Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: How Pilot operated Solenoid Valve Works ?
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Valves > How Pilot operated Solenoid Valve Works ?

How Pilot operated Solenoid Valve Works ?

Last updated: June 18, 2019 7:27 am
Editorial Staff
Control Valves Solenoid Valve
1 Comment
Share
4 Min Read
SHARE

Basics of Pilot Operated Solenoid Valves

Pilot operated Solenoid Valve Principle

A solenoid valve has two main parts: the solenoid and the valve. The solenoid converts electrical energy into mechanical energy which, in turn, opens or closes the valve mechanically.

A direct acting valve has only a small flow circuit, shown within section E of this diagram (this section is mentioned below as a pilot valve). In this example, a diaphragm piloted valve multiplies this small pilot flow, by using it to control the flow through a much larger orifice.

Solenoid valves may use metal seals or rubber seals, and may also have electrical interfaces to allow for easy control. A spring may be used to hold the valve opened (normally open) or closed (normally closed) while the valve is not activated.

Basics of Pilot Operated Solenoid Valves

A- Input side
B- Diaphragm
C- Pressure chamber
D- Pressure relief passage
E- Electro Mechanical Solenoid
F- Output side

The diagram to the right shows the design of a basic valve, controlling the flow of water in this example. At the top figure is the valve in its closed state. The water under pressure enters at A. B is an elastic diaphragm and above it is a weak spring pushing it down.

The diaphragm has a pinhole through its center which allows a very small amount of water to flow through it. This water fills the cavity C on the other side of the diaphragm so that pressure is equal on both sides of the diaphragm, however the compressed spring supplies a net downward force. The spring is weak and is only able to close the inlet because water pressure is equalized on both sides of the diaphragm.

Once the diaphragm closes the valve, the pressure on the outlet side of its bottom is reduced, and the greater pressure above holds it even more firmly closed. Thus, the spring is irrelevant to holding the valve closed.

The above all works because the small drain passage D was blocked by a pin which is the armature of the solenoid E and which is pushed down by a spring. If current is passed through the solenoid, the pin is withdrawn via magnetic force, and the water in chamber C drains out the passage D faster than the pinhole can refill it.

The pressure in chamber C drops and the incoming pressure lifts the diaphragm, thus opening the main valve. Water now flows directly from A to F.

When the solenoid is again deactivated and the passage D is closed again, the spring needs very little force to push the diaphragm down again and the main valve closes. In practice there is often no separate spring; the elastomer diaphragm is molded so that it functions as its own spring, preferring to be in the closed shape.

From this explanation it can be seen that this type of valve relies on a differential of pressure between input and output as the pressure at the input must always be greater than the pressure at the output for it to work. Should the pressure at the output, for any reason, rise above that of the input then the valve would open regardless of the state of the solenoid and pilot valve.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Valve Position Indication
Digital Control Valve Working Principle
What is ON/OFF Valve ?
Dampers and Louvres
What is Lift Check Valve ?
Safety Relief Valve Quiz: Test Your Knowledge
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
1 Comment
  • Hareef mohamed says:
    August 5, 2017 at 12:41 pm

    very useful site for instrument technicians

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Electrical Actuators
Choke Valve Hydro Testing Procedure
Difference between AC and DC Solenoid Valves
What is Shutdown Valve?
3 Port 2 Position Direct Acting Solenoid Valve Working Principle
Solenoid Valve Selection Criteria
Valve Handwheel Types : Fixed, Hammer, Gear
What is Travel Stop in Control Valve?

Keep Learning

SMART Control Valve Positioner

Electronic Valve positioners

Control Valve Working Animation

Control Valve Working Animation

Valves Legend P&ID

Comparison of Gate Valves and Globe Valves

Metal Seated Ball Valves

Metal Seated Valves and Soft Seated Valves : Differences

gate-valve-principle-animation

Basics of Gate Valves

Internal parts of relief valve

What is a Boiler Pressure Relief Valve?

Working of Shuttle valve

What is a Shuttle Valve? Principle, Advantages, Disadvantages

Control Valves Leakage Classifications

Control Valves Leakage Classifications

Learn More

Electronic Pressure Sensor with Bourdon Tube and LVDT

Electronic Pressure Sensor with Bourdon Tube and LVDT

Effluent Treatment Plant

Basic Components of Effluent Treatment Plant (ETP)

Solenoid Valve Troubleshooting

Solenoid Valve Troubleshooting Tips

Left-Hand Rule for Generators

Starting of DC Motors

Bipolar Junction Transistors Questions & Answers

Measurement and Instrumentation Objective Questions – Part 1

PLC Programming for Level Switches

PLC Programming using Level Switches

Electrical Machines Questions and Answers

Synchronous Machines Excitation Quiz

Glass Bottle Level Gauge

Antifriction Bearings Caused Machine Changeovers Posed Outages

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?