
HAL Id: hal-04667968
https://hal.science/hal-04667968v1

Submitted on 5 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending a RISC-V core with an AES hardware
accelerator to meet IOT constraints

Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre

To cite this version:
Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre. Extending a RISC-V
core with an AES hardware accelerator to meet IOT constraints. SMACD / PRIME 2021; Interna-
tional Conference on SMACD and 16th Conference on PRIME, Jul 2021, On line, France. pp.46-55,
�10.1109/HOST49136.2021.9702295�. �hal-04667968�

https://hal.science/hal-04667968v1
https://hal.archives-ouvertes.fr

Extending a RISC-V core with an AES hardware
accelerator to meet IOT constraints

Anthony ZGHEIB, Olivier POTIN, Jean-Baptiste RIGAUD, Jean-Max DUTERTRE
Mines Saint-Etienne, CEA-Tech Centre CMP, F - 13541 Gardanne, France
zgheib@emse.fr, olivier.potin@emse.fr, rigaud@emse.fr, dutertre@emse.fr

Abstract—Internet of Things devices and applications are
subject to strong constraints in terms of cost, code size and
power consumption. This leads to difficulties in using resource-
hungry encryption algorithms to ensure the confidentiality of
the exchanged data. In this paper, we extend with a custom
instruction the RISC-V open source Instruction Set Architecture
(ISA) and integrate an Advanced Encryption Standard (AES)
hardware accelerator to an IBEX RISC-V core. This is achieved
for the sake of reducing its energy consumption, encryption time
and code size with respect to purely AES software solutions. We
consider a Field Programmable Gate Array implementation and
ascertain its relevance for an Electrocardiography use case.

Index Terms—IOT, AES, RISC-V, ISA, ECG, power consump-
tion.

I. INTRODUCTION

The Internet of Things (IOT) consists in embedded systems
driving physical objects (e.g. sensors, actuators) connected
to the internet. Through the internet, these physical objects
communicate and exchange information between each others
or with servers. Designers aim at improving the performance
of the IOT applications in terms of code size, speed, power
consumption and security. For a secure data exchange in IOT
applications, and from privacy concerns, the exchanged data
need to be encrypted. The Advanced Encryption Standard
(AES) is a well known algorithm used for data blocks’
encryption and decryption [1]. Its implementation can be either
hardware or software. However, the use of AES software
encryption algorithms requires high energy consumption and
encryption time. These characteristics do not meet IOT con-
straints. In this work, we describe a hardware-based 128-bit
AES implementation to an IBEX [2] RISC-V processor [3]
to solve this problem. We extend the RISC-V open source
Instruction Set Architecture (ISA) with a custom instruction
to encrypt the data to be exchanged. Furthermore, we com-
pare our approach to two software-based implementations:
the TinyAES [4] and the OpenSSL AES [5] to reflect the
performance of our solution. We also consider an Electrocar-
diography (ECG) application use case. Our paper is organized
as follows: Section II details the design of the hardware AES
Intellectual Property (IP) and its connection with the RISC-V
processor. Section III describes the simulations and the circuit
characteristics. Section IV leads to the comparison between the
software and hardware AES models. Furthermore, Section V
mentions a ciphering example of ECG signals. Finally, Section
VI presents our conclusion.

II. HARDWARE AES RISC-V CORE EXTENSION

A. Hardware AES IP design

Our 128-bit AES IP is based on the Federal Information
Processing Standard (FIPS) 197 standards [1]. It computes the
transformations of one AES round, from the initial round 0
through rounds 1 to 9 up to the final round 10 of the complete
AES Rijndael design. The round ciphering depends on the
round and the block cipher mode. We integrate four block ci-
pher modes of operation: Electronic codebook (ECB), Cipher
Block Chaining (CBC), Cipher Feedback (CFB) and Output
Feedback (OFB) [6]. Fig. 1 shows the architecture of the AES
IP. It has four 128-bit registers (drawn in green) for storing the
data to be encrypted (plaintext), the encryption key, the initial
vector (IV) or the encrypted result and the last register for
storing the round key. The AES IP receives from the circuit:
the clock and reset signals. Similarly, it receives from the
RISC-V core the following input signals: the operating cipher
mode (mode i), the calculation round number (round i), the
enable round computing signal (en rnd cpt i), the plaintext,
key or IV (data i), the writing address (wr addr i) and its
enable signal (wr en i). When the encryption is done, the
plaintext, key or encrypted result could be read with the read
address (rd addr i) and read enable (rd en i) signals. The
input and output signals (data i and data o) are 32-bit buses
for easier compatibility while loading or storing values from
or to the 32-bit RISC-V core registers. Hence, four store
operations are needed to store a 128-bit plaintext, key or IV.

Round Key
 Register

data_i
32

Data
Expander

data_0s

128

wr_addr_i
4

2

en_rnd_cpt_i

4

384

128

128

rcon_s

128 128

128

128

rd_addr_i
4

data_o

round_i
4

clock_i

reset_i

mode_i
2

128

2

128

128 32

wr_en_i

rd_en_i

2 2

128

128

384

384

Data Register

Key Register

IV / Result
 Register

Key
Expander

128

AddRoundKey

SubBytes

ShiftRows

Mixcolumns

text_s

key_s

text_ecb

text_cbc
text_cfb

128

128
128

++
text_ofb

outputAddRoundKey OR
outputMixColumns

++

++

"0000..."

"ZZZZ..."

data_1s
128

mode_i

data_reg_s

key_reg_s

result_reg_s
output_key_s

8
en_rnd_cmpt_s

mode_ofb_s

Fig. 1. Architecture and interface signals of the AES IP.

B. Extending the RISC-V ISA

RISC-V cores have a free open source ISA designed for
extensibility in comparison to other cores like x86 and ARM
[7]. In our work, we exploit the RISC-V ISA extension’s
capability to integrate the AES hardware accelerator effi-
ciently. We extended the RISC-V ISA with a new custom
instruction in order to communicate with and to control
the operations of the AES IP through the IBEX core. The
use of a custom dedicated instruction reduces the number
of assembly instructions used to perform an encryption. In
addition, it brings an improvement in regard of the AES
encryption speed. This is also demonstrated by [8] with their
AES implementation experiments based on a SPARC V8-
compatible LEON-2 processor for the S-BOX calculation. Our
AES custom instruction has to be able to perform the three
following operations:

• A store operation (moving data from the IBEX registers
to the AES registers).

• A round operation (executing the AES round calcula-
tions).

• A load operation (moving data from the AES registers
to the IBEX registers).

A single RISC-V 32-bit R-type instruction (as a register to
register operation is called) permits us to operate our IP in all
its functionalities. Its format is given in Fig. 2. Funct7 is used
to code the round number, the specified chain mode and the
required operation. Table I enumerates the values of funct7 we
used for this purpose. R3, R2, R1 and R0 represent the 4 bits
of the round number. For our AES implementation, the funct3
and opcode labels are fixed to ”111” and ”0001011” having a
compatibility with the RISC-V funct3 and opcodes required
format [9]. Rs1 and rd represent respectively the addresses
of the source and destination registers (the second source
register rs2 is not used). Their values depend on the instruction
operation, they could point to IBEX or AES registers.

C. AES IP - IBEX connection

The IBEX core is a 32-bit open source RISC-V central
processing unit (CPU) core. It is a low power and small
processor suitable for IOT applications. It has a 2-stage
pipeline: Instruction Fetch (IF) and Intruction Decode and
Execute (ID/EX) [2]. IBEX is used in the opentitan project
provided by lowrisc [10]. This project also implements a
hardware AES IP, for which the communication between
the processor and the IP is made using a set of control and
status registers (CSRS). This allows the ciphering/deciphering
processes to be achieved in parallel to the processor activity.
In our case, we communicate with the AES IP and execute
its calculation using the new custom instruction which prevent
a parallel execution.

Fig. 2. The RISC-V 32-bit R-type instruction format.

TABLE I
FUNCT7 VALUES AND DESCRIPTIONS

Funct7 value Description
XXXX001 Store instruction

R3R2R1R0100 Round Instruction - Mode ECB
R3R2R1R0101 Round Instruction - Mode CBC
R3R2R1R0110 Round Instruction - Mode CFB
R3R2R1R0111 Round Instruction - Mode OFB

XXXX000 Load instruction-Modes ECB,CBC and CFB
XXXX011 Load instruction-Mode OFB

We made modifications to the IBEX core, especially to
its Decode (ID) stage to adapt it to the new custom AES
instruction. A simple version of the connection between the
IBEX’s ID stage and the AES IP is illustrated in Fig. 3. As an
instruction arrives from the Fetch Stage to the Decode Stage,
it is decoded to various signals. In case of an AES instruction,
dedicated signals will be used to activate and control the AES
IP. Referring to Fig. 3, the bus data i is used to transfer either
the plaintext to be ciphered, the key, or the IV used in AES
chain modes. These values are sent from the IBEX registers.
Similarly, data o can be used to transfer the plaintext, the key,
or the ciphertext to be stored in the IBEX registers.

D. Application code modification and compilation

In order to avoid any modification of the compiler toolchain,
we used the new AES instruction as a macro instruction to
control the AES IP. An AES encryption process involves
the use of the AES macro instruction several times, using
different funct7 values as mentioned in Table I, in order to
sequentially store the plaintext and key in the AES registers,
then to launch the 11 AES round calculations and, at the
end to store the ciphertext in the IBEX registers. The macro
instruction is defined using the inline assembly (ASM) code.
An instance of its define format is represented as follows:
#define AES macro insn(funct7, rs1, rd) /
r type insn(funct7, 0b00000, rs1, 0b111, rd, 0b0001011)
The AES macro instruction is a R-type instruction with fixed
values for the rs2, funct3 and opcode fields corresponding
to the AES R-type instruction fields. Consequently, we can
replace the funct7, rs1 and rd fields with the required values
in the application code. By compiling the application code, we
obtain the virtual memory (VMEM) file as one of the output
files. This file contains the binary instructions interfaced with
the RISC-V core to be executed. The VMEM code size of our
AES instructions dedicated for an ECB encryption with our
AES IP is equal to 0.6 KBytes.

III. SIMULATION RESULTS AND CIRCUIT
CHARACTERISTICS

A. Simulation results

Using Vivado 2018.1 tools, we have successfully simulated
the place & root design of the IBEX core with the AES IP
for all the ciphering modes and their chain processes. As an
illustration, we report the execution time of a test code that
executes a simple AES encryption in the ECB mode. It takes
140 clock cycles for the whole test code to be executed, from

Fig. 3. The connection between the IBEX’s decode stage and the AES IP.

the initialization of the plaintext and key values in the memory
to the end of the program. From the 140 cycles, the AES IP
consumes 60 from the first store instruction to its registers
till the last load to the IBEX registers (ciphertext). And from
these 60 cycles, 23 correspond to AES instructions execution:
there are 4 for the storage of the plaintext and the same for the
key, 11 for the AES rounds and 4 to store the ciphertext into
the IBEX registers. The instructions that consume the most in
terms of clock cycles are the Load Word (LW) operations from
the memory to the IBEX registers. These operations are needed
before transferring data from the core to the AES registers.

B. Circuit characteristics

1) Area: All our implementations targeted a Nexys Artix-
7 Field Programmable Gate Array (FPGA) board, a 18nm
CMOS technology. This board contains 33,650 logic slices.
Each slice is composed of four 6-input LUTs (LookUp Tables),
8 flip-flops, multiplexers and carry units. As a first approach,
we placed and routed the AES IP. Its design requires 547
slices referring to the Vivado utilization report. Also, we did
the same for the IBEX core which needed 765 slices. The top
level design containing the IBEX core with the clock generator
and the random-access memory (RAM) component needs 886
slices. However, when implementing the AES IP to the IBEX
core, their utilization requirements in terms of slices were
adjusted to adapt the connection between their input and output
signals. The AES IP and IBEX core require respectively 609
and 757 slices when placed in a top level design with a clock
generator and RAM. In total, the design needs 1,479 slices.
For the current AES model and comparing the two top levels,
adding the AES IP makes the circuit bigger by 40% in terms
of slices. As mentioned before, the IP contains 4 block cipher
modes. By modifying it and just conserving the ECB mode,
we can gain approximately 5% in the AES area. Depending
on the application, a compromise could be made between the
area gain or the block cipher modes requirements.

2) Power: We estimated the power consumption of our
place & root design using the Vivado report power utility. For

an accurate measure, we took into consideration the Switching
Activity Interchange Format (SAIF) file which plots all the
signals activity information for one ECB ciphering process
simulation. The total power consumed for one ECB ciphering
by the IBEX core and AES IP is equal to 397 mW.

IV. COMPARISON WITH 2 SOFTWARE AES ALGORITHMS

A. Description of the software algorithms

The 8-bit TinyAES is a small and portable implementation
of the AES. It has the ECB, CounTeR (CTR) and CBC
encryption chain modes [4]. The 32-bit OpenSSL AES uses
LUTS containing intermediate results of an AES ciphering
process and could operate under ECB, CBC, CFB and OFB
chain modes [5]. Both codes contain functions for encryption
and decryption. The unused functions like the decryption
ones have been removed from our test code to have a fair
comparison between the two algorithms and our hardware
implementation. Also, only the ECB mode have been activated
for the simulation. We give in table II, the test code size
(VMEM size) dedicated to perform a single ECB encryption
either by using the software algorithms (TinyAES or OpenSSL
AES), or by using our hardware AES IP with their necessary
time, power and encryption energy. The total power consump-
tion for one encryption is equal to 380 mW for the TinyAES
and 378 mW for the OpenSSL AES.

B. Encryption energy interpretation

Referring to Table II, the AES IP implementation consumes
less energy in µJ than the TinyAES and OpenSSL AES.
The largest encryption time for having one ECB encryption
corresponds to the TinyAES (70,036*20ns) where 20 ns is the
system’s clock period. By taking the AES chain modes into
consideration, the encryption time for the following encryption
processes requires less clock cycles since the key has already
been defined for the TinyAES and OpenSSL AES or has been
loaded at the first encryption process in the hardware AES
key register. Table III shows the chain encryption time with
the required energy for the three AES solutions. We can check
that, for a single ECB encryption with the TinyAES, 17 data
encryption with the OpenSSL AES and 847 data encryption
with our AES IP could be made with the same energy budget.

V. ECG USE CASE SCENARIO

Several IOT applications require the confidentiality to be
considered as a major aspect while exchanging data. For
instance, in the medical field, patients’ private medical data
need to be protected. In this section, we refer to an AES
ciphering process to cipher ECG signals. The ECG is known
as a method to record the electric heart muscles’ activity.

TABLE II
COMPARISON BETWEEN AES SOLUTIONS FOR A SINGLE ECB CIPHERING

AES Type Vmem(kB) Clock cycles Power(mW) Energy(µJ)
AES IP 0.6 140 397 1.11

TinyAES 5.7 70,036 380 532.27
OpenSSL 31.6 6,445 378 48.59

TABLE III
CHAIN ENCRYPTION DATA WITH THE SAME KEY

AES Type Clock cycles Energy(µJ)
AES IP 76 0.627

TinyAES 57,856 437.39
OpenSSL 3,874 29.13

We consider a Holter device which is a continuous ECG
monitoring medical device. It monitors ECG signals from
24 to 48 hours as a short term or from 1 to 2 weeks as a
long term [11]. Referring to [12] and [13], a database named
”SHAREE” contains ECG Holter signals of 139 hypertensive
patients recorded for 24h in order to be exploited in the context
of medical research. The recordings were based on 3 ECG
signals that were sampled at 128 samples per second with an
8-bit precision. This leads to 3,072 bits/second which is equiv-
alent to 384 Bytes/second. We consider the case of sending
the ECG signals gradually as the Holter device receives the
patient heart’s signals to the medical unit via an IOT platform.
Using the AES encryption model, a message of 128 bits (16
Bytes) could be encrypted. Hence, on the base of this ECG use
case, 24 encryption processes are required. Fig. 4, represented
on a log-log scale, shows the encryption energy required for
the three AES considered solutions. For the ECG application,
the ciphering process using the AES hardware implementation
requires 0.016 mJ compared to 10.592 mJ and 0.719 mJ for
the TinyAES and OpenSSL AES. Our AES IP respectively
consumes 662 and 44.9 times less energy than the TinyAES
and OpenSSL AES. This reflects the low energy aspect of
our IP in favor to be used in IOT applications. If the Holter
system’s total energy consumption also depends on the energy
used for the communication process, the ECG signals filtering,
recording and more, this energy will be approximately the
same for the three encryption solutions.

VI. CONCLUSION

In this work, we report the implementation of an AES hard-
ware accelerator for the purpose of reducing the energy con-
sumption, encryption time and code size of a circuit designed
for IOT applications. We also illustrate the potential of RISC-
V cores through the use of their open-source ISA to improve
their performances in IOT applications. This is achieved by
extending the RISC-V ISA to implement our AES accelerator
to an IBEX RISC-V core. We show the benefit of adding
a new instruction to the RISC-V ISA by comparing our
AES hardware implementation to two software algorithms:
the TinyAES and OpenSSL AES. As a result, the application
code size (VMEM size) dedicated to encrypt a message with
the AES IP is small and have a size gain of 89.47% and 98.1%
with respect to the TinyAES and OpenSSL AES. Furthermore,
the AES IP requires 140 clock cycles to obtain an ECB
ciphertext compared to 70,036 and 6,445 for the TinyAES and
OpenSSL AES codes respectively. Alternatively, the AES IP
adds 40% in terms of slices to the final circuit. However, more
optimizations could be made to our IP to gain in area. Finally,
we demonstrate in an ECG use case that our AES accelerator

Fig. 4. The energy consumption for an ECB ciphering with the AES hardware
implementation, TinyAES and OpenSSL AES via an ECG use case.

respectively consumes 662 and 44.9 times less energy than the
TinyAES and OpenSSL AES. This shows the relevance of our
solution and promotes its use in IOT applications. Another
perspective is to investigate the LightWeight Cryptography
(LWC) candidates of the National Institute of Standards and
Technology (NIST) contest like ASCON [14] or already exist-
ing LWC algorithms (e.g. PRESENT [15]) to reduce further
the size and energy overheads of the IBEX core. A similar
work to our AES implementation could be found in [16],
where they implemented ASCON and ISAP accelerators to
a RI5CY core while extending the RISC-V ISA. Comparing
to ASCON, ISAP offers in addition protection against various
types of fault attacks.

REFERENCES

[1] NIST-FIPS Standard, ”Announcing the advanced encryption standard
(aes),” FIPS Publication, 197, pp.1-51, Nov 2001.

[2] Lowrisc, IBEX documentation, Oct 2020, https://ibex-
core.readthedocs.io/en/latest.

[3] D. Patterson and A. Waterman, ”The RISC-V Reader: An Open Archi-
tecture Atlas,” Strawberry Canyon, 1st ed., 2017.

[4] kokke, ”Small portable AES128/192/256 in C,”
https://github.com/kokke/tiny-AES-c, 2016.

[5] The OpenSSL Project, ”OpenSSL: The open source toolkit for
SSL/TLS,” http://www.openssl.org, 2019.

[6] M. Dworkin, ”Recommendation for block cipher modes of operation:
Methods and techniques,” Technical report, USA, 2001.

[7] K. Asanović and D. Patterson, ”Instruction sets should be free: The case
for risc-v,” Technical report, UCB/EECS-2014-146, EECS Department,
University of California, Berkeley, Aug 2014.

[8] S. Tillich, J. Großschädl, and A. Szekely, ”An instruction set extension
for fast and memory-efficient aes implementation,” in Communications
and Multimedia Security, vol. 3677, J. Dittmann, S. Katzenbeisser, and
A. Uhl, Eds. Berlin, Springer Berlin Heidelberg, pp. 11–21, 2005.

[9] The RISC-V International com., RISC-V custom opcodes, Nov 2013.
[10] Opentitan, AES HWIP Technical Specification,

https://docs.opentitan.org/hw/ip/aes/doc, 2021
[11] P. Zimetbaum and A. Goldman, ”Ambulatory arrhythmia monitoring,”

Circulation, vol. 122, no. 16, pp. 1629-1636, Oct 2010.
[12] P. Melillo et al., ”Automatic prediction of cardiovascular and cerebrovas-

cular events using heart rate variability analysis,” PLOS ONE, vol. 10,
no. 3, pp.1-14, Mar 2015.

[13] A. Goldberger et al., ”Physiobank, physiotoolkit, and physionet: com-
ponents of a new research resource for complex physiologic signals,”
Circulation, vol.101, no.23, pp. e215–e220, 2000.

[14] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.2”,
NIST Round 2 Candidate, https://csrc.nist.gov/Projects/Lightweight-
Cryptography/Round-2-Candidates, 2019.

[15] A. Bogdanov et al., ”PRESENT: An ultra-lightweight block cipher,” In-
ternational workshop on cryptographic hardware and embedded systems,
Springer, pp. 450–466, 2007.

[16] S. Steinegger and R. Primas, ”A Fast and Compact RISC-V Accelerator
for Ascon and Friends,” in CARDIS 2020: 19th Smart Card Research
and Advanced Application Conference, 2020.

