
Experience with software process simulation and modeling

Walt Scacchi

USC ATRIUM Laboratory, 2912 Broad St., Newport Beach, CA 92663-4832, USA

Received 10 November 1998; accepted 11 November 1998

Abstract

In this paper, I describe an approach and experiences in developing and applying simulation and modeling technologies to

software processes. Processes for both software development and use have been investigated. The focus of this paper is organized

around three topics for software process simulation and modeling. First, I describe an approach and examples of software simu-

lation and modeling as investigated with knowledge-based process engineering environment developed at USC. Second, I describe

how by focusing on process modeling, analysis and simulation, we are led to expand the scope of work with software processes

toward a more comprehensive software process life cycle engineering. Third, I describe some of the lessons learned from applying

modeling and simulation concepts, techniques and tools to software processes in a variety of organizational settings. Conclusions

then stress the complementary value arising form the use of both qualitative and quantitative technologies for software process

simulation and modeling. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Software process; Process modeling; Process simulation; Knowledge-based simulation; Process life cycle

1. Introduction

Over the past 10 years, research e�orts in the USC
System Factory project and the USC ATRIUM Labo-
ratory have investigated various kinds of process mod-
eling and simulation issues. These e�orts focus on
understanding the organizational processes involved in
software system development and use. Many of these
e�orts have addressed how to use simulation and mod-
eling tools, techniques and concepts to understand and
forecast software process trajectories prior to their ac-
tual performance. This is done when analyzing both ``as-
is'' processes (i.e., simulated models of the software
processes found in some organizational setting) and ``to-
be'' processes (simulated models of new or redesigned
software processes intended to operate in the same or-
ganizational setting). However, we have also used these
same technologies to understand, validate and re®ne
models of software processes in light of empirically
grounded observational data from actual process per-
formances that we have collected. The potential also
exists for applying these techniques to model and sim-
ulate the ``here-to-there'' processes and transformations
that occur in moving an organization from as-is to to-be
software processes. This paper highlights the approach,
experiences and lessons learned through these e�orts.

2. Simulation and modeling software development pro-
cesses

Models of software processes are particularly inter-
esting when formalized as computational descriptions
(Curtis et al., 1992). Accordingly, we can model, inter-
actively browse and symbolically execute them. In sim-
ple terms, this is equivalent to saying that simulation
entails the symbolic performance of process tasks by
their assigned agent using the tools, systems and re-
sources to produce the designated products. For exam-
ple, in simulating an instance of a software project
management process, the manager's agent would ``exe-
cute'' her management tasks. Tasks are modeled ac-
cording to the precedence structure of sub-tasks or steps
speci®ed in the modeled process instance. Agents and
tasks can then use or consume simulated time, budgeted
funds and other resources along the way. Since tasks
and other resources can be modeled at arbitrary levels of
precision and detail, then the simulation makes progress
as long as task preconditions or post-conditions are
satis®ed at each step. For example, for a manager to be
able to assign sta� to the report production task, such
sta� must be available at that moment, else the simu-
lated process stops, reports the problem and then waits
for new input or command from the simulation user.

The Journal of Systems and Software 46 (1999) 183±192

0164-1212/99/$ ± see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (9 9) 0 0 0 1 1 - 4

In our work at USC, we have employed two kinds of
simulation technologies in studies of software develop-
ment processes, knowledge-based simulation (KBS) and
discrete-event simulation (DES) (Mi and Scacchi, 1990;
Scacchi and Mi, 1997). We have built our own KBS
tools starting in 1988, while we employed a commer-
cially available DES package. Each is described in turn.
Commercial KBS products integrated with DES are
now available from companies such as Knowledge
Based Systems (www.kbsi.com) and Intelligent Systems
Technology (www.intelsystech.com). We have also de-
veloped and used tools that allow users to browse,
stepwise simulate (traverse) and execute software pro-
cess models across distributed network environments, as
described elsewhere (Noll and Scacchi, 1998; Scacchi
and Mi, 1997; Scacchi and Noll, 1997).

2.1. Knowledge-based simulation of software processes

KBS is one kind of technology used to simulate
software processes. Many approaches to modeling and
simulating complex processes center around the execu-
tion of an abstract ®nite state machine that traverses
explicitly or implicitly modeled states and/or events in
the simulated process instance. For example, the entity-
process approach developed by Kellner (Humphrey and
Kellner, 1989) is one that uses the Statechartstm tool to
explicitly model and traverse the states declared in a
software process.

Simulations also typically apply to instances of a
modeled process, where the model is developed then run
through the simulation after its parameter values are
instantiated. In a KBS, software process states can ei-
ther be explicitly declared or implicitly represented.
Implicit representation means that process states will
correspond to values that populate a snapshot of the
underlying knowledge-base of interlinked objects, attri-
butes and relations used to record and manage the
simulation. KBS can also symbolically evaluate a class
of process models, or a process model without instance
values. Finally, KBS employ computational reasoning
in the form of pattern-directed inferencing that is im-
plemented via a production rule base (Mi and Scacchi,
1990). These rules monitor and update the values of
objects, attributes or relations stored in the knowledge-
base. The set of all values in the knowledge-base con-
stitutes the implicit state of a process at a given moment.
When one or more rules is enabled and ®res, then the
computational procedure in the rule's action is per-
formed and the state of the process knowledge-based is
updated. Thus, these features help to begin to di�eren-
tiate KBS approaches to software process simulation.

KBS is useful to address di�erent types of simulated
process execution behavior. We have found four types
of process behavior of interest. First, understanding
software processes requiring ®ne granularity. Second,

analyzing processes with multiple or mixed levels of
process granularity. Third, analyzing patterns of inter-
action and work ¯ow among software developers (or
agents). Fourth, analyzing processes whose structure
and control ¯ow are dynamically changing (Mi and
Scacchi, 1993). Granularity here refers to the level of
detail that we seek to simulate in order to understand
gross or ®ne-level process dynamics or details. The fol-
lowing two ®gures may help to convey this. Alterna-
tively, we use DES to simulate processes at a coarser
level, but when our interest is addressed to under-
standing the overall performance envelope that results
from the simulated executed of a real-world process that
is instantiated 5±100+ times. This is described later.

Fig. 1 provides a view of a work station display
running a KBS session in the Articulator environment
developed at USC (Mi and Scacchi, 1990). The Articu-
lator was implemented as a rule-based multi-agent
problem solving system that models, analyzes and sim-
ulates complex organizational processes. The top left
frame lists the KBS production rules that have ®red
during the process simulation step. Many of these rules
pertain to the operation of the KBS engine, rather than
to a simulated software process. The details of these
rules are not the focus here, but examples can be found
elsewhere (Mi and Scacchi, 1990). The top right frame
provides an annotated transcription of the software
process events that have occurred as a result of the rule
®rings. The bottom right frame then provides a de-
scription of rules that con¯ict when concurrently ®red,
and the resulting con¯ict resolution results that occur.

Fig. 2 provides another screen display this time fo-
cusing on the KBS annotation transcript that is partially
occluded in Fig. 1. Furthermore, additional post-pro-
cessing has been performed by the Articulator to para-
phrase the transcript into a more readable, though
somewhat stilted form. Classic techniques for para-
phrasing the internal semantic form into a sentential
form are employed. As before, details on the software
process being simulated and automatically documented
as shown in Fig. 2 appear elsewhere (Mi and Scacchi,
1990).

Our use of KBS mechanisms support features that are
uncommon in popular commercial simulation packages.
The provision of paraphrasing capabilities described
above is an example. Other examples include using
symbolic execution functions to determine the path and
¯ow of intermediate process state transitions in ways
that can be made persistent, queried, dynamically ana-
lyzed and recon®gured into multiple alternative scenar-
ios. Similarly, the use of a multi-agent problem-solving
representation allows use of a distributed environment
to model and simulate the interactions and behavior of
di�erent agents, skill sets and task assignments. These
capabilities for knowledge-based software simulation
are described next.

184 W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192

Persistent storage of simulated events enables the
ability to run a simulation forward and backward to any
speci®c event or update to the knowledge-base. Persis-
tence in the Articulator environment was implemented
using object oriented data management facilities pro-
vided in the underlying knowledge engineering envi-
ronment (Mi and Scacchi, 1990). Queries to this
knowledge-base provide one mechanism to retrieve or
deduce, where an event or update of interest occurs.
Dynamic analysis can monitor usage or consumption of
resources to help identify possible bottlenecks in simu-
lated process instances. Using these functions, it is
possible to run a simulation to some point, back up to
some previous context, and then create new instance
values for the simulated process model. These changes
then spawn a new simulated process instance thread.
For example, this could allow adding more time to a
schedule, more sta� to an overloaded work ¯ow, or to
remove unspent money from a budget. Such a change
would then branch-o� a new simulation trajectory that
can subsequently be made persistent, and so forth.
Furthermore, we can also employ the paraphrasing and
report generation functions to produce narrative-like
descriptions or summaries of what transpired during a
given simulation run. Thus, knowledge-based simula-
tion enables the creation and incremental evolution of a
network of event trajectories. These in turn may be
useful in evaluating or systemically forecasting the yield
attributable to new, interactively designed process al-
ternatives.

The Articulator environment was among the earliest
to address issues of modeling and simulating organiza-
tional processes enacted by autonomous or managed
problem-solving agents (Mi and Scacchi, 1990). Al-
though agent technology was still at a conceptual stage
when the Articulator was initially developed (1988±
1990), we thought it would be interesting to develop a
process simulation capability that could eventually be
distributed and run across a local-area or wide-area
network. Individually modeled agents acted as place-
holders for people working in real-world processes.
Agents were capable of individual or collective problem-
solving behavior, depending on what problem-solving
skills (i.e., processes they ``know'' how to perform) they
were given, and how they were con®gured to interact
(typically to send and receive messages from one an-
other). We found that developing and specifying soft-
ware processes from an agent-centered perspective
helped us to more thoroughly understand the processes
under examination.

Soon after, we developed an approach to import and
export speci®cations of agent-centered software process
models and instances to integrate and control new/leg-
acy software engineering environments with open sys-
tem interfaces (Mi and Scacchi, 1992). Thus, we could
now prototype and later generate process-driven soft-
ware interfaces (Mi and Scacchi, 1992). Thus, we could
now prototype and later generate process-driven soft-
ware development or use environments that could be
tailored for di�erent users or user roles (Mi and Scacchi,

Fig. 1. Screen display of a KBS session running in the articulator environment.

W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192 185

1992; Garg et al., 1994; Scacchi and Mi, 1997). Simi-
larly, we could monitor, capture, replay and simulate the
history of a process instance that was enacted in a
process-driven work environment (Scacchi and Mi,
1997). Unfortunately, interest in these matters quickly
began to overshadow our interest in just simulating
software processes using rule-based problem-solving
computational agents. Subsequently, our interest in de-
veloping an agent-based simulation environment waned
as others interested and exclusively focused on agent
technology, rather than software processes, moved into
the foreground.

2.2. Discrete-event simulation of software processes

DES allows us to dynamically analyze di�erent
samples of parameter values in software process in-
stances. This enables simulated processes to function
like transportation networks whose volumetric ¯ow,
tra�c density and congestion bottlenecks can be as-
sessed according to alternative (heuristic or statistical)

arrival rates and service intervals. Using DES, process
experts often ®nd it easy to observe or discover process
bottlenecks and optimization alternatives. Similarly,
when repetitive, high frequency processes are being
studied, then DES provides a basis for assessing and
validating the replicability of the simulated process to
actual experience. Likewise, DES can be used when data
on events and process step completion times/costs can be
empirically measured or captured, then entered as pro-
cess instance values for simulation. Thus, DES seems
well-suited for use when studying the behavioral dy-
namics of processes with a large number of recurring
process instances and those with relatively short process
completion (or cycle) times.

Many commercially available DES packages now
support animated visual displays of simulated process
executions or results. We use the animated displays so
that process experts can further validate as-is and to-be
process simulations under di�erent scenarios. These can
be viewed as software development or business process
``movies''. In addition, the animated process instance

Fig. 2. Paraphrased transcription resulting from a KBS run on a ®ne-grain software process.

186 W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192

simulations can be modi®ed, re-executed and viewed like
other simulations. Although we cannot conveniently
show such animations in printed form, snapshots cap-
tured from such a simulation may suggest what can be
observed. In Fig. 3, we have modeled an eight-person
(or agent) activity for performing an instance of a high
frequency end-user process supported by a software
system (in this case, for an accounts payable process).
The ®gure depicts the structure of the work ¯ow, agents
that perform each task, individual workload pie charts
and work units-in-progress quantities (e.g., the backlog
of invoices cleared, problematic invoices and checks
released).

We have employed both KBS and DES to generate
and analyze simulated process performance results.
With KBS our attention focused on generating persis-
tent records of the process execution context as it
evolved through the course of a simulation. Fig. 2 dis-
plays an output format view of such a record. By cap-
turing simulation results in this manner, they could be
stored in a database repository, queried and even run
backwards. Such capability enabled us to observe or
measure the dynamics of interactions between the mul-
tiple agents (e.g., software development people working
in di�erent roles in a process) over some simulation
duration or event stream. In contrast, with DES our
interest was often focused on developing answers to
questions pertaining to descriptive statistical character-
ization of simulated process execution events. In this
regard, we found that DES could be used to analyze and
measure the distribution of time, e�ort and cost (as in
``activity-based costing'' and ``process-based costing'').

Finally, we experimented with di�erent techniques for
integrating the KBS and DES software tools. Using the
Articulator, we built a transformation utility that could

generate a process model speci®cation in the standard
API format recognized by the DES. Commercial KBS
products now support this feature. Using the output of
the DES as input to the KBS is similarly achieved with a
di�erent data transformation utility that rewrites se-
lected DES statistics outputs as input values to KBS
simulation parameters. Shell scripts are then used to
hook the programs and utilities together.

Thus, both KBS and DES play vital roles in helping
to understand the behavioral dynamics of software
processes that we ®nd in real-world settings.

3. Simulation and modeling in process life cycle engineer-

ing

Following the discussion in the preceding section, it
becomes increasingly clear that modeling and simulating
software processes is not an end onto itself. To the
contrary, experience in software process modeling and
simulation has led to a better understanding the range of
activities that can be instigated and supported under the
heading of process life cycle engineering (Garg et al.,
1994; Heineman et al., 1994; Scacchi and Mi, 1997). To
help make this clear, consider the following set of ac-
tivities that emerged as a result of our experience with
knowledge-based process engineering (Garg et al., 1994;
Mi and Scacchi, 1990, 1992, 1993, 1996; Scacchi and
Mi, 1997; Noll and Scacchi, 1998). In addition, com-
parisons are provided to highlight di�erences in the use
of knowledge-based approaches in contrast to how dis-
crete-event and system dynamics (SD) approaches for
each process life cycle activity.

Meta-modeling: Constructing and re®ning a process
concept vocabulary and logic for representing families of

Fig. 3. Visual display form an animated multi-agent simulation.

W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192 187

processes and process instances in terms of object classes,
attributes, relations, constraints, control ¯ow, rules and
computational methods. A knowledge-based software
process meta-model was developed for this purpose
(Garg and Scacchi, 1989; Mi and Scacchi, 1990, 1996). In
contrast, DES packages employ a statistical network
¯ow meta-model, while a SD approach employs a con-
tinuous system of di�erential equations as its meta-
model. A meta-model conceived and implemented with
software processes as the modeling goal minimizes the
representational compromises that arise when using,
adapting or overloading statistical or numerical schemes.
The process meta-model supported by the Articulator is
an open representation by design that serves as a
framework for integrating and interoperating with other
software technologies (Scacchi and Mi, 1997). Its meta-
model and modeling ontology can be extended as need-
ed, whereas popular DES and SD packages employ
closed representations within proprietary systems.

Modeling: Eliciting and capturing informal process
descriptions, then converting them into formal process
models or process model instances. Knowledge-based
software process models can be incrementally speci®ed
and partially evaluated (Mi and Scacchi, 1990). In
contrast, popular DES and SD packages require that
software process models must be fully speci®ed before
they can be evaluated.

Analysis: Evaluating static and dynamic properties of
a process model, including its consistency, completeness,
internal correctness, traceability, as well as other se-
mantic checks (Mi and Scacchi, 1990). Analysis also
addresses the feasibility assessment and optimization of
alternative process models. Analysis should be applica-
ble to both classes and instances of process models, as is
supported by the articulator. In contrast, available DES
and SD packages used for modeling and simulating
software processes do not discuss whether the available
processing mechanisms can assess the consistency,
completeness or correctness of process models built in
their native representation schemes.

Simulation: Symbolically enacting process models in
order to determine the path and ¯ow of intermediate

state transitions in ways that can be made persistent,
replayed, queried, dynamically analyzed and recon®g-
ured into multiple alternative scenarios. Using know-
ledge-based simulation it is possible to support
incremental simulation, persistence of simulation exe-
cution traces, reversible simulation computation, query-
driven simulation and recon®gurable simulation space
during execution (Mi and Scacchi, 1990). In contrast,
common DES and SD packages only support mono-
lithic simulation and do not o�er support for persis-
tence, reversible computation or query processing.
However, these are not necessarily systematic short-
comings of DES or SD approaches, but rather they are
shortfalls in available implementations.

Redesign: Reorganizing and transforming the struc-
ture of relationships within a process to compress
completion time, as well as reduce or eliminate the
number of steps, hando�s, or participants. Knowledge-
based process redesign can support automated trans-
formations or optimizations on internal semantic
representations of process models (cf. Scacchi and Mi,
1997; Scacchi and Noll, 1997). No explicit support is
provided by DES or SD packages for automated process
redesign, thus process redesign is a manual activity with
these packages.

Visualization: Providing users with graphic views of
process models and instances that can be viewed, navi-
gationally traversed, interactively edited and animated
to convey an intuitive understanding of process statics
and dynamics. Popular DES and SD packages provide
mature facilities for creating and displaying graphic or
animated views of software processes. Similarly, they
provide mechanisms for creating user-de®ned plots and
charts that display characteristics of various event or
state distributions. However, improvements are needed
in a variety of areas including automated layout of al-
ternative views of process models, graphical query,
highlighting of user-de®ned properties and layout (e.g.,
highlighting the critical path during execution) and vi-
sualizing large-scale process representations (cf. Fig. 4).

Prototyping, walk-through and performance support:
Incrementally enacting partially speci®ed process model

Fig. 4. Decomposition view of a large software life cycle process model.

188 W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192

instances in order to evaluate process presentation sce-
narios through the involvement of end users prior to
performing tool and data integration. These capabilities
are easily provided with an open knowledge-based
process engineering environment, as well as providing
mechanisms to access and use these capabilities over the
Internet and Web (Scacchi and Mi, 1997; Scacchi and
Noll, 1997). None of the DES or SD packages that have
been used for software processes readily support these
capabilities.

Administration: Assigning and scheduling speci®ed
users, tools and development data objects to modeled
user roles, product milestones and development sched-
ule. KBS, DES and SD support these capabilities to
some degree.

Integration: Encapsulating or wrapping selected in-
formation systems, repositories and data objects that
can be invoked or manipulated when enacting a process
instance (Garg et al., 1994; Mi and Scacchi, 1992). This
provides a computational work space that binds user,
organizational role, task, tools, input and output re-
sources into ``semantic units of work'' (Garg and Scac-
chi, 1989). None of the DES or SD packages that have
been used for software processes readily support pro-
cess-based integration of externally developed software
tools or legacy repositories.

Environment generation: Automatically transforming
a process model or instance into a process-based com-
puting environment that selectively presents prototyped
or integrated information systems to end-users for pro-
cess enactment (Garg et al., 1994; Mi and Scacchi,
1992). None of the DES or SD packages readily support
this capability.

Instantiation and enactment: Performing the modeled
process using the environment by a process instance
interpreter that guides or enforces speci®ed users or user
roles to enact the process as planned. None of the DES
or SD packages that have been used for software pro-
cesses readily support these capabilities. In contrast,
knowledge-based techniques have been demonstrated
and used to support these capabilities using external
process execution support environments (e.g., Garg
et al., 1994; Mi and Scacchi, 1992; Noll and Scacchi, 1998).

Monitoring, recording and auditing: Collecting and
measuring process enactment data needed to improve
subsequent process enactment iterations, as well as
documenting what process steps actually occurred in
what order. KBS, DES and SD support these capabili-
ties to some degree.

History capture and replay: Recording the enactment
history and graphically simulating the re-enactment of a
process, in order to more readily observe process state
transitions, or to intuitively detect possible process en-
actment anomalies or improvement opportunities.
While this capability has been employed in a knowledge-
based process engineering environment (Scacchi and Mi,

1997), such a capability could be added to common DES
and SD package implementations.

Articulation: Diagnosing, repairing and rescheduling
actual or simulated process enactment that have unex-
pectedly broken down due to some unmet process re-
source requirement, contention, availability, or other
resource failure. While this problem-solving capability
has been developed and demonstrated within a know-
ledge-based approach (Mi and Scacchi, 1993), it appears
that the meta-model underlying DES and SD represen-
tations may not ever be able to support such a capability
except in an ad hoc manner.

Evolution: Incrementally and iteratively enhancing,
restructuring, tuning, migrating, or reengineering pro-
cess models and process life cycle activities to more ef-
fectively meet emerging user requirements, and to
capitalize on opportunistic bene®ts associated with new
tools and techniques. KBS, DES and SD support these
capabilities to some degree, though a knowledge-based
approach foreshadows the of automated transforma-
tions and mechanisms to support such a capability.

Process asset management: Organizing and managing
the collection of meta-models, models and instances of
processes, products, tools, documents and organiza-
tional structures/roles for engineering, redesign and re-
use activities. Only a knowledge-based approach has
been developed and demonstrated (Mi, Lee and Scacchi,
1992), while such a capability is outside the scope of
popular DES and SD packages.

While these process life cycle activities have been
addressed above, they are described in more detail in the
cited works. Clearly, many other scholars in the soft-
ware process research community have made important
contributions in these areas. But one goal that we sought
was to identify and address of process life cycle engi-
neering activities as we encountered them (cf. Mi and
Scacchi, 1993; Scacchi and Mi, 1997). Similarly, our
approach and environment for studying software pro-
cesses was designed and implemented to support a tight
integration of modeling, analysis and simulation (Garg
et al., 1994; Mi and Scacchi, 1990).

Central to our approach to achieving this integration
was the use of a knowledge-based process meta-model
(Mi and Scacchi, 1990, 1996). Our research team could
easily tailor this meta-model to various processes or
process application domains. We believe this was pos-
sible because the foundations of the meta-model were
grounded in empirical studies of software development
and use processes (cf. Mi and Scacchi, 1990; Scacchi and
Mi, 1997). Likewise, the meta-model was based on the
theoretical conceptualizations of the resource-based
ontology that we developed and re®ned (Garg and
Scacchi, 1989; Mi and Scacchi, 1990, 1996).

Use of process meta-modeling techniques enabled our
team to develop a number of associated tools that could
be rapidly integrated with our established modeling,

W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192 189

analysis and simulation capabilities. Similarly, it enabled
us to rapidly integrate externally developed or com-
mercially available tools, whose selected inputs and
outputs could be interfaced with the modeling and
simulation facilities available to us (Garg et al., 1994;
Scacchi and Mi, 1997; Scacchi and Noll, 1997). Ac-
cordingly, this capability enabled us, among other
things, to interoperate and automatically transform
models of complex organizational processes that we had
captured and formally modeled into input formats re-
quired by the KBS and DES tools we employed (Mi and
Scacchi, 1996; Scacchi and Mi, 1997). Thus, develop-
ment and use of a process meta-model was a key com-
ponent contributing to the success of our approach and
e�ort.

4. Experience in industrial settings

We used our capability and facilities for software
process simulation in a variety of industrial settings, as
highlighted elsewhere (Scacchi and Mi, 1997; Scacchi
and Noll, 1997). Our experiences were shaped in a
substantial way by the interactions and feedback we
encountered from our organizational sponsors and their
sta� (typically people at work in the settings being
studied).

We used the Articulator environment to model, an-
alyze, or simulate upwards of one hundred or more
organizational processes. In this regard, we have con-
structed software process models and instances for or-
ganizations within di�erent industries and government
agencies. We have focused, for example, on activities
involving team-based software product design and re-
view processes, as well as department and division-wide
information system operations and user support pro-
cesses that include from tens to hundreds of partici-
pants. These models typically include dozens of classes
of agents, tasks, resources and products, but a small
number of software support tools and systems, while the
process instantiation may include 1±10+ instances of
each class.

In one extreme situation, we were asked to model,
analyze and simulate a large-scale software development
life cycle process that was to be used in building a next-
generation telecommunications services environment.
Through modeling and analysis, we discovered the
process had 19 levels of (process) decomposition and
management delegation. This is displayed in Fig. 4. Our
advice to the company was that they needed to seriously
rethink what they hoped to accomplish with such an
onerous and cumbersome life cycle process, rather than
have us spend time and resources trying to simulate this
process. The company elected not to do this and our
e�ort ended. However, we were not surprised to read in
a trade newspaper some time later that the company had

killed the software development e�ort guided by this
process after spending more than $200M while failing to
develop the target software system. Our lesson from this
is that modeling, analysis and simulation can help im-
prove software processes, but they cannot overcome
management decision-making authority.

Our experience to date suggests the following: Mod-
eling existing processes can take from 1±3 person-days
to 2±3 person-months of e�ort. Process analysis routines
can run in real time or acceptable near real-time. Soft-
ware development process simulations can take from
seconds to hours (even days) depending on the com-
plexity of the modeled process, its instance space and the
amount of non-deterministic process activities being
modeled. Note however that simulation performance is
limited to available processing power and processor
memory. This suggests that better performance can be
achieved with (clustered) high performance computing
platforms.

Overall, we found that use of KBS could be over-
whelming to people unfamiliar with such advanced
technology. Our ability to potentially model and simu-
late individual or small group interactions, then sum-
marize the results of these interactions in a (stilted)
narrative format was sometimes viewed with some
skepticism. This may have been due to our inability to
su�ciently communicate what was being modeled and
stimulated (e.g., person-role-tool-task interactions with
other person-role-etc.) versus what was not being mod-
eled or simulated (how this person thinks or acts in re-
sponse to interactions with another person).

The Articulator environment as a platform for soft-
ware process modeling, analysis and simulation was
designed to address the research interests of a small
group of enthusiastic software process researchers. It
was not designed to be a tool provided to end-users in
other organizational settings. The complexity of the user
interface displayed in Fig. 1 should underscore this.
Furthermore, its implementation as a rule-based multi-
agent problem-solving system with more than 1000
production rules, most of which are actually small
programs implemented in Common Lisp should make
clear that evolving it into a robust, user-friendly system
would be impractical. Perhaps with recent advances in
agent technology designed to operate over the Internet,
some of the KBS concepts pioneered in the articulator
environment can be reinvented and re-implemented in a
more robust and intuitive manner.

Alternatively, we found the use and output of DES
results to be much more easily accepted by more people.
The functional capabilities and technical features of the
DES package we used (WITNESStm) were signi®cantly
less when compared to our KBS. However, the DES
package did provide facilities for generating interactive
graphic animations of simulated processes. These mov-
ies or animated cartoons of simulated processes were

190 W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192

informing and entertaining. More importantly, we re-
peatedly found people could observe and understand the
dynamics of an animated process quite readily and in-
tuitively. It appears that this aspect is particularly rele-
vant. Speci®cally, when people could quickly grasp what
was being portrayed in a simulation movie they were
watching, they could often recognize process patholo-
gies (e.g., work ¯ow bottlenecks) as well as suggest al-
ternative process redesigns or improvement
opportunities (Scacchi and Mi, 1997; Scacchi and Noll,
1997). In turn, this feedback could then be used to fur-
ther engage and empower these people to take control
over the redesign of their as-is process, or the design of
their to-be process. We took these to be a better indi-
cator of customer satisfaction with our research ap-
proach and results in software process engineering. The
apparent value to end-users of intuitive interfaces to
software process modeling and simulation environments
is therefore a valuable lesson learned.

5. Conclusions

Overall, our experience with these simulation capa-
bilities can be summarized according to the kind of
mechanisms employed. We found that knowledge-based
simulation was of greatest value in supporting explor-
atory analysis of software process models. Knowledge-
based simulation technology may be ``rocket science'' to
most people. But it is useful when focused on under-
standing ®ne-grained or deep causal relationship of low
frequency or loosely structured software processes. This
can help facilitate qualitative insights into the operation
of software processes. In contrast, discrete-event simu-
lation was of greatest value in validating and assessing
shallow process model instances of high frequency, short
cycle-time processes using coarse-grain and statistically
representative data samples. This helps facilitate quan-
titative insights into the operation of alternative soft-
ware process instances. Thus, together we ®nd that both
knowledge-based and conventional discrete-event sim-
ulation capabilities are helpful when used to comple-
ment the strengths of one another.

The starting thesis of this paper was framed in terms
of simulating and modeling software processes. Experi-
ence with the technologies gave rise to enhancements,
extensions and the integration of many additional sys-
tems. Consequently, we found the software process
modeling, analysis and simulation are best understood
and practiced as part of an overall engineering of the
software process life cycle. Furthermore, it seems that
the use of a process meta-model has demonstrated a
strategy for how to successfully integrate new tools and
techniques for software process life cycle engineering.

We have had a variety of experiences and learned
much for the use of simulation and modeling tools,

techniques and concepts in understanding software de-
velopment processes. Knowledge-based simulation ca-
pabilities now seem to have a limited future unless they
can be reinvented using agent technologies. Discrete-
event simulation packages, especially those that can
produce animated visualizations of simulated process
execution seem attractive. Either way, provision of ro-
bust and intuitive simulation capabilities seems essential
if the goal is to get more people involved in software
process modeling and simulation, or if the goal is to
explore some of the emerging topics that were identi®ed
at the end of this paper.

Finally, we found that all of what we have learned,
and much of the technical capabilities we initially de-
veloped for studying complex software development
processes, can be readily applied to other organizational
processes where software systems are used (Scacchi and
Mi, 1997; Scacchi and Noll, 1997). This is also an im-
portant result that researchers may want to consider and
exploit when investigating how simulation and modeling
technology can be used for understanding and engi-
neering software processes.

Acknowledgements

The research results described in this paper bene®ted
from the collaborative contributions of many people. In
particular, Peiwei Mi and John Noll played major roles
in developing and evolving the software technologies
described here. Pankaj K. Garg, M.J. Lee and Mark
Nissen also contributed to the research e�orts described
in the paper. Their contributions are greatly appreciated.

References

Curtis, B., Kellner, M.I., Over, J.W., 1992. Process modeling.

Communications ACM 35 (9), 75±90.

Garg, P.K., Mi, P., Pham, T., Scacchi, W., Thunquest. G., 1994. The

SMART approach to software process engineering. Proceedings

of the 16th International Conference on Software Engineering,

Sorrento, Italy, pp. 341±350.

Garg, P.K., Scacchi, W., 1989. ISHYS: Designing intelligent software

systems. IEEE Expert 4 (3), 52±63.

Heineman, G., Botsford, J.E., Caldiera, G., Kaiser, G., Kellner, M.I.,

Madhavji, N.H., 1994. Emerging technologies that support a

software process life cycle. IBM Systems J. 32 (3), 501±529.

Humphrey W.S., Kellner, M.I., 1989. Software process modeling:

Principles of entity process models. Proceedings of the 11th

International Conference on Software Engineering. IEEE Com-

puter Society, Pittsburgh, PA, pp. 331±342.

Mi, P., Lee, M.-J., Scacchi. W., 1992. A knowledge-based software

process library for process driven software development. Pro-

ceedings of the Seventh Annual Knowledge-Based Software

Engineering Conference. IEEE Computer Society, Washington

DC, pp. 122±131.

Mi, P., Scacchi, W., 1990. A knowledge-based environment for

modeling and simulating software engineering processes. IEEE

Trans. Knowledge and Data Engineering 2(3), 283±294. Reprint-

W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192 191

ed in (1991) Nikkei Arti®cial Intelligence 20 (1), 176±191 (in

Japanese).

Mi, P., Scacchi., W., 1992. Process integration in CASE environments.

IEEE Software 9 (2), 45±53. Reprinted in: Chikofski, E. (Ed.),

Computer-aided Software Engineering, 2nd ed. IEEE Computer

Society, 1993.

Mi, P., Scacchi., W., 1993. Articulation: An integrated approach to the

diagnosis, replanning, and rescheduling of software process

failures. Proceedings of the Eighth knowledge-Based Software

Engineering Conference, Chicago, IL. IEEE Computer Society,

pp. 77±85.

Mi, P., Scacchi, W., 1996. A meta-model for formulating knowledge-

based models of software development. Decision Support

Systems 17 (3), 313±330.

Noll J., Scacchi., W., 1998. Supporting software development in virtual

enterprises. Journal of Digital Information (http://journals.ecs.so-

ton.ac.uk/jodi/) 1 (4).

Scacchi, W., Mi, P., 1997. Process life cycle engineering: A knowledge-

based approach and environment. Intelligent Systems in Ac-

counting, Finance, and Management 6 (1), 83±107.

Scacchi, W., Noll, J., 1997. Process-driven intranets: Life-cycle support

for process reengineering. IEEE Internet Computing 1 (5), 42±49.

Walt Scacchi received his Ph.D. in Information and Computer Science
from UC Irvine in 1981. He was on the faculty in Computer Science
and in the Marshall School of Business at USC from 1981 to 1998.
During the 1980's he founded and directed the USC System Factory
project. This was the ®rst software factory research and education
project in a university setting. During the 1990's he founded and di-
rected the USC ATRIUM laboratory (www.usc.edu/dept/ATRIUM)
to focus on the research and development of advanced technology
resources for investigating and understanding managed processes. He
has published over 100 papers and has served as a principal investi-
gator on 25 research contracts and grants. He is also an active in-
dustry consultant. He can be contacted via email at Wscacchi
@rcf.usc.edu.

192 W. Scacchi / The Journal of Systems and Software 46 (1999) 183±192

