vlk . Instead of using a discreteharmonic extension onto 
l, we use a trivial extension by zero, i.e. we set all nodalvalues on @
ln�lk and on 
l to zero. Then, vlk is non zero only on a strip of length j�lkjand width hl and a(vlk; vlk) is bounded form below and above byP�2�lk alh� kvlkk20;�.6. Numerical results. We get a priori estimates of the same quality for theerror in the weak solution and the Lagrange multiplier as in the standard mortar case[4, 6, 7]. In contrast to eVh, we can de�ne nodal basis functions for Vh which have localsupports. E�cient iterative solvers for linear equation systems arising from mortar�nite element discretization are very often based on the saddle point formulation orwork with the product space Xh instead of the nonconforming mortar space. Di�erenttypes of e�cient iterative solvers are developed in [1, 2, 3, 11, 15, 16, 19, 20, 18, 25].However, most of these techniques require that each iterate satis�es the constraintsexactly. In most studies of multigrid methods, these constraints have to be satis�edeven in each smoothing step [11, 12, 18, 25]. If we replace eVh by Vh the constraintsare much easier to satisfy, since instead of solving a mass matrix system, the nodalvalues on the non-mortar side can be given explicitly.
Fig. 6.6. Decomposition and initial triangulation (left) and solution (right) (Example 1)Here, we will present some numerical results illustrating the discretization errorsfor the standard and the new mortar methods in the case of P1 Lagrangian �niteelements. We recall that in the standard mortar approach the Lagrange multipliersbelong to fMh whereas we use Mh in the new method. We have used a multigridmethod which satis�es the constraints in each smoothing step; see [11, 25] for a



A Mortar Method Using Dual Spaces 19discussion of the standard mortar case. This multigrid method can be also appliedwithout any modi�cations to our modi�ed mortar setting. It does not take advantageof the diagonal mass matrix on the non{mortar side of the new formulation. To obtaina speedup in the numerical computations, special iterative solvers for the new mortarsetting have to be designed. We will address this issue in a forthcoming paper [28].We start with an initial triangulation T0, and obtain the triangulation Tl on level l byuniform re�nement of Tl�1.Both discretization techniques have been applied to the following test example:��u = f on (0; 1)2, where the right hand side f and the Dirichlet boundary conditionsare chosen so that the exact solution is (exp(�500xx1)� 1) � (exp(�500xx2) � 1) �(exp(�500yy)�1)� (1�3rr)2. Here xx1 := (x�1=3)2, xx2 := (x�2=3)2, xx := (x�1=2)2 ; yy := (y� 1=2)2 and rr := xx+ yy. The solution and the initial triangulationare given in Figure 6.6. The domain is decomposed into nine subdomains de�ned by
ij := ((i � 1)=3; i=3) �((j � 1)=3; j=3) , 1 � i; j � 3 and the triangulations do notmatch at the interfaces. We observe two di�erent situations at the interface, e.g. theisolines of the solution are almost parallel at @
11 \@
12 whereas at @
11 \@
21 theangle between the isolines and the interface is bounded away from zero. In case thatthe isolines are orthogonal on the interface the exact Lagrange multiplier will be zero.Table 6.1Discretization errors (Example 1)standard approach modi�ed approachLagrange multiplier fMh Lagrange multiplier Mhlevel # elem. L2-err. energy err. L2-err. energy err.0 72 2:021163e+ 0 11:47900 2:021306e+ 0 11:479841 288 1:017372e� 1 3:042101 1:014502e� 1 3:0347782 1152 1:166495e� 1 1:945246 1:166435e� 1 1:9461633 4608 9:482530e� 3 1:114075 9:476176e� 3 1:1135064 18432 2:802710e� 3 0:5928275 2:797809e� 3 0:59231215 73728 7:130523e� 4 0:2981975 7:121334e� 4 0:29801596 284912 1:789436e� 4 0:1492382 1:788082e� 4 0:1491841In Table 6.1, the discretization errors are given in the energy norm as well as in theL2-norm for the two di�erent mortar methods. We observe that the energy error isof order h whereas the error in the L2-norm is of order h2. There is no signi�cantdi�erence in the accuracy between the two mortar algorithm. The discretization errorsin the energy norm as well as in the L2-norm are almost the same.
Fig. 6.7. Decomposition and initial triangulation (left) and solution (right) (Example 2)



20 BARBARA I. WOHLMUTHIn our second example, we consider the union square with a slit decomposedinto four subdomains, see Figure 6.7. Here, the right hand side f and the Dirichletboundary conditions of ��u = f are chosen so that the exact solution is given by(1� 3r2)2r1=2sin(1=2�), where x� 1=2 = r cos�, and y� 1=2 = r sin�. The solutionhas a singularity in the center of the domain. We do not have H2-regularity, and wetherefore cannot expect an O(h) behavior for the discretization error in the energynorm. Table 6.2Discretization errors (Example 2), Energy error in 1e� 01standard approach modi�ed approachLagrange multiplier fMh Lagrange multiplier Mhlevel # elem. L2-err. energy err. L2-err. energy err.0 44 4:896283e� 02 6:000955 4:861265e� 02 6:0507781 176 1:651238e� 02 3:553279 1:619017e� 02 3:5842462 704 4:488552e� 03 2:045833 4:281367e� 03 2:0695863 2816 1:254716e� 03 1:232939 1:125460e� 03 1:2521134 11264 3:878438e� 04 0:7824813 3:046049e� 04 0:79753805 45056 1:401538e� 04 0:5184650 8:680669e� 05 0:52983796 180224 5:883500e� 05 0:3536026 2:649174e� 05 0:3619496The discretization errors are compared in Table 6.2. In this case, we observe a di�er-ence in the performance of the di�erent mortar methods. The L2-error of the modi�edmortar method is asymptotically better than that of the standard method. The sit-uation is di�erent for the energy error; the standard mortar approach gives slightlybetter results. A non-trivial di�erence can only be observed in this example wherethere is no H2-regularity. In that case, the modi�ed mortar method gives betterresults in the L2-norm.Our last example illustrates the inuence of discontinuous coe�cients. We con-sider the di�usion equation �div aru = f , on (0; 1)2, where the coe�cient a is dis-continuous. The unit square 
 is decomposed into four subdomains 
ij := ((i �1)=2; i=2)� ((j � 1)=2; j=2) as in Figure 6.8.
Fig. 6.8. Decomposition and initial triangulation (left) and solution (right) (Example 3)The coe�cients on the subdomains are given by a11 = a22 = 0:00025, a12 = a21 = 1.The right hand side f and the Dirichlet boundary conditions are chosen to matcha given exact solution, (x � 0:5)(y � 0:5) exp(�10((x � 0:5)2 + (y � 0:5)2))=a. Thissolution is continuous with vanishing [arun] on the interfaces. Because of the discon-tinuity of the coe�cients, we use a highly non-matching triangulation at the interface,see Figure 6.8.



A Mortar Method Using Dual Spaces 21The discretization errors in the energy norm as well as in the L2-norm are givenfor the two di�erent mortar algorithms in Table 6.3. We observe that the energy erroris of order h. As in Example 1, there is only a minimal di�erence in the performanceof the two mortar approaches. Table 6.3Discretization errors (Example 3), Energy error in 1e� 01standard approach modi�ed approachLagrange multiplier fMh Lagrange multiplier Mhlevel # elem. L2-err. energy err. L2-err. energy err.0 68 3:184810e+ 00 11:73889 2:981474e+ 00 11:992591 272 9:416096e� 01 6:115732 9:358117e� 01 6:1874392 1088 2:425569e� 01 3:083728 2:431694e� 01 3:0949383 4352 6:093936e� 02 1:545031 6:103994e� 02 1:5465154 17408 1:524479e� 02 0:7729229 1:525489e� 02 0:77311135 69632 3:811271e� 03 0:3865144 3:812137e� 03 0:38653806 278528 9:527881e� 04 0:1932641 9:528569e� 04 0:1932670The following two �gures illustrate the numbers given in Tables 6.1 { 6.3. InFigure 6.9, the errors in the energy norm are visualized whereas in Figure 6.10 theerrors in the L2-norm are shown. In each �gure a straight dashed line is drawn belowthe obtained curves to indicate the asymptotic behavior of the discretization errors.
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Fig. 6.9. Discretization errors in the energy norm versus number of elements
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Fig. 6.10. Discretization errors in the L2{norm versus number of elementsIn Examples 1 and 2, almost from the beginning on the predicted order h for the energynorm and the order h2 for the L2{norm can be observed. In these two examples onlyone plotted curve for the standard and the new mortar approach can be seen. Thenumerical results are too close to see a di�erence in the pictures. In Example 2,where we have no full H2-regularity, the asymptotic starts late. We observe for both
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