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Abstract
The purpose of this paper is to investigate statistical properties of risk minimization based multi-

category classification methods. These methods can be considered as natural extensions of binary
large margin classification. We establish conditions that guarantee the consistency of classifiers
obtained in the risk minimization framework with respect tothe classification error. Examples are
provided for four specific forms of the general formulation,which extend a number of known meth-
ods. Using these examples, we show that some risk minimization formulations can also be used to
obtain conditional probability estimates for the underlying problem. Such conditional probability
information can be useful for statistical inferencing tasks beyond classification.

1. Motivation

Consider a binary classification problem where we want to predict labely∈ {±1} based on observa-
tion x. One of the most significant achievements for binary classification in machinelearning is the
invention of large margin methods, which include support vector machines and boosting algorithms.

Based on a set of training samples(X1,Y1), . . . ,(Xn,Yn), a large margin binary classification
algorithm produces a decision functionf̂ (·) by minimizing an empirical loss function that is often a
convex upper bound of the binary classification error function. Givenf̂ (·), the binary decision rule
is to predicty = 1 if f̂ (x) ≥ 0, and to predicty = −1 otherwise (the decision rule atf̂ (x) = 0 is not
important).

In the literature, the following form of large margin binary classification is often encountered:
we minimize the empirical risk associated with a convex functionφ in a pre-chosen function class
Cn that may depend on the sample size:

f̂ (·) = arg min
f (·)∈Cn

1
n

n

∑
i=1

φ( f (Xi)Yi). (1)

Originally such a scheme was regarded as a compromise to avoid computationaldifficulties
associated with direct classification error minimization, which often leads to an NP-hard problem.
Some recent works in the statistical literature argued that such methods couldbe used to obtain
conditional probability estimates. For example, see Friedman et al. (2000), Lin (2002), Schapire
and Singer (1999), Zhang (2004), Steinwart (2003) for related studies. This point of view allows
people to show the consistency of various large margin methods: that is, in thelarge sample limit,
the obtained classifiers achieve the optimal Bayes error rate. For example,see Bartlett et al. (2003),
Jiang (2004), Lugosi and Vayatis (2004), Mannor et al. (2003), Steinwart (2002, 2004), Zhang

c©2004 Tong Zhang.



ZHANG

(2004). The consistency of a learning method is certainly a very desirableproperty, and one may
argue that a good classification method should at least be consistent in the large sample limit.

Although statistical properties of binary classification algorithms based on therisk minimization
formulation (1) are quite well-understood due to many recent works such as those mentioned above,
there are much fewer studies on risk minimization based multi-category problems which generalizes
the binary large margin method (1). The complexity of possible generalizationsmay be one reason.
Another reason may be that one can always estimate the conditional probability for a multi-category
problem using the binary classification formulation (1) for each category,and then pick the category
with the highest estimated conditional probability (or score).1

It is still useful to understand whether there are more natural alternatives, and what risk min-
imization formulations that generalize (1) can be used to yield consistent classifiers in the large
sample limit. An important step toward this direction has recently been taken by Leeet al. (2004),
where the authors proposed a multi-category extension of the support vector machine that is infinite-
sample Bayes consistent (Fisher consistent). The purpose of this paperis to generalize their study
so as to include a much wider class of risk minimization formulations that can lead to consistent
classifiers in the infinite-sample limit. Moreover, combined with some relatively simplegeneraliza-
tion analysis for kernel methods, we are able to show that with appropriatelychosen regularization
conditions, classifiers obtained from certain formulations can approach the optimal Bayes error in
the large sample limit.

Theoretical analysis of risk minimization based multi-category large margin methods have started
to draw more attention recently. For example, in Desyatnikov and Meir (2003), learning bounds for
some multi-category convex risk minimization methods were obtained, although the authors did not
study possible choices of Bayes consistent formulations. A related study can be found in Liu and
Shen (2004), but again only for special formulations.

Although this paper studies a number of multi-category classification methods, we shall not try
to argue which one is better practically, or to compare different formulationsexperimentally. One
reason is that some methods investigated in this paper were originally proposed by different re-
searchers, who have much more practical experience with the corresponding algorithms. Due to the
scope of this paper, it is simply impossible for us to include a comprehensive empirical study with-
out overlooking some engineering tricks. Casual experimental comparisons can lead to misleading
conclusions. Therefore in this paper we only focus on asymptotic theoretical analysis. Although
our analysis provides useful statistical insights (especially asymptotically),the performance of a
learning algorithm may also be affected by factors which we do not considered here, especially
for small-sample problems. We shall refer the readers to Rifkin and Klautau (2004) for a recent
experimental study on some multi-category classification algorithms, although theissue of which
algorithm may have better practical performance (and under what circumstances) is far from re-
solved.

We organize the paper as follows. Section 2 introduces the multi-category classification prob-
lem, and a general risk minimization based approach. In Section 3, we give conditions that guar-
antee the infinite-sample consistency of the risk minimization formulation. In Section 4, examples
of the general formulation, which extend some existing methods in the literature,will be presented.
We shall study their properties such as the associated statistical models and conditions that en-

1. This approach is often called one-versus-all in machine learning. Another main approach is to encode a multi-
category classification problem into binary classification sub-problems. The consistency of such encoding schemes
cannot be analyzed in our framework, and we shall not discuss them.
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sure the infinite-sample consistency (ISC) of the resulting risk minimization estimators. Section 5
contains a relatively simple generalization analysis (which is not necessarilytight) for kernel multi-
categorization methods. Our purpose is to demonstrate that with appropriatelychosen regularization
conditions, classifiers obtained from ISC risk minimization formulations can approach the optimal
Bayes classifier in the large sample limit. Concluding remarks will be presented inSection 6.

2. Multi-Category Classification

We consider the followingK-category classification problem: given an input vectorx, we would like
to predict its corresponding labely ∈ {1, . . . ,K}. Let p(x) be a predictor ofy which is a function
of x. In the machine learning framework, the quality of this predictor can be measured by a loss
functionL(p(x),y), and the data(X,Y) are drawn from an unknown underlying distributionD.

Given a set of training samples(X1,Y1), . . . ,(Xn,Yn), randomly drawn fromD, our goal is to find
a predictor ˆp(x) so that the expected true loss of ˆp given below is as small as possible:

EX,YL(p̂(X),Y),

where we useEX,Y to denote the expectation with respect to the true (but unknown) underlying
distributionD.

The loss functionL(p,y) can be regarded as aK ×K cost matrix. In this paper, we are mainly
interested in the simple but also the most important case of 0− 1 classification loss: we have a
loss of 0 for correct prediction, and loss of 1 for incorrect prediction. We consider a slightly more
general family of cost matrices, where the classification errors for different classes are penalized
differently:

L(p,y) =

{

0 if p = y

ay if p 6= y,
(2)

whereay > 0 (y= 1, . . . ,K) areK pre-defined positive numbers. If we letay = 1 (y= 1, . . . ,K), then
we have the standard classification error. The more general cost-sensitive classification error in (2)
is useful for many applications. For example, in some medical diagnosis applications, classifying a
patient with cancer to theno-cancercategory is much worse than classifying a patient without cancer
to thepossible cancercategory (since in the latter case, a more thorough test can be performed to
produce a more definite diagnosis).

Let p(X) ∈ {1, . . . ,K} be a classifier. Its classification error under (2) is given by

`(p(·)) := EX

K

∑
c=1,c6=p(X)

acP(Y = c|X). (3)

If we know the conditional densityP(Y = c|X), then the optimal classification rule with the mini-
mum loss in (3), often referred to as theBayes rule, is given by

p∗(X) = max
c∈{1,2,...,K}

acP(Y = c|X). (4)

In binary classification with 0-1 classification error, the class rule can be obtained using the
sign of a real-valued decision function. This can be generalized toK class classification problem as
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follows: we considerK decision functionsfc(x) wherec = 1, . . . ,K and we predict the labely of x
as

T(f(x)) := arg max
c∈{1,...,K}

fc(x), (5)

where we denote byf(x) the vector functionf(x) = [ f1(x), . . . , fK(x)]. In the following, we use bold
symbols such asf to denote vectors, andfc to denote itsc-th component. We also usef(·) to denote
vector functions. If two or more components off achieve the same maximum value, then we may
choose any of them asT(f). In this framework,fc(x) is often regarded as a scoring function for
categoryc that is correlated with how likelyx belongs to categoryc (compared with the remaining
k−1 categories).

Note that only the relative strength of the componentfc compared with the alternativesfk (k 6= c)
is important. In particular, the decision rule given in (5) does not change when we add the same
numerical quantity to each component off(x). This allows us to impose one constraint on the
vectorf(x) which decreases the degree of freedomK of theK-component vectorf(x) to K −1. For
example, in the binary classification case, we can enforcef1(x)+ f2(x) = 0, and hencef (x) can be
represented as[f1(x),−f1(x)]. The decision rule in (5), which comparesf1(x) ≥ f2(x), is equivalent
to f1(x) ≥ 0. This leads to the binary classification rule mentioned in the introduction.

In the multi-category case, one may also interpret the possible constraint onthe vector function
f(·), which reduces its degree of freedom fromK to K −1, based on the following observation. In
many cases, we seekfc(x) as a function ofp(Y = c|x). Since we have a constraint∑K

c=1 p(Y = c|x) =
1 (implying that the degree of freedom forp(Y = c|x) is K−1), the degree of freedom forf is also
K −1 (instead ofK). However, we shall point out that in the algorithms we formulate below, we
may either enforce such a constraint that reduces the degree of freedom of f , or we do not impose
any constraint, which keeps the degree of freedom off to beK. The advantage of the latter is that
it allows the computation of eachfc(x) to be decoupled. It is thus much simpler both conceptually
and numerically. Moreover, it directly handles multiple-label problems wherewe may assign each
x to multiple labels ofy∈ {1, . . . ,K}. In this scenario, we do not have a constraint.

In this paper, we consider an empirical risk minimization method to solve a multi-category
problem, which is of the following general form:

f̂(·) = arg min
f(·)∈Cn

1
n

n

∑
i=1

ΨYi (f(Xi)), (6)

wheref(·) is aK-component vector function, andCn is a vector function class. EachΨY(·) : RK →R
(indexed by class labelY ∈ {1, . . . ,K}) is a real-valued function that takes aK-component vector as
its parameter. As we shall see later, this method is a natural generalization of the binary classification
method (1). Note that one may consider an even more general form withΨY(f(X)) replaced by
ΨY(f(X),X), which we don’t study in this paper.

The general formulation (6) covers many traditional and newly proposedmulti-category classi-
fication methods. Examples will be given in Section 4. Some of them such as somemulti-category
extensions of support vector machines are directly motivated by margin maximization (in the sepa-
rable case). In general, as we shall see in Section 4, the functionΨY(f) should be chosen such that it
favors a vector predictorf with the componentfY corresponding to the observed class labelY larger
than the alternativesfk for k 6= Y. In this sense, it encourages the correct classification rule in (5)
by implicitly maximizes the difference offY and the remaining componentsfk (k 6= Y). One may
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interpret this effect as soft margin-maximization, and hence one may consider learning algorithms
based on (6) generally as multi-category large margin methods.

Given the estimator̂f(·) from (6), the classification rule is based on (5) or some variants which
we shall discuss later. The main purpose of the paper is to investigate the following two issues:

• Consistency: whether the classification error`(f̂(·)) converges tò(p∗(·)) wherep∗(·) is the
Bayes rule defined in (4).

• Probability model: the relationship off̂(X) and the conditional probability vector[P(Y =
c|X)]c=1,...,K .

3. Approximation Estimation Decomposition

From the standard learning theory, one can expect that with appropriately chosenCn, the solution
f̂(·) of (6) approximately minimizes the trueΨ risk EX,YΨY(f̂(X)) with respect to the unknown
underlying distributionD within the vector function classCn. The true risk of a vector functionf(·)
can be rewritten as

EX,YΨY(f(X)) = EXW(P(·|X), f(X)), (7)

whereP(·|X) = [P(Y = 1|X), . . . ,P(Y = K|X)] is the conditional probability, and

W(q, f) :=
K

∑
c=1

qcΨc(f). (8)

Note that we useqc to denote the componentc of a K-dimensional vectorq ∈ Λ, whereΛK is the
set of possible conditional probability vectors:

ΛK :=

{

q ∈ RK :
K

∑
c=1

qc = 1, qc ≥ 0

}

.

The vector argumentq of W(q, f) represents the conditional probability vector evaluated at some
point x; the argumentf represents the value of our vector predictor evaluated at the same point
x. Intuitively, W(q, f) is the point-wise true loss off at somex, with respect to the conditional
probability distributionq = [P(Y = ·|X = x)].

In order to understand the large sample behavior of the algorithm based onsolving (6), we first
need to understand the behavior of a vector functionf(·) that approximately minimizesEX,YΨY(f(X)).
We introduce the following definition. The property has also been referred to asclassification cali-
bratedin Bartlett et al. (2003) orFisher consistentin Lin (2002). In this paper, we explicitly call it
asinfinite-sample consistent.

Definition 1 Consider[Ψc(f)] in (7). We say that the formulation is infinite-sample consistent (ISC)
on a setΩ ⊆ RK with respect to the classification error loss (3), if the following conditions hold:

• For each c,Ψc(·) : Ω → R is bounded below and continuous.

• ∀q ∈ ΛK and c∈ {1, . . . ,K} such that acqc < supk akqk, we have

W∗(q) := inf
f∈Ω

W(q, f) < inf

{

W(q, f) : f ∈ Ω, fc = sup
k

fk

}

.
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Remark 2 Among the two conditions, the second is more essential. It says that (point-wisely) for
each conditional probability vectorq ∈ ΛK , an exact optimal solution of W(q, ·) leads to a Bayes
rule with respect to the classification error defined in (3). That is, the exact minimization of (7) leads
to the exact minimization of classification error. This condition is clearly necessary for consistency.
The first condition (continuity) is needed to show that point-wisely, an approximate (instead of
exact) minimizer of (7) also approximately minimizes the classification error.

The following result relates the approximate minimization of theΨ risk to the approximate
minimization of classification error. The proof is left to Appendix B. A more general but also more
abstract theory is presented in Appendix A.

Theorem 3 Let B be the set of all vector Borel measurable functions (with respect to someunder-
lying topology on the input space) which take values in RK . For Ω ⊂RK , let BΩ = {f ∈ B : ∀x, f(x)∈
Ω}. If [Ψc(·)] is ISC onΩ with respect to (3), then∀ε1 > 0, ∃ε2 > 0 such that for all underlying
Borel probability measurable D, andf(·) ∈ BΩ,

EX,YΨY(f(X)) ≤ inf
f′∈BΩ

EX,yΨY(f′(X))+ ε2

implies
`(T(f(·))) ≤ `B + ε1,

T(·) is defined in (5), and̀B is the optimal Bayes error:̀B = `(p∗(·)), with p∗ given in (4).

Based on the above theorem, an ISC risk minimization formulation is suitable for multi-category
classification problems. The classifier obtained from minimizing (6) can approach the Bayes error
rate if we can show that with appropriately chosen function classCn, approximate minimization of
(6) implies approximate minimization of (7). Learning bounds of this kind have been very well-
studied in statistics and machine learning. For example, for binary classification, such bounds can
be found in Blanchard et al. (2003), Bartlett et al. (2003), Jiang (2004), Lugosi and Vayatis (2004),
Mannor et al. (2003), Steinwart (2002, 2004), Zhang (2004), where they were used to prove the
consistency of various large margin classification methods. In order to achieve consistency, it is
also necessary to take a sequence of function classesCn (typically, one takes a sequenceC1 ⊂C2 ⊂
·· · ⊂ BΩ) such that∪nCn is dense (e.g. with respect to the uniform-norm topology) inBΩ. This
method, widely studied in the statistics literature, is often referred to asthe method of sieves(for
example, see Chapter 10 of van de Geer, 2000, and references therein). It is also closely related to
the structural risk minimization method of Vapnik (1998). The setCn has the effect of regularization,
which ensures that for largen, EX,YΨY(f̂(X)) ≈ inff(·)∈Cn

EX,YΨY(f(X)). It follows that asn→ ∞,

EX,YΨY(f̂(X))
P→ inff(·)∈BΩ EX,YΨY(f(X)). Theorem 3 then implies that`(T(f̂(·))) P→ `B. The above

idea, although intuitively clear, is not rigorously stated at this point. A rigorous treatment can be
found in Section 5.

We can see that there are two types of errors in this framework. The firsttype of error, often
referred to asapproximation error, measures how close we are from the optimal Bayes error when
we approximately minimize the true risk with respect to the surrogate loss functionΨ in (7). Theo-
rem 3 implies that the approximation error goes to zero when we approximately minimize (7). The
second type of error, often referred to asestimation error, is how close we are from achieving the
minimum of the trueΨ risk in (7), when we obtain a classifier based on the empirical minimization
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of (6). The overall statistical error of the risk minimization based classification method (6) is given
by the combination of approximation error and estimation error.

Before studying learning bounds that relate approximate minimization of (6) to the approximate
minimization of (7), we provide examples ofΨ that lead to ISC formulations. We pay special
attention to the case that eachΨc(f) is a convex function off, so that the resulting formulation
becomes computationally more tractable (assuming we also use convex functionclassesCn).

4. Multi-Category Classification Formulations

We give some examples of ISC multi-category classification formulations. Theyare motivated from
methods proposed in the literature, and will be extended in our framework.

The following simple result says that an ISC formulation for an arbitrary lossof the form (2)
can be obtained from an ISC formulation of any particular loss in that family.

Proposition 4 Assume[Ψc(f)] is ISC onΩ ⊂ RK with respect to (3) with ac = a′c (c = 1, . . . ,K).
Then∀ positive numbers a′′c (c = 1, . . . ,K), [Ψc(f)a′′c/a′c] is ISC onΩ ⊂ RK with respect to (3) with
ac = a′′c (c = 1, . . . ,K).

Proof The first condition of ISC holds automatically. Now we shall check the second condition.
For all q ∈ ΛK , we defineq′ asq′

c = qca′′c/a′c. Therefore

K

∑
c=1

qc
Ψc(f)a′′c

a′c
=

K

∑
c=1

q′
cΨc(f).

The ISC condition of[Ψc(f)] with respect to{a′c} implies

inf

{

K

∑
c=1

qc
Ψc(f)a′′c

a′c
: f ∈ Ω, fc = sup

k
fk

}

> inf
f∈Ω

K

∑
c=1

qc
Ψc(f)a′′c

a′c

for all c such thata′cq
′
c < supk a′kq

′
k. That is, for allc such thata′′cqc < supk a′′kqk. This gives the

second condition of ISC.

Due to the above result, for notational simplicity, we shall focus on the 0-1 classification error
in this section, withac = 1 in (3):

`(p(·)) = EX

K

∑
c=1,c6=p(X)

P(Y = c|X) = 1−EXP(Y = p(·)|X). (9)

4.1 Pairwise Comparison Method

This model is motivated from the multi-class support vector machine in Weston and Watkins (1998).2

Here we consider a more general formulation with the following choice ofΨ:

Ψc(f) =
K

∑
k=1

φ(fc− fk), (10)

2. According to Scḧolkopf and Smola. (2002), page 213, an identical method was proposed independently by Blanz
et al. (1995) three years earlier in a talk given at AT&T.
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whereφ is an appropriately chosen real-valued function. The choice in Weston and Watkins (1998)
is the hinge loss for the SVM formulation:φ(p) = (1− p)+.

Typically we choose a decreasing functionφ in (10). Assume that we observe a datumX with its
labelY. The intuition behind (10) is to favor a large valuefY(X)− fk(X) for k 6=Y, which encourages
the correct classification rule. This approach has some attractive features. Since it makes pairwise
comparisons, the penalty termφ(fc− fk) can be adjusted in a pairwise fashion. This can be useful
for some cost-sensitive classification problems that are more general thanthe particular form we
consider in (3). With a differentiableφ (thus excludes the SVM hinge loss), this method also has
the very desirable property oforder preserving, which we state below.

Theorem 5 Consider the formulation in (10). Letφ(·) : R→ R be a non-increasing function such
that φ(z) < φ(−z) for all z > 0. Consider anyq ∈ ΛK and f such that W(q, f) = W∗(q). If qi < q j ,
we havef i ≤ f j . Moreover, ifφ(·) is differentiable andφ′(0) < 0, then we havef i < f j .

Proof We can takei = 1 and j = 2. Let f′ = fk whenk > 2, f′1 = f2, andf′2 = f1. We now prove the
first part by contradiction. Assumef1 > f2. We have

W(q, f′)−W(q, f)

=(q2−q1)

[

φ(f1− f2)−φ(f2− f1)+ ∑
k>2

(φ(f1− fk)−φ(f2− fk))

]

<(q2−q1)[0+0] = 0.

This is a contradiction to the optimality off. Therefore we must havef1 ≤ f2, which proves the first
part.

Now we assume in addition thatφ(·) is differentiable. Then at the optimal solution, we have the
first order condition ∂

∂fc
W(q, f) = 0:

qc

K

∑
k=1

φ′(fc− fk) =
K

∑
k=1

qkφ′(fk− fc).

Again, we prove the second part by contradiction. To this end let us assume f1 = f2 = f , then the
above equality implies that

q1

K

∑
k=1

φ′( f − fk) = q2

K

∑
k=1

φ′( f − fk).

This is not possible since∑K
k=1 φ′( f − fk) ≤ 2φ′(0) < 0.

Note that for functions that are not differentiable, even ifq1 < q2, we may still allowf1 = f2

at an optimal solution. Moreover, it is possible that the formulation is not ISC.We provide such
a counter-example for the hinge loss in Appendix C. However, for differentiable functions, the
method is infinite-sample consistent.

Theorem 6 Letφ(·) : R→ R be a differentiable non-negative and non-increasing function such that
φ′(0) < 0. Then the formulation (10) is ISC onΩ = RK with respect to (9).
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Proof Considerq ∈ ΛK , and assume thatq1 < q2. We show that

inf {W(q, f) : f ∈ Ω, f1 ≥ f2} > W∗(q).

This will imply ISC. We again prove by contradiction. If the claim is not true, then we can find
sequencesf(m) such that 0= f(m)

1 ≥ f(m)
2 and limmW(q, f(m)) = W∗(q). We can further select subse-

quences such that for each pairi and j, f(m)
i − f(m)

j converges (may converge to±∞). This gives a
limiting vector f, with properly definedf i − f j even when eitherf i or f j is ±∞. It follows from the
assumption thatW(q, f) = W∗(q) and 0= f1 ≥ f2. However, this violates Theorem 5 (with trivial
modification of the proof to handle the infinity-case), which asserts thatf1 < f2.

A method closely related to (10) is to employ the following choice ofΨ (see Crammer and
Singer, 2001):

Ψc(f) = φ(fc−sup
k6=c

fk). (11)

However, for convexφ, this method is usually not infinite-sample consistent. To see this, we assume
that φ is a convex decreasing function andq1 ≥ q2 · · · ≥ qK . After some simple algebra, we may
choosef1 ≥ f2 = · · · = fK , and the correspondingW(q, f) = q1φ(f1− f2)−∑K

k=2qkφ(f2− f1). This
means that unlessq1 > 0.5, we can choosef1 = f2 to achieve the optimal value.

It is also worth mentioning that the formulation in (11) has been applied successfully in many
practical applications. This may not be surprising since in many practical problems, the most im-
portant scenario is when the true label can be predicted relatively accurately. In such case (more
precisely, when supk qk > 0.5), the method is well behaved (ISC). The same reason is also why
one may often successfully use (10) with the SVM hinge loss in practical problems, although from
Appendix C, we know that the resulting classification method can be inconsistent. However, the
analysis given in this section is still useful for the purpose of understanding the limitations of these
methods.

4.2 Constrained Comparison Method

As pointed out, one may impose constraints on possible choices off. In this section, we consider
another direct extension of binary large-margin method (1) to multi-categorycase. The choice given
below is motivated by Lee et al. (2004), where an extension of SVM was proposed. For simplicity,
we will consider linear equality constraint only:

Ψc(f) =
K

∑
k=1,k6=c

φ(−fk), s.t. f ∈ Ω, (12)

where we defineΩ as

Ω =

{

f ∈ RK :
K

∑
k=1

fk = 0

}

.

Similar to the pairwise comparison model, if we choose a decreasing functionφ in (10), then this
formulation also encourages the correct classification rule. If we observe a datumX with its labelY,
then the formulation favors smallfk(X) for all k 6= Y. Due to the sum to zero constraint, this implies
a largefY(X).
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We may interpret the added constraint in (12) as a restriction on the function classCn in (6) such
that everyf ∈Cn satisfies the constraint. Note that withK = 2, this leads to the standard binary large
margin method.

Using (12), the conditional trueΨ risk (8) can be written as

W(q, f) =
K

∑
c=1

(1−qc)φ(−fc), s.t.f ∈ Ω. (13)

Similar to the pairwise comparison model, for certain choices of functionφ, this formulation
has the desirable order preserving property.

Theorem 7 Consider the formulation in (12), and assume thatφ is strictly decreasing. Consider
any q ∈ ΛK and f ∈ Ω such that W(q, f) = W∗(q). If qi < q j , we havef i ≤ f j . Moreover, ifφ is
strictly convex and differentiable, thenf i < f j .

Proof The proof is rather straight forward. Leti = 1 and j = 2. Also letf′k = fk whenk > 2, f′1 = f2,
andf′2 = f1. FromW(q, f′) ≥W(q, f), we obtain(q1−q2)(φ(−f1)−φ(−f2)) ≥ 0. This implies that
φ(−f2) ≥ φ(−f1). Thereforef1 ≤ f2.

If φ is also differentiable, then using the Lagrangian multiplier method for the constraint∑K
c=1 fc =

0, and differentiate at the optimal solution, we have(1−q1)φ′(−f1) = (1−q2)φ′(−f2) = λ < 0,
whereλ is the Lagrangian multiplier. The assumption 1− q1 > 1− q2 implies thatφ′(−f1) >
φ′(−f2). The strict convexity implies thatf1 < f2.

The following result provides a simple way to check the infinite-sample consistency of (12).
Note that since it only requires the differentiability on(−∞,0], the SVM hinge loss is included.

Theorem 8 If φ is a convex function which is bounded below, differentiable on(−∞,0], andφ′(0) <
0, then (12) is infinite-sample consistency onΩ with respect to (9).

Proof The continuity condition is straight-forward to verify. We may also assume thatφ(·) ≥ 0
without loss of generality.

Considerq ∈ ΛK . Without loss of generality, we can assume thatq1 < q2, and only need
to show that inf{W(q, f) : f ∈ Ω, f1 = supk fk} > W∗(q). Now consider a sequencef(m) such that

limmW(q, f(m)) = inf{W(q, f) : f ∈ Ω, f1 = supk fk}. Note that(1−q1)φ(−f(m)
1 ) is bounded.

Now if the sequence{f(m)} is unbounded, then due to the constraint∑k f(m)
k = 0 andf(m)

1 ≥ f(m)
k ,

we know that the sequence{f(m)
1 } must also be unbounded. It follows that there is a subsequence

(which for simplicity, denote as the whole sequence) such thatf(m)
1 → +∞. The boundedness of

(1−q1)φ(−f(m)
1 ) implies thatq1 = 1, which is not possible sinceq1 < q2.

Therefore we know that the sequence{f(m)} must be bounded, and thus it contains a convergent
subsequence. Denote the limit asf. We haveW(q, f) = limmW(q, f(m)). Therefore we only need to
show thatW(q, f) > W∗(q). We consider three cases:

• f1 = f2. Sincef1 = supk fk, we havef1 = f2 ≥ 0. The convexity assumption implies that
φ′(−f1) = φ′(−f′2) ≤ φ′(0) < 0. Therefore(1−q1)φ′(−f1)− (1−q2)φ′(−f2) < 0. It follows
that there is a sufficiently smallδ such that(1−q1)φ(−f1 + δ)+ (1−q2)φ(−f2− δ) < (1−
q1)φ(−f1)+ (1−q2)φ(−f2). Therefore if we letf′1 = f1− δ, f′2 = f2 + δ, andf′k = fk when
k > 2, thenW(q, f) > W(q, f′) ≥W∗(q).
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• f1 > f2 andφ(−f1) > φ(−f2). In this case, if we letf′1 = f2, f′2 = f1, andf′k = fk whenk> 2, then
it is easy to check thatW(q, f)−W∗(q)≤W(q, f)−W(q, f′) = (q1−q2)(φ(−f2)−φ(−f1)) >
0.

• f1 > f2 andφ(−f1)≤ φ(−f2). Using the condition that−f1 < 0 and henceφ′(−f1)≤ φ′(0) < 0,
we know that for a sufficiently smallδ > 0, we haveφ(−f1 + δ) < φ(−f1) ≤ φ(−f2) and
−f2−δ >−f1. Since the convexity ofφ implies thatφ(z) achieves the maximum on[−f1,−f2]
at its end points, we haveφ(−f2) ≥ φ(−f2− δ). Therefore if we letf′1 = f1− δ, f′2 = f2 + δ,
andf′k = fk whenk > 2, thenW(q, f) > W(q, f′) ≥W∗(q).

Combining the above three cases, we obtain the result.

Using the above criterion, we can convert an ISC convexφ for the binary formulation (1) into
an ISC multi-category classification formulation (12). In Lee et al. (2004) the special case of SVM
(with loss functionφ(z) = (1− z)+ which is convex and differentiable on(−∞,0]) was studied.
The authors demonstrated the infinite-sample consistency by direct calculation, although no results
similar to Theorem 3, needed for proving consistency, were established.The treatment presented
here generalizes their study.

4.3 One-Versus-All Method

The constrained comparison method in (12) is closely related to the one-versus-all approach, where
we use the formulation (1) to train one functionfc(X) for each classc separately but regarding all
data(X,Y) such thatY 6= c as negative data, and all data(X,Y) such thatY = c as positive data. It
can be easily checked that the resulting formulation is a special case of (6)with

Ψc(f) = φ(fc)+
K

∑
k=1,k6=c

φ(−fk). (14)

Note that this formula is similar to (12), but we don’t require the sum-of-zeroconstraint onf (that
is Ω = RK). Intuitively, with an observation(X,Y), this formulation encourages the correct clas-
sification rule in that it favors a largefY(X) and favors smallfk(X) whenk 6= Y. However, if a
binary classification method (such as SVM) does not estimate the conditional probability, then the
one-versus-all approach may not be infinite-sample consistent, while the formulation in (12) can
still be. In order to establish the ISC condition for the one-versus-all approach, we can write

W(q, f) =
K

∑
c=1

[qcφ(fc)+(1−qc)φ(−fc)] . (15)

We have the following order-preserving property.

Theorem 9 Consider (14). Assume thatφ is convex, bounded below, differentiable, andφ(z) <
φ(−z) when z> 0. Consider anyq ∈ ΛK andf ∈ [−∞,+∞]K such that W(q, f) = W∗(q). If qi < q j ,
we havef i < f j .

Proof Let fq (not necessarily unique) minimizesqφ( f )+ (1−q)φ(− f ). We have the first-order
optimality condition

qφ′( fq) = (1−q)φ′(− fq).
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Note that the assumptions imply thatφ′(0) < 0. Thereforefq 6= 0 whenq 6= 0.5 (otherwise, the
optimality condition cannot be satisfied). Therefore by the assumption thatφ(z) < φ(−z) when
z> 0, we havefq > 0 whenq > 0.5 and fq < 0 whenq < 0.5.

Let i = 1 and j = 2. We have eitherq1 ∈ [0,0.5) or q2 ∈ (0.5,1]. Assume the former (due to
the symmetry, the latter case can be proved similarly), which implies thatf1 < 0. If f2 ≥ 0, then the
claim f1 < f2 holds. Therefore we only need to consider the casef2 < 0, and thus 0≤ q1 < q2 ≤ 0.5.
We now prove by contradiction. Note thatf2 > −∞ (otherwise,q2φ(f2) = +∞). If f2 ≤ f1 < 0, then
the convexity ofφ impliesφ′(f2) ≤ φ′(f1) < 0. We have

φ′(−f1) = q1φ′(f1)/(1−q1) > q2φ′(f1)/(1−q2) ≥ q2φ′(f2)/(1−q2) = φ′(−f2).

The convexity implies that−f1 > −f2 (thusf1 < f2), which is a contradiction. Therefore we must
havef1 < f2.

The following result shows that for a (non-flat) differentiable convex functionφ, the one-versus-
all method is infinite-sample consistent. Note that the theorem excludes the standard SVM method,
which employs the non-differentiable hinge loss. However, similar to the discussion at the end
of Section 4.1, if the true label can be predicted relatively accurately (thatis, the dominant class
has a conditional probability larger than 0.5), then the SVM one-versus-all method is consistent.
Therefore the method may still perform well for some practical problems (see Rifkin and Klautau,
2004, for example).

Theorem 10 Under the assumptions of Theorem 9. The method (14) is ISC onΩ = RK with respect
to (9).

Proof Considerq ∈ ΛK . Without loss of generality, we can assume thatq1 < q2, and only need
to show that inf{W(q, f) : f ∈ Ω, f1 = supk fk} > W∗(q). Now consider a sequencef(m) such that
limmW(q, f(m)) = inf{W(q, f) : f ∈ Ω, f1 = supk fk}. Let f be a limiting point off(m) in [−∞,+∞]K,
we haveW(q, f) = limmW(q, f(m)) andf1 = supk fk. From Theorem 9, we haveW(q, f) > W∗(q).

Using Theorem 24, we can also obtain a more quantitative bound.

Theorem 11 Under the assumptions of Theorem 9. The function Vφ(q) = inf f∈R[qφ( f ) + (1−
q)φ(− f )] is concave on[0,1]. Assume that there exists a constant cφ > 0 such that

(q−q′)2 ≤ c2
φ

(

2Vφ(
q+q′

2
)−Vφ(q)−Vφ(q

′)

)

,

then we have∀f(·),

`(T(f(·))) ≤ `B +cφ

(

EX,YΦY(f(X))− inf
f′

EX,YΦY(f′(X))

)1/2

,

whereΦY(f) is given in (14), T(·) is defined in (5),̀ is the 0-1 classification error in (9), and̀B is
the optimal Bayes error.
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Proof Vφ(q) is the infimum of concave functionsqφ( f ) + (1− q)φ(− f ) indexed by f ∈ R, thus
concave.

The second part is an application of Theorem 24. We use the notations of Appendix A: letX
be the input space,Q = ΛK be the space of conditional probability vectors, andD = {1, . . . ,K} be
the space of class labels. We let`(q,k) = ∑c=1,c6=k qc, and thus the classification error of a decision
functionp(·) in (9) can be expressed as`(p(·)) = EX`([P(Y = c|X)]c, p(X)). The estimation-model
space isRK , with decisionT given by (5). TheW function is given by (15). Letv(q) ≡ 1. ∀ε > 0,
assume∆`(q,T(f)) ≥ ε.

DefineVφ(q, f ) = qφ( f )+(1−q)φ(− f ). Without loss of generality, we may assume thatT(f) =
1 andq2 = supcqc. Then∆`(q,T(f)) = q2−q1 ≥ ε.

∆W(q, f) ≥ inf
f1≥f2

2

∑
i=1

[

Vφ(qi , f i)−Vφ(qi)
]

= inf
f1=f2

2

∑
i=1

[

Vφ(qi , f i)−Vφ(qi)
]

=2inf
f1

Vφ

(

q1 +q2

2
, f1

)

− (Vφ(q1)+Vφ(q2)) ≥ c−2
φ (q1−q2)

2 ≥ c−2
φ ε2.

The first equality holds because the minimum cannot be achieved at a pointf1 < f2 due to the
order-preserving property in Theorem 9. The assumption thus implies thatc2

φ∆H`,W,T,v(ε)≥ ε2. The
desired result is now a direct consequence of Theorem 24.

Remark 12 Using Taylor expansion, it is easy to verify that the condition V′′
φ (q) ≤−c < 0 implies

that (2Vφ((q+ q′)/2)−Vφ(q)−Vφ(q′)) ≥ c(q−q′)2/4. In this case, we may take cφ = 2/
√

c. As
an example, we consider the least squares method and one of its variants: φ(z) = (1− v)2 or
φ(z) = (1−v)2

+. In both cases, Vφ(q) = 4q(1−q). Therefore we can let cφ = 1/
√

2.

The bound can also be further refined under the so-called Tsybakov small noise assumption (see
Mammen and Tsybakov, 1999).

Theorem 13 Under the assumptions of Theorem 11. Let

γ(X) = inf{sup
c

P(Y = c|X)−P(Y = c′|X) : P(Y = c′|X) < sup
c

P(Y = c|X)}

be the margin between the largest conditional probability and the second largest conditional prob-
ability (let γ(X) = 1 if all conditional probabilities are equal). Considerα ≥ 0 such that cγ =
EXγ(X)−α < +∞, then we have∀f(·),

`(T(f(·))) ≤ `B +c(2α+2)/(α+2)
φ

(

EX,YΦY(f(X))− inf
f′(·)

EX,YΦY(f′(X))

)(α+1)/(α+2)

c1/(α+2)
γ .

Proof Using notations in the proof of Theorem 11, but letv(q) = γ(q)−α/cγ, where γ(q) =
inf{supcqc−qk : qk < supcqc}. It is clear thatEXv(q(X)) = 1 with q(X) = [P(Y = 1|X), · · · ,P(Y =
K|X)].
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Following the proof of Theorem 11, but assumeq2−q1 ≥ εv(q). Fromq2−q1 ≥ γ(q), we have
∀β ≥ 0: (q2−q1)

1+β/γ(q)−α+β ≥ (q2−q1)/γ(q)−α ≥ ε/cγ. Let β = α/(α+2), we have

(

(q2−q1)
2/γ(q)−α)(α+1)/(α+2) ≥ ε/cγ.

This implies that (the first inequality follows from the proof of Theorem 11)

∆W(q, f)/v(q) ≥ c−2
φ (q1−q2)

2/v(q) ≥ ε(α+2)/(α+1)c−1/(α+1)
γ c−2

φ .

Thusc1/(α+1)
γ c2

φ∆H`,W,T,v(ε) ≥ ε(α+2)/(α+1). The bound now follows directly from Theorem 24.

4.4 Unconstrained Background Discriminative Method

We consider the following unconstrained formulation:

Ψc(f) = ψ(fc)+s

(

K

∑
k=1

t(fk)

)

, (16)

whereψ, s andt are appropriately chosen convex functions that are continuously differentiable. As
we shall see later, this is a generalization of the maximum-likelihood method, which corresponds to
s(z) = t(z) = 1 andψ(z) = − ln(z).

We shall chooses andt such that the unconstrained background terms
(

∑K
k=1 t(fk)

)

penalizes
largefk for all k. We also choose a decreasingψ(fc) so that it favors a largefc. That is, it serves the
purpose of discriminatingfc against the background term. The overall effect is to favor a predictorin
which fc is larger thanfk (k 6= c). In (16), the first term has a relatively simple form that depends only
on the labelc. The second term is independent of the label, and can be regarded as anormalization
term. Note that this function is symmetric with respect to components off. This choice treats
all potential classes equally. It is also possible to treat different classesdifferently. For example,
replacingψ(fc) by ψc(fc) or replacingt(fk) by tk(fk).

4.4.1 OPTIMALITY EQUATION AND PROBABILITY MODEL

Using (16), the conditional trueΨ risk (8) can be written as

W(q, f) =
K

∑
c=1

qcψ(fc)+s

(

K

∑
c=1

t(fc)

)

.

In the following, we study the property of the optimal vectorf∗ that minimizesW(q, f) for a fixedq.
Givenq, the optimal solutionf∗ that minimizesW(q, f) satisfies the following first order opti-

mality condition:
qcψ′(f∗c)+µf∗t

′(f∗c) = 0 (c = 1, . . . ,K). (17)

where the quantityµf∗ = s′(∑K
k=1 t(f∗k)) is independent ofc.

Clearly this equation relatesqc to f∗c for each componentc. The relationship ofq andf∗ defined
by (17) can be regarded as the (infinity sample-size) probability model associated with the learning
method (6) withΨ given by (16). The following result is quite straight-forward. We shall skip the
proof.
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Theorem 14 Assume thatψ, t,s are differentiable functions such that s′(x) > 0. If for a ∈ [0,+∞),
the the solution x of aψ′(x)+ t ′(x) = 0 is an increasing function of a, then the solution of (17) has
the order preserving property:qi < q j impliesf∗i < f∗j . Moreover, the method (16) is ISC.

In the following, we shall present various formulations of (16) which have the order preserving
property.

4.4.2 DECOUPLEDFORMULATIONS

We lets(u) = u in (16). The optimality condition (17) becomes

qcψ′(f∗c)+ t ′(f∗c) = 0 (c = 1, . . . ,K). (18)

This means that we haveK decoupled equalities, one for eachfc. This is the simplest and in the
author’s opinion, the most interesting formulation. Since the estimation problem in(6) is also
decoupled intoK separate equations, one for each component off̂, this class of methods are com-
putationally relatively simple and easy to parallelize. Although this method seems to bepreferable
for multi-category problems, it is not the most efficient way for two-class problems (if we want to
treat the two classes in a symmetric manner) since we have to solve two separateequations. We
only need to deal with one equation in (1) due to the fact that an effective constraintf1 + f2 = 0 can
be used to reduce the number of equations. This variable elimination has little impact if there are
many categories.

In the following, we list some examples of multi-category risk minimization formulations. They
all have the order preserving property, hence are infinite-sample consistent. We focus on the rela-
tionship of the optimal optimizer functionf∗(q) and the conditional probabilityq, which gives the
probability model.

ψ(u) = −u AND t(u) = eu

We obtain the following probability model:qc = ef∗c . This formulation is closely related to the
maximum-likelihood estimate with conditional modelqc = ef∗c/∑K

k=1ef∗k (logistic regression). In
particular, if we choose a function class such that the normalization condition∑K

k=1efk = 1 holds,
then the two formulations are identical. However, they become different when we do not impose
such a normalization condition.

φ(u) = − lnu AND t(u) = u

This formulation is closely related to the previous formulation. It is an extensionof maximum-
likelihood estimate with probability modelqc = f∗c. The resulting method is identical to the maximum-
likelihood method if we choose our function class such that∑k fk = 1 andfk ≥ 0 for k = 1, . . . ,K.
However, the formulation also allows us to use function classes that do not satisfy the normalization
constraint∑k fk = 1. Therefore this method is more flexible.

φ(u) = − 1
αuα (0 < α < 1) AND t(u) = u

Closely related to the maximum-likelihood method, this formulation replacesφ(u) = − ln(u) by
φ(u) = −uα. The solution isqc = (f∗c)

1/(1−α). Similar to the case ofφ(u) = − ln(u), we may also

impose a constraint∑k f1/(1−α)
k = 1, which ensures that the estimated probability always sum to one.
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φ(u) = −u AND t(u) = ln(1+eu)

This version uses binary logistic regression loss, and we have the following probability model:
qc = (1+e−f∗c)−1. Again this is an unnormalized model.

φ(u) = −u AND t(u) = 1
p|u|p (p > 1)

We obtain the following probability model:qc = sign(f∗c)|f∗c|p−1. This means that at the solution,
f∗c ≥ 0. This formulation is not normalized. If we choose a function family such that∑k |fk|p−1 = 1
andfk ≥ 0, then we have a normalized model for which the estimated conditional probability always
sum to one. One can also modify this method such that we can usef∗c ≤ 0 to model the condition
probabilityqc = 0.

φ(u) = −u AND t(u) = 1
p max(u,0)p (p > 1)

In this probability model, we have the following relationship:qc = max(f∗c,0)p−1. The equation
implies that we allowf∗c ≤ 0 to model the conditional probabilityqc = 0. Therefore, with a fixed
function class, this model is more powerful than the previous one. However, at the optimal solution,
we still require thatf∗c ≤ 1. This restriction can be further alleviated with the following modification.

φ(u) = −u AND t(u) = 1
p min(max(u,0)p, p(u−1)+1) (p > 1)

In this model, we have the following relationship at the solution:qc = min(max(f∗c,0),1)p−1.
Clearly this model is more powerful than the previous model since the function valuef∗c ≥ 1 can be
used to modelqc = 1. For separable problems, at each point there exists ac such thatqc = 1 and
qk = 0 whenk 6= c. The model requires thatf∗c ≥ 1 andf∗k ≤ 0 whenk 6= c. This is essentially a
large margin separation condition, where the function for the true class is separated from the rest by
a margin of one.

4.4.3 COUPLED FORMULATIONS

In the coupled formulation withs(u) 6= u, the probability model are inherently normalized in some
sense. We shall just list a few examples.

φ(u) = −u, AND t(u) = eu, AND s(u) = ln(u)

This is the standard logistic regression model. The probability model is

qc(x) =
ef∗c(x)

∑K
c=1ef∗c(x)

.

The right hand side is always normalized (sum up to 1). One potential disadvantage of this method
(at this moment, we don’t know whether or not this theoretical disadvantagecauses real problems in
practice or not) is that it does not model separable data very well. That is,if qc(x) = 0 orqc(x) = 1,
we requiref∗c = ±∞. In comparison, some large margin methods described earlier can model the
separable scenario using finite valuedf∗.
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φ(u) = −u, AND t(u) = |u|p′ , AND s(u) = 1
p|u|p/p′ (p, p′ > 1)

The probability model is

qc(x) =

(

K

∑
k=1

|f∗k(x)|p
′

)(p−p′)/p′

sign(f∗c(x))|f∗c(x)|p
′−1.

We may replacet(u) by t(u) = max(0,u)p, and the probability model becomes

qc(x) =

(

K

∑
k=1

max(f∗k(x),0)p′

)(p−p′)/p′

max(f∗c(x),0)p′−1.

These formulations do not seem to have advantages over the decoupled counterparts (withs(u) = 1).
For the decoupled counterparts, as explained, the normalization (so that the estimated probability
sum to one) can be directly included into the function class. This is more difficult to achieve here due
to the more complicated formulations. However, it is unclear whether normalizedformulations have
practical advantages since one can always explicitly normalize the estimated conditional probability.

5. Consistency of Kernel Multi-Category Classification Methods

In this section, we give conditions that lead to the consistency of kernel methods. It is worth men-
tioning that generalization bounds obtained in this section are not necessarily tight. We use simple
analysis to demonstrate that statistical consistency can be obtained. In order to obtain good rate
of convergence results, more sophisticated analysis (such as those used by Blanchard et al., 2004,
Bartlett et al., 2003, Mannor et al., 2003, van de Geer, 2000, Scovel and Steinwart, 2003) is needed.

The analysis given in this section is kernel independent. Therefore we can start with an arbi-
trary reproducing kernel Hilbert spaceH (for example, see Wahba, 1990, for definition) with inner
product· and norm‖ · ‖H . Each element ofH is a functionf (x) of the inputx. It is well known that
for each data pointx, we can embed it intoH ashx such thatf (x) = f ·hx for all f ∈ H.

In this section, we only consider bounded input distributionD:

sup
x
‖hx‖H < ∞.

We also introduce the following notations:

HA ={ f (·) ∈ H : ‖ f‖H sup
x
‖hx‖H ≤ A},

HA,K =HK
A = {f(·) : fc(·) ∈ HA for all c = 1, . . . ,K}.

For notation simplicity, we shall limit our discussion to formulations such that for all c =
1, . . . ,K, Ψc(·) defined on a subsetΩ ⊂ RK can be extended toRK . For example, for the con-
strained comparison model with the SVM loss. we require thatΩ = {f ∈ RK : ∑K

k=1 fk = 0}, but the
formulation itself is well-defined on the entireRK .

In order to obtain a uniform convergence bound, we shall introduce thefollowing Lipschitz
condition. It is clear that all well-behaved formulations such as those considered in this paper
satisfy this assumption.
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Assumption 15 Given any A> 0, and consider SA = {f ∈ RK : supc |fc| ≤ A}. Then there existsγA

such that∀f, f′ ∈ SA and1≤ c≤ K:

|Ψc(f)−Ψc(f′)| ≤ γAsup
k
|fk− f′k|.

Definition 16 Let Qn = {(X1,Y1), . . . ,(Xn,Yn)} be a set of n points. We define the`∞(Qn) distance
between any two functions f(x,y) and g(x,y) as

`∞(Qn)( f ,g) = sup
i
| f (Xi ,Yi)−g(Xi ,Yi)| .

LetF be a class of functions of(x,y), theempirical̀ ∞-covering numberof F , denoted by N(ε,F , `∞(Qn)),
is the minimal number of balls{g : `∞(Qn)(g, f ) ≤ ε} of radiusε needed to coverF . Theuniform
`∞ covering numberis given by

N∞(ε,F ,n) = sup
Qn

N(ε,F, `∞(Qn)),

where the supremum is over all samples Qn of size n.

Note that we may also use other covering numbers such as`2 covering numbers. Thè∞ covering
number is more suitable for the specific Lipschitz condition used in Assumption 15. We use the
following kernel-independent covering number bound.

Lemma 17 Consider the function classFA,K = {ΨY(f(X)) : f ∈ HA,K} such thatΨ satisfies As-
sumption 15. Then there exists a universal constant C1 > 0 such that

lnN∞(γAε,FA,K,n) ≤ KC1A2 ln(2+A/ε)+ lnn
nε2 .

Proof Note that Theorem 4 of Zhang (2002) implies that there existsC1 such that

lnN∞(ε,HA,n) ≤C1A2 ln(2+A/ε)+ lnn
nε2 .

Therefore with empirical samplesQn = {(Xi ,Yi)}, we can find exp(KC1A2 ln(2+A/ε)+lnn
nε2 ) vectors

f j(Xi) such that for eachf ∈ HA,K , we have infj supi,c |fc(Xi)− f j
c(Xi)| ≤ ε. The assumption implies

that this is a cover ofFA,K of radiusγAε.

Remark 18 For specific kernels, the bound can usually be improved. Moreover, the log-covering
number (entropy) depends linearly on the number of classes K. This is due to the specific regulariza-
tion condition we use here. For practical problems, it can be desirable to use other regularization
conditions so that the corresponding covering numbers have much weaker dependency (or even
independence) on K. For simplicity, we will not discuss such issues in this paper.
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Lemma 19 Consider function classFA,K = {ΨY(f(X)) : f ∈ HA,K} such thatΨ satisfies Assump-
tion 15. Then there exists a universal constant C such that for all n≥ 2:

EQn sup
f∈FA,K

∣

∣

∣

∣

∣

1
n

n

∑
i=1

ΨYi (f(Xi))−EX,YΨY(f(X))

∣

∣

∣

∣

∣

≤C
√

K
γAAln3/2n√

n
,

whereEQn denotes the expectation over empirical training data Qn = {(Xi ,Yi)}.

Proof Let f0 ∈ HA,K , and defineF 0
A,K = {ΨY(f(X))−ΨY(f0(X)) : f ∈ FA,K}. Consider a sequence

of binary random variables such thatσi = ±1 with probability 1/2. TheRademacher complexityof
F 0

A,K under empirical sampleQn = {(X1,Y1), . . . ,(Xn,Yn)} is given by

R(F 0
A,K ,Qn) = Eσ sup

f∈HA,K

∣

∣

∣

∣

∣

1
n

n

∑
i=1

σi(ΨYi (f(Xi))−ΨYi (f0(Xi))

∣

∣

∣

∣

∣

.

It is well known that there exists a universal constantC2 (a variant of Corollary 2.2.8 in van der
Vaart and Wellner, 1996):

R(F 0
A,K ,Qn) ≤C2 inf

ε0

[

ε0 +
1√
n

Z ∞

ε0

√

logN∞(ε,F ,Qn)dε
]

.

Using the bound in Lemma 17, and perform the integration withε0 = γAA
√

1/n, we obtain

R(F 0
A,K ,Qn) ≤

C
√

K
2

γAAln3/2n√
n

,

whereC is a universal constant.
Now using the standard symmetrization argument (for example, see Lemma 2.3.1 of van der

Vaart and Wellner, 1996), we have

EQn sup
f∈FA,K

∣

∣

∣

∣

∣

1
n

n

∑
i=1

ΨYi (f(Xi))−EX,YΨY(f(X))

∣

∣

∣

∣

∣

≤ 2EQn R(F 0
A,K ,Qn) ≤C

√
K

γAAln3/2n√
n

.

Theorem 20 ConsiderΨ that satisfies Assumption 15. Choose An such that An→∞ andγAnAn ln3/2n/
√

n→
0. Let Cn = HAn,K ∩BΩ (see Theorem 3 for the definition ofBΩ), whereΩ ⊂ RK is a constraint set.
Consider the estimator̂f(·) in (6). We have

lim
n→∞

EQn EX,YΨY(f̂(X)) = inf
f∈H∩BΩ

EX,YΨY(f(X)).

Proof Considerf(n) ∈Cn that minimizesEX,YΨY(f(X)). Since∑n
i=1 ΨYi (f̂(Xi))≤∑n

i=1 ΨYi (f
(n)(Xi)),

we have from Lemma 19 that

EQn EX,YΨY(f̂(X)) ≤ EX,YΨY(f(n)(X))+2C
√

K
γAnAn ln3/2n√

n
.
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Therefore asn→ ∞,

lim
n

EQnEX,YΨY(f̂(X)) → lim
n

EX,YΨY(f(n)(X)) = inf
f∈H∩BΩ

EX,YΨY(f(X)).

The following consistency result is a straight-forward consequence ofTheorem 20 and Theo-
rem 3.

Corollary 21 Under the conditions of Theorem 20. Assume thatΨ is ISC onΩ with respect to (3).
If H is dense inBΩ, that is,

inf
f(·)∈H∩BΩ

EX,YΨY(f(X)) = inf
f(·)∈BΩ

EX,YΨY(f(X)),

then
lim
n→∞

EQn EX,YΨY(f̂(X)) = inf
f(·)∈BΩ

EX,YΨY(f(X)).

This implies that the classification error`(f̂) converges to the optimal Bayes error in probability.

6. Conclusion

In this paper we investigated a general family of risk minimization based multi-category classifi-
cation algorithms, which can be considered as natural extensions of binary large margin methods.
We established infinite-sample consistency conditions that ensure the statistical consistency of the
obtained classifiers in the infinite-sample limit. Several specific forms of the general risk minimiza-
tion formulation were considered. We showed that some models can be used toestimate conditional
class probabilities. As an implication of this work, we see that it is possible to obtain consistent
conditional density estimators using various non-maximum likelihood estimation methods. One
advantage of some proposed large margin methods is that they allow us to modelzero conditional
probability directly. Note that for the maximum-likelihood method, near-zero conditional proba-
bility may cause robustness problems (at least in theory) due to the unboundedness of the log-loss
function. Moreover, combined with some relatively simple generalization analysis, we showed that
given appropriately chosen regularization conditions in some reproducing kernel Hilbert spaces,
classifiers obtained from some multi-category kernel methods can approach the optimal Bayes error
in the large sample limit.

Appendix A. Relationship of True Loss Minimization and Surrogate Loss
Minimization

We consider an abstract decision model. Consider input spaceX , output-model spaceQ , decision
spaceD, and estimation-model spaceΩ.

Consider the following functions:

• True loss function:̀ : Q ×D → R. We also define the corresponding excess loss as

∆`(q,d) = `(q,d)− inf
d′∈D

`(q,d′).
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• Surrogate loss function:W : Q ×Ω → R. We also define the corresponding excess surrogate
loss as

∆W(q, f) = W(q, f)− inf
f′∈D

W(q, f′).

• Decision-rule:T : Ω → D.

For the multi-category classification problem studied in the main text,X is the input space,
Q = ΛK is the space of conditional probability vectors[P(Y = c|·)]c, D = {1, . . . ,K} is the space of
class labels, andΩ ⊂ RK is the set of possible vector predictorsf ∈ RK , with T given by (5). TheW
function is given by (8). With classification error in (2), we let

`(q,k) =
K

∑
c=1,c6=k

acqc.

Therefore the classification error of a decision functionp(·) in (3) can be expressed as

`(p(·)) = EX`([P(Y = c|X)]c, p(X)).

Definition 22 Consider function v: Q → R+. ∀ε ≥ 0, we define

∆H`,W,T,v(ε) = inf

{

∆W(q, f)
v(q)

: ∆`(q,T(f)) ≥ εv(q)

}

∪{+∞}.

The definition is designed so that the following properties hold. They are simple re-interpretations
of the definition.

Proposition 23 We have:

• ∆H`,W,T,v(ε) ≥ 0.

• ∆H`,W,T,v(0) = 0.

• ∆H`,W,T,v(ε) is non-decreasing on[0,+∞).

• v(q)∆H`,W,T,v(∆`(q,T(f))/v(q)) ≤ ∆W(q, f).

The importance of the above definition is based on the following theorem. It essentially gives
a bound on the expected excessive true loss` using the expected excessive surrogate lossW. The
idea was used by Bartlett et al. (2003), Zhang (2004) to analyze binaryclassification problems.

Theorem 24 Given any distribution onX , and function v: Q → R+ such that

EXv(q(X)) = 1.

Let ζ(ε) be a convex function on[0,+∞) such thatζ(ε) ≤ ∆H`,W,T,v(ε). Then∀f : X → Ω, we have

ζ(EX∆`(q(X),T(f(X)))) ≤ EX∆W(q(X), f(X)).
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Proof Using Jensen’s inequality, we have

ζ(EX∆`(q(X),T(f(X)))) ≤ EXv(q(X))ζ
(

∆`(q(X),T(f(X)))

v(q(X))

)

.

Now using the assumption and Proposition 23, we can upper-bound the right hand side byEX∆W(q(X), f(X)).
This proves the theorem.

The following proposition is based mostly on Bartlett et al. (2003). We includeit here for
completeness.

Proposition 25 Let ζ∗(ε) = supa≥0,b{aε + b : ∀z≥ 0,az+ b ≤ ∆H`,W,T,v(z)}, thenζ∗ is a convex
function. It has the following properties:

• ζ∗(ε) ≤ ∆H`,W,T,v(ε).

• ζ∗(ε) is non-decreasing.

• For all convex functionζ such thatζ(ε) ≤ ∆H`,W,T,v(ε), ζ(ε) ≤ ζ∗(ε).

• Assume that∃a > 0 and b∈ R such that aε+b≤ ∆H`,W,T,v(ε), and∀ε > 0,∆H`,W,T,v(ε) > 0.
Then∀ε > 0,ζ∗(ε) > 0.

Proof We note thatζ∗ is the point-wise supreme of convex functions, thus it is also convex. We
now prove the four properties.

• The first property holds by definition.

• The second property follows from the fact that∆H`,W,T,v(z) is non-decreasing, andaε′ +b >
aε+b whenε′ > ε.

• Given a convex functionζ such thatζ(ε)≤ ∆H`,W,T,v(ε). At anyε, we can find a lineaz+b≤
ζ(z) ≤ ∆H`,W,T,v(z) andζ(ε) = aε+b. This implies thatζ(ε) ≤ ζ∗(ε).

• Considerε > 0. Using the fact that whenz≥ ε/2, ∆H`,W,T,v(z) ≥ ∆H`,W,T,v(ε/2) > 0, and
the assumption, we know that there existsaε ∈ (0,a) such thataε(z− ε/2) < ∆H`,W,T,v(z).
Thereforeζ∗(ε) ≥ aε(ε− ε/2) > 0.

The following result shows that the approximate minimization of the expected surrogate loss
EX∆W implies the approximate minimization of the expected true lossEX∆`.

Corollary 26 Consider function v: Q → R+. If the loss functioǹ (q,d)/v(q) is bounded, and
∀ε > 0, ∆H`,W,T,v(ε) > 0, then there exists a concave functionξ on [0,+∞) that depends only oǹ,
W, T , and v, such thatξ(0) = 0 andlimδ→0+ ξ(δ) = 0. Moreover, for all distribution onX such that
EXv(q(X)) = 1, we have

EX∆`(q(X),T(f(X))) ≤ ξ(EX∆W(q(X), f(X))).
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Proof Considerζ∗(ε) in Proposition 25. Letξ(δ) = sup{ε : ε ≥ 0,ζ∗(ε) ≤ δ}. Thenζ∗(ε) ≤ δ
implies thatε ≤ ξ(δ). Therefore the desired inequality follows from Theorem 24. Givenδ1,δ2 ≥ 0:
from ζ∗( ξ(δ1)+ξ(δ2)

2 ) ≤ δ1+δ2
2 , we know thatξ(δ1)+ξ(δ2)

2 ≤ ξ( δ1+δ2
2 ). Thereforeξ is concave.

We now only need to show thatξ is continuous at 0. From the boundedness of`(q,d)/v(q), we
know that∆H`,W,T,v(z) = +∞ whenz> sup∆`(q,d)/v(q). Therefore∃a > 0 andb ∈ R such that
aε + b ≤ ∆H`,W,T,v(ε). Now Pick anyε′ > 0, and letδ′ = ζ∗(ε′)/2, we know from Proposition 25
thatδ′ > 0. This implies thatξ(δ) < ε′ whenδ < δ′.

One can always choosev(q) ≡ 1 to obtain a bound that applies to all underlying distributions
on X . However, with a more generalv, one may obtain better bounds in some scenarios especially
the low noise case. For example, see Theorem 13 in the main text.

Appendix B. Proof of Theorem 3

We shall first prove the following lemma.

Lemma 27 W∗(q) := inff∈ΩW(q, f) is a continuous function onΛK .

Proof Consider a sequenceq(m) ∈ ΛK such that limmq(m) = q. Without loss of generality, we
assume that there existsk such thatq1 = · · · = qk = 0 andqc > 0 for c > k. Moreover, since each
Ψc is bounded below, we may assume without loss of generality thatΨc ≥ 0 (this condition can be
achieved simply by adding a constant to eachΨc).

Now, let

W̄(q′, f) =
K

∑
c=k+1

q′
cΨc(f)

and

W̄∗(q′) = inf
f∈Ω

K

∑
c=k+1

q′
cΨc(f).

Since{W̄∗(q(m))}m is bounded, each sequence{q(m)
c Ψc(·)}m is also bounded near the optimal so-

lution. It is clear from the condition limmq(m)
c > 0 (c > k) that

lim
m→∞

W̄∗(q(m)) = W̄∗(q) = W∗(q).

SinceW∗(q(m)) ≥ W̄∗(q(m)), we have

liminf
m→∞

W∗(q(m)) ≥W∗(q). (19)

Now for a sufficiently large positive numberA, let

W∗
A(q′) = inf

f∈Ω,‖f‖1≤A

K

∑
c=1

q′
cΨc(f).

We have
limsup

m→∞
W∗(q(m)) ≤ limsup

m→∞
W∗

A(q(m)) = W∗
A(q).
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Since limA→∞W∗
A(q) = W∗(q), we have

limsup
m→∞

W∗(q(m)) ≤W∗(q).

Combining this inequality with (19), we obtain the lemma.

Lemma 28 ∀ε > 0, ∃δ > 0 such that∀q ∈ Λk:

inf

{

W(q, f) : fc = sup
k

fk,acqc ≤ sup
k

akqk− ε
}

≥W∗(q)+δ. (20)

Proof We prove this by contradiction. Assume that (20) does not hold, then∃ε > 0, and a sequence
of (c(m), f(m),q(m)) with f(m) ∈ Ω such thatf(m)

c(m) = supk f(m)
k , ac(m)q

(m)

c(m) ≤ supk akq
(m)
k − ε, and

lim
m→∞

[W(q(m), f(m))−W∗(q(m))] = 0.

SinceΛK is compact, we can choose a subsequence (which we still denoted as the whole sequence
for simplicity) such thatc(m) ≡ c(1) and limmq(m) = q ∈ ΛK . Using Lemma 27, we obtain

lim
m→∞

W(q(m), f(m)) = W∗(q).

Similar to the proof of Lemma 27, we assume thatΨc ≥ 0 (c = 1, . . . ,K), q1 = · · · = qk = 0 and
qc > 0 (c > k). We obtain

limsup
m→∞

W(q, f(m)) = limsup
m→∞

K

∑
c=k+1

q(m)
c Ψc(f(m)) ≤ lim

m→∞
W(q(m), f(m)) = W∗(q).

Note that our assumption also implies thatac(1)qc(1) ≤ supk akqk− ε andf(m)

c(1) = supk f(m)
k . We have

thus obtained a contradiction to the second ISC condition ofΨc(·). Therefore (20) must be valid.

Proof of the Theorem. We use the notations of Appendix A: letX be the input space,Q = ΛK be
the space of conditional probability vectors, andD = {1, . . . ,K} be the space of class labels. We
let `(q,k) = ∑c=1,c6=k acqc, and thus the classification error of a decision functionp(·) in (9) can
be expressed as̀(p(·)) = EX`([P(Y = c|X)]c, p(X)). The estimation-model space isΩ ⊂ RK , with
decisionT given by (5). TheW function is given by (8). Letv(q) ≡ 1. Then (20) implies that
∀ε > 0,∆H`,W,T,v(ε) > 0. The theorem now follows directly from the claim of Corollary 26.

Appendix C. Infinite-Sample Inconsistency of the SVM Pairwise Comparison
Method

Consider the non-differentiable SVM (hinge) lossφ(z) = (1− z)+. We show that the pairwise
comparison method in (10) is not ISC withK = 3. More precisely, we have the following counter-
example.
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Proposition 29 Letq = [q1,q2,q3] with 0< q3 < q2 < q1 such that q1 < q2+q3 and q2 > 2q3. Then
W∗(q) = W(q, [1,1,0]) = 1+q1 +q2 +4q3.

Proof Considerf = [ f1, f2, f3]. Without loss of generality, we can letf3 = 0. Therefore

W(q, f) = 1+q1[φ( f1)+φ( f1− f2)]+q2[φ( f2)+φ( f2− f1)]+q3[φ(− f1)+φ(− f2)].

Clearly if | f1| > 100/q3 or | f2| > 100/q3, thenW(q, f) > 100> W(q, [0,0,0]). Therefore the opti-
mization ofW(q, f) can be restricted to| f1|, | f2| ≤ 100/q3. It follows thatW∗(q) can be achieved at
some point, still denote byf = [ f1, f2,0] such that| f1|, | f2| ≤ 100/q3.

From the order-preserving property of Theorem 5, we havef1 ≥ f2, and f1, f2 ≥ f3 = 0. We can
rewriteW(q, f) as

W(q, f) = 1+q1[φ( f1)+φ( f1− f2)]+q2[φ( f2)+( f1− f2)+1]+q3[ f1 + f2 +2].

If f2 < 1, then

W(q, [1+ f1− f2,1,0])−W(q, [ f1, f2,0]) ≤−(q2−2q3)(1− f2) < 0.

Therefore we can assume thatf1 ≥ f2 ≥ 1. Now

W(q, f) = 1+q1φ( f1− f2)+q2[ f1− f2 +1]+q3[ f1 + f2 +2].

Sinceq1 < q2 + q3, we haveq1φ( f1 − f2) + (q2 + q3)[ f1 − f2] ≥ q1, and the equality holds only
when f1 = f2. ThereforeW(q, f) ≥ 1+q1 +q2[0+1]+q3[2 f2 +2], and the minimum can only be
achieved atf1 = f2 = 1.
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