6 releases (breaking)
| new 0.5.0 | Feb 9, 2026 |
|---|---|
| 0.4.0 | Feb 5, 2026 |
| 0.3.4 | Dec 7, 2025 |
| 0.2.0 | Sep 3, 2025 |
| 0.1.0 | Dec 28, 2024 |
#500 in Algorithms
115 downloads per month
275KB
5.5K
SLoC
DiskANN Implementation in Rust
A Rust implementation of DiskANN (Disk-based Approximate Nearest Neighbor search) using the Vamana graph algorithm. This project provides an efficient and scalable solution for large-scale vector similarity search with minimal memory footprint.
When to Use diskann-rs
| Use diskann-rs when... | Use in-memory indexes (hnsw_rs) when... |
|---|---|
| Index is larger than available RAM | Index fits comfortably in RAM |
| You need incremental updates without rebuilding | Build time is critical (one-time cost) |
| Memory-constrained environments (containers, edge) | Maximum recall needed (98%+) |
| Multiple large indexes on same machine | Single index, dedicated resources |
| Cost-sensitive deployments | Latency-critical applications |
TL;DR: diskann-rs trades ~60% slower build time for 6-10x lower memory usage and 15x faster incremental updates.
Key Features
| Feature | Description |
|---|---|
| Incremental Updates | Add/delete vectors without rebuilding the entire index |
| Filtered Search | Query with metadata predicates (e.g., category filters) |
| Composable Features | Combine incremental + filtered + quantized on a single index |
| SIMD Acceleration | Optimized distance calculations (AVX2, SSE4.1, NEON) |
| Product Quantization | Compress vectors up to 64x with PQ encoding |
| Scalar Quantization | F16 (2x) and Int8 (4x) compression with SIMD-accelerated distance |
| Memory-Mapped I/O | Single-file storage with minimal RAM footprint |
| Byte Serialization | Load indexes from bytes (network, embedded, no filesystem) |
| Benchmark Formats | Read/write fvecs, ivecs, bvecs (standard ANN benchmark formats) |
| Parallel Processing | Concurrent index building and batch queries |
Quick Start
Basic Index Operations
use anndists::dist::DistL2;
use diskann_rs::{DiskANN, DiskAnnParams};
// Build index
let vectors: Vec<Vec<f32>> = vec![vec![0.1, 0.2, 0.3], vec![0.4, 0.5, 0.6]];
let index = DiskANN::<DistL2>::build_index_default(&vectors, DistL2 {}, "index.db")?;
// Search
let query = vec![0.1, 0.2, 0.4];
let neighbors: Vec<u32> = index.search(&query, 10, 256);
Incremental Updates (No Rebuild Required)
use anndists::dist::DistL2;
use diskann_rs::IncrementalDiskANN;
// Build initial index
let vectors = vec![vec![0.0; 128]; 1000];
let index = IncrementalDiskANN::<DistL2>::build_default(&vectors, "index.db")?;
// Add new vectors without rebuilding
let new_vectors = vec![vec![1.0; 128]; 100];
index.add_vectors(&new_vectors)?;
// Delete vectors (instant tombstoning)
index.delete_vectors(&[0, 1, 2])?;
// Compact when needed (merges delta layer)
if index.should_compact() {
index.compact("index_v2.db")?;
}
Filtered Search (Metadata Predicates)
use anndists::dist::DistL2;
use diskann_rs::{FilteredDiskANN, Filter};
// Build with labels (e.g., category IDs)
let vectors = vec![vec![0.0; 128]; 1000];
let labels: Vec<Vec<u64>> = (0..1000).map(|i| vec![i % 10]).collect(); // 10 categories
let index = FilteredDiskANN::<DistL2>::build(&vectors, &labels, "filtered.db")?;
// Search only category 5
let filter = Filter::label_eq(0, 5);
let results = index.search_filtered(&query, 10, 128, &filter);
// Complex filters
let filter = Filter::and(vec![
Filter::label_eq(0, 5), // category == 5
Filter::label_range(1, 10, 100), // price in [10, 100]
]);
Composable Incremental Index (Filtered + Quantized + Incremental)
use anndists::dist::DistL2;
use diskann_rs::{IncrementalDiskANN, IncrementalQuantizedConfig, QuantizerKind, Filter};
// Build an incremental index with labels and F16 quantization
let vectors = vec![vec![0.0; 128]; 1000];
let labels: Vec<Vec<u64>> = (0..1000).map(|i| vec![i % 5]).collect();
let quant_config = IncrementalQuantizedConfig { rerank_size: 50 };
let index = IncrementalDiskANN::<DistL2>::build_full(
&vectors, &labels, "composable.db",
Default::default(), // IncrementalConfig
QuantizerKind::F16,
quant_config,
)?;
// Filtered search on the incremental index
let filter = Filter::label_eq(0, 3);
let results = index.search_filtered(&query, 10, 128, &filter);
// Add labeled vectors without rebuilding
let new_vecs = vec![vec![1.0; 128]; 50];
let new_labels = vec![vec![2u64]; 50];
index.add_vectors_with_labels(&new_vecs, &new_labels)?;
// Delete, compact, serialize — all features compose
index.delete_vectors(&[0, 1, 2])?;
let bytes = index.to_bytes();
Product Quantization (64x Compression)
use diskann_rs::pq::{ProductQuantizer, PQConfig};
// Train quantizer
let config = PQConfig {
num_subspaces: 8, // M = 8 segments
num_centroids: 256, // K = 256 codes per segment
..Default::default()
};
let pq = ProductQuantizer::train(&vectors, config)?;
// Encode vectors (128-dim f32 -> 8 bytes)
let codes: Vec<Vec<u8>> = pq.encode_batch(&vectors);
// Fast approximate distance using lookup table
let table = pq.create_distance_table(&query);
let dist = pq.distance_with_table(&table, &codes[0]);
SIMD-Accelerated Distance
use diskann_rs::{SimdL2, DiskANN, simd_info};
// Check available SIMD features
println!("{}", simd_info()); // "SIMD: NEON" or "SIMD: AVX2, SSE4.1"
// Use SIMD-optimized L2 distance
let index = DiskANN::<SimdL2>::build_index_default(&vectors, SimdL2, "index.db")?;
// Or use SIMD directly
use diskann_rs::simd::{l2_squared, dot_product, cosine_distance};
let dist = l2_squared(&vec_a, &vec_b);
Scalar Quantization (F16 / Int8)
use diskann_rs::{F16Quantizer, Int8Quantizer, VectorQuantizer};
// F16: 2x compression, nearly lossless
let f16q = F16Quantizer::new(128);
let codes = f16q.encode(&vector); // 128 dims -> 256 bytes
let decoded = f16q.decode(&codes); // Back to f32
let dist = f16q.asymmetric_distance(&query, &codes); // SIMD-accelerated
// Int8: 4x compression, trained per-dimension scaling
let int8q = Int8Quantizer::train(&training_vectors)?;
let codes = int8q.encode(&vector); // 128 dims -> 128 bytes
let dist = int8q.asymmetric_distance(&query, &codes);
// All quantizers implement VectorQuantizer trait
fn search_with_quantizer(q: &dyn VectorQuantizer, query: &[f32], codes: &[u8]) -> f32 {
q.asymmetric_distance(query, codes)
}
Byte Loading (No Filesystem Required)
use anndists::dist::DistL2;
use diskann_rs::DiskANN;
use std::sync::Arc;
// Build and serialize to bytes
let index = DiskANN::<DistL2>::build_index_default(&vectors, DistL2{}, "index.db")?;
let bytes: Vec<u8> = index.to_bytes();
// Load from owned bytes (e.g., downloaded from network)
let index = DiskANN::<DistL2>::from_bytes(bytes, DistL2{})?;
// Load from shared bytes (multi-reader, zero-copy)
let shared: Arc<[u8]> = load_from_somewhere().into();
let index = DiskANN::<DistL2>::from_shared_bytes(shared, DistL2{})?;
// Works for all index types
let filtered_bytes = filtered_index.to_bytes();
let incremental_bytes = incremental_index.to_bytes();
Benchmark Format Support (fvecs/ivecs/bvecs)
use diskann_rs::formats::{read_fvecs, write_fvecs, read_ivecs, read_bvecs_as_f32};
// Load standard ANN benchmark datasets (SIFT, GIST, GloVe, etc.)
let base_vectors = read_fvecs("sift_base.fvecs")?; // Vec<Vec<f32>>
let ground_truth = read_ivecs("sift_groundtruth.ivecs")?; // Vec<Vec<i32>>
let queries = read_fvecs("sift_query.fvecs")?;
// Load byte vectors as normalized floats
let mnist = read_bvecs_as_f32("mnist.bvecs")?; // u8 [0,255] -> f32 [0,1]
// Save your own vectors
write_fvecs("my_vectors.fvecs", &vectors)?;
Performance
Why diskann-rs? Memory-Mapped I/O
Unlike in-memory indexes that require loading the entire graph into RAM, diskann-rs uses memory-mapped files. The OS loads only the pages you access, making it ideal for large-scale deployments:
| Workload | diskann-rs | hnsw_rs | Savings |
|---|---|---|---|
| Light (10 queries) | 90 MB | 896 MB | 10x less RAM |
| Medium (100 queries) | 136 MB | 896 MB | 6.6x less RAM |
| Heavy (1K queries) | 147 MB | 896 MB | 6x less RAM |
| Stress (5K queries) | 139 MB | 896 MB | 6.4x less RAM |
Tested with 200K vectors, 128 dimensions. hnsw_rs must hold the full index in RAM; diskann-rs loads pages on-demand.
Benchmark Comparisons (vs hnsw_rs)
|
|
|
| Metric | diskann-rs | hnsw_rs | Winner |
|---|---|---|---|
| QPS at 93% recall | 586 | 170 | diskann-rs (3.4x) |
| Add vectors | 31,000 vec/s | 2,000 vec/s | diskann-rs (15x) |
| Delete vectors | Instant (tombstone) | Full rebuild | diskann-rs |
| Build time | 33s / 100K | 21s / 100K | hnsw_rs (1.6x) |
| Max recall | 97.5% | 99.2% | hnsw_rs |
Dataset Benchmarks
Benchmarks on Apple M1 Max:
| Dataset | Vectors | Build Time | QPS | Recall@10 |
|---|---|---|---|---|
| SIFT-1M | 1,000,000 | 295s | 8,590 | 99.6% |
| Fashion-MNIST | 60,000 | 111s | 18,000 | 98.8% |
| Random-50K | 50,000 | 38s | 2,200 | 85.6% |
Memory Efficiency
- ~330MB RAM for 2GB index (16% of file size)
- Product Quantization: 64x compression (512 bytes → 8 bytes per vector)
- Int8 Quantization: 4x compression (512 bytes → 128 bytes per vector)
- F16 Quantization: 2x compression (512 bytes → 256 bytes per vector)
Quantization Trade-offs
| Method | Compression | Recall@10 | Use Case |
|---|---|---|---|
| None (f32) | 1x | 100% | Maximum accuracy |
| F16 | 2x | 100% | General purpose, nearly lossless |
| Int8 | 4x | 99% | Memory-constrained, high accuracy |
| PQ-32 | 16x | ~62% | Large-scale, re-ranking |
| PQ-8 | 64x | ~12% | Massive scale, coarse filtering |
Architecture
Storage Abstraction
┌──────────────────────────────────────────────────────────────┐
│ Storage │
├──────────────────────────────────────────────────────────────┤
│ Mmap(Mmap) - Memory-mapped file (default, lazy I/O) │
│ Owned(Vec<u8>) - Owned bytes (network, embedded) │
│ Shared(Arc<[u8]>) - Reference-counted (multi-reader) │
└──────────────────────────────────────────────────────────────┘
All variants deref to &[u8], so search logic is unified.
File Layout
[ metadata_len:u64 ][ metadata (bincode) ][ padding to 1 MiB ]
[ vectors (n × dim × f32) ][ adjacency (n × max_degree × u32) ]
Quantization (Composable)
┌─────────────────────────────────────────────────────────────┐
│ VectorQuantizer trait │
├─────────────────────────────────────────────────────────────┤
│ encode(&[f32]) -> Vec<u8> - Compress vector │
│ decode(&[u8]) -> Vec<f32> - Decompress vector │
│ asymmetric_distance(q, c) - Query vs compressed │
│ compression_ratio(dim) - Bytes saved │
├─────────────────────────────────────────────────────────────┤
│ Implementations: │
│ F16Quantizer - 2x compression, ~lossless │
│ Int8Quantizer - 4x compression, trained scaling │
│ ProductQuantizer - 64x compression, codebook-based │
└─────────────────────────────────────────────────────────────┘
Incremental Updates (Composable Delta Layer)
┌──────────────────────────────────────────────────────────────┐
│ IncrementalDiskANN │
├──────────────────────────────────────────────────────────────┤
│ ┌───────────────┐ ┌───────────────┐ ┌──────────────────┐ │
│ │ Base Index │ │ Delta Layer │ │ Tombstones │ │
│ │ (mmap file) │ │ (in-memory) │ │ (HashSet) │ │
│ │ + labels? │ │ + mini-graph │ │ │ │
│ │ + codes? │ │ + labels? │ │ │ │
│ └───────┬───────┘ └───────┬───────┘ └──────────────────┘ │
│ └──────────┬───────┘ │
│ UnifiedView (GraphIndex trait) │
│ multi-seed beam search over both │
├──────────────────────────────────────────────────────────────┤
│ Optional: Labels → search_filtered() │
│ Quantizer → quantized distance (base codes) │
│ Both → filtered + quantized search │
└──────────────────────────────────────────────────────────────┘
Parameters
Build Parameters
| Parameter | Default | Description |
|---|---|---|
max_degree |
64 | Maximum neighbors per node (32-64) |
build_beam_width |
128 | Construction beam width (128-256) |
alpha |
1.2 | Pruning diversity factor (1.2-2.0) |
Search Parameters
| Parameter | Typical | Trade-off |
|---|---|---|
beam_width |
128-512 | Higher = better recall, slower |
k |
10-100 | Number of neighbors to return |
Building and Testing
# Build
cargo build --release
# Run tests
cargo test --lib
# Run benchmarks
cargo bench --bench benchmark
# Large benchmarks (slower)
DISKANN_BENCH_LARGE=1 cargo bench --bench benchmark
Comparison with Other Libraries
vs rust-diskann
| Feature | diskann-rs | rust-diskann |
|---|---|---|
| Incremental updates | Yes | No |
| Filtered search | Yes | No |
| Composable features | Yes (incremental + filtered + quantized) | No |
| Product Quantization | Yes (64x) | No |
| Scalar Quantization | Yes (F16 2x, Int8 4x) | No |
| Byte loading (no files) | Yes | No |
| Benchmark formats | Yes (fvecs/ivecs/bvecs) | No |
| SIMD acceleration | Yes | Uses anndists |
| Memory-mapped I/O | Yes | Yes |
| Generic vector types | f32 | f32, u64, etc. |
vs hnsw_rs
| Feature | diskann-rs | hnsw_rs |
|---|---|---|
| Memory usage | 6-10x lower | Full index in RAM |
| Incremental add | 15x faster | Slower |
| Incremental delete | Instant (tombstone) | Full rebuild |
| Build time | 1.6x slower | Faster |
| Max recall | ~97% | ~99% |
| Disk-based | Yes (mmap) | No (in-memory only) |
vs Faiss (C++/Python)
| Feature | diskann-rs | Faiss |
|---|---|---|
| Language | Pure Rust | C++/Python |
| Deployment | Single binary | Complex deps |
| Memory-mapped | Native | Limited |
| GPU support | No | Yes |
| Index types | Vamana graph | IVF, HNSW, PQ, etc. |
| Maturity | Growing | Production-proven |
When to choose diskann-rs: Pure Rust deployment, memory-constrained environments, need for incremental updates.
When to choose Faiss: GPU acceleration needed, need specialized index types, Python ecosystem.
License
MIT License - see LICENSE for details.
References
Dependencies
~3–7MB
~109K SLoC