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Abstract

The purpose of this paper is to investigate statistical @riigs of risk minimization based multi-
category classification methods. These methods can bedewedias natural extensions of binary
large margin classification. We establish conditions thatrgntee the consistency of classifiers
obtained in the risk minimization framework with respecttie classification error. Examples are
provided for four specific forms of the general formulatiamjch extend a number of known meth-
ods. Using these examples, we show that some risk minimizérmulations can also be used to
obtain conditional probability estimates for the undertyproblem. Such conditional probability
information can be useful for statistical inferencing bkyond classification.

1. Motivation

Consider a binary classification problem where we want to predictjeb¢t-1} based on observa-
tion x. One of the most significant achievements for binary classification in makganang is the
invention of large margin methods, which include support vector machimkelsaosting algorithms.

Based on a set of training sample$;,Y1),..., (X, Yn), @ large margin binary classification
algorithm produces a decision functicﬁ(}) by minimizing an empirical loss function that is often a
convex upper bound of the binary classification error function. Giv(e)] the binary decision rule
is to predicty =1 if f( ) > 0, and to predicy = —1 otherwise (the decision rule a(x) Ois not
important).

In the literature, the following form of large margin binary classification isro#facountered:
we minimize the empirical risk associated with a convex functyen a pre-chosen function class
Cn that may depend on the sample size:

f(-) =arg m|n —Zl(p 1)

Originally such a scheme was regarded as a compromise to avoid computdiftioalties
associated with direct classification error minimization, which often leads toPaha¥id problem.
Some recent works in the statistical literature argued that such methodshmulsked to obtain
conditional probability estimates. For example, see Friedman et al. (2000§2Q02), Schapire
and Singer (1999), Zhang (2004), Steinwart (2003) for relatedegtud his point of view allows
people to show the consistency of various large margin methods: that is, largleesample limit,
the obtained classifiers achieve the optimal Bayes error rate. For examglBartlett et al. (2003),
Jiang (2004), Lugosi and Vayatis (2004), Mannor et al. (2003)in®trt (2002, 2004), Zhang
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(2004). The consistency of a learning method is certainly a very desipafyberty, and one may
argue that a good classification method should at least be consistent irgignedmple limit.

Although statistical properties of binary classification algorithms based aistheinimization
formulation (1) are quite well-understood due to many recent works sutttoae mentioned above,
there are much fewer studies on risk minimization based multi-category probleicis generalizes
the binary large margin method (1). The complexity of possible generalizatiage one reason.
Another reason may be that one can always estimate the conditional pitgtbaba multi-category
problem using the binary classification formulation (1) for each categad/then pick the category
with the highest estimated conditional probability (or scare).

It is still useful to understand whether there are more natural altersatwel what risk min-
imization formulations that generalize (1) can be used to yield consistentifigies# the large
sample limit. An important step toward this direction has recently been taken bgtlate(2004),
where the authors proposed a multi-category extension of the supptot weachine that is infinite-
sample Bayes consistent (Fisher consistent). The purpose of thisipapeyeneralize their study
so as to include a much wider class of risk minimization formulations that can leazhsistent
classifiers in the infinite-sample limit. Moreover, combined with some relatively siggeraliza-
tion analysis for kernel methods, we are able to show that with appropridtesen regularization
conditions, classifiers obtained from certain formulations can approaabptimal Bayes error in
the large sample limit.

Theoretical analysis of risk minimization based multi-category large margin metzog started
to draw more attention recently. For example, in Desyatnikov and Meir (26£8ing bounds for
some multi-category convex risk minimization methods were obtained, althoughttiewsadid not
study possible choices of Bayes consistent formulations. A related studgecfound in Liu and
Shen (2004), but again only for special formulations.

Although this paper studies a number of multi-category classification methedshail not try
to argue which one is better practically, or to compare different formulaggperimentally. One
reason is that some methods investigated in this paper were originally pdobgpgiifferent re-
searchers, who have much more practical experience with the condéspalgorithms. Due to the
scope of this paper, it is simply impossible for us to include a comprehensipiieal study with-
out overlooking some engineering tricks. Casual experimental comparésm lead to misleading
conclusions. Therefore in this paper we only focus on asymptotic thealratialysis. Although
our analysis provides useful statistical insights (especially asymptotictily)performance of a
learning algorithm may also be affected by factors which we do not carsideere, especially
for small-sample problems. We shall refer the readers to Rifkin and Klag4] for a recent
experimental study on some multi-category classification algorithms, althougéstes of which
algorithm may have better practical performance (and under what citanoes) is far from re-
solved.

We organize the paper as follows. Section 2 introduces the multi-categassjfidation prob-
lem, and a general risk minimization based approach. In Section 3, we @iditions that guar-
antee the infinite-sample consistency of the risk minimization formulation. In Sectiexafples
of the general formulation, which extend some existing methods in the literatilirbe presented.
We shall study their properties such as the associated statistical modelsratitions that en-

1. This approach is often called one-versus-all in machine learningoth&n main approach is to encode a multi-
category classification problem into binary classification sub-problets.consistency of such encoding schemes
cannot be analyzed in our framework, and we shall not discuss them.
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sure the infinite-sample consistency (ISC) of the resulting risk minimization estisna&@ection 5
contains a relatively simple generalization analysis (which is not necestghifyfor kernel multi-
categorization methods. Our purpose is to demonstrate that with appropciawsin regularization
conditions, classifiers obtained from ISC risk minimization formulations canoagp the optimal
Bayes classifier in the large sample limit. Concluding remarks will be presengetiion 6.

2. Multi-Category Classification

We consider the following(-category classification problem: given an input vestave would like
to predict its corresponding labgle {1,...,K}. Let p(x) be a predictor of which is a function
of x. In the machine learning framework, the quality of this predictor can be medsy a loss
functionL(p(x),y), and the dat&X,Y) are drawn from an unknown underlying distributibn

Given a set of training sampléXy, Y1), ..., (X, Yn), randomly drawn fronD, our goal is to find
a predictorp(x) so that the expected true losspgiven below is as small as possible:

ExyL(B(X),Y),

where we uséy v to denote the expectation with respect to the true (but unknown) underlying
distributionD.

The loss functioriL(p,y) can be regarded askax K cost matrix. In this paper, we are mainly
interested in the simple but also the most important case-ofl @lassification loss: we have a
loss of O for correct prediction, and loss of 1 for incorrect predictdfe consider a slightly more
general family of cost matrices, where the classification errors forrdiifeclasses are penalized

differently:
0 ifp=y
L(p,y) = 2
(p.y) {ay fpty. )

whereay >0 (y=1,...,K) areK pre-defined positive numbers. Ifwe lBt=1 (y=1,...,K), then
we have the standard classification error. The more general codivgeakssification error in (2)
is useful for many applications. For example, in some medical diagnosis afiqutis, classifying a
patient with cancer to theo-canceicategory is much worse than classifying a patient without cancer
to thepossible cancecategory (since in the latter case, a more thorough test can be performed to
produce a more definite diagnosis).

Let p(X) € {1,...,K} be a classifier. Its classification error under (2) is given by

K
(p()=Ex Y aP(Y =cX). 3)
c~1EZp(X)

If we know the conditional densit?(Y = c|X), then the optimal classification rule with the mini-
mum loss in (3), often referred to as tBayes ruleis given by

L(X) = P(Y = ¢|X). 4
P« (X) CE{TZ?.).(.,K}aC( c[X) (4)

In binary classification with 0-1 classification error, the class rule canbb&reed using the
sign of a real-valued decision function. This can be generaliz&ddiass classification problem as
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follows: we consideK decision functiond¢(x) wherec = 1,...,K and we predict the labgl of x
as

T(f(x) :=arg fnax fe(x), ()
where we denote bif(x) the vector functiori(x) = [f1(X),..., fk (X)]. In the following, we use bold
symbols such akto denote vectors, arfd to denote ite-th component. We also u$g) to denote
vector functions. If two or more componentsfadichieve the same maximum value, then we may
choose any of them aB(f). In this frameworkf.(x) is often regarded as a scoring function for
categoryc that is correlated with how likelyx belongs to category (compared with the remaining
k— 1 categories).

Note that only the relative strength of the comporfelsompared with the alternativégs(k # c)
is important. In particular, the decision rule given in (5) does not chargmwe add the same
numerical quantity to each componentfgk). This allows us to impose one constraint on the
vectorf(x) which decreases the degree of freed¢raf the K-component vectoi(x) to K — 1. For
example, in the binary classification case, we can enffareg + f2(x) = 0, and hencd (x) can be
represented g$;(x), —f1(x)]. The decision rule in (5), which compargsx) > f2(x), is equivalent
to f1(x) > 0. This leads to the binary classification rule mentioned in the introduction.

In the multi-category case, one may also interpret the possible constratm @actor function
f(-), which reduces its degree of freedom fréfrto K — 1, based on the following observation. In
many cases, we seékx) as a function op(Y = c|x). Since we have a constraipf_, p(Y =c|x) =
1 (implying that the degree of freedom fpfY = c|x) is K — 1), the degree of freedom fdris also
K —1 (instead oK). However, we shall point out that in the algorithms we formulate below, we
may either enforce such a constraint that reduces the degree dbrinesfd, or we do not impose
any constraint, which keeps the degree of freedorh f beK. The advantage of the latter is that
it allows the computation of eadh(x) to be decoupled. It is thus much simpler both conceptually
and numerically. Moreover, it directly handles multiple-label problems wherenay assign each
x to multiple labels ofy € {1,...,K}. In this scenario, we do not have a constraint.

In this paper, we consider an empirical risk minimization method to solve a multiargteg
problem, which is of the following general form:

f() = Yy 6
() argr@gnZv (6)

wheref(-) is aK-component vector function, ai is a vector function class. Eady(-) : R¢ — R
(indexed by class lab# € {1,...,K}) is a real-valued function that take&«acomponent vector as
its parameter. As we shall see later, this method is a natural generalizatiebirfiginy classification
method (1). Note that one may consider an even more general form¥yith(X)) replaced by
Wy (f(X), X), which we don’t study in this paper.

The general formulation (6) covers many traditional and newly proposéti-category classi-
fication methods. Examples will be given in Section 4. Some of them such asmsoltieategory
extensions of support vector machines are directly motivated by margin maxioniZin the sepa-
rable case). In general, as we shall see in Section 4, the fugtii should be chosen such that it
favors a vector predictdrwith the componenfy corresponding to the observed class lab&rger
than the alternativef for k £ Y. In this sense, it encourages the correct classification rule in (5)
by implicitly maximizes the difference df and the remaining componerfis(k # Y). One may
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interpret this effect as soft margin-maximization, and hence one may erteatning algorithms
based on (6) generally as multi-category large margin methods.

Given the estimatai(-) from (6), the classification rule is based on (5) or some variants which
we shall discuss later. The main purpose of the paper is to investigate theifgjltwo issues:

e Consistency: whether the classification ert(-)) converges td(p.(-)) wherep,(-) is the
Bayes rule defined in (4).

e Probability model: the relationship ¢fX) and the conditional probability vectdP(Y =
c|X)]e=1,...K-

3. Approximation Estimation Decomposition

From the standard learning theory, one can expect that with apprdpichiesenC,, the solution
f(-) of (6) approximately minimizes the trué risk EX,YLIJY(f(X)) with respect to the unknown
underlying distributiorD within the vector function class,. The true risk of a vector functioft-)
can be rewritten as

Ex,y Wy (f(X)) = EXW(P(-|X),f(X)), (7)
whereP(-|X) = [P(Y = 1|X),...,P(Y = K|X)] is the conditional probability, and

K
W(a,f) == 5 deWe(f). ®)
c=1

Note that we use; to denote the componentof a K-dimensional vectoq € A, where/k is the
set of possible conditional probability vectors:

K
A:=<9eR:$9.=10.>05.
{ C;c c

The vector argumeryg of W(q,f) represents the conditional probability vector evaluated at some
point x; the argument represents the value of our vector predictor evaluated at the same point
X. Intuitively, W(q,f) is the point-wise true loss df at somex, with respect to the conditional
probability distributiong = [P(Y = -|X = X)].

In order to understand the large sample behavior of the algorithm bassavimg (6), we first
need to understand the behavior of a vector fundtigrthat approximately minimizeSy v Wy (f(X)).
We introduce the following definition. The property has also been refearasclassification cali-
bratedin Bartlett et al. (2003) oFisher consistenin Lin (2002). In this paper, we explicitly call it
asinfinite-sample consistent

Definition 1 ConsiderfW¢(f)] in (7). We say that the formulation is infinite-sample consistent (ISC)
on a sefQ C RX with respect to the classification error loss (3), if the following conditions hold

e Foreach cW¢(-): Q — Ris bounded below and continuous.

e Vq € Ak and ce {1,...,K} such that @qc < sup,aqk, we have

W*(q) := fi&sz(q,f) < inf {W(q,f) feQ.fe= Slkjpfk} .
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Remark 2 Among the two conditions, the second is more essential. It says that (ge#l) for
each conditional probability vectay € Ak, an exact optimal solution of Vg, -) leads to a Bayes
rule with respect to the classification error defined in (3). That is, thetaxénimization of (7) leads
to the exact minimization of classification error. This condition is clearly seagy for consistency.
The first condition (continuity) is heeded to show that point-wisely, ancequpate (instead of
exact) minimizer of (7) also approximately minimizes the classification.error

The following result relates the approximate minimization of ¥eisk to the approximate
minimization of classification error. The proof is left to Appendix B. A moreayahbut also more
abstract theory is presented in Appendix A.

Theorem 3 Let B be the set of all vector Borel measurable functions (with respect to sooher-
lying topology on the input space) which take values'in Ror Q ¢ RX, let B = {f € B: ¥x,f(x) €
Q}. If [We(+)] is ISC onQ with respect to (3), thelie; > 0, Je > 0 such that for all underlying
Borel probability measurable D, and-) € Bq,

ExyWy(f(X)) < Inf ExyWy(F'(X))+e2
f'eBq

implies
((T(f()) < le+e1,
T(-) is defined in (5), andg is the optimal Bayes errorfg = ¢(p.(+)), with p. given in (4).

Based on the above theorem, an ISC risk minimization formulation is suitable forcatagory
classification problems. The classifier obtained from minimizing (6) can apprthe Bayes error
rate if we can show that with appropriately chosen function diasspproximate minimization of
(6) implies approximate minimization of (7). Learning bounds of this kind haes bvery well-
studied in statistics and machine learning. For example, for binary classificatioh bounds can
be found in Blanchard et al. (2003), Bartlett et al. (2003), Jiang4RQdugosi and Vayatis (2004),
Mannor et al. (2003), Steinwart (2002, 2004), Zhang (2004),revtieey were used to prove the
consistency of various large margin classification methods. In order ievacbonsistency, it is
also necessary to take a sequence of function cl&sigpically, one takes a sequenCeC C, C
.-+ C ‘Bg) such thatu,C, is dense (e.g. with respect to the uniform-norm topologyBin This
method, widely studied in the statistics literature, is often referred theasnethod of sievg$or
example, see Chapter 10 of van de Geer, 2000, and referencen)thiiie also closely related to
the structural risk minimization method of Vapnik (1998). TheGgtas the effect of regularization,
which ensures that for large EX7YL|Jy(f(X)) ~ inf()ec, Exy Wy (f(X)). It follows that asn — oo,

~

Exy Wy (F(X)) 2 infe() e, Exy Wy (F(X)). Theorem 3 then implies thétT (F(-))) = ¢g. The above
idea, although intuitively clear, is not rigorously stated at this point. A rigsribeatment can be
found in Section 5.

We can see that there are two types of errors in this framework. Theyfiestof error, often
referred to aspproximation erroy measures how close we are from the optimal Bayes error when
we approximately minimize the true risk with respect to the surrogate loss fungtior§7). Theo-
rem 3 implies that the approximation error goes to zero when we approximateiypiaen7). The
second type of error, often referred toestimation erroy is how close we are from achieving the
minimum of the true¥ risk in (7), when we obtain a classifier based on the empirical minimization
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of (6). The overall statistical error of the risk minimization based classificatiethod (6) is given
by the combination of approximation error and estimation error.

Before studying learning bounds that relate approximate minimization of (6g atproximate
minimization of (7), we provide examples & that lead to ISC formulations. We pay special
attention to the case that eakh(f) is a convex function of, so that the resulting formulation
becomes computationally more tractable (assuming we also use convex fuotatises,).

4. Multi-Category Classification Formulations

We give some examples of ISC multi-category classification formulations. digeayotivated from
methods proposed in the literature, and will be extended in our framework.

The following simple result says that an ISC formulation for an arbitrary ¢tdghe form (2)
can be obtained from an ISC formulation of any particular loss in that family.

Proposition 4 AssumgW(f)] is ISC onQ c RX with respect to (3) with @= a. (c = 1,...,K).
ThenV positive numbers/a(c = 1,...,K), [W.(f)a’/a}] is ISC onQ c RX with respect to (3) with
ac=al(c=1,...,K).

Proof The first condition of ISC holds automatically. Now we shall check the sgcondition.
For allg € Ak, we defineq’ asq, = qcag. /a;. Therefore

R

The ISC condition ofW(f)] with respect to{a..} implies

)// K

()//
a

mf{ZqC )a‘: fleC:supfk}>|anqC

for all ¢ such thatecqe < supa . Thatis, for allc such thatagge < supa;qx. This gives the
second condition of ISC. |

Due to the above result, for notational simplicity, we shall focus on the OsEi€ieation error
in this section, witha; = 1 in (3):

K
(p())=Ex > P(Y=¢X)=1-ExP(Y=p()X). 9)
c=1,c#p(X)
4.1 Pairwise Comparison Method

This model is motivated from the multi-class support vector machine in Westbwatkins (1998¥.
Here we consider a more general formulation with the following choic€:of

K
We(f) = Z o(fc —fu), (10)
K=1

2. According to Schilkopf and Smola. (2002), page 213, an identical method was prdpndependently by Blanz
et al. (1995) three years earlier in a talk given at AT&T.
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where@is an appropriately chosen real-valued function. The choice in Westbivatkins (1998)
is the hinge loss for the SVM formulatiog(p) = (1— p) .

Typically we choose a decreasing functipm (10). Assume that we observe a datrwith its
labelY. The intuition behind (10) is to favor a large valiyg€X) — fx(X) for k# Y, which encourages
the correct classification rule. This approach has some attractivedsatsince it makes pairwise
comparisons, the penalty tem(f. — fx) can be adjusted in a pairwise fashion. This can be useful
for some cost-sensitive classification problems that are more generahthgarticular form we
consider in (3). With a differentiable (thus excludes the SVM hinge loss), this method also has
the very desirable property ofder preservingwhich we state below.

Theorem 5 Consider the formulation in (10). L&f-) : R— R be a non-increasing function such
that@(z) < ¢(—z) for all z> 0. Consider anyy € Ak andf such that Wq,f) =W*(q). If g < qj,
we havd; < f;. Moreover, ifg(-) is differentiable andy (0) < 0, then we havé§ < f;.

Proof We can take = 1 andj = 2. Letf’ = fy whenk > 2, f| = f,, andf}, = f;. We now prove the
first part by contradiction. Assunfe > f,. We have

W(qaf,) 7W(q7f)
=(d2—d1) |@(f1 —f2) —@(f2 —f1) + ZZ( o(f1 —fi) — @(f2— i)
k

<(92—-a1)[0+0]=0.

This is a contradiction to the optimality 6f Therefore we must have < f,, which proves the first
part.

Now we assume in addition thef-) is differentiable. Then at the optimal solution, we have the
first order condition-W(q, f) = 0:

de y @(fe—fi) = quqf (fc—fc)

Again, we prove the second part by contradiction. To this end let usresfsu= f, = f, then the
above equality implies that

K K
f—f) = f—fi).
(o1 k;(lf( k) =02 kzqu( K)
This is not possible sincgE:lqj(f —fx) <2¢(0) <O. [ |

Note that for functions that are not differentiable, eveniif< g,, we may still allowf; = f;
at an optimal solution. Moreover, it is possible that the formulation is not W8€ provide such
a counter-example for the hinge loss in Appendix C. However, for éifféable functions, the
method is infinite-sample consistent.

Theorem 6 Letq(-) : R— R be a differentiable non-negative and non-increasing function such that
@ (0) < 0. Then the formulation (10) is ISC dd= R with respect to (9).
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Proof Considerg € Ak, and assume thay < g2. We show that
inf{W(q,f) : f € Q,f1 > f2} >W*(q).

This will imply ISC. We again prove by contradiction. If the claim is not true ntinee can find
sequencef™ such that 0= " > " and lim,W(q,f(M) = W*(q). We can further select subse-

guences such that for each paand j, fi(m) —f%m) converges (may converge tiex). This gives a
limiting vectorf, with properly defined; — f; even when eithef; or f; is £. It follows from the
assumption thatv(q,f) = W*(q) and 0= f; > f,. However, this violates Theorem 5 (with trivial

modification of the proof to handle the infinity-case), which assertsthatfs. |

A method closely related to (10) is to employ the following choicetb{see Crammer and
Singer, 2001):
We(f) = @(fc — supfy). (11)
k#c
However, for convexp, this method is usually not infinite-sample consistent. To see this, we assume
that@is a convex decreasing function aqd> q»--- > gx. After some simple algebra, we may
choosef; > f, = --- = fk, and the corresponding(q,f) = q1¢(f; — f2) — zﬁzzchp(fz —f1). This
means that unlesg > 0.5, we can choosh = f, to achieve the optimal value.

It is also worth mentioning that the formulation in (11) has been applied ssfotlgsn many
practical applications. This may not be surprising since in many practioblemns, the most im-
portant scenario is when the true label can be predicted relativelyaebturIn such case (more
precisely, when symy > 0.5), the method is well behaved (ISC). The same reason is also why
one may often successfully use (10) with the SVM hinge loss in practichlenss, although from
Appendix C, we know that the resulting classification method can be incomsid#®wever, the
analysis given in this section is still useful for the purpose of understgrilde limitations of these
methods.

4.2 Constrained Comparison Method

As pointed out, one may impose constraints on possible choiceslofthis section, we consider
another direct extension of binary large-margin method (1) to multi-catezseg. The choice given
below is motivated by Lee et al. (2004), where an extension of SVM wasosed. For simplicity,
we will consider linear equality constraint only:

We(f) = i o—f), st feqQ, (12)
k=1k#c

K
Q=<fecR\: > fk=0;p.
k=1

Similar to the pairwise comparison model, if we choose a decreasing fungtio(iL0), then this
formulation also encourages the correct classification rule. If we wbsedatunX with its labelY,
then the formulation favors smdll(X) for all k # Y. Due to the sum to zero constraint, this implies
a largefy (X).

where we defin€ as
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We may interpret the added constraint in (12) as a restriction on the funéissCg in (6) such
that evenyf € C, satisfies the constraint. Note that wikh= 2, this leads to the standard binary large
margin method.

Using (12), the conditional tru risk (8) can be written as

K
W(q,f) =% (1-ac)e(—fc), stfeQ. (13)
=1
Similar to the pairwise comparison model, for certain choices of funapiaihis formulation
has the desirable order preserving property.

Theorem 7 Consider the formulation in (12), and assume tlpas strictly decreasing. Consider
anyq € A andf € Q such that Wa,f) =W*(q). If g < q;, we havef; < f;. Moreover, if@is
strictly convex and differentiable, thén< f;.

Proof The proof is rather straight forward. Liet 1 andj = 2. Also letf, = fy whenk > 2, f; =f,
andf}, = f1. FromW(q,f’) > W(q,f), we obtain(q; — g2)(@(—f1) — ¢(—f2)) > 0. This implies that
@(—f2) > @(—f1). Thereforef; < f».

If @is also differentiable, then using the Lagrangian multiplier method for the (athg’é:lfc =
0, and differentiate at the optimal solution, we hdte- g1)¢@(—f1) = (1—0g2)@(—f2) =A <0,
whereA is the Lagrangian multiplier. The assumption-1; > 1 — g, implies that@'(—f1) >
@ (—f2). The strict convexity implies thdj < f. [ |

The following result provides a simple way to check the infinite-sample consistaef (12).
Note that since it only requires the differentiability oo, 0], the SVM hinge loss is included.

Theorem 8 If @is a convex function which is bounded below, differentiablé-en, 0], andq/(0) <
0, then (12) is infinite-sample consistency@nvith respect to (9).

Proof The continuity condition is straight-forward to verify. We may also assumeghat> 0
without loss of generality.

Considerqg € Ax. Without loss of generality, we can assume that< g2, and only need
to show that infW(q,f) : f € Q,f; = supfk} > W*(q). Now consider a sequen¢&” such that
limmW(q, fM) = inf{W(q,f) : f € Q,f, = sup.fy}. Note that(1— q1)p(—f;™) is bounded.

Now if the sequencéf(™} is unbounded, then due to the constr@'ml((m) =0 andf(lm) > fl((m),
we know that the sequen({é(lm)} must also be unbounded. It follows that there is a subsequence
(which for simplicity, denote as the whole sequence) suchfﬁWéH +0. The boundedness of
(1—a1)e(—f™) implies thatg, = 1, which is not possible sinag < ds.

Therefore we know that the sequer{¢&” } must be bounded, and thus it contains a convergent
subsequence. Denote the limitfas\le havew(q,f) = lim,W(q, ™). Therefore we only need to
show thaw(q,f) > W*(q). We consider three cases:

o f1 =fy. Sincef; = supfk, we havef; = f, > 0. The convexity assumption implies that
¢ (—f1) = ¢ (—f5) < @(0) < 0. Thereforg1—q1)@(—f1) — (1 —0g2)@(—f2) < 0. It follows
that there is a sufficiently smadlsuch that1—qq)@(—f1+90) + (1 —g2)@(—f2—08) < (1—
q1)@(—f1) + (1 —az2)@(—f2). Therefore if we lef| = f1 —§, f, = f,+d, andf, = fi when
k> 2, thenW(q,f) >W(q,f’) >W*(q).
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o f1>frandg(—f1) > @(—f2). Inthis case, if we lef; =f;, f;, = f1, andf} =fi, whenk > 2, then
it is easy to check tha¥/(q,f) —W*(q) <W(q,f) —W(q,f") = (a1 —q2) (@(—f2) —o(—f1)) >
0.

e f1>fyandg(—f;1) < @(—f,). Using the condition thatf; < 0 and hence/(—f1) < ¢(0) <0,
we know that for a sufficiently sma8 > 0, we havep(—f1 +8) < @(—f1) < ¢(—f2) and
—fa— &> —f1. Since the convexity apimplies thatp(z) achieves the maximum gr-f1, —f2)]
at its end points, we hawg(—f2) > @(—f, — ). Therefore if we lef| =f; — 8, f, =f,+9,
andf) = fx whenk > 2, thenW(q,f) > W(q,f") > W*(q).

Combining the above three cases, we obtain the result. |

Using the above criterion, we can convert an ISC conyéor the binary formulation (1) into
an ISC multi-category classification formulation (12). In Lee et al. (2004 sfecial case of SVM
(with loss functiong(z) = (1 — z); which is convex and differentiable anr-,0]) was studied.
The authors demonstrated the infinite-sample consistency by direct caloutdtimugh no results
similar to Theorem 3, needed for proving consistency, were establiStregltreatment presented
here generalizes their study.

4.3 One-Versus-All Method

The constrained comparison method in (12) is closely related to the ongsyadt@pproach, where
we use the formulation (1) to train one functityiX) for each class separately but regarding all
data(X,Y) such thaty # c as negative data, and all ddt&,Y) such that = c as positive data. It
can be easily checked that the resulting formulation is a special casevatii6)

K

We(f) = @(fc) + Z O(—fk)- (14)
k=1k#c

Note that this formula is similar to (12), but we don’t require the sum-of-zertstraint orf (that

is Q = RX). Intuitively, with an observatioriX,Y), this formulation encourages the correct clas-
sification rule in that it favors a largi (X) and favors smalfi(X) whenk # Y. However, if a
binary classification method (such as SVM) does not estimate the conditiaallplity, then the
one-versus-all approach may not be infinite-sample consistent, whil@thmlation in (12) can
still be. In order to establish the ISC condition for the one-versus-alicggh, we can write

K
W(q,f) = z [dc@(fe) + (1 —dc)@(—fc)] - (15)

fo=s ]
We have the following order-preserving property.

Theorem 9 Consider (14). Assume thatis convex, bounded below, differentiable, apd) <
®(—2) when z> 0. Consider anyy € Ak andf € [—oo, +00]X such that Wq, f) =W*(q). If g < q;,
we havd < f;.

Proof Let fy (not necessarily unique) minimizeg(f) + (1 —q)@(—f). We have the first-order
optimality condition

q¢f (fq) = (1—q)¢f(—fq).

1235



ZHANG

Note that the assumptions imply th@{0) < 0. Thereforefy # 0 whenq # 0.5 (otherwise, the
optimality condition cannot be satisfied). Therefore by the assumptionpfaat @(—z) when
z> 0, we havefg > 0 whenq > 0.5 andfq < 0 whenqg < 0.5.

Leti =1 andj = 2. We have eitheq; € [0,0.5) or gz € (0.5,1]. Assume the former (due to
the symmetry, the latter case can be proved similarly), which impliegtka0. If f, > 0, then the
claimfy < f; holds. Therefore we only need to consider the ¢ase0, and thus &< g1 < g2 < 0.5.
We now prove by contradiction. Note that> —o (otherwiseg@(f2) = +). If f; <1 <0, then
the convexity ofpimplies@ (f2) < @(f1) < 0. We have

@ (—f1) = m@(fr)/(1—a1) > Q2@ (f1) /(1 - d2) > q2¢¢ (f2) /(1 — q2) = @ (—T2).

The convexity implies that-f; > —f, (thusf; < f2), which is a contradiction. Therefore we must
havef; < fo. [ |

The following result shows that for a (non-flat) differentiable conwexctiong, the one-versus-
all method is infinite-sample consistent. Note that the theorem excludes tharst&\dM method,
which employs the non-differentiable hinge loss. However, similar to the sksmo at the end
of Section 4.1, if the true label can be predicted relatively accurately igh#tte dominant class
has a conditional probability larger than 0.5), then the SVM one-veirfmseshod is consistent.
Therefore the method may still perform well for some practical problenesR$i&in and Klautau,
2004, for example).

Theorem 10 Under the assumptions of Theorem 9. The method (14) is ISC=eRX with respect
to (9).

Proof Considerq € Agx. Without loss of generality, we can assume thak g., and only need
to show that infwW(q,f) : f € Q,f; = sup.fk} > W*(q). Now consider a sequené¢& such that

limmW(q,fM™) = inf{W(q,f) : f € Q,f; = supfx}. Letf be a limiting point off™ in [—co, +oo]K,
we havew(q,f) = lim,W(q,f(™) andf; = sup fx. From Theorem 9, we haw#/(q,f) >W*(q). ®

Using Theorem 24, we can also obtain a more quantitative bound.

Theorem 11 Under the assumptions of Theorem 9. The functigfgV= inftcr[ge(f) + (1 —
q)@(—f)] is concave o010, 1]. Assume that there exists a constapt-c0 such that

@-a2 < & (25T el le)).

then we havef(.),
1/2
E(T(f(-)))S€B+%<Ex7v¢v(f(><))—iprqu’v(f'(X))) 7

where®y () is given in (14), T-) is defined in (5){ is the 0-1 classification error in (9), ang is
the optimal Bayes error.
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Proof Vy(q) is the infimum of concave functiorgp(f) + (1 —q)@(—f) indexed byf € R, thus
concave.

The second part is an application of Theorem 24. We use the notationspeidix A: letx
be the input spac&) = Ak be the space of conditional probability vectors, ane- {1,...,K} be
the space of class labels. We #4,k) = ¥ .1 . Jc, and thus the classification error of a decision
functionp(-) in (9) can be expressed 49(-)) = Ex/([P(Y = ¢|X)]¢, p(X)). The estimation-model
space iR, with decisionT given by (5). TheéN function is given by (15). Let(q) = 1. Ve > 0,
assume\/(q,T(f)) > «.

DefineVy(q, f) =qe(f)+ (1—q)@(—f). Without loss of generality, we may assume thét) =
1 andgz = sup.dc. ThenAl(q,T(f)) =g2—0d1 > &.

2
AW(q,f) = inf V(i fi) — Vo(ai)]

12f2,&

2
:firl];z [Vo(ai, fi) — Vi(ai)]

. + _ _
=2 |fan(p <q1 > qz,l‘l) — (Vo(a1) +Ve(a2)) > Cq,z((h —02)? > C(p282-
1

The first equality holds because the minimum cannot be achieved at afpainf, due to the
order-preserving property in Theorem 9. The assumption thus impliesfomdg’wm\,(s) > 2. The
desired result is now a direct consequence of Theorem 24. |

Remark 12 Using Taylor expansion, it is easy to verify that the conditiglﬁfv < —c< 0implies
that (2Ve((q+ ') /2) — Ve(d) — Ve(d)) > c(q—q)?/4. In this case, we may takg e 2/,/C. As
an example, we consider the least squares method and one of its varigizis= (1 — v)? or
®2) = (1-V)2. In both cases,yq) = 4q(1 — q). Therefore we can lete=1/v/2.

The bound can also be further refined under the so-called Tsybatal/rmise assumption (see
Mammen and Tsybakov, 1999).

Theorem 13 Under the assumptions of Theorem 11. Let

Y(X) = inf{supP(Y = c|X) — P(Y = c/|X) : P(Y = c/|X) < supP(Y = ¢|X)}

be the margin between the largest conditional probability and the secogddaconditional prob-
ability (let y(X) = 1 if all conditional probabilities are equal). Consider > 0 such that ¢ =
Exy(X)~® < 400, then we have/f(-),

1/(a+2)

(0+1)/(0+2)
) d

UT(F())) < Lp+ o2/ <EX,Y¢Y(f(X)) ~int Ex.y®v(f'(X))

Proof Using notations in the proof of Theorem 11, but 1€t)) = y(q)~®/c,, wherey(q) =
inf{suR.gc— gk : gk < SUR.Qc}. Itis clear thaExv(q(X)) =1 withq(X) = [P(Y = 1|X),--- ,P(Y =
KIX)].
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Following the proof of Theorem 11, but assume-q1 > ev(q). Fromgz —q1 > y(q), we have
VB > 0: (92— q1) B /y(q) %P > (g2 —q1)/y(q)~® > €/c,. LetB =a/(a +2), we have

(a2 —a0)?/v(@) %) ™ > g0,

This implies that (the first inequality follows from the proof of Theorem 11)

AW(q,f)/M(@) = ¢,2(01— d2)2/M(q) = e@ 2/ @ e 2,

Thusci/(a“)c%AHg,W’T’v(s) > g(@+2)/(@+1) The bound now follows directly from Theorem 248

4.4 Unconstrained Background Discriminative Method

We consider the following unconstrained formulation:

K
We(f) = W(fe) +s ( Z t(fk)> ) (16)
K=1
wherey, sandt are appropriately chosen convex functions that are continuouslyatitiable. As

we shall see later, this is a generalization of the maximum-likelihood method, wirigdsponds to
S(z) =t(z) = 1 andy(z) = —In(z).

We shall chooss andt such that the unconstrained background tsiifi_, t(fc)) penalizes
largefy for all k. We also choose a decreasififf) so that it favors a largk. That is, it serves the
purpose of discriminatinf; against the background term. The overall effect is to favor a predictor
whichf is larger tharfk (k # c). In (16), the first term has a relatively simple form that depends only
on the labek. The second term is independent of the label, and can be regardedanalization
term. Note that this function is symmetric with respect to componenfs dthis choice treats
all potential classes equally. It is also possible to treat different clak8esently. For example,

replacingy(fc) by We(fe) or replacing (fx) by tk(fx).

4.4.1 CPTIMALITY EQUATION AND PROBABILITY MODEL

Using (16), the conditional tru¢’ risk (8) can be written as

K K
W(q,f) = Zlch(f(:) +S<Zt(f0)> .

In the following, we study the property of the optimal vedtothat minimizedN(q, f) for a fixedq.
Givenq, the optimal solutiorf* that minimizesN(q,f) satisfies the following first order opti-
mality condition:
qe'(fo) +uet'(fe) =0 (c=1,....K). 17

where the quantityy = s'(TK_;t(f;)) is independent of.

Clearly this equation relateg to f; for each componertt The relationship off andf* defined
by (17) can be regarded as the (infinity sample-size) probability modetiassd with the learning
method (6) with¥ given by (16). The following result is quite straight-forward. We shkiib the
proof.

1238



MULTI-CATEGORY CLASSIFICATION

Theorem 14 Assume thai, t,s are differentiable functions such thapg > 0. If for a € [0, +),
the the solution x of @ (x) +t'(x) = O is an increasing function of a, then the solution of (17) has
the order preserving propertyg; < q; impliesf{ < fj. Moreover, the method (16) is ISC.

In the following, we shall present various formulations of (16) whicheidne order preserving
property.

4.4.2 DECOUPLEDFORMULATIONS

We lets(u) = uin (16). The optimality condition (17) becomes
QW (f5) +t'(f) =0 (c=1...,K). (18)

This means that we hau€ decoupled equalities, one for eaigh This is the simplest and in the
author’s opinion, the most interesting formulation. Since the estimation problg) iis also
decoupled intd separate equations, one for each componeﬁtt&xﬁs class of methods are com-
putationally relatively simple and easy to parallelize. Although this method seemotefeeable
for multi-category problems, it is not the most efficient way for two-clasblems (if we want to
treat the two classes in a symmetric manner) since we have to solve two segzpratens. We
only need to deal with one equation in (1) due to the fact that an effeaiv&@intf, +f, = 0 can
be used to reduce the number of equations. This variable elimination has littletiiniheeze are
many categories.

In the following, we list some examples of multi-category risk minimization formulatidhgy
all have the order preserving property, hence are infinite-sampléstemis We focus on the rela-
tionship of the optimal optimizer functioh (q) and the conditional probability}, which gives the
probability model.

Y(u) = —uAND t(u) = e

We obtain the following probability modelg. = €. This formulation is closely related to the
maximum-likelihood estimate with conditional modgl = €</ K _, € (logistic regression). In
particular, if we choose a function class such that the normalization con(ﬂﬁgfefk =1 holds,
then the two formulations are identical. However, they become differentwigedo not impose
such a normalization condition.

@(u)=—InuAND t(u)=u

This formulation is closely related to the previous formulation. It is an extensionaximum-
likelihood estimate with probability modgk = f:. The resulting method is identical to the maximum-
likelihood method if we choose our function class such fhd = 1 andfy > 0 fork=1,... K.
However, the formulation also allows us to use function classes that datmsiyygshe normalization
constrainty fy = 1. Therefore this method is more flexible.

@ou)=—Iu" (0<a<1)ANDt(u)=u

Closely related to the maximum-likelihood method, this formulation replgfes= —In(u) by
®(u) = —u®. The solution isge = (f)Y/(1-% . Similar to the case af(u) = —In(u), we may also

impose a constrairgkfi/(l_“) =1, which ensures that the estimated probability always sum to one.
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@(u) = —UAND t(u) =In(1+¢")

This version uses binary logistic regression loss, and we have the fofjguvizbability model:
dc = (1+e ). Again this is an unnormalized model.

@(u) = —UAND t(u) = §|ulP (p> 1)

We obtain the following probability modebyc = sign(f})|fi|P~1. This means that at the solution,
f£ > 0. This formulation is not normalized. If we choose a function family such Yhéfi|P~1 =1
andfy > 0, then we have a normalized model for which the estimated conditional plibpakvays
sum to one. One can also modify this method such that we caff 4$@ to model the condition
probabilityqgc = O.

®(u) = —u AND t(u) = g max(u,0)P (p > 1)

In this probability model, we have the following relationship; = max(f:,0)P~%. The equation
implies that we allowf; < 0 to model the conditional probability. = 0. Therefore, with a fixed
function class, this model is more powerful than the previous one. HoyaMiie optimal solution,
we still require thafy < 1. This restriction can be further alleviated with the following modification.

®(u) = —u AND t(u) = g min(max(u,0)P, p(u—1) +1) (p > 1)

In this model, we have the following relationship at the solutiap: = min(max(f:,0),1)PL.
Clearly this model is more powerful than the previous model since the funciioef; > 1 can be
used to modet|c = 1. For separable problems, at each point there existsugh thaig. = 1 and
gk = 0 whenk # c. The model requires thd > 1 andf; < 0 whenk # c. This is essentially a
large margin separation condition, where the function for the true claspasated from the rest by
a margin of one.

4.4.3 OUPLED FORMULATIONS

In the coupled formulation witls(u) # u, the probability model are inherently normalized in some
sense. We shall just list a few examples.

@(u) = —u, AND t(u) = €", AND s(u) = In(u)

This is the standard logistic regression model. The probability model is

e
de(X) = W
The right hand side is always normalized (sum up to 1). One potentiahdistaje of this method
(at this moment, we don’t know whether or not this theoretical disadvactagees real problems in
practice or not) is that it does not model separable data very well. Thigigx) = 0 orgc(x) =1,
we requiref; = £o. In comparison, some large margin methods described earlier can model the
separable scenario using finite valdéd
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®(u) = —u, AND t(u) = [u|”, AND S(u) = Z|u[P/"' (p,p/ > 1)

The probability model is

K , (p—p)/p
Ge(X) = (Z !fﬁ(x)!p> sign(f (x))[fe(x)[P .

k=1

We may replacé(u) by t(u) = max(0,u)P, and the probability model becomes

K (p—p)/p
Ae(X) = (z max(fi (), 0) p’) max(f;(x),0)" 1.
k=1

These formulations do not seem to have advantages over the deconpieerparts (witts(u) = 1).
For the decoupled counterparts, as explained, the normalization (so ehedgttmated probability
sum to one) can be directly included into the function class. This is more dlitiicachieve here due
to the more complicated formulations. However, it is unclear whether normdéredlations have
practical advantages since one can always explicitly normalize the estinoaiditi@nal probability.

5. Consistency of Kernel Multi-Category Classification Methals

In this section, we give conditions that lead to the consistency of kernebaethit is worth men-
tioning that generalization bounds obtained in this section are not neibetight. We use simple
analysis to demonstrate that statistical consistency can be obtained. trioal#ain good rate
of convergence results, more sophisticated analysis (such as thaskyuB&anchard et al., 2004,
Bartlett et al., 2003, Mannor et al., 2003, van de Geer, 2000, Scodebgeinwart, 2003) is needed.

The analysis given in this section is kernel independent. Thereforeawstart with an arbi-
trary reproducing kernel Hilbert spaet (for example, see Wahba, 1990, for definition) with inner
product- and norm|| - ||4. Each element dfl is a functionf (x) of the inputx. It is well known that
for each data point, we can embed it intél ashy such thatf (x) = f -hy forall f € H.

In this section, we only consider bounded input distribufion

sup||hx||n < co.
X

We also introduce the following notations:
Ha ={f(-) e H : [|f]ln supl[hu|ln <A},
X
Hax =HK = {f(:) :fe(-) €Haforallc=1,...,K}.

For notation simplicity, we shall limit our discussion to formulations such that foc a
1,...,K, Y(-) defined on a subs& C RK can be extended tBX. For example, for the con-
strained comparison model with the SVM loss. we require hat {f ¢ R¢ : X, fy = 0}, but the
formulation itself is well-defined on the entiR¥.

In order to obtain a uniform convergence bound, we shall introducdottmving Lipschitz
condition. It is clear that all well-behaved formulations such as thoseidenesl in this paper
satisfy this assumption.
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Assumption 15 Given any A> 0, and consider §= {f ¢ R¢ : sup.|fc| < A}. Then there existg
such thatvf,f' € Sy and1 < c <K:

‘ch(f) - l'IJc(f/)| < VASEp‘fk — f/k|

Definition 16 Let Q, = {(X1,Y1),...,(Xn,Yn)} be a set of n points. We define thgQp) distance
between any two functiongX y) and gx,y) as

leo(Qn)(,0) = syplf(N,Yi) —g(%,Y)|.

Let ¥ be a class of functions ¢X,y), theempirical/,-covering numbeof 7, denoted by KE, 7, £ (Qn)),
is the minimal number of ball§g : 4 (Qn)(g, f) < €} of radiuse needed to covef . Theuniform
Ls covering numbeis given by

No (€, F,N) = sQupN(s, F,20(Qn)),

where the supremum is over all samplgsdDsize n.

Note that we may also use other covering numbers suéhawering numbers. Th&, covering
number is more suitable for the specific Lipschitz condition used in AssumptiomMisuse the
following kernel-independent covering number bound.

Lemma 17 Consider the function clas$ak = {Wy(f(X)) : f € Hak} such that¥ satisfies As-
sumption 15. Then there exists a universal constant O such that

In(2+A/g) +1
IN Neo (YAE, Fax, N) < KCA2 n(2+ n£§)+ nn

Proof Note that Theorem 4 of Zhang (2002) implies that there eissuch that

AZIn(2+A/z»:) +Inn

INNw(g,Ha,n) <C
(& Ham) = o ne2

Therefore with empirical sample®, = {(X,Y;)}, we can find exﬁKClAZW) vectors

f1(X) such that for eache Hak, we have infsup ¢ [fc(%) —f(j;(xi)| < €. The assumption implies
that this is a cover offak of radiusyae. [ |

Remark 18 For specific kernels, the bound can usually be improved. Moreowelpghcovering
number (entropy) depends linearly on the number of classes K. This i@dhe specific regulariza-
tion condition we use here. For practical problems, it can be desirableséoather regularization
conditions so that the corresponding covering numbers have muchewdakendency (or even
independence) on K. For simplicity, we will not discuss such issues inapir.p
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Lemma 19 Consider function clasgak = {Wy(f(X)) : f € Hak } such that¥ satisfies Assump-
tion 15. Then there exists a universal constant C such that for albn
yAAIn3/2
<CVvK—sr—
VIRPETE,

whereEq, denotes the expectation over empirical training data=Q{(X;,Y)}.

sup |=
feFak

FI

ZLLPY —ExyWy(f(X))

Proof Letfo € Hak, and definefA‘fK = {Wy(f(X)) =Wy (fo(X)) : f € Fax}. Consider a sequence
of binary random variables such that= +1 with probability /2. TheRademacher complexiof
T/QK under empirical sampl®, = {(X1,Y1),..., (Xn, Yn)} is given by

n

1 Zio'i(q-’yi (F(X)) — Wy (fo(Xi))| -

R(?A?KaQﬂ) =Es sup

feHak

It is well known that there exists a universal const@ni(a variant of Corollary 2.2.8 in van der
Vaart and Wellner, 1996):

. 1 [
R(Fak,Qn) < Czinf [So-i- %/EO \/IOQNW(S,f,Qn)ds} .

Using the bound in Lemma 17, and perform the integration egth yaA,/1/n, we obtain

CvK yaAIn®/2n
R(TA(3K7QH) < TT’

whereC is a universal constant.

Now using the standard symmetrization argument (for example, see Lemma 2\38ul der
Vaart and Wellner, 1996), we have

n 3/2

sup }Zl”’%(fOﬁ))—Ex,va(f( ))| < 2Eq, R (fAK,Qn)<cfw

Eq
fefax | NS \/ﬁ

n

Theorem 20 Consider¥ that satisfies Assumption 15. ChoosesAch that A — o andya, An In3/2 n/y/n—
0. Let G, =Ha, kN ngA(see Theorem 3 for the definition %), whereQ c RX is a constraint set.
Consider the estimatd-) in (6). We have

lim Eo, ExyWy(f(X)) = inf ExyW(f(X
Nim Eon Bxy Wy (f(X)) = _inf, Exy%v(f(X)).

Proof Considerf(" e C, that minimizesEy y Wy (f(X)). Since ™ ; Wy (F(X)) < ST, Wy (FM (X)),
we have from Lemma 19 that

F; 3/2
EQn EXYLIJY(f(X)) < EX,YLIJY(f(n)(X)) +2C\/Km\/;n
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Therefore ags — o,

lim EQnEx‘YWY(:f\(X)) — lim EX.YWY(f(n)(X)) = inf Exywy(f(X)).
n i n ' feHNBq

The following consistency result is a straight-forward consequendéebrem 20 and Theo-
rem 3.

Corollary 21 Under the conditions of Theorem 20. Assume thad ISC onQ with respect to (3).
If H is dense inBg, that is,

inf  ExyWy(f(X)) = inf EyxyWy(f(X
f()eHnBa Y v (f(X)) e, XY v (F(X)),
then )
lim Eq, ExyWy(f(X)) = inf ExyWy(f(X)).
e ' f(-)e B

This implies that the classification erré(f) converges to the optimal Bayes error in probability.

6. Conclusion

In this paper we investigated a general family of risk minimization based multi-@gtetpssifi-
cation algorithms, which can be considered as natural extensions oy tange margin methods.
We established infinite-sample consistency conditions that ensure the statistisistency of the
obtained classifiers in the infinite-sample limit. Several specific forms of thergkmsk minimiza-
tion formulation were considered. We showed that some models can be estuirtate conditional
class probabilities. As an implication of this work, we see that it is possible tanobtasistent
conditional density estimators using various non-maximum likelihood estimation dwethHone
advantage of some proposed large margin methods is that they allow us tozeowebnditional
probability directly. Note that for the maximume-likelihood method, near-zeraitimmal proba-
bility may cause robustness problems (at least in theory) due to the urdziness$ of the log-loss
function. Moreover, combined with some relatively simple generalization sisalye showed that
given appropriately chosen regularization conditions in some repragikeimel Hilbert spaces,
classifiers obtained from some multi-category kernel methods can apgtaaoptimal Bayes error
in the large sample limit.

Appendix A. Relationship of True Loss Minimization and Surrogate Loss
Minimization
We consider an abstract decision model. Consider input spaocetput-model spac@, decision

spaceD, and estimation-model spate
Consider the following functions:

e True loss function? : Q x D — R We also define the corresponding excess loss as
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e Surrogate loss functioW : Q x Q — R. We also define the corresponding excess surrogate

loss as
AW(q¢f) :W(q>f) — inf W(qvf/)
fleD
e Decision-ruleT : Q — D.

For the multi-category classification problem studied in the main t&xis the input space,
Q =/ is the space of conditional probability vectdRgY = c|-)|c, D ={1,...,K} is the space of
class labels, an@® c R is the set of possible vector predictérs R€, with T given by (5). Thew
function is given by (8). With classification error in (2), we let
K
(ak= 3% adc
c=1,c£k

Therefore the classification error of a decision funcign in (3) can be expressed as
€(p(+)) = Ex([P(Y = c[X)]c, p(X)).
Definition 22 Consider function vQ — R*. Ve > 0, we define

AW(q,f)
v(a)

The definition is designed so that the following properties hold. They ardesieyinterpretations
of the definition.

AHywTy(E) = inf{ (AM(q,T(F)) > sv(q)} U {+o}.

Proposition 23 We have:
e AH/wTv(E) >0.
e AHywTv(0) =0.
e AHyw T v(€) is non-decreasing ofD, +).

o V(q)AH wTv(Al(q, T())/v(q)) <AW(q,f).

The importance of the above definition is based on the following theoremseénaslly gives
a bound on the expected excessive true logsing the expected excessive surrogate WssThe
idea was used by Bartlett et al. (2003), Zhang (2004) to analyze batesyification problems.

Theorem 24 Given any distribution ork, and function v Q — R" such that
Exv(q(X)) = 1.
Let{(g) be a convex function 0j@, +) such that(¢) < AH,wT.v(€). Thenvf: X — Q, we have

C(ExAL(a(X), T(f(X)))) < ExAW(q(X),f(X)).
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Proof Using Jensen’s inequality, we have

M(Q(X),T(f(x))))
v(q(X)) '

Now using the assumption and Proposition 23, we can upper-bound theaiythside bfx AW (q(X),f(X)).
This proves the theorem. |

2(ExA(G(X), T(F(X)))) < Exv(q(X))Z (

The following proposition is based mostly on Bartlett et al. (2003). We inciudiere for
completeness.

Proposition 25 Let {.(€) = supsgp{ae +b:vVz> 0,az+b < AH w T v(2)}, thend. is a convex
function. It has the following properties:

o (. (8) <AHpwTv(E).

e (. (g) is non-decreasing.

e For all convex functiorf such that{(¢) < AH,wT.v(€), {(€) < L, (€).

e Assume thala > 0 and be R such that a+b < AH;w 1.v(€), andVe > 0,AH,w 1 v(€) > O.

Thenve > 0,¢,(g) > 0.

Proof We note that, is the point-wise supreme of convex functions, thus it is also convex. We
now prove the four properties.

e The first property holds by definition.

e The second property follows from the fact tigt, w 1 (2) is non-decreasing, arat’ +b >
ae+bwhene' > ¢.

e Given a convex functiog such thaf(g) < AH,wT.v(€). Atanye, we can find a lin@z+b <
{(2) < AHywTv(2) and{(g) = ac+b. This implies thaf (g) < {.(g).

e Considere > 0. Using the fact that when> €/2, AH,wTv(2) > AH w.TVv(€/2) > 0, and
the assumption, we know that there exiatsc (0,a) such thatag(z—€/2) < AHywT.v(2).
Thereforel, (g) > a:(e —€/2) > 0.

The following result shows that the approximate minimization of the expectedgaie loss
ExAW implies the approximate minimization of the expected true EysA’.

Corollary 26 Consider function v Q — R*. If the loss functior?(q,d)/v(q) is bounded, and
Ve > 0, AH,w.Tv(€) > 0, then there exists a concave funct®on [0, ) that depends only of
W, T, and v, such th&{(0) = 0 andlims_,o+ &(8) = 0. Moreover, for all distribution oX such that
Exv(q(X)) =1, we have

EXAL(Q(X), T(F(X))) < E(EXAW(G(X), F(X))).
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Proof Considerl.(g) in Proposition 25. Le€(d) = sup{e: € > 0,{.(¢) < d}. Thend.(g) <o
implies thate < §(d). Therefore the desired inequality follows from Theorem 24. Giei, > 0:
from Z*(E(E’l);a@)) < &% e know thatE(51)J2rE(52) < §(24%). Thereforek is concave.

We now only need to show thatis continuous at 0. From the boundednessé(qfd)/v(q), we
know thatAH, w1 v(z) = +e whenz > supA/(q,d)/v(q). Thereforeda > 0 andb € R such that
ag+b < AH;wTv(€). Now Pick anye’ > 0, and letd’ = . (¢’)/2, we know from Proposition 25
thatd > 0. This implies thag(d) < ¢ whend < &'. [ |

One can always choosgq) = 1 to obtain a bound that applies to all underlying distributions
on X. However, with a more general one may obtain better bounds in some scenarios especially
the low noise case. For example, see Theorem 13 in the main text.

Appendix B. Proof of Theorem 3

We shall first prove the following lemma.
Lemma 27 W*(q) := infeqW(q,f) is a continuous function ofik.

Proof Consider a sequenag™ e Ak such that lin,g™ = g. Without loss of generality, we
assume that there exidtsuch thaig; = --- = gx = 0 andg. > 0 for ¢ > k. Moreover, since each
Y. is bounded below, we may assume without loss of generalitydthat O (this condition can be
achieved simply by adding a constant to eH&i).

Now, let
K

W(d',f) = qcWe(f)
c=k+1

and
K

W) =inf § qeWe(f).
e fo1

Since{W*(q™)} is bounded, each sequen{m(;m)%(-)}m is also bounded near the optimal so-
lution. Itis clear from the condition Iimqém) > 0 (c > K) that

lim W*(q™) =W (q) =W*(q).

mM—oo
SinceW*(q(™) >W=*(q™), we have
e (m) *
liminfW*(q™) >W*(q). (19)

Now for a sufficiently large positive numbgy;, let
K
Wa(d) = inf _, 2 Geel®).
We have

limsupw* (@™ < limsupW; (™) = W; (q).

m—o0 m—oo
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Since lim W3 (q) =W*(q), we have

limsupw*(g™) <W*(q).

Mm—oo

Combining this inequality with (19), we obtain the lemma. [ |

Lemma 28 Ve > 0, 30 > 0 such thatvq € Ax:
inf {W(q,f) - fo = supfy, acgc < supakdk — s} >W*(q) +9. (20)
k k

Proof We prove this by contradiction. Assume that (20) does not hold,#een0, and a sequence
of (cM M qM) with M e Q such thafgg = sup ", adm)qf:?rz < suga” ¢, and

' (M $(My _\W(gM)] —
lim [W(g™™, %) —W*(q"™)] = 0.
Since/\k is compact, we can choose a subsequence (which we still denoted asalleesatjuence
for simplicity) such that(™ = ¢ and lim,q(™ = q € Ak. Using Lemma 27, we obtain
lim W(q(™, ™) =w*(q).

Similar to the proof of Lemma 27, we assume that>0 (c=1,...,K), g1 =---=qx =0 and
gc > 0 (c > k). We obtain

K
limsupW(q,f™) =limsup § g™ W(f™) < lim W(g™, ™) =w(q).

M—oo m—oo .5 1 m—oo
Note that our assumption also implies tlagt q.. < sup.akdk — € andfm = sup(fl((m). We have
thus obtained a contradiction to the second ISC conditidH©f). Therefore (20) must be vali@

Proof of the Theorem We use the notations of Appendix A: l&tbe the input spac&) = Ak be
the space of conditional probability vectors, afd= {1,...,K} be the space of class labels. We
let £(g,K) = Yc—1c4k@0c, and thus the classification error of a decision functgn in (9) can
be expressed a&p(-)) = Ex/([P(Y = ¢|X)]¢, p(X)). The estimation-model space@sc RX, with
decisionT given by (5). Thew function is given by (8). Lev(q) = 1. Then (20) implies that
Ve > 0,AH,wT.v(€) > 0. The theorem now follows directly from the claim of Corollary 26.

Appendix C. Infinite-Sample Inconsistency of the SVM Pairwse Comparison
Method

Consider the non-differentiable SVM (hinge) log&) = (1 —2).. We show that the pairwise
comparison method in (10) is not ISC wikh= 3. More precisely, we have the following counter-
example.
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Proposition 29 Letq = [g1, 02, 03] With0 < g3 < 2 < g1 such that g < gz + gz and ¢ > 2gs. Then

Proof Considelf = [f1, f2, f3]. Without loss of generality, we can I1& = 0. Therefore
W(a,f) = 1+ a1[@(f1) + @(f1 — f2)] + d2[@(f2) + @( f2 — f1)] + As[(— f1) + (—2)].

Clearly if | f1| > 100/qs or | f2| > 100/qs, thenW(q,f) > 100> W(q, [0,0,0]). Therefore the opti-
mization ofW(q,f) can be restricted tf1], | f2| < 100/gz. It follows thatW*(q) can be achieved at
some point, still denote bly= [f1, f2,0] such that f;|,|f2| < 100/gs.

From the order-preserving property of Theorem 5, we Have f,, andfq, f, > f3=0. We can
rewriteW(q,f) as

W(a,f) = 1+ aa[@(f1) + @(f1 — f2)] + @ F2) + (f1— f2) + 1] + gs[ f1 + f2+2].
If f, <1, then
W(d, [1+ f1— 2,1,0]) —=W(q, [f1, f2,0]) < —(g2 —2q3)(1— f2) <O.
Therefore we can assume that> f, > 1. Now
W(a,f) =1+ aue(f1— f2) + qe[fr — o+ 1]+ as[fa + f2+ 2.

Sinceq; < gz + g3, we havequ@(f1 — f2) + (g2 + a3)[f1 — f2] > a1, and the equality holds only
when f1 = fa. ThereforaV(q,f) > 1+ o1 + [0+ 1] + g3[2f2 + 2], and the minimum can only be
achieved aff; = fo, = 1. [ |
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