
HAL Id: hal-04667634
https://hal.science/hal-04667634v1

Submitted on 5 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CIFER: Code Integrity and control Flow verification for
programs Executed on a RISC-V core

Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre

To cite this version:
Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre. CIFER: Code Integrity
and control Flow verification for programs Executed on a RISC-V core. 2023 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), May 2023, San Jose, France. pp.100-
110, �10.1109/host55118.2023.10133542�. �hal-04667634�

https://hal.science/hal-04667634v1
https://hal.archives-ouvertes.fr

CIFER: Code Integrity and control Flow verification
for programs Executed on a RISC-V core

Anthony Zgheib∗†‡, Olivier Potin∗, Jean-Baptiste Rigaud∗, Jean-Max Dutertre∗

∗Mines Saint-Etienne, CEA Tech, Centre CMP, F - 13541 Gardanne, France
{zgheib, olivier.potin, rigaud, dutertre}@emse.fr

†CEA Tech, Centre CMP, Equipe Commune CEA Tech - Mines Saint-Etienne, F-13541 Gardanne, France
‡Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France

anthony.zgheib@cea.fr

Abstract—Fault Injection Attacks (FIA) are powerful threats
that can modify the intended behavior of a program running
on a processor. Control-Flow Integrity (CFI) is used to check
at runtime that a program’s execution path follows its cor-
responding Control-Flow Graph (CFG) and is not altered by
these attacks. Recent works have stated that developers do
not sufficiently consider hardware specifications while designing
software countermeasures. Moreover, most hardware and co-
design CFI solutions do not cover the integrity of the processor
microarchitecture. This paper presents CIFER, a Code Integrity
and control Flow verification system for programs Executed on
a RISC-V core. It ensures instruction execution in the core while
checking the microarchitectural control signals. This is known
as a Control-Flow and Execution Integrity (CFEI) approach.
Our solution is built upon the RISC-V Trace Encoder (TE)
which provides information about the execution path of the user’s
program. CIFER proposes an evolution of the TE standard and
an analysis of the targeted core’s architecture to monitor the
pipeline control signals. The average hardware area overheads of
our solution range from 35.1% to 55%. Compared to existing CFI
and CFEI countermeasures, CIFER presents no performance
costs. It does not modify the RISC-V Instruction Set Architecture
(ISA), the compilation process nor the user code.

Index Terms—CFG, CFI, CFEI, RISC-V, Trace Encoder, FIA

I. INTRODUCTION

Fault injection attacks (FIA) are effective threats capable of
modifying the behavior of the program running on a processor.
The most common FIA techniques are described in [1]. These
attacks could lead to skip or corrupt a vulnerable instruction in
the user application code, in order to bypass system security
features (e.g bypassing a PIN code [2]). Against these attacks,
Control-Flow Integrity (CFI) [3] verification schemes are used
to verify that a program is correctly executed during runtime. It
checks that its execution follows a path known to be correct in
the application Control Flow Graph (CFG). This CFG can be
drawn by statically analyzing the source code of the program
(if all destinations can be computed during the compilation
process). Note that indirect jump destinations in a program
may not be predicted at compilation time, in this case the
generation of the graph is difficult. The CFG represents the

This work was partially funded by the French National Research Agency
(ANR) under grant agreement ANR-18-CE39-0003

valid control flow evolutions in a normal program execution
[4]. Surveys of hardware [4], [5], [6] and software solutions
[7], [8] illustrate the relevant CFI solutions. Most of the state-
of-the-art CFI solutions check the executed instructions at
the fetch stage (first stage in a core’s pipeline). In this case,
FIA on memory containing these instructions or at the fetch
stage could be detected. Yuce et al. [9] reported steps and
mechanisms to inject faults on an embedded system. A fault
can be injected into any micro-architectural block to affect
the execution of an instruction in the code. Therefore, most
of the existing countermeasures fail to catch such FIA on the
core’s mircoarchitecture. Thus, it is not enough to only verify
the code integrity and/or the CFI of a program to guarantee
its correct execution. The main challenge of our work is the
detection of these FIA on binary instructions by protecting
their execution from memory to the last stage of a RISC-V
core.

Recently, Laurent et al. [10] discussed the effect of phys-
ical fault attacks on the microprocessor and also noted that
developers use software countermeasures against these attacks
without considering and analyzing the microarchitecture of
the processor. Without taking this into account, the designed
countermeasures have low effectiveness or overprotection and
additional costs. As discussed in [10], the failure to consider
both hardware and software specifications can lead to success-
ful attacks, even in a protected system.

In this paper, we present CIFER, a Code Integrity and
control Flow verification system that checks the correctness
of all Executed instructions until the last stage of a RISC-V
core’s pipeline. CIFER follows a Control-Flow and Execution
Integrity (CFEI) approach. Our solution is based on the RISC-
V Trace Encoder (TE) [11]. This module is mainly designed
for debug purposes. In our reseach, an exploitation of the TE
functionality is done with the addition of a verification system
in order to protect the execution integrity of a program.

Our paper is divided as follows: Section II provides insights
on existing CFI and CFEI solutions. Sections III and IV
describe our CIFER methodology and countermeasure. Section
V shows its effectiveness against simulated FIA. Sections VI
and VII report the hardware requirements of our solution and
discussion. Finally, we conclude our paper in the last Section.

DUTERTRE Jean-Max
Authors’ version
HOST 23
https://doi.org/10.1109/HOST55118.2023.10133542

II. RELATED WORK

In this section, the most relevant CFI and CFEI verification
solutions are presented.

A. CFI solutions

Some of these solutions extend the processors Instruction
Set Architecture (ISA) with CFI dedicated instructions. FIXER
[12] and NILE [13] take part of this approach. FIXER is a
solution implementing a co-processor to a RISC-V Rocket
Chip core [14]. It detects code injection [15] and Code Reuse
Attacks (CRA) such as buffer overflow and Return-Oriented
Programming (ROP) attacks [16]. Delshadtehrani et al. imple-
mented NILE, a co-processor to a RISC-V core that detects
stack buffer overflow. The newly introduced instructions are
used to communicate with the dedicated co-processor for CFI
verification.

Some countermeasures guarantee, in addition to the in-
tegrity, the confidentiality of the user code by encrypting the
code instructions and deciphering it at runtime. From this
category, we can cite SOFIA [17] and SCFP [18]. SOFIA is a
hardware-based security architecture that protects the software
integrity, performs CFI, prevents execution of tampered code
and enforces copyright protection. This countermeasure is
added by extending the processor. Werner et al. designed
SCFP, a solution that guarantees the confidentiality of a
software IP and its authentic execution on a microcontroller.
It covers code reuse, code injection and fault attacks on the
code and control flow. A modification to the user code and
compiler is required to insert dedicated CFI instructions.

Savry et al. implemented CONFIDAENT [19]. This solution
consists in protecting both the data and instructions executed
in the processor by encrypting them using a light masking
scheme — ASCON [20]. CONFIDAENT detects FIA such as
rowhammers [21] and glitches at the code or data level. This
solution ensures the confidentiality and integrity of inputs and
data during execution against CRA and stack overflow attacks.
An extension of the ISA is needed to support this mechanism
and a modification to the RISC-V compiler is required to insert
these instructions.

Another approach consists of connecting external blocks
to the processor without extending the ISA to verify the
program’s CFI like the solutions presented in CCFI-Cache
[22] and ATRIUM [23]. Danger et al., in [22], developed a
hardware based solution that verifies code and CFG, ensures
protection against cyber and physical attacks. It covers back-
ward edges and forward edges in certain cases, code and fault
injection. ATRIUM is a runtime attestation scheme targeting
bare metal embedded systems software that works in parallel
to the processor. It ensures CFI and instruction integrity. This
solution covers code injection, code reuse, hardware fault
attacks on instructions and TOCTOU (Time Of Check Time
Of Use) attacks.

The listed countermeasures verify the control flow and/or
code integrity of the program. In this case, all the executed
instructions are verified and the integrity of the control flow
is checked at the memory or first stage of the targeted core.

Faults injected at the mircroarchitecture level are not detected.
This forms a limitation to the CFI solutions and is solved by
following a CFEI approach.

B. CFEI solution

Chamelot et al. developed SCI-FI [24], a countermeasure
for control signal, code and control flow integrity against FIA.
This solution was implemented on the CV32E40P processor
[25]. It protects the execution of the program’s instructions by
checking the pipeline control signals with a fine-grained code
and CFI mechanism. Its hardware system is composed of two
modules: The CCFI and CSI.

The CCFI module provides CFI, code integrity and ex-
ecution integrity for the front-end stages of the processor
pipeline. This is possible by computing a runtime signature of
the control signals at the core’s decode stage. Verification in-
structions are added in the program code containing reference
signatures. SCI-FI dedicated instructions are used to trigger
signature verification or to load patch values supporting branch
instructions.

The CSI module checks the execution integrity for the
pipeline stages following the decode stage. It detects any
change in the control signals constituting the pipeline state
from their emission to their consumption stage. This module
duplicates the propagation of selected signals between the
different pipeline stages. In each pipeline stage, the duplicated
signals are checked against the original ones. SCI-FI requires
an extension of the RISC-V ISA in order to add the verification
instructions.

Table I summarizes the average overhead costs of these
countermeasures in terms of code size, performance and
hardware area compared to our solution whose overhead is
detailed in Section VI.

C. Our contribution

Our verification solution CIFER checks the CFI, code and
execution integrity of a program executed on a RISC-V core.

TABLE I
STATE-OF-THE-ART SOLUTIONS AVERAGE OVERHEAD COSTS.

So
lu

tio
n

C
od

e
Si

ze
(%

)

Pe
rf

or
m

an
ce

(%
)

H
ar

dw
ar

e
A

re
a

(%
)

FIXER [12] N/A 1.5 2.9
NILE [13] N/A <3 15

SOFIA [17] 141 110 28.2
SCFP [18] 19.8 9.1 N/A
SCI-FI [24] 25.4 17.5 <23.8

CONFIDAENT [19] <36 <36 N/A
CCFI-Cache [22] <30 32 10

ATRIUM [23] 0 <22.7 <20
TE-based CFI [26] 0 0 <17

This Work 0 0 <55

Our solution consists in adding an additional verification
system to the core. It detects software or physical attacks
that derive the program execution from its normal behavior.
CIFER is based on the program’s CFG. This graph is formed
from all known destinations of the binary code. Therefore,
our solution does not cover forward edge attacks (faults on
indirect jump destinations that are not precisely known at
binary level) nor attacks injected on data (register or memory).
CIFER also detects alteration of the microarchitectural control
signals, during the execution of instructions, that are the target
of FIA. Our CFEI verification system is based on the RISC-V
TE [11]. To the best of our knowledge, this is the first solution
that uses the RISC-V TE for CFEI verification.

Compared to the SCI-FI solution which requires modifica-
tion of the compiler back-end to insert the signature checks and
patch values, our solution does not modify the compiler, the
RISC-V ISA nor the user code. The following section details
our solution methodology and architecture.

III. OUR METHODOLOGY

CIFER could be implemented on a RISC-V core, compatible
with the TE [11], by applying the following three steps:
• A synthesis of the core pipeline: this step allows us to

have a view on all internal modules and associated signals
contained in its microarchitecture (to be protected against
FIA).

• The generation of metadata related to the processors
control signals following the intended execution of the
program’s instructions.

• The addition of an external hardware module — the Trace
Verifier (TV) — to proceed to CFEI metadata verification.

Each step is described in detail in the next sections.

A. Core analysis

As an illustration, our CFEI solution is implemented on an
IBEX core [27]. It is a 32-bit open-source RISC-V, low power
core with a 2-stage pipeline suitable for IoT applications. Its
architecture is illustrated in Fig. 1. A precise analysis has been
performed on this core in order to select the microarchitectural
signals linked to RISC-V instructions. These signals contribute
to the verification of the program’s execution integrity. Our
research is dedicated for covering instructions respecting the
RISC-V ISA RV32IM (32-bit instructions manipulating in-
tegers including multiplication and division operations). The
compressed instructions (represented on 16 bits) were out of
our scope. However, a 16-bit instruction is transformed to a
32-bit instruction at the fetch stage of the core but needs more
signals to be analyzed. The six 32-bit RISC-V base instruction
formats [28] are taken into consideration in our analysis. The
decoding of a 32-bit RISC-V instruction leads to assigning
values for dedicated signals in the core to ensure its execution.
Our analysis has identified control signals to be relevant to the
CFEI verification by following these 3 steps:
• Perform a synthesis of the core pipeline detecting all

internal modules and signals.

• Evaluate the control signals linked to the instructions
execution.

• Define the required unique signals for identifying each
executed instruction.

As a result, a maximum of 22 control signals was deemed
necessary to guarantee the CFEI of a program executed on
an IBEX core. Fig. 1 shows the IBEX architecture with the
control signals identified in its 2-stage pipeline. The size of
these signals is equal to 47 bits. For other RISC-V architecture,
a further analysis is required to elaborate the list of the relevant
control signals.

B. Metadata generation

A custom program has been developed to parse automati-
cally and statically the binary code in order to derive its CFG
and constitute static metadata to be verified on runtime. This
program is independent and does not take part of the RISC-V
toolchain backend. It only requires the binary file containing
the program instructions. The CFG shows all the legitimate
paths that a program could follow. Our program reports all
discontinuity instructions. They refer to calls, branch and re-
turn instructions. For each discontinuity instruction, metadata
are generated. Each data element contains the PC (Program
Counter) address, the discontinuity instruction with the indexes
(addresses in the memory) of the following discontinuities.
These instructions delimit a Basic Block (BB): a set of suc-
cessive instructions for which execution is done consecutively
and in order. A BB starts with the first instruction following
a discontinuity instruction until the next discontinuity. For
each instruction in the BB, our custom program extracts the
values of the related control signals. With each discontinuity
instruction in the metadata, a hash signature of instructions’
control signals in a BB is computed. Algorithm 1 illustrates
the pseudo-code of the static analysis process to build the
program CFG and Control Signals Signature (CSS). A hash
signature computation is made on the binary value of all
the control signals of a BB using a Multiple-Input Signature
Register (MISR) mechanism [29]. It starts from the BB first
instruction’s control signals until the end of the BB where the
signature is generated. Fig. 2 illustrates an example of five
BBS in a user code. For each instruction in a BB, its control
signal values are generated and an MISR computation is done
as described in Algorithm 1. Table II shows the signature
calculation for the five BBs of Fig. 2. In this example, the
Initialization Vector (IV) of the MISR is fixed to zero. The
control signals of the first instruction of the BB will be xor-
ed to zero and will therefore generate a signature equal to the
value of the signals of the instruction. The generated signature
of a BB is stored within the discontinuity instruction pointing
to the address of the first BB instruction. A runtime verifica-
tion of this signature is bound to check the execution integrity
of the instructions. The hash signature of Basic Block 3
control signals starting at the address 0x3b4 is stored with
the discontinuity instruction pointing to this address the bne
a4,a5,3b4 instruction at the address 0x3a4 when branch
is taken. The signature of Basic Block 2 is also stored

Algorithm 1 CFG Generation and CSS* calculation
Require: Binary Code
Ensure: Discontinuity instructions metadata

for i← program.begin to program.end do
#Discontinuity on Branch, Call or Return
if discontinuity instruction then

#Default Report
report address at i;
report instruction at i;
calculate the CSS∗ of the pointed BB
if branch instruction then

report next discontinuity′s address when
branch taken and not taken;

calculate the CSS∗ of the two pointed BBs
else if call instruction then

report next discontinuity′s address;
report return address and instruction;
calculate the CSS∗ of the pointed BB
calculate the CSS∗ from return adress

till next discontinuity;
else if return instruction then

report return instruction and PC;
end if

end if
end for

*CSS: Control Signals Signature

within this instruction as shown in Fig. 3 — representing the
executed BB when the branch is not taken. The application

reports for each discontinuity instruction, its address, its 32-
bit instruction, the index (address in the memory) of the
next attempted discontinuity instruction and hash signature of
the pointed BB. For a branch instruction, two signatures are
reported: the first when the branch is taken and the second
when the branch is not taken. The stored signature is a

TABLE II
SIGNATURE GENERATION

Instructions Control signals
values

MISR calculation
(Initial Vector=0)

Basic Block 1
01a14703

...
00f71863

513802001c1c
...

073de0002010

513802001c1c
...

67c237716200

Basic Block 2
faa00793
00f10da3
00c0006f

103c023f5410
013c0240361c
300168000302

103c023f5410
2144063e9e3c
7289647d3f7a

Basic Block 3

05500793
00f10da3
01b14783

...
03010113
00008067

103c0200aa10
003c0200aa10
513c02001e1c

...
110802006010
300168200002

103c0200aa10
21440641623c
13b40e82da64

...
70007a163742
523271b45da6

Basic Block 4

01b14783
...

03010113
00008067

513c02001e1c
...

110802006010
300168200002

513c02001e1c
...

6c8fa8e0d802
6b2dd4598326

Basic Block 5
00050793

...
00f71e63

153c02000010
...

073DE0003810

153c02000010
...

7e0f859a1122

prediction of the correct BB CSS when executed on core. A
recalculation of the BB instructions’ control signals is done at
runtime and an additional hardware module the Trace Verifier
(TV) is in charge of comparing it with the metadata (stored

Fig. 1. IBEX core internal signals

{
{

{
{

{

{

Fig. 2. Five BBs delimited by discontinuity instructions

in a memory).

C. Trace Verifier

The TV is an additional hardware module (cf. Fig. 4, bot-
tom). It receives, at runtime, information about the execution
path followed by the program. These information are reported
by the RISC-V Trace Encoder (TE) [11]. Based on the CFEI
metadata (cf. Section III-B), the TV checks that the execution
path of the program is included in its CFG . It also ensures the
execution integrity of the user application code by verifying
the BB CSS. An alarm is raised if an execution derivation has
been detected. The following section describes in more details
our countermeasure.

IV. CIFER

Our solution is composed of four modules: the RISC-V
Trace Encoder, the signature computation module, the Trace
Verifier and its memory to store the generated metadata. The
verification system is depicted in the bottom part of Fig. 4.

{ {

{ {{{ {
{ { { {{

{{{{ {

{ {{

Fig. 3. Generated metadata content.

A. Trace Encoder

1) Overview: The TE is a RISC-V hardware module [11].
It is an execution flow tracer that compresses at runtime the
sequence of discontinuity instructions executed by the RISC-
V core into trace packets. These packets sent to a debug
tool allow developers to check the path followed by the
program. By having access to the program binary, developers
can reconstruct the program flow as depicted in Fig. 4 (top).
This module alone is used for debugging purposes and allows
neither CFI nor CFEI verification. The TE has a 3-stage
pipeline to store the current (I), previous (I-1) and next (I+1)
instructions [11]. Based on these three instructions, a packet
defined by the TE standard [11] containing information about
the path followed by the program since the last sent packet
is emitted to an external debugging tool. It is emitted after
fulfilling one of the seven conditions described in the TE
specifications [11]. These conditions are related to the state of
the core (context, privilege, exception) or to the instructions
executed (first executed, discontinuity instructions, etc). We
briefly describe three of these conditions below that led in
the verification of CFEI. The other four conditions involve
reporting the state of the core (as defined above), which does
not cover the verification of CFEI but can be used to handle
interruptions or core’s exceptions. A packet is sent:
• Based on the previous instruction (I-1):

a) An instruction with an unpredictable PC disconti-
nuity is executed. This type refers to instructions
applying a change to the PC whose offset could not
be determined from the compiled code such as return
instructions. To be able to follow the program path,
the TE reports these discontinuities in form of trace
packets.

• Based on the current executed instruction (I):
b) A first qualified instruction which refers to the first

instrution executed in a program’s code.
c) The TE branch map is full (number of branches=31,

a packet is issued to clear its branch map) or it
has a misprediction case (when branch predictor is
enabled).

The unpredictability imposes the sending of a packet in
order not to lose the thread of the program executed flow.

2) TE-based CFI: A prior work [26] exploits the TE in
order to verify the CFI of a program executed on a RISC-
V core. This design allows the detection of CFG integrity
violations. Two CFI verification approaches were proposed.
The first approach is consistent with the TE standard [11].
With this approach, only instruction skip on discontinuity in-
structions and backward edge attacks are detected. The second
approach suggests an enrichment of the standard in order to
detect more threat models. A packet is sent after each executed
discontinuity instruction and not just after the unpredictable
ones as in the first approach. This packet contains the address
of the following executed instruction and more information
depending on (I-1), (I) and (I+1) instructions. This permits to
detect in addition to the previous threats, any corruption of a

discontinuity instruction. We found that the TE enrichment
is interesting for a CFEI verification. CIFER is based on
the TE sending a packet after each executed discontinuity.
Compared to the TE-based solution, we do not require the
32-bit instruction and address buses for a CFEI verification.

B. MISR module

A hash signature computation with a MISR mechanism [29]
is made on the 47-bit length control signals value of all the
32-bit instructions of a BB. This signature is then included in
the packet transmitted to the Trace Verifier. An example of a
Format 1 packet containing this signature is depicted below:
• Packet 1:

– branches: n
– branch map: n map
– absolute address: destination address
– additional field: control signals signature

C. Trace Verifier Hardware Modules

As depicted in the bottom part of Fig. 4, our verification
system is constituted by a memory (Trace Verifier Memory)
and its core part (Trace Verifier).

1) TV Memory: The produced metadata are stored in a
dedicated memory — Random Access Memory (RAM) —
as illustrated in Fig. 4. Referring to Fig. 3, at index 42,
the 32-bit jump instruction j 3bc is stored with its 32-bit
address 0x3b0, the 16-bit index of next discontinuity and the
47-bit signature 0x6b2dd4598326 of the following BB. In
case of a branch instruction (e.g. at index 41), two 47-bit
hash signature values are stored referring to the two possible
branches. In total, each discontinuity instruction requires 174-
bit of metadata.

2) TV Architecture: Fig. 5 shows the architecture of our
TV. It is composed of configurables modules (FIFO and
LIFO), a Finite State Machine (FSM) and several processes.
The verification process starts when it receives a packet from
the TE that activates its FSM (1). Meanwhile, the packet
is stored in a FIFO and will be acquired by the FSM (2).

Subsequently, it is decoded in order to extract the reported
address and signature (3). In case of a packet reporting the
execution of a branch instruction, the branch and branch map
are also extracted. Having the packet information, a navigation
through the RAM metadata is done to constitute the path
followed by the program and the expected hash signature (4).
The last step of the FSM is to check the address stored in the
packet against the static address computed from the navigation
process and also compare the reported hash signature to the
calculated signature (5). If the addresses and/or signatures are
not equal, an error flag is raised. The process of resilience is
not discussed here. This error could be treated as a software
exception or hardware interruption with a dedicated process
or as a message sent to the user.

3) TV FSM: The five steps listed in the TV Architecture
are explicitly represented in Fig. 6. The TV is in an idle state
until it receives a packet from the TE. Then, this packet is
decoded to check its format — this refers to step 2 in Fig. 5.
Step 3 — Packet extraction process — is divided
into 2 sequential FSM states (which requires 2 clock cycles).
In the first state, the packet format is read. Then in the second
state, the format-related fields are extracted (branch, address,
signature). For instance, referring to Fig. 3 at index 41 and
after the execution of the branch instruction 0x00f17863,
a Format 1 packet is reported indicating if the branch is
taken or not. In case of a taken branch, the BRAM index
will point to 43 and the branch address is extracted from the
metadata binary instruction. In the other case, the index will
be incremented by 1 to reach the index 42 which refers to the
next planned discontinuity in the code. This corresponds to
step 4. In the step 5, the TE content is verified by comparing
the metadata extracted address to the TE reported address. The
expected signature for the actual CSS BB (contained within
the previous metadata instruction) is also compared to the hash
signature reported by the TE. The communication with the
LIFO representing the ”Shadow Stack” of our TV (cf. Fig.
5) is done when the BRAM navigation process points to a
call or return instruction. After the FSM state TE fields

Fig. 4. A schematic of the RISC-V + TE (top) and CIFER solution (bottom).

Fig. 5. Architecture of the TV.

extraction, the next state will depend on the type of
the pointed instruction in the BRAM. We can distinguish 3
categories:
• Function call (JAL instruction): In this case, the next

FSM state Push LIFO stores the instruction index in the
LIFO module. Additionally, the call address and expected
signature are extracted.

• Return instruction: The last call index stored in the
LIFO is retrieved via the state Pull LIFO. The TV
adds four to the retrieved call address in order to get the
return address of the called function. It also increments
the BRAM index by one to point to the discontinuity in-
struction following the call via steps Update Return
Address and Get Return Metadata. The second
signature stored at the call index corresponds to the
expected signature for the BB executed after the return
(as illustrated in Section III-B). This signature is also
extracted to be verified in the Verify state.

• Branch or Jump (J) instruction: The address and
signature from the metadata are extracted in the state Get
Metadata.

As an example, we refer to a function call in Fig. 3. The

1
2

3.

4

5

Fig. 6. FSM of the TV.

call instruction jal ra,318 pushes the index 45 into the
LIFO. After the execution of the return instruction at address
0x3cc, the index is extracted from the LIFO, and then the
return address is calculated by adding four to the call address
0x3f4+4, which is equal to 0x3f8. In addition, the BRAM
index points to the call’s index 45 incremented by one refer-
ring to the next planned discontinuity at index 46. At the veri-
fication step, the calculated address 0x3f8 is compared to the
TE reported address in addition to the signatures. The expected
signature for the actual BB, containing the return instruction, is
extracted from the previous discontinuity metadata (the branch
instruction at address 0x3a4 or the jump instruction at address
0x3b0). It is equal to 0x523271b45da6 if the branch is
taken (0x6b2dd4598326 if not and the jump instruction is
executed). The verification process requires six clock cycles
to verify the content of a packet and eight cycles when the
instruction fetched from the BRAM is a return instruction.
The two additional cycles are needed to calculate the return
address and the following discontinuity index based on the
call index stored in the LIFO via steps Update Return
Address and Get Return Metadata. Our TV works
in parallel to the RISC-V core. The six to eight clock cycles
required to verify a packet are performed concurrently to the
program execution.

V. FIA ON SELECTED BENCHMARKS

This section illustrates a FIA on a VerifyPIN use case and
demonstrates how CIFER detects this fault.

A. VerifyPIN

This application aims to authenticate an user by comparing
an user PIN to a card PIN code. L. Dureuil et al. [30] demon-
strated that the VerifyPin version using hardened booleans and
fixed-time loop as countermeasures has vulnerabilities to FIA
on the executed instructions. A single fault injection can invert
the condition of a sensitive branch instruction. Moreover ,
Yuce et al. [31] also stated that software countermeasures are
not completely secure because their view of the microproces-
sor is limited to the ISA. FIA at lower level is possible and
was experimentally demonstrated by [31] to broke software
countermeasures by low-cost, single clock glitch injections.
To illustrate one of these faults, a FIA is simulated on the
control signals of an identified branch condition as shown in
Fig. 7. This fault is identified by [10] on a branch instruction
inverting the Arithmetic Logic Unit (ALU) operation test.
The targeted branch condition compares a variable ”diff” to
”BOOL FALSE”. If the condition is true then the variable
”status” will indicate that there is no difference between the
user and card PIN. Authentication could be granted. Invert-
ing this instruction will affect ”status” to ”BOOL TRUE”
regardless of the user PIN. Hence, authentication could be
granted with a wrong code PIN. The assembly instruction of
this condition is shown as a bne instruction in the Fig. 2 at
the address 0x3a4.

Fig. 7. Targeted branch instruction in the VerifyPin code.

B. FIA scenario

The bne instruction once retrieved from the instruction
memory is decoded into several signals. A signal ALU_op
indicates the required operation for the ALU as shown in Fig.
1. This signal is equal to ALU_NE where NE refers to a Not
Equal operation in case of a bne instruction. The ALU is
asked to compare the non equality of its A and B operands
and report the result. For the branch instruction at address
0x3a4 — in charge of comparing the ”diff” variable —, 2
non-equal operands (the case of a wrong pin) imply the branch
to be taken and, thus, return a ”BOOL FALSE” as a ”status”
value. The authentication is then not approved. Changing the
ALU operator from ”ALU NE” to ”ALU EQ” via a FIA, tests
the equality of the operands values. In this case, the branch
at address 0x3a4 is not taken and returns a ”BOOL TRUE”
value for the status indicating an authentication. Fig. 8 shows
the FIA simulation on the ALU_OP for the branch condition.
A correct execution of the branch instruction at the decode
stage 0x00f71863 is reported (cf. Fig. 2). However, due
to the FIA, the ALU operator of this instruction is equal to
”ALU EQ”. The simulated FIA changed the ALU operation
from to ”ALU NE” to ”ALU EQ”. This is a complex fault
that requires physically 1 bit flip. From a software perspective,
the IBEX has executed the bne instruction. However, from a
hardware perspective the one actually executed is rather a beq
instruction. An emission of a packet after the execution of (I-
1) —the branch—, (I) and (I+1) instructions is send to the
TV.

C. FIA detection

The sent packet after the execution of the branch instruction
is processed by the TV as shown in our simulation of Fig.
9. The enumerated FSM steps (as described in Fig. 6) lead
to the execution integrity verification of the BB containing
the branch instruction. As the signature of the faulted ex-
ecution 0x67c207716200 is different from the signature

TABLE III
COMPARISON OF OUR SOLUTION WITH RELATED WORKS

Solution N
o

U
se

r
C

od
e

M
od

ifi
ca

tio
n

N
o

C
om

pi
le

r
M

od
ifi

ca
tio

n

N
o

Pi
pe

lin
e

M
od

ifi
ca

tio
n

N
o

Pe
rf

or
m

an
ce

O
ve

rh
ea

d

B
ac

kw
ar

d
E

dg
e

Pr
ot

ec
tio

n

Fo
rw

ar
d

E
dg

e
Pr

ot
ec

tio
n

C
od

e
In

te
gr

ity

C
od

e
E

xe
cu

tio
n

In
te

gr
ity

C
od

e
C

on
fid

en
tia

lit
y

FIXER [12] 7 3 3 7 3 3 3 7 7
NILE [13] 7 7 3 7 3 7 3 7 7

SOFIA [17] 7 3 7 7 3 7 3 7 3
SCFP [18] 7 7 7 7 3 3 3 7 3

CONFIDAENT [19] 7 7 7 7 3 3 3 7 3
CCFI-Cache [22] 7 7 3 7 3 (7) 3 7 7

ATRIUM [23] 3 3 3 7 3 7 3 7 7
SCI-FI [24] 7 7 7 7 3 7 3 3 7
TE-CFI [26] 3 3 3 3 3 7 7 7 7

This Work 4 4 4 4 4 8 4 4 8

0x67C237716200 expected by the TV, CIFER raises an
error flag. Therefore, the FIA on control signals is detected.
A comparison of our solution with relevant CFI and CFEI
state-of-the-art solutions could be found in table III. Compared
to the solution [26] which only verifies the program CFI by
checking the discontinuity instructions at the core’s decode
stage, our solution additionally covers the integrity of the
executed code by checking signatures of the pipeline control
signals. Table I shows the overheads of these countermeasures
compared to our solution which has no impact on the user code
(size or execution time). It is a hardware verification method
that neither modifies the RISC-V ISA nor the compiler.

VI. SOLUTION METRICS

Our simulations target the Artix-7 Field-Programmable Gate
Array (FPGA) embedded on a Nexys video board. This FPGA
contains 33,650 logic slices. Each slice is composed of four
6-input LUTs, 8 flip-flops, multiplexers and carry units. A
description of the hardware requirements of our system in
terms of slice is provided in the following parts.

A. Target Core

CIFER is implemented on an IBEX core [27]. It is a 32-bit
open source RISC-V, low power core with a 2-stage pipeline
suitable for IOT applications. Its area cost is equal to 645
slices. 25 additional were added to the core in order to connect
the microarchitecture signals to the MISR module. In total, the
core’s architecture requires 670 slices.

B. Signals selector and MISR module

Depending on the executed instruction, related control sig-
nals are selected to calculate their hash signature. For each
instruction, a signature of 47-bit is computed. Note that, the
47-bit signature computation module is designed to compute
the signature of an instruction in one cycle. The total slice
requirements for these modules is equal to 58 slices. Designed

FIA on the ALU operator
signal

Packet
Emission

*

Fig. 8. Simulation of a packet emission due to the execution of the branch instruction.

for testability, a 47-bit MISR module offers a better protection
(aka a small aliasing probability [32]) than a 47-bit CRC
module or a 47-bit hash function against collisions.

C. Trace Encoder

The TE module is extracted from the pulp-platform project
[33]. Its implementation needs 239 slices. To verify the CFEI
of a program, we made an enhancement to the standard in
a way to send a packet after each discontinuity instruction
including the signature of the executed BB. The packet size is
increased by 17 bits to be a vector of 87-bit in order to contain
the 47-bit signature, the 32-bit destination address, the 2-bit
packet format and additional 6-bit depending on its format.
These enhancements cost 46 slices while respecting the retro-
compatibility of the TE. It can run in a normal [11], CFI or
CFEI mode. In total, the TE requires 285 slices.

D. Trace Verifier components

The TV is divided in 3 parts: its memory to store the static
metadata — implemented as a Block Random Access Memory
(BRAM) on FPGA, its core and its configurable block (FIFO
and LIFO modules).

1) BRAM: CIFER was tested on several benchmarks from
Pulpino project [34], Embench-IOT benchmarks [35] and
some classic ones. These benchmarks were compiled with
the RV32IM base instruction set and into 3 compilation
optimizations level: O1 for the basic level, O2 for the ad-
vanced level and O3 for the highest possible optimization
level. As an illustration, Fig. 10 shows the ratio between the
generated metadata and code size for the 3 optimization levels.
The Metadata-Code size ratio ranges from 16% and 68%.
The small benchmark codes have the highest ratio (e.g. the
Memcpy and Memcmp codes). The BRAM is designed with
a single read port model. The writing of the metadata is done

upstream of the code execution. We have chosen the index
width of the BRAM memory to be 16. This value delimit the
depth of the metadata memory to 216 = 65536 lines. To give
an order of magnitude, the ”nshichneu” code from Embench-
IOT [35] contained the most discontinuity instructions. In total,
1188 lines (discontinuities) were needed for a optimization in
O1. An index size of 12 was sufficient to address these lines.
With this configuration, the memory implementation requires
only 10 BRAM blocks without additional slices (this is also
the case for indexes of less than 12 bits). This represents the
maximum hardware utilization for the simulated benchmarks.
The choice of having a large memory is to give the user an
order of magnitude for his implementation in case his code
contains less than 65536 discontinuity instructions. With a 16-
bit index width, the TV memory’s implementation requires
314 BRAM blocks and 174 slices (BRAM uses internal
register stages). For a complex user code, the BRAM size
is sufficient to contain the metadata related to its discontinuity
instructions.

2) TV core: It is composed of the FSM and processes. It
requires 168 slices.

3) TV Configurable block: It represents the LIFO (shadow
stack) and FIFO for storing the TE packets. Their sizes are
dependent of the running application and could be configured
to a specific application. However, in the evaluation phase
of our approach, we have chosen sufficiently large sizes to
simulate all the targeted benchmarks for an FPGA or even
ASIC implementation. As illustration of the configurable block
requirements, Fig. 11 shows the FIFO and LIFO depths to
store data for the compiled benchmarks with the O2 optimiza-
tion on a log scale. The maximum FIFO and LIFO depths are
respectively 153 and 9. Each application requires a different
depth depending on the number of discontinuities/packets sent

1 2 3. 4 5

Packet Read CFEI Verification Error
Flag

Fig. 9. Simulation of a packet’s verification by the TV.

Fig. 10. Metadata overhead

and the size of the BBs. The verification latency becomes
important when packets are sent simultaneously and could not
be verified by the TV on the fly. Our TV does CFEI verification
at runtime after receiving a packet from the TE . It needs 6 to
8 clock cycles to process a packet (cf. Section IV-C). The
verification latency becomes significant when discontinuity
instructions follow each other with fewer clock cycles than
is required to process successive packets by the TV (6 clock
cycles). Therefore, an increase in the FIFO depth is mandatory
when a packet is issued after a BB execution containing
less than 6 non-multi-cycle instructions. These executions
send packets simultaneously. To process all of these packets,
the FIFO is required to store them. Fig. 11 illustrates the
packet accumulations which induces a latency to verify all
of them. The FIFO is used in order not to stall the processor
while a packet is being verified. The depth of the FIFO can
be calculated statically by analyzing the binary code of an
application. This can be done by counting the instructions
formed by all BB and comparing the count to the number
of FSM states. In the case of a parameter-conditioned loop
containing fewer clock cycles than the FSM check cycles, the
user can predict the number for that loop by analyzing the
code to correctly increment the FIFO depth.

In order to have a generic solution compatible with more
complex benchmarks and to avoid the overflow phenomenon,
the FIFO and LIFO are designed to store 512 and 16 values
respectively. Their implementations require respectively 12
and 3 slices. The overall area cost of the TE optimization
taking part of CIFER (46 slices, cf. Section VI-C), the hash

Fig. 11. FIFO and LIFO Depths

module (58 slices and 25 for its connection) and TV (357
slices for 16-bit LIFO index) is equal to 486 slices. When
working with a 12-bit index, the TV only requires 182 slices.
We have simulated the benchmarks used by [26] and a 12-bit
index was enough to point all their discontinuity instructions.
Therefore, compared to the TE-based CFI solution of [26]
which only adds 17% in terms of slices over the IBEX +
TE requirements, our solution requires 35.1% (for an index
less than 12-bit) and 55% (for a 16-bit index). The area
overhead is related to store 2*47 extra signature bits for each
discontinuity instruction and their verification process. Each
benchmark code was loaded into a 256-block RAM connected
to the IBEX core. Our metadata, stored in the TV memory,
require 20-block RAM for a 12-bit index. Therefore, the
BRAM metadata overhead is equal to 7.81%.

VII. DISCUSSION

In our work, CIFER has been implemented on an IBEX,
a 2-stage pipeline RISC-V core connected to the TE (cf.
Fig. 4). The TE receives a 47-bit signature of the instruc-
tion control signals to be included in its generated trace.
In our implementation, the IBEX branch prediction feature
was disabled. Enabling this option emits a specific packet
after a discontinuity instruction with content defined by the
TE standard. The TV could be configured to operate in this
mode. Moreover, CIFER could be implemented to other RISC-
V cores compatible with the TE. However, the study of
the targeted architecture is required. The methodology steps
defined in Section III should be followed for other RISC-V
cores. This permits choosing the control signals adapted to
the architecture and adapting the size of the MISR module
and TE trace. The execution integrity of RV32IM instructions
has been protected on an IBEX core. A study of the signals
of the compressed instructions could also be done for possible
integration into CIFER. This is a perspective of our work.

VIII. CONCLUSION

This paper presents CIFER, a Code Integrity and control
Flow verification system for programs executed on a RISC-V
core. This solution is based on the RISC-V Trace Encoder, a
debug feature that allows to capture the execution path of a
program. A signature calculation of microarchitectural control
signals is linked to the TE mechanism in order to work in
the CFEI mode. We demonstrate how program’s instructions
execution are protected against FIA. The comparison of a
computed signature of microarchitecture control signals, at
runtime, with a pre-calculated signature guarantees the exe-
cution integrity property of a program’s code. Compared to
state-of-the-art solutions, our countermeasure does not gen-
erate performance overheads. Only hardware overheads are
reported. CIFER’s overage area overheads range from 35.1%
to 55%. Its implementation does not modify the RISC-V ISA,
compiler nor the user code. In our future work, we aim to
enhance CIFER to handle interruptions and core exceptions.

REFERENCES

[1] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injec-
tion attacks on cryptographic devices: Theory, practice, and counter-
measures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076,
Nov. 2012, Conference Name: Proceedings of the IEEE.

[2] P. Kiaei, C.-B. Breunesse, M. Ahmadi, P. Schaumont, and J. v.
Woudenberg, “Rewrite to reinforce: Rewriting the binary to apply
countermeasures against fault injection,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC), ISSN: 0738-100X, Dec. 2021,
pp. 319–324.

[3] M. Abadi, M. Budiu,. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security, vol. 13, no. 1, 4:1–4:40,
Nov. 6, 2009. https://doi.org/10.1145/1609956.1609960.

[4] R. D. Clercq and I. Verbauwhede, “A survey of hardware-based
control flow integrity (CFI),” p. 27, 2017.

[5] S. Kumar, D. Moolchandani, and S. R. Sarangi, “Hardware-assisted
mechanisms to enforce control flow integrity: A comprehensive
survey,” Journal of Systems Architecture, vol. 130, p. 102 644, Sep. 1,
2022. https : / / www . sciencedirect . com / science / article / pii /
S1383762122001643 (visited on 09/15/2022).

[6] S. Tauner and M. Telesklav, “Comparative analysis and enhancement
of CFG-based hardware-assisted CFI schemes,” ACM Transactions on
Embedded Computing Systems, vol. 20, no. 5, 58:1–58:25, Sep. 22,
2021. https://doi.org/10.1145/3476989 (visited on 09/15/2022).

[7] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random
additive signature monitoring for control flow error detection,” IEEE
Transactions on Reliability, vol. 66, no. 4, pp. 1178–1192, 2017.

[8] N. Burow, S. A. Carr, J. Nash, et al., “Control-flow integrity:
Precision, security, and performance,” IEEE Transactions on Software
Engineering, vol. 43, no. 8, pp. 701–714, Aug. 1, 2017. http://arxiv.
org/abs/1602.04056 (visited on 09/28/2022).

[9] B. Yuce, P. Schaumont, and M. Witteman, “Fault attacks on secure
embedded software: Threats, design and evaluation,” Journal of
Hardware and Systems Security, vol. 2, no. 2, pp. 111–130, Jun. 2018.
http://arxiv.org/abs/2003.10513 (visited on 09/19/2022).

[10] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A.
Papadimitriou, “Cross-layer analysis of software fault models and
countermeasures against hardware fault attacks in a RISC-v pro-
cessor,” Microprocessors and Microsystems, vol. 71, p. 102 862,
Nov. 1, 2019. https : / / www. sciencedirect . com / science / article / pii /
S0141933118304745.

[11] RISC-V, Working draft of the RISC-v processor trace specification.
https://github.com/riscv/riscv-trace-spec (visited on 11/29/2020).

[12] A. De, A. Basu, S. Ghosh, and T. Jaeger, “Hardware assisted buffer
protection mechanisms for embedded RISC-v,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 12, pp. 4453–4465, Dec. 2020, Conference Name: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems.

[13] L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi,
“Nile: A programmable monitoring coprocessor,” IEEE Computer
Architecture Letters, vol. 17, no. 1, pp. 92–95, Jan. 1, 2018. http :
//ieeexplore.ieee.org/document/8219379/ (visited on 10/26/2022).

[14] K. Asanovic, R. Avizienis, J. Bachrach, et al., “The rocket chip
generator,” p. 11,

[15] C. H. Kim and J.-J. Quisquater, “Faults, injection methods, and
fault attacks,” IEEE Design & Test of Computers, vol. 24, no. 6,
pp. 544–545, Nov. 2007, Conference Name: IEEE Design & Test of
Computers.

[16] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” p. 29,

[17] R. de Clercq, J. Gtzfried, D. bler, P. Maene, and I. Verbauwhede,
“SOFIA: Software and control flow integrity architecture,” Computers
& Security, vol. 68, pp. 16–35, Jul. 1, 2017. https://www.sciencedirect.
com/science/article/pii/S0167404817300664 (visited on 09/27/2022).

[18] M. Werner, T. Unterluggauer, D. Schaffenrath, and S. Mangard,
“Sponge-based control-flow protection for IoT devices,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), Apr. 2018,
pp. 214–226.

[19] O. Savry, M. El-Majihi, and T. Hiscock, “Confidaent: Control FLow
protection with instruction and data authenticated encryption,” in 2020
23rd Euromicro Conference on Digital System Design (DSD), Aug.
2020, pp. 246–253.

[20] I. T. L. Computer Security Division. (Jan. 3, 2017). Round 2 -
lightweight cryptography | CSRC | CSRC, CSRC | NIST, https://csrc.
nist . gov /Projects /Lightweight - Cryptography /Round- 2 - Candidates
(visited on 10/19/2022).

[21] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug
to gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

[22] J.-L. Danger, A. Facon, S. Guilley, et al., “CCFI-cache: A transparent
and flexible hardware protection for code and control-flow integrity,”
in 2018 21st Euromicro Conference on Digital System Design (DSD),
Aug. 2018, pp. 529–536.

[23] S. Zeitouni, G. Dessouky, O. Arias, et al., “ATRIUM: Runtime
attestation resilient under memory attacks,” in 2017 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), ISSN:
1558-2434, Nov. 2017, pp. 384–391.

[24] T. Chamelot, D. Courousse, and K. Heydemann, “SCI-FI: Control
signal, code, and control flow integrity against fault injection attacks,”
in 2022 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), Antwerp, Belgium: IEEE, Mar. 14, 2022, pp. 556–559.
https://ieeexplore.ieee.org/document/9774685/.

[25] M. Gautschi, P. D. Schiavone, A. Traber, et al., Near-threshold RISC-
v core with DSP extensions for scalable IoT endpoint devices, Feb.
2017. https : / / ieeexplore . ieee . org / document / 7864441 (visited on
09/28/2022).

[26] A. Zgheib, O. Potin, J.-B. Rigaud, and J.-M. Dutertre, “A cfi verifi-
cation system based on the risc-v instruction trace encoder,” in 2022
25th Euromicro Conference on Digital System Design (DSD), 2022,
pp. 456–463.

[27] Ibex RISC-v core, original-date: 2017-08-08T12:16:36Z, Sep. 27,
2022. https://github.com/lowRISC/ibex (visited on 12/09/2019).

[28] D. Patterson and A. Waterman, The RISC-V Reader: an open archi-
tecture Atlas. Strawberry Canyon, 2017.

[29] F. Elguibaly and M. El-Kharashi, “Multiple-input signature registers:
An improved design,” in 1997 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, PACRIM. 10
Years Networking the Pacific Rim, 1987-1997, vol. 2, Aug. 1997,
519–522 vol.2.

[30] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. d.
Choudens, “Fissc: A fault injection and simulation secure collection,”
in International Conference on Computer Safety, Reliability, and
Security, Springer, 2016, pp. 3–11.

[31] B. Yuce, N. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont, “Software fault resistance is futile: Effective single-
glitch attacks,” presented at the Proceedings - 2016 Workshop on
Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, 2016,
pp. 47–58.

[32] D. Pradhan, S. Gupta, and M. Karpovsky, “Aliasing probability for
multiple input signature analyzer,” IEEE Transactions on Computers,
vol. 39, no. 4, pp. 586–591, Apr. 1990, Conference Name: IEEE
Transactions on Computers.

[33] Pulp-platform, Trace debugger for risc-v core. https: / /github.com/
pulp-platform/trace\ debugger (visited on 11/01/2020).

[34] A. Traber, F. Zaruba, S. Stucki, et al., “Pulpino: A small single-core
risc-v soc,” in 3rd RISCV Workshop, 2016.

[35] D. Patterson, J. Bennett, P Dabbelt, C Garlati, G. Madhusudan, and
T Mudge, Embench: A modern embedded benchmark suite, 2021.

