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Abstract. Control-Flow Integrity (CFI) is used to check at runtime
that a program’s execution path follows its corresponding Control-Flow
Graph (CFG) and is not altered by software or physical attacks. In addi-
tion to the CFI’s features, the Code and Control-Flow Integrity (CCFI)
verifies the integrity of the executed program code. This paper presents
a CCFI verification system for programs executed on RISC-V cores. Our
solution is built upon the RISC-V Trace Encoder (TE) that provides in-
formation about the execution path of the user’s program. An evolution
of the TE specifications and additional logic have made it possible to
monitor the integrity of a program control flow and of all the executed
instructions. We implemented this approach on a RISC-V core and simu-
lated its efficiency against Fault Injection Attacks. Its average hardware
area overheads range from 26.1% to 44.5%. Compared to existing CCFI
solutions, our methodology does not modify the user code, the RISC-V
compiler or the core’s pipeline.

Keywords: RISC-V · Trace Encoder · CFI · CCFI · FIA.

1 Introduction

Fault Injection Attacks (FIA) are effective threats that can alter the intended
behavior of a program running on a processor. The most common FIA tech-
niques are described in [3]. These attacks could lead to skipping or corrupting
a vulnerable instruction in the user application code, in order to bypass system
security features [18] (e.g. bypassing a PIN code [12]). Against these attacks,
Control-Flow Integrity (CFI) [1] verification schemes are used to verify that a
program is correctly executed during runtime. It checks that its execution fol-
lows a path known to be correct in the application Control Flow Graph (CFG).
This CFG can be drawn by statically analyzing the source code of the program
(if all destinations can be computed during the compilation process). Note that
indirect jump destinations in a program may not be predicted at compilation
time, in this case the generation of the graph is difficult. The CFG represents the
valid control flow changes in a normal program execution [8]. However, attacks
made on instructions/operations within the user code are not always detected
by CFI solutions, such as changing an addition of two values into a subtrac-
tion (if no violation of the CFG is induced). Code and Control-Flow Integrity
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(CCFI) countermeasures are designed to verify at runtime, in addition to CFI,
the integrity of the executed user code. With this verification, the entire code
is protected against FIA not only the discontinuity instructions (monitored by
CFI).

Contributions Our work contributes to the CCFI state-of-the-art by adding a
solution that does not require any code or compiler modification. In addition, no
core nor Instruction Set Architecture (ISA) extension are made. Our solution
consists in adding an additional verification system to the RISC-V core [2].
It detects software or physical attacks that derive the program CFG from its
normal behavior. This graph is formed from all known destinations of the binary
code. Therefore, our solution does not cover forward edge attacks (faults on
indirect jump destinations that are not precisely known at binary level) nor
attacks injected on data (register or memory). Our CCFI verification system is
based on the RISC-V Trace Encoder (TE) [17]. To the best of our knowledge,
this is the first solution that uses the RISC-V TE for CCFI verification.

Organization Our paper is divided as follows: Section 2 provides insights on
existing CCFI solutions. Sections 3 and 4 describe our CCFI methodology and
countermeasure. Section 5 shows its effectiveness against simulated FIA. Sec-
tions 6 and 7 report the hardware requirements and the discussion about our
solution. Finally, we conclude our paper in the last Section.

2 Related work

In this section, the most relevant CCFI verification solutions are presented.
Some countermeasures ensure both the integrity and confidentiality of the user
code by encrypting the code instructions and deciphering it at runtime. From
this category, we can cite SOFIA [7]. It is a hardware-based security architecture
that protects the software integrity, performs CFI, prevents execution of tam-
pered code and enforces copyright protection. This countermeasure is added by
extending the processor. In another perspective, other countermeasures modify
the user code and compiler to insert dedicated CCFI instructions. Werner et
al. [20] designed SCFP, a solution that guarantees the confidentiality of a soft-
ware IP and its authentic execution on a microcontroller. It covers code reuse,
code injection and fault attacks on the code and control flow. The SCI-FI [4]
solution belongs also to this category. It is designed for control signal, code
and CFI verification. It protects against FIA. The verification process is trig-
gered by dedicated and customized instructions added by extending the RISC-V
ISA. Another approach is to connect external blocks to the processor without
extending the ISA to verify the program CCFI like the solution presented in
CCFI-Cache [6] and ATRIUM [21]. Danger et al., in [6], developed a hardware
based solution that verifies code and CFG, ensures protection against cyber and
physical attacks. It covers backward edges and forward edges in certain cases —
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when the indirect jump targets a destination address not pointing to a begin-
ning of a Basic Block (BB), detected by checking the StartBB label—, code and
fault injection. ATRIUM is a runtime attestation scheme targeting ”bare metal”
embedded systems software that works in parallel to the processor. It ensures
CFI and instruction integrity. This solution covers code injection, code reuse,
hardware fault attacks on instructions and TOCTOU (Time Of Check Time Of
Use) attacks [19]. The previous countermeasures have an impact on the runtime
of the programs. Except ATRIUM, these solutions require user code modifica-
tion to ensure CCFI verification. Table 1 summarizes the average overhead costs
of these countermeasures in terms of code size, performance and hardware area
compared to our solution whose overhead is detailed in Section 6. In the follow-

Table 1. State-of-the-art solutions average overhead costs.
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Performance (%) 110 9.1 17.5 32 <22.7 0

Hardware Area (%) 28.2 N/A <23.8 10 <20 <44.5

ing sections, we describe a new CCFI scheme that keeps unchanged the user
code, compilation process and core design.

3 CCFI Methodology

Our CCFI verification methodology is divided into 3 steps:

1. The static analysis of the binary code to obtain its CFG.
2. The generation of metadata related to the discontinuity instructions and

Basic Blocks (BB, cf. Section 3.2 for definition).
3. The addition of an external hardware module — the Trace Verifier (TV) —

to proceed to the CCFI verification.

Each step is described in detail in the next sections.

3.1 Static Analysis

A custom program has been developed to analyse statically the user’s binary code
in order to derive its CFG. This graph shows all the legitimate paths that a pro-
gram could follow. From this analysis, all discontinuity instructions are reported.



4 A. Zgheib et al.

Algorithm 1 CFG Generation
Require: Binary Code
Ensure: Discontinuity instructions with their Basic Blocks ( cf. Section 3.2 for

definition)
for i← program.begin to program.end do

#Discontinuity on Branch, Jump, or Return
if discontinuity instruction then

#Default Report
report address at i;
report instruction at i;
if branch instruction then

report next discontinuity′s address when branch taken;
report next discontinuity′s address when branch non taken;

else if jump instruction then
report next discontinuity′s address when call;
report return address # equal to jump address + 4

else if return instruction then
report address and instruction;

end if
end if

end for

They refer to direct jumps —Jump (J) and Jump And Link (JAL) instructions—
, branch and return instructions. Algorithm 1 illustrates the pseudo-code of the
static analysis process used to build the program CFG. The application reports
for each discontinuity instruction the address(es) of the next attempted discon-
tinuity instruction(s). For a branch instruction, two addresses are reported: the
first when the branch is taken and the second when the branch is not taken. In
our strategy, indirect jumps represented by the Jump And Link Register (JALR)
instructions are not considered. These instructions involve the code’s program
counter (PC) to jump to a destination whose address is calculated according to
the content of a register and a value contained in its binary instruction. This
register’s content is not known at the time of the static analysis. However, the
possible addresses can be guessed by parsing the code to form an array of pos-
sible destinations. This strategy complicates the control flow schemes to check
for a correct destination. To allow easy and accurate extraction of the CFG,
Gonzalvez et al. [11] proposed two modified ISAs by removing indirect jumps
from a program. In our case, we dedicate our approach to cover the CCFI for
programs that do not contain indirect jumps. We further discuss in Section 7
how these jumps could be treated as a further work.

3.2 Metadata Generation

From the discontinuity instructions of the CFG, metadata are generated consti-
tuting the CFG’s map. Each data element contains the discontinuity instruction,
its address and the index (address in the memory) of the following discontinuity.
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These instructions delimit a Basic Block (BB): a set of successive instructions
for which execution is done consecutively and in order. A BB starts with the first
instruction following a discontinuity instruction until the next discontinuity. In
addition to the information stored in the data elements, hash signatures of BBs
are calculated. A hash signature computation is made on the binary value of all
the 32-bit length instructions of a BB using a Multiple-Input Signature Register
(MISR) mechanism [9]. It starts from the BB first instruction until the end of
the BB for which the signature is generated. This signature is stored along with
the discontinuity instruction pointing to the address of the BB first instruction.
A runtime verification of this signature is bound to check the integrity of the ex-
ecuted instructions. Fig. 1 illustrates an example of four BBs delimited by jump
(j), branch if not equal to zero (bnez), jump and link (jal) and ret
(return) instructions with their metadata. For example, the hash signature of
"Basic Block 2", delimited by the addresses 0x374 and 0x380, is stored with
the discontinuity instruction pointing to the starting address of this block —
instruction j 374 at address 0x328. For a function call using JAL instruction,
its return address reported by Algorithm 1 is used to delimit the BB formed
by the instructions after its return till the next discontinuity. The instruction
jal ra,308 at address 0x3a8 in Fig. 1 illustrates this case. Its corresponding
metadata contains (see index 40), its address, the instruction and the index 3B
of the next discontinuity instruction, the expected signature of "Basic Block 1"
(BB starting with the instruction after the jump) and the expected signature
of "Basic Block 4" (representing the BB after the return starting at address
0x3ac). A stored signature is a prediction of the correct BB signature when
executed on core. A recalculation of the BB signature is done at runtime and
an additional hardware module — the Trace Verifier (TV) — is in charge of
comparing it with the metadata (stored in a memory).

3.3 Trace Verifier

The TV is an additional hardware module (cf. Fig. 2, bottom). It receives, at
runtime, information about the execution path followed by the program. These
information are reported by the RISC-V Trace Encoder (TE) [17]. Based on
the CFG metadata (cf. Section 3.2), the TV checks that the execution path
of the program is included in its CFG. It also ensures the integrity of the user
application code as a security propriety by verifying the BB signatures. An alarm
is raised if a CFG derivation has been detected. The following section describes
in more details our countermeasure.

4 Proposed CCFI Solution

4.1 Trace Encoder

Overview The TE is a RISC-V hardware module [17]. It is an execution flow
tracer that compresses at runtime the sequence of discontinuity instructions
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Fig. 1. Generated metadata content.

executed by the RISC-V core into trace packets. These packets sent to a debug
tool allow developers to check the path followed by the program. By having
access to the program binary, developers can reconstruct the program flow as
depicted in Fig. 2 (top). This module alone is used for debugging purposes and
allows neither CFI nor CCFI verification. The TE has a 3-stage pipeline to
store the current (I), previous (I-1) and next (I+1) instructions [17]. Based on
these three instructions, a packet defined by the TE standard [17] containing
information about the path followed by the program since the last sent packet
is emitted to an external debugging tool. It is emitted after fulfilling one of
the seven conditions described in the TE specifications [17]. These conditions
are related to the state of the core (context, privilege, exception) or to the
instructions executed (first executed, discontinuity instructions, etc). We briefly
describe three of these conditions below that led in the verification of CCFI.
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Fig. 2. A schematic of the RISC-V + TE (top), and its extension to ensure CCFI
verification (bottom).

The other four conditions involve reporting the state of the core (as defined
above), which does not cover the verification of CCFI but can be used to handle
interruptions or core’s exceptions. A packet is sent:

– Based on the previous instruction (I-1):
a) An instruction with an unpredictable PC discontinuity is executed. This

type refers to instructions applying a change to the PC whose offset could
not be determined from the compiled code such as return instructions. To
be able to follow the program path, the TE reports these discontinuities
in form of trace packets. Hence, in its current configuration, it does not
send a packet after each discontinuity instruction.

– Based on the current executed instruction (I):
b) A first qualified instruction which refers to the first instrution executed

in a program’s code.
c) The TE branch map is full (number of branches=31, a packet is issued

to clear its branch map) or it has a misprediction case (when branch
predictor enabled).

Depending on these conditions, a packet is sent with a specific format identifier
[17]. Referring to this standard, four packet formats are defined:

– Format 0 is used to send optional efficiency extensions (such as the number
of correctly predicted branches) when the core’s branch prediction module
is enabled. In our research, we based our CCFI solution while this module
is disabled. A discussion about CCFI verification with this module active
could be found in Section 7.

– Format 1 reports a branch information when the TE branch counter reaches
its maximum value (31 branches). Or, when an address needs to be reported
and there has been at least one branch since the previous packet. This format
only contains branch information.
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– Format 2 reports only the address of an instruction when no branch infor-
mation need to be reported (for example, executing only a return instruction
after the last packet sent).

– Format 3 is used for synchronization, reporting context and supporting
information.

An example of a Format 1 packet is illustrated below.

– PACKET 1:
• branches: n
• branch_map: n_map
• absolute_address: PC

This packet is sent after executing a discontinuity instruction satisfying the first
condition a. The unpredictability imposes the sending of a packet in order not
to lose the thread of the program executed flow. This packet indicates that n
branches have been executed since the last sent packet. It also mentions the
branch_map (bit vector where taken/not taken status of each branch is stored
chronologically) and address of the executed instruction after the discontinuity.

CFI A prior work [22] exploits the TE in order to verify the CFI of a program
executed on a RISC-V core. This design allows the detection of CFG integrity
violations. Two CFI verification approaches were proposed. The first approach
is consistent with the TE standard [17]. With this approach, only instruction
skip on discontinuity instructions and backward edge attacks are detected. The
second approach suggests an enrichment of the standard in order to detect more
threat models. A packet is sent after each executed discontinuity instruction
and not just after the unpredictable ones as in the first approach. This packet
contains the address of the following executed instruction and more information
depending on (I-1), (I) and (I+1) instructions. This permits to detect in addition
to the previous threats, any corruption of a discontinuity instruction.

CCFI Our paper contributes in extending the work of [22], by additionally
adding a new functionality to the TE — thanks to its open-source specifications
— to work in the CCFI verification mode. A hash signature computation is
done on each BB in order to protect the entire code against FIA and not only
the discontinuity instructions as in the CFI mode. The end of a BB is identified
when a discontinuity instruction is executed. As for the CFI enhanced mode, a
packet is sent after each discontinuity instruction. The BB generated signature
is included in this packet with the information it sends originally. As an example,
a Format 1 packet in CCFI configuration is enhanced as shown below.

– PACKET 1:
• branches: n
• branch_map: n_map
• absolute_address: PC
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• Signature_sent: Computed_Hash_Signature

Fig. 2 (bottom) illustrates the circuit for CCFI verification. It is composed of the
TV, its memory containing the static metadata and the signature computation
module (BB hash computation) in the TE.

4.2 Trace Verifier Hardware Description

As depicted in the bottom part of Fig. 2, our verification system is constituted
by a memory (Trace Verifier Memory) and its core part (Trace Verifier).

TV Memory The produced metadata are stored in a dedicated memory —
Random Access Memory (RAM) — as illustrated in Fig. 2. Referring to Fig.
1, at index 3B, the 32-bit jump instruction j 374 is stored with its 32-bit
address 0x328, the 16-bit index of next discontinuity and the 32-bit signature
0xDD6294B1 of the following BB. In case of a branch instruction (e.g. at index
3E), two 32-bit hash signature values are stored referring to the two possible
branches. In total, each discontinuity instruction requires 144-bit of metadata.

TV Architecture Fig. 3 shows the architecture of our TV. It is composed of
configurables modules (FIFO and LIFO), a Finite State Machine (FSM) and
several processes. The verification process starts when it receives a packet from
the TE that activates its FSM (1). Meanwhile, the packet is stored in a FIFO
and will be acquired by the FSM (2). Subsequently, it is decoded in order to
extract the reported address and signature (3). In case of a packet reporting the
execution of a branch instruction, the branch and branch map are also extracted.
Having the packet information, a navigation through the RAM metadata is done
to constitute the path followed by the program and the expected hash signature
(4). The last step of the FSM is to check the address stored in the packet against
the static address computed from the navigation process and also compare the
reported hash signature to the calculated signature (5). If the addresses and/or
signatures are not equal, an error flag is raised. The process of resilience is not
discussed here. This error could be treated as a software exception or hardware
interruption with a dedicated process or as a message sent to the user.

TV FSM The five steps listed in the TV Architecture are explicitly repre-
sented in Fig. 4. The TV is in an idle state until it receives a packet from the
TE. Then, this packet is decoded to check its format — this refers to step 2 in
Fig. 3. Step 3 — Packet extraction process — is divided into 2 sequential
FSM states (which requires 2 clock cycles). In the first state, the packet format
is read. Then in the second state, the format-related fields are extracted (branch,
address, signature). For instance, referring to Fig. 1 at index 3E and after the
execution of the branch instruction 0xFA0796E3, a Format 1 packet is reported
indicating if the branch is taken or not. In case of a taken branch, the BRAM
index will point to 3C and the branch address is extracted from the metadata
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Fig. 3. Architecture of the TV.

binary instruction. In the other case, the index will be incremented by 1 to reach
the index 3F which refers to the next planned discontinuity in the code. This
corresponds to step 4. In the step 5, the TE content is verified by comparing the
metadata extracted address to the TE reported address. The expected signature
for the actual BB (contained within the previous metadata instruction) is also
compared to the hash signature reported by the TE. The communication with

1
2

3.

4

5

Fig. 4. FSM of the TV.
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the LIFO representing the "Shadow Stack" of our TV (cf. Fig. 3) is done when
the BRAM navigation process points to a call or return instruction. After the
FSM state TE fields extraction, the next state will depend on the type of
the pointed instruction in the BRAM. We can distinguish 3 categories:

– Function call (JAL instruction): In this case, the next FSM state Push
LIFO stores the instruction index in the LIFO module. Additionally, the call
address and expected signature are extracted.

– Return instruction: The last call index stored in the LIFO is retrieved
via the state Pull LIFO. The TV adds four to the retrieved call address
in order to get the return address of the called function. It also increments
the BRAM index by one to point to the discontinuity instruction following
the call via steps Update Return Address and Get Return Metadata. The
second signature stored at the call index corresponds to the expected sig-
nature for the BB executed after the return (as illustrated in Section 3.2).
This signature is also extracted to be verified in the Verify state.

– Branch or Jump (J) instruction: The address and signature from the
metadata are extracted in the state Get Metadata.

As an example, we refer to a function call in Fig. 1. The call instruction jal
ra,308 pushes the index 40 into the LIFO. After the execution of the return
instruction at address 0x390, the index is extracted from the LIFO, and then the
return address is calculated by adding four to the call address 0x3a8+4, which
is equal to 0x3ac. In addition, the BRAM index points to the call’s index 40 in-
cremented by one referring to the next planned discontinuity at index 41. At the
verification step, the calculated address 0x3ac is compared to the TE reported
address in addition to the signatures. The expected signature for the actual BB
is extracted from the previous discontinuity metadata (the branch instruction
at address 0x380). It is equal to 0x18D05141 if the branch is taken (0x041CAA95
if not). The verification process requires six clock cycles to verify the content
of a packet and eight cycles when the instruction fetched from the BRAM is a
return instruction. The two additional cycles are needed to calculate the return
address and the following discontinuity index based on the call index stored in
the LIFO via steps Update Return Address and Get Return Metadata.

5 FIA on a Memcmp application code

In this work, we address the protection of programs executed on a RISC-V
core. Our CCFI solution detects attacks that divert the program CFG from its
normal behavior. We consider that the attacker is able to alter the contents of
the instruction memory by physical means (e.g. by laser injection at the reading
of instructions from the memory [5]). We assume that the metadata stored in
the memory of the TV cannot be modified by the attacker in order to defeat
our countermeasure (this requires changing the hash signature in addition to the
fault injection at the instruction memory level, which is difficult). As illustration,
this section demonstrates the detection of a FIA (physical attack) targeting a
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vulnerable instruction of a non protected comparison function Memcmp. It also
outlines how our CCFI verification solution detects this attack.

Memcmp The function compares the values of two arrays. Its C function is
shown in Fig. 5. The parameter n specifies the number of values to compare from

int memcmp( const void ∗ src1 ,
const void ∗ src2 ,
unsigned int n) {

unsigned char ∗ s1 = (unsigned char ∗) s r c1 ;
unsigned char ∗ s2 = (unsigned char ∗) s r c2 ;
while (n−−) {
i f (∗ s1 != ∗ s2 ) {

return ∗ s1 − ∗ s2 ; }
s1++;
s2++; }

return 0 ; }

Fig. 5. Memcmp C Code.

src1 and src2 arrays. If no difference is reported between their elements, a value
of 0 is returned. Otherwise, the difference of the first two different elements is
returned.

FIA Scenario An attacker might be interested in altering the result of this
function. A fault could be injected to point that there is no difference while two
different arrays are compared (e.g. a hash signature checking in an authentication
process). This is possible by faulting the n value in the while condition (cf. Fig.
5). This condition checks that the number of values to compare n is greater than
0. It allows to enter the loop and to compare values from both arrays. Then,
the value of n is decremented. The assembly code in charge of this operation is
shown in Fig. 6. The instruction at address 0x374 retrieves the n value from the
processor stack and store it in the a5 register. At address 0x380, a comparison
of the a5 content with zero is done to decide if the program enters the while
loop. If a5 content is different than zero, a comparison of array values is done.

FIA setup The code analysis of the unprotected Memcmp function leads to
vulnerabilities, one of which is found at the instruction lw a5,4(sp) (cf. Fig.
6). A fault transforming this instruction to li a5,0 (0x00000793) writes in the
a5 register the value 0. This is a complex fault that requires 4 bit flips. However,
the FIA state-of-the-art proves that it is possible [5]. Based on this attack, the
correct value of n is not retrieved from the stack. A comparison of the a5 content
with zero is done at address 0x380. In this case, the branch if not equal to
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32 c : 01 c12783 lw a5 , 2 8 ( sp )
. . . . . . . .

374: 00412783 lw a5 ,4( sp)
378 : f f f 7 8 7 1 3 addi a4 , a5 ,−1
37 c : 00 e12223 sw a4 , 4 ( sp )
380 : fa0796e3 bnez a5 ,32 c
384 : 00000793 l i a5 , 0
388 : 00078513 mv a0 , a5
38 c : 02010113 addi sp , sp ,32
390 : 00008067 r e t

Fig. 6. Memcmp Assembly Code

zero (bnez) condition is not fulfilled and the branch is not taken because n=0.
Therefore, no comparison of values is done. The Memcmp function returns zero
reporting that there are no differences between the two arrays even though they
are different. This attack could not be detected by pure CFI solutions, but rather
by CCFI countermeasures checking the integrity of the code.

CCFI verification After executing the discontinuity instruction at address
0x380, a packet is sent by the TE. Fig. 7 illustrates the faultless packet and the
packet content if the FIA is done on the lw instruction. Referring to the attack

Fig. 7. FIA impact on the sent packet content.

scenario described in the FIA setup, corrupting the lw instruction generates
a different hash signature at the end of the BB. We have simulated this fault
attack by modifying the binary instruction at memory level. Fig. 8 shows a
simulation of the packet emission due to execution of the bnez instruction. The
TE awaits the execution of two more instructions after the branch in order to
have a visibility on the last three executed instructions to be able to generate
a packet as discussed in Section 4.1. We present in Fig. 9 a simulation of the
verification of the concerned packet. The enumerated FSM steps (as described in
Fig. 4) lead to the integrity verification of the BB. As the signature of the faulted
execution 0xDF6B9431 is different from the signature 0xDD6294B1 expected by
the TV (cf. the correct one also in Fig. 1), the TV raises an error flag. Therefore,
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Fig. 8. Simulation of a packet emission due to the execution of the bnez instruction.

the FIA is detected. A comparison of our solution with the CCFI state-of-art

1 2 3. 4 5

Fig. 9. Simulation of a packet’s verification by the TV.

solutions and the CFI solution of [22] could be found in table 2. Compared
to [22], our solution covers the integrity of the code. ATRIUM [21] has similar
CCFI characteristics. However, it locks the processor if the hash of the current
instruction block is not completed and a new block arrives (28 cycles are required
to hash a block). The generated signature is sent at the end of the code region
chosen by the trusted verifier vrf for remote CCFI verification. Our hash module
requires only one cycle to compute the signature of an instruction and does not
interfere with the core’s activity. Compared to the CCFI related works, our
solution does not impact the execution runtime of the user application code.
Table 1 shows the overheads of these countermeasures compared to our solution
which has no impact on the user code (size or execution time). It is a hardware
verification method that neither modifies the RISC-V pipeline nor the compiler.

6 HARDWARE METRICS

All our simulations target the Artix-7 Field-Programmable Gate Array (FPGA)
embedded on a Nexys video board. This FPGA contains 33,650 logic slices.
Each slice is composed of four 6-input LUTs, 8 flip-flops, multiplexers and carry
units. A description of the hardware requirements of our system in terms of slice
is provided in the following parts.
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6.1 Target Core

Our CCFI solution is implemented on an IBEX core [13]. It is a 32-bit open
source RISC-V, low power core with a 2-stage pipeline suitable for IOT appli-
cations. Its area cost is equal to 645 slices. As our solution is independent of
the chosen RISC-V core, it can be implemented on any core compatible with
the TE. For instance, our TV could also be applied to the CV32E40P, a 32-bit
4-stage RISC-V core [14]. Its core implementation requires 1171 slices.

6.2 Trace Encoder

The TE module is extracted from the pulp-platform project [16]. Its implementa-
tion needs 239 slices. To verify the CCFI of a program, we made an enhancement
to the standard in a way to send a packet after each discontinuity instruction
including the signature of the executed BB. This enhancement and the addi-
tional signature module cost 62 slices while respecting the retro-compatibility
of the TE. It can run in a normal [17] or CFI/CCFI mode. Note that, the 32-bit
hash signature computation module is designed to compute the signature of an
instruction in one cycle. In total, the TE requires 301 slices.

6.3 Trace Verifier components

The TV is divided in 3 parts: its memory to store the static metadata — imple-
mented as a Block Random Access Memory (BRAM) on FPGA, its core and its
configurable block (FIFO and LIFO modules).

BRAM Our CCFI solution was tested on several benchmarks from Pulpino
project [15], Embench-IOT benchmarks [10] and some classic ones. These bench-
marks were compiled with the RV32IM base instruction set and into 3 compila-
tion optimizations level: O1 for the basic level, O2 for the advanced level and

Table 2. Comparison of our solution with related works
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No User Code Modification ✗ ✗ ✗ ✗ ✓ ✓ ✔

No Compiler Modification ✓ ✗ ✗ ✗ ✓ ✓ ✔

No Pipeline Modification ✗ ✗ ✗ ✓ ✓ ✓ ✔

No Performance Overhead ✗ ✗ ✗ ✗ ✗ ✓ ✔

Backward Edge Protection ✓ ✓ ✓ ✓ ✓ ✓ ✔

Forward Edge Protection ✗ ✓ ✗ (✗) ✗ ✗ ✘

Code Integrity ✓ ✓ ✓ ✓ ✓ ✗ ✔

Code Confidentiality ✓ ✓ ✗ ✗ ✗ ✗ ✘
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O3 for the highest possible optimization level. As an illustration, Fig. 10 shows
the ratio between the generated metadata and code size for the 3 optimiza-
tion levels. The Metadata-Code size ratio ranges from 15% and 55%. The small
benchmark codes have the highest ratio (e.g. the Memcpy and Memcmp codes). The
BRAM is designed with a single read port model. The writing of the metadata
is done upstream of the code execution. We have chosen the index width of the
BRAM memory to be 16. This value delimit the depth of the metadata memory
to 216 = 65536 lines. To give an order of magnitude, the "nshichneu" code from
Embench-IOT [10] contained the most discontinuity instructions. In total, 1188
lines (discontinuities) were needed for a optimization in O1. An index size of 11
was sufficient to address these lines. With this configuration, the memory imple-
mentation requires only 8 BRAM blocks without additional slices (this is also
the case for indexes of less than 12 bits). This represents the maximum hardware
utilization for the simulated benchmarks. The choice of having a large memory
is to give the user an order of magnitude for his implementation in case his code
contains less than 65536 discontinuity instructions. With a 16-bit index width,
the TV memory’s implementation requires 256 BRAM blocks and 148 slices
(BRAM uses internal register stages). For a complex user code, the BRAM size
is sufficient to contain the metadata related to its discontinuity instructions.

Fig. 10. Ratio between the metadata vs code size.

TV core It is composed of the FSM and processes. It requires 170 slices and
could run in CFI or CCFI mode. A TE configuration packet initiates, at startup,
the verification mode.

TV Configurable block It represents the LIFO (shadow stack) and FIFOs
for storing the packets and discontinuity instructions. Their sizes are dependent
of the running application and could be configured to a specific application.
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However, in the evaluation phase of our approach, we have chosen sufficiently
large sizes to simulate all the targeted benchmarks for an FPGA or even ASIC
implementation. Note that the instructions FIFO (cf. Fig. 3) is only used in the
CFI mode. As a consequence, a comparison between discontinuity and meta-
data instructions is performed for a given address to only check the integrity of
the executed discontinuity instruction. In the CCFI mode, each identified BB
containing a set of instructions ends with a discontinuity instruction. Therefore,
a corruption of the discontinuity affects the computed hash signature. A FIA on
the analyzed BB is detected by comparing the computed and metadata signa-
tures. In this mode, the instruction FIFO is useless. As illustration of the con-
figurable block requirements, Fig. 11 shows the FIFO and LIFO depths to store
data for the compiled benchmarks with the O2 optimization on a log scale. The
maximum FIFO and LIFO depths are respectively 153 and 9. Each application
requires a different depth depending on the number of discontinuities/packets
sent and the size of the BBs. The verification latency becomes important when
packets are sent simultaneously and could not be verified by the TV on the fly.
We discuss in Section 7 the reason behind this accumulation of packets. In order
to have a generic solution compatible with more complex benchmarks and to
avoid the overflow phenomenon, the FIFO and LIFO are designed to store 512
and 16 values respectively. Their implementations require respectively 12 and 3
slices. The overall area cost of the TE optimization (62 slices, cf. Section 6.2)
and TV (333 slices for 16-bit LIFO index) is equal to 395 slices. When work-
ing with an 11-bit index, the TV only requires 185 slices. We have simulated
the benchmarks used by [22] and an 11-bit index was enough to point all their
discontinuity instructions. Therefore, compared to the TE-based CFI solution of
[22] which only adds 17% in terms of slices over the IBEX + TE requirements,
our solution requires 26.1% (for an index less than 12-bit) and 44.5% (for a 16-
bit index). The area overhead is due to the additional slices required by our TV
to work in the CFI or CCFI mode. It is also related to store 2*32 extra signature
bits for each discontinuity instruction and their verification process.

Fig. 11. FIFO and LIFO depths for programs compiled with O2 optimization.
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7 Discussion

Our TV does CCFI verification at runtime after receiving a packet from the TE.
It needs 6 to 8 clock cycles to process a packet (cf. Section 4.2). The verification
latency becomes significant when discontinuity instructions follow each other
with fewer clock cycles than is required to process successive packets by the
TV (6 clock cycles). Therefore, an increase in the FIFO depth is mandatory
when a packet is issued after a BB execution containing less than 6 non-multi-
cycle instructions. These executions send packets simultaneously. To process all
of these packets, the FIFO is required to store them. Fig. 11 illustrates the
packet accumulations which induces a latency to verify all of them. The FIFO
is used in order not to stall the processor while a packet is being verified. The
depth of the FIFO can be calculated statically by analyzing the binary code
of an application. This can be done by counting the instructions formed by
all BB and comparing the count to the number of FSM states. In the case
of a parameter-conditioned loop containing fewer clock cycles than the FSM
check cycles, the user can predict the number for that loop by analyzing the
code to correctly increment the FIFO depth. Additionally, our verification is
based on the static metadata. Indirect calls destinations are not known from
the static analysis and then not covered in our solution. However, these calls
emit a packet after their execution. To treat these instructions, we can wait for
the packet sent after the one related to the indirect call. Having instruction and
packet information, a navigation through the metadata could be done in order
to find the discontinuity address and resume verification. Another perspective is
to avoid these calls by modifying the user code or the compiler. In addition, our
experiments covered the CCFI of all the user code. Referring to Section 5, an
illustration of how the Memcmp code integrity has been protected against FIA.
This code represents relatively simple control flows. For a complex firmware, the
designer may need to cover just a sensitive section of the code (e.g. authentication
function). It could be done by using the TE filter (cf. Chapter 5 of the TE
standard [17]). It allows to specify the lower and higher addresses where packets
need to be generated. Activating this functionality reduces drastically static data
size and TV configurable modules area cost. This is due to the fact that there
is less metadata in the TV’s memory related just to this function. In our core
implementation, the branch prediction feature was disabled. Enabling this option
emits a specific packet after a discontinuity instruction with content defined by
the TE standard. The TV could be configured to operate in this mode for CCFI
verification. This is a perspective of our work.

8 Conclusion

In this paper, we propose a CCFI verification system based on the RISC-V
Trace Encoder, a debug feature that allows to capture the execution path of
a program. An additional feature is added to the TE mechanism in order to
work in the CCFI mode. We demonstrate how discontinuity instructions and
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BB are protected against FIA. The comparison of a computed signature of a
BB at runtime with a pre-calculated signature guarantees the integrity property
of a program’s code. Compared to state-of-the-art solutions, our countermeasure
does not generate performance overheads. Only hardware overheads are reported.
Its implementation modifies neither the RISC-V compiler nor the user code
nor the core’s architecture. It is a modular, non-invasive and does not depend
of the RISC-V core. In our future work, we aim to verify that the executed
BB instructions are also unaltered within the core’s pipeline. This is known as
verifying the Control Flow and Execution Integrity (CFEI) of the program.
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