Proceedings of the X1V Colloquium on Musical Informatics (XIV CIM 2003), Firenze, Italy, May 8-9-10, 2003

LILYPOND, A SYSTEM FOR AUTOMATED MUSIC ENGRAVING

Han-Wen Nienhuys, Jan Nieuwenhuizen

hanwen@s. uu. nl ,j anneke@nu. or g

ABSTRACT

LilyPond is a modular, extensible and programmable compiler for
producing high-quality music notation. In this article we discuss
briefly the background of automated music printing, describe how
our system works and show some examples of its capabilities.

1. INTRODUCTION

LilyPond was started by the authors as a personal project to in-
vestigate how music formatting can be automated. Over the years,
the system has matured, and it is now capable of producing sheet
music of respectable quality. LilyPond has not been designed with
specific applications in mind, but has been used to print orches-
tral parts and scores, early music, as well as pop songs and piano
works.

LilyPond is a modular, extensible and programmable compiler
for producing high-quality music notation. The program produces
a PostScript or PDF file by reading and processing a file containing
a formal representation of the music to be printed. The output can
be printed, or further post-processed, e.g., to produce images for
web pages.

The system is partially implemented in the language Scheme [1]
(a member of the LISP family of languages), and the program in-
cludes the GUILE Scheme interpreter [2], which allows users to
override and extend the functionality of LilyPond. This ranges
from adjusting simple layout decisions to implementing complete
formatting subsystems.

LilyPond may be freely copied, used and modified under terms
of the GNU General Public License, and can thus be described as
“Open Source” software. In principle, users are not dependent on
vendors to get bug-fixes, updates, and can download and use the
program at no cost, virtually without any obligations.

LilyPond has an active community of users that offer sup-
port to newcomers, and a small band of developers that continue
to improve the program on a voluntary basis. Documentation,
downloads and typeset examples are available from the website,
http://www. 1ilypond.org.

2. RELATED WORK

There are many music notation programs on the market, but most
of these are proprietary systems, whose inner workings are kept
secret. In the academic world, computerized music printing has
received only little interest. The MusiCopy project [3], imple-
mented and documented a system to typeset music notation. Un-
fortunately, the MusiCopy system is no longer available. TEX [4]
is a programmable system for typesetting mathematics and text.
It has become a basis for a number of macro packages to typeset
music notation, of which MusiXTgX [5] is the most prominent.
MusiXTgX puts formatting control almost completely in the user’s

hands, which makes it a powerful but hard to learn tool. Finally,
we mention Common Music Notation (CMN) [6], a highly flexible
notation system implemented in LISP. The input to CMN is also
coded in LISP.

The input to LilyPond is a text file that encodes musical infor-
mation. In other words, the format is a music representation that
specifies music formally in terms of nested structures of pitches
and durations. The format also allows for special instructions,
which control layout of the printed output. In this sense, Lily-
Pond resembles the GUIDO [7] and Haskore [8] format, which
also contain primarily musical information in nested structures.

3. DESIGN AND IMPLEMENTATION

LilyPond is a batch program. When the program is invoked, it
reads a file, which is then processed without any user interaction.
Internally, the program executes the following steps.

1. The input is parsed and translated into a syntax tree.

2. Musical events are translated into of graphical objects; to-
gether they form the unformatted score. This step is called
interpreting.

3. The unformatted score is formatted.
4. The formatted score is written to an output file.

Hence, LilyPond combines a music representation and a for-
matting engine. The conversion from music representation to graph-
ical layout is done with a plug-in architecture. In the next subsec-
tions, we discuss these three concepts in more detail.

3.1. Input

The task of the program is to generate music notation with a com-
puter given input in some format. Since the core message of a
piece of music notation simply is the music itself, the best candi-
date for the source format is exactly that: the music itself.

Unfortunately, this observation raises a complex question: what
really is music? Instead of pursuing this philosophical question,
we have reversed the problem to yield a practical approach. We
assume that a printed edition contains all musical information of
a piece. Therefore, any representation that can be used to print
a score contains the music itself. While developing the program,
we continually adjust the format, removing as much non-musical
information as possible, e.g., formatting instructions. At the same
time the program is improved to fill in this information automati-
cally. When the program is “finished” at some point, all irrelevant
information will have been removed from the input. We are left
with a format that contains exactly the musical information of a
piece.

The input format was also shaped by practical concerns. Lily-
Pond users have to key in the music by hand, so the input format
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is the user-interface to the program. Therefore, the format has a
friendly syntax. Producing music notation is a difficult problem,
and difficult problems can only be solved if they are well-specified.
Therefore we designed a format with a simple formal definition.
These ideas shaped our music representation. It is a compact
format that can easily be typed by hand. It forms complex musical
constructs from simple entities like notes and rests, in much the
same way that complex formulas are built from simple elements
such as numbers and mathematical operators. A simple example

is given in the following fragment.

Figure 1. A simple LilyPond input fragment, with output.

\notes { c’4 d’8 }

The central concept of the input is formed by the music ex-
pression, a chunk of music with a specified duration. Notes (in
this example ¢” 4 and d” 8) form atomic music expressions. Sim-
ple music expressions can be combined to form more complex ex-
pressions, such as chords and voices. In this example, the braces
combine both notes sequentially. The friendly syntax for notes is
switched on with the \notes statement.

Similarly, music expressions can be combined parallel in time
with the keyword \simultaneous. This construction is used
both for parallel voices and for parallel staffs

(isel
ber—

In these examples, the keyword \context specifies how the fol-
lowing music expression should be interpreted.

With these basic constructors very complex music expressions
can be formed. Large pieces need large music expressions. For
example, a piano concerto can easily nest four levels deep (voice,
staff, grand staff, score). Similarly, a 15 staff orchestral score
will have a \simultaneous containing 15 sub-expressions. In
practice, entering a such pieces in one large music expression is
unwieldy. Therefore, the input format supports identifiers. Ex-
pressions can be entered separately and given names. A fragment
can be entered as an identifier once, and used many times over.
The following example uses an identifier (seufzer) to store two
notes, and the fragment is repeated by using the identifier twice.

\notes \simultaneous {
\context Staff = "1" {
\simultaneous {
{c’4d’8 e’8 }
{97233} %}
\context Staff = "2" {

c'2 %}

seufzer = \notes {
dis’8 e’8 } 0
\score { \notes { I T 1T

\seufzer \seufzer o feTe
T}

LilyPond has no concept of part-extraction, because there is
no need for such a concept. Music fragments are assigned to iden-
tifiers. The music is then either combined into a full orchestral
score, or it is used for creating the separate parts. Parts and scores

myMusic = \notes { c’4 d’4( e’4 4 }
\score { \notes {

\myMusic

\apply #reverse-music \myMusic

o/

Figure 2: Functions applied to music expressions. The first mea-
sure (named with identifier myMusi c), is reversed by applying the
reverse-music function, producing the second measure (The
definition of reverse-music is omitted).

are derived from the same input, so changes in that input are al-
ways applied to both print-outs.

LilyPond includes a Scheme interpreter. It may be accessed
from the input file by entering a Scheme expression preceded with
a hash mark (#). For example, the following statement includes a
Scheme expression (A list containing two symbols, staff-bar
and time-signature).

\property Score.breakAlignOrder =
#(list ’staff-bar ’time-signature)

When Scheme programming and music expressions are com-
bined, they show the true power of the system. User-written func-
tions can access and change all data in a music expression. This
functionality can be used to analyze, change, generate and write
musical data programmatically. A simple example is in Figure 2,
where a piece of music is reversed by means of a user-defined func-
tion. A less frivolous example is in Figure 3. It shows the internal
data representation of the example from Figure 1, dumped in XML
syntax.

3.2. Interpreting

After parsing the input, musical contents are lined up and con-
verted to graphical objects, resulting in an unformatted score. This
step is called interpreting the input. The events are processed in the
order that they would be performed. Events which would happen
simultaneously are processed together, and end up at the same hor-
izontal position. In this step, context sensitive information, such
as key signature and measure subdivision, is computed and used
to insert bar lines and print accidentals automatically.

Interpreting is implemented with a plugin architecture. These
plugins are called engravers. Each each engraver performs one
specific function in the conversion process. For example, there is
a Note_head_engraver, that produces note-head objects for
note events. Stems are created by the Stem_engraver. If the
Stem_engraver notices a note head object at some point, it
creates a stem object and connects both.

Engravers only have to perform one specific function. The
interactions between the different plugins are handled by the ar-
chitecture: it keeps track all events and graphical objects, and en-
sures that each engraver gets precisely the information it needs.
This modular architecture makes maintaining and extending the
program relatively easy.
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<SequentialMusic>
<EventChord>
<NoteEvent>
<duration log="2" dots="0"
numer="1" denom=""1">
</duration>
<pitch octave="0" notename="0"
alteration="0">
</pitch>
</NoteEvent>
</EventChord>
<EventChord>
<NoteEvent>
<duration log="3" dots="0"
numer="1" denom=""1">
</duration>
<pitch octave="0" notename="1"
alteration="0">
</pitch>
</NoteEvent>
</EventChord>
</SequentialMusic>

Figure 3: The input format shown in an XML format. This output
is generated directly from the parse tree of the example in Figure 1
using a short (100 line) Scheme function.

3.3. Layout

The product of the interpretation step is a collection of graphical
objects, the unformatted score. Each musical symbol in the score
is represented by a graphical object. Relationships such as con-
tainment, alignment, or element spacing are also represented by
abstract graphical objects. Figure 4 shows a simplified version® of
the unformatted score for the example of Figure 1.

Objects contain variables that describe properties of the bo-
ject. These variables (object properties) are used in the formatting
process in many ways.

e Global style settings are stored in properties. All objects
share a global defaults, for properties. For example, the
global default for beam objects has a property thickness,
which is set to 0.48 staff space.

e Formatting adjustments are also stored in properties. A
stem can be forced up by entering a simple command in
the input file. This command adds di rection=UP to the
definition of a stem object.

e Properties containing subroutines define formatting proce-
dures and other behavior of graphical objects. For example,
in Figure 4, the height of the container object is given by
a function group-height, stored in the property height.
These functions may be replaced by user-written Scheme
code.

e Objects can refer to each other. For example, the stem and
note head objects have note-head and stem properties
pointing to each other.

1The example in Figure 4 has been highly simplifi ed. In LilyPond ver-
sion 1.7.1, the fi le shown actualy is translated into 33 different graphical
objects. The line breaking process multiplies this to 59 objects, most of
which are abstract.

obj1: obja: e

glyph-name="treble" | glyph-name="fourfour"

Objgi P 0bj4:
position=-6 line-thickness=0.12
stem=—obj 4 note-head=—obj ;3

objs: h

line-thickness=0.12
note-head=—obj 5

objs: @
position=-5
stem=—obj ¢

objr:
line-count=5
staff-space=1.0
line-thickness=0.1

objs: container
elements=

—obj 1,..., —o0bj~
height=group-height

Figure 4: Graphical objects from the unformatted score for Fig-
ure 1. Each object stores style and layout settings in variables.
These variables are generic, and can contain any type of object,
including numbers, strings, lists, procedures and pointers to other
objects. objs is “abstract,” i.e. it does not produce output.

Object properties are stored in Scheme data structures, and can be
manipulated in user-written code.

In the formatting step, spacing and line breaks are determined,
and layout details of objects are computed. For example, stem ob-
jects normally do not have a predefined length. During the format-
ting process, a length is computed and filled into a Iength prop-
erty. The result of the formatting step is a finished score, which is
written to disk. A helper program post-processes the output to add
page breaks and titling, and produces a ready-to-view PostScript
or PDF file. LilyPond by default outputs the notation in a TgX file,
but other output formats are also available: there is experimental
support for SVG and direct PostScript output.

4. EXAMPLES

Since none of the freely available fonts satisfied our quality de-
mands, we have created a new musical font, called “Feta”, based
on printouts of fine hand-engraved music. A few notable aspects
of Feta are shown in Figure 5. The half-notehead is not elliptic
but slightly diamond shaped. The vertical stem of a flat symbol is
slightly brushed: it becomes wider at the top. Fine endings, such
as the bottom of the quarter rest, do not end in sharp points, but
rather in rounded shapes. Taken together, the blackness of the font
is carefully tuned together with the thickness of lines, beams and
slurs to give a strong yet balanced overall impression.

The spacing of a piece of music should reflect the character of
the music. A piece should not contain unnatural clusters of black
nor big gaps with white space. The distances between notes should
reflect the durations between notes, but adhering with mathemat-
ical precision to durations will lead to a poor result: the eye not
only notices the distance between note heads, but also between
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Figure 5: Three glyphs from the Feta font.

Figure 6: A fragment demonstrating spacing. The top fragment
is printed with optical spacing. In the bottom fragment, all note
heads are at equal horizontal distances. As a result, the down-
stem/upstem note pairs form visual clumps.

consecutive stems. Therefore, the notes of a up-stem/down-stem
combination should be put farther apart, and the notes of a down-
up combination should be put closer together, all depending on the
combined vertical positions of the notes [9]. Figure 6 demonstrates
this optical spacing.

In engraved music, beams should cover staff lines as much as
possible. This prevents small distracting wedges of white space,
and uneven appearance of the beam thickness. In Finale, such
beams are known as “Patterson beams” after the plug-in that offers
this functionality. We call this beam quantization, as the vertical
positions of the beam end-points are not continuously variable, but
discrete. LilyPond also offers beam quantization. It uses a generic
mechanism, where a large number of configurations for both beam
endings are tested. For every configuration a penalty score is com-
puted. For example, configurations that lead to very short stems
incur a heavy penalty, and very long stems a small penalty. Simi-
larly, a penalty is computed for the slope of a configuration, and for
positions that lead to “forbidden” positions of secondary and ter-
tiary beams. A weighted sum of the penalties measures the beauty
of a configuration. After computing penalties for all configura-
tions, the best scoring configuration is used as beam position. This
approach is independent of the number of stems (Ross [10] lists
many examples for beams with two stems, but gives no further
rules), and adapts to different beam thicknesses. In addition, if
more complex rules are needed, these can be integrated by adding
more scoring functions to the code.

Some formatting procedures are based on other work. For ex-
ample, Hegazy and Gourlay [11] describe a line breaking approach
similar to TEX’s line-breaking algorithm. This algorithm has been
re-implemented for LilyPond. The spacing engine describes the
desired spacing in terms of springs. When justifying a single line,
force is needed to compress or stretch these springs. Very loosely
and very tightly spaced lines require more force. A dynamic pro-
gramming algorithm is used to find the configuration of line-breaks
that keeps the total force as low as possible. This results in a set of
line breaks that favors even and natural spacing across the entire
piece.

We study engraved editions as a guide when implementing for-
matting algorithms. The most recent revisions of the the beaming
and spacing code were guided by the Bérenreiter edition of the
Cello Suites by J. S. Bach [12], in particular, measurements of
the Sarabande of the second suite guided our current spacing al-
gorithms. Figure 9 shows our rendering of this piece. LilyPond’s
default decisions for stemming, spacing and line breaking follow
the printed edition, except in two places, where manual override
of the layout was necessary. The layout quality of this piece is
comparable with the original hand-engraved edition.

The best quality print-outs are attained for single staff, single
voice music. Nevertheless, multiple staffs and polyphonic notation
are also supported. Conflicts in notehead placement (collisions)
between polyphonic voices are resolved automatically if possible.
Figure 7 shows some some collisions in the context of piano music.
LilyPond is not limited to classical music. There is also support for
chord names, tablature, figured bass and medieval notation.

Figure 7: Random complex polyphonic notation. The lower left
beam uses French beaming and different stem and beam thick-
nesses but its position is still quantized correctly.

The design of the program enforces a strict separation between
content (music) and form (typography). A consequence is that the
same piece music may be represented in different forms. Chords
form simple example. In the following fragment, a chord is entered
using the syntax << ... >>. That same chord is then printed
both in a staff and in textual form.

sus = \notes {
<<C’ f, g’ b,>>4 }
\score { \simultaneous {

\context ChordNames \sus
\context Staff \sus
T}

Separation between form and content is also used in the sup-
port for transcribing mensural music. Mensural music uses differ-
ent font shapes for notes, clefs and alterations. In addition, partic-
ular rhythmical patterns of notes are denoted by combining their
note heads in special symbols called mensural ligatures. LilyPond
does not add a separate music representation for this type of mu-
sic. Instead, the music is entered as if it were modern notation, and
ligatures are marked in the input. During print-out, a print style for
mensural notation can be selected. Support for historic print styles
is included, and can be used to check the transcription to modern
notation. Figure 8 shows an example of this process. In effect,
LilyPond transcribes from modern notation to mensural notation.
As a consequence, there is a single input language representing
both mensural ligatures and their transcriptions into modern nota-
tion. The separation between content and form is thereby main-
tained. Support for ligature notation is an experimental feature,

CA/susél
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and current work focuses on implementing the variety of printing
styles of Gregorian notation.
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Figure 8: The same fragment of music in three ancient lay-
out styles: historical print (top), contemporary mensural notation
(middle), and modern notation with ligature brackets (bottom).

Finally, this paper itself shows an application of LilyPond: text
and music can easily be mixed in the same document. The input
format is ASCII based, so one can enter snippets of LilyPond input
in other ASCII based document formats, such as IATEX and HTML.
With the aid of a small helper program, these fragments can be
replaced in the output by the corresponding music notation, in the
form of pictures (for HTML) or TeX (for IATEX). For example,
Figure 1 was created by entering the following in the IATEX source
file

\begin[verbatim]{lilypond}
\notes { c’4 d’8 }
\end{lilypond}

5. DISCUSSION AND FUTURE WORK

We have presented our progress on LilyPond, a free music engrav-
ing system, which converts a music representation to high quality
music typography. For some pieces, LilyPond output is compara-
ble to hand-engraved music. The program is focused on producing
high quality notation automatically. This makes it an excellent
tool for users who are not notation experts.

LilyPond can run without requiring keyboard or mouse input.
This makes it an excellent candidate for generating music nota-
tion on the fly, e.g., on webservers. The degree of automation also
makes it a suitable candidate for transforming large bodies of mu-
sic to print automatically: for example, LilyPond has been used to
produce an automated rendering of a database of 3,500 folk songs
stored in ABC [13]. This is helped by the fact that LilyPond in-
cludes (partial) convertors for a number of music formats, among
others MusicXML [14], MIDI, Finale’s ETF, and ABC.

Beaming, line breaking and spacing are the strong points of the
formatting engine. In some areas the engine still falls short. For
instance, placing fingering indications, articulation and dynamic
marks together is a complex problem. We plan to improve colli-
sion handling such that manual adjustments are no longer neces-
sary for complex configurations of these notation elements. Other
plans for future work include improving formatting of slurs and
adding page layout to the system.

The program has no graphical user interface, and always pro-
duces all pages of the final output. To see the result of a change, the

program has to be rerun on the entire score. In effect, this trans-
forms music editing into a debug-compile cycle, and fine-tuning
layout details is a slow process. We plan to explore solutions that
make manual adjustments with LilyPond a more interactive and
efficient process.
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Figure 9: Sarabande of the second Cello Suite by J.S.Bach, after the Bérenreiter edition [12]. This example had manual adjustments in two
places: the line break in the last line was forced, as were the stem directions on the last beat of measure 24. In addition, this example has
been scaled by 80%, to fit in the format of this report.
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