1 unstable release
| new 0.1.0 | Feb 9, 2026 |
|---|
#2 in #tsp
210KB
4K
SLoC
u-routing
Vehicle routing optimization library providing building-block algorithms for TSP, CVRP, and VRPTW variants.
Features
- Models — Customer, Vehicle, Route, Solution, TimeWindow, RoutingProblem trait
- Distance — Dense distance/travel-time matrix with nearest-neighbor lookup
- Evaluation — Route feasibility checking (capacity, time windows, max distance/duration)
- Constructive heuristics — Nearest Neighbor (O(n²)), Clarke-Wright Savings (O(n² log n))
- Local search — Intra-route 2-opt (Croes 1958), inter-route Relocate (Or 1976)
- Genetic algorithm — Giant tour + Prins (2004) split DP, OX crossover, 2-opt refinement
- ALNS — Random/Worst/Shaw removal + Greedy/Regret-k insertion (Ropke & Pisinger 2006)
Quick Start
use u_routing::models::{Customer, Vehicle};
use u_routing::distance::DistanceMatrix;
use u_routing::constructive::nearest_neighbor;
use u_routing::local_search::{two_opt_improve, relocate_improve};
let customers = vec![
Customer::depot(0.0, 0.0),
Customer::new(1, 1.0, 0.0, 10, 0.0),
Customer::new(2, 2.0, 0.0, 10, 0.0),
Customer::new(3, 3.0, 0.0, 10, 0.0),
];
let dm = DistanceMatrix::from_customers(&customers);
let vehicles = vec![Vehicle::new(0, 30)];
// Constructive → Local search pipeline
let initial = nearest_neighbor(&customers, &dm, &vehicles);
let improved = relocate_improve(&initial, &customers, &dm, &vehicles[0]);
println!("Distance: {}", improved.total_distance());
GA Solver
use u_routing::models::Customer;
use u_routing::distance::DistanceMatrix;
use u_routing::ga::RoutingGaProblem;
use u_metaheur::ga::{GaConfig, GaRunner};
let customers = vec![
Customer::depot(0.0, 0.0),
Customer::new(1, 1.0, 0.0, 10, 0.0),
Customer::new(2, 2.0, 0.0, 10, 0.0),
Customer::new(3, 3.0, 0.0, 10, 0.0),
];
let dm = DistanceMatrix::from_customers(&customers);
let problem = RoutingGaProblem::new(customers, dm, 30);
let config = GaConfig::default()
.with_population_size(50)
.with_max_generations(200);
let result = GaRunner::run(&problem, &config);
println!("Best distance: {}", result.best_fitness);
ALNS Solver
use u_routing::models::Customer;
use u_routing::distance::DistanceMatrix;
use u_routing::alns::{RoutingAlnsProblem, destroy::RandomRemoval, repair::GreedyInsertion};
use u_metaheur::alns::{AlnsConfig, AlnsRunner};
let customers = vec![
Customer::depot(0.0, 0.0),
Customer::new(1, 1.0, 0.0, 10, 0.0),
Customer::new(2, 2.0, 0.0, 10, 0.0),
Customer::new(3, 3.0, 0.0, 10, 0.0),
];
let dm = DistanceMatrix::from_customers(&customers);
let problem = RoutingAlnsProblem::new(customers.clone(), dm.clone(), 30);
let destroy = vec![RandomRemoval];
let repair = vec![GreedyInsertion::new(dm, customers, 30)];
let config = AlnsConfig::default().with_max_iterations(5000).with_seed(42);
let result = AlnsRunner::run(&problem, &destroy, &repair, &config);
println!("Best cost: {}", result.best_cost);
Architecture
u-routing
├── models/ Domain types (Customer, Vehicle, Route, Solution)
├── distance/ Distance matrix
├── evaluation/ Route evaluator + constraint checking
├── constructive/ Nearest Neighbor, Clarke-Wright Savings
├── local_search/ 2-opt, Relocate
├── ga/ Giant tour + Split DP + GaProblem bridge
└── alns/ Destroy/Repair operators + AlnsProblem bridge
Dependencies
u-metaheur— GA/ALNS frameworku-numflow— Math primitives, RNG
References
- Clarke, G. & Wright, J.W. (1964). "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points"
- Croes, G.A. (1958). "A method for solving traveling salesman problems"
- Or, I. (1976). "Traveling Salesman-Type Combinatorial Problems and Their Relation to the Logistics of Blood Banking"
- Prins, C. (2004). "A simple and effective evolutionary algorithm for the vehicle routing problem"
- Ropke, S. & Pisinger, D. (2006). "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows"
- Shaw, P. (1998). "Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems"
Related
- u-numflow — Mathematical optimization primitives
- u-metaheur — Metaheuristic algorithms
- u-schedule — Scheduling optimization
Dependencies
~2MB
~38K SLoC