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Abstract

The Path-Dependent Neural Jump Ordinary Differential Equation (PD-NJ-ODE) (Krach
et al., 2022) is a model for predicting continuous-time stochastic processes with irregular
and incomplete observations. In particular, the method learns optimal forecasts given
irregularly sampled time series of incomplete past observations. So far the process itself and
the coordinate-wise observation times were assumed to be independent and observations
were assumed to be noiseless. In this work we discuss two extensions to lift these restrictions
and provide theoretical guarantees as well as empirical examples for them. In particular,
we can lift the assumption of independence by extending the theory to much more realistic
settings of conditional independence without any need to change the algorithm. Moreover,
we introduce a new loss function, which allows us to deal with noisy observations and explain
why the previously used loss function did not lead to a consistent estimator.

1 Introduction

While the online prediction1 of regularly observed or sampled time series is a classical machine learning
problem that can be solved with recurrent neural networks (RNNs) as proven e.g. by Schäfer & Zimmermann
(2006), the forecasting of continuous-time processes with irregular observation has long been an unsolved
problem. The Neural Jump ODE (NJ-ODE) (Herrera et al., 2021) was the first framework with theoretical
guarantees to converge to the optimal prediction in this setting. However, it was restricted to Markovian
Itô-diffusions with irregular but complete (i.e., all coordinates are observed at the same time) observations.
This was heavily generalised with the Path-Dependent NJ-ODE (PD-NJ-ODE) (Krach et al., 2022), where
the convergence guarantees hold for very general (non-Markovian) stochastic processes with irregular and
incomplete observations. Still, the process itself and the observation framework were assumed to be independent
and observations were assumed to be noisefree. In practice both of these assumptions are often unrealistic.

1With online prediction we mean that we use the currently available information to predict until we get new information. As
soon as new information becomes available, it is part of the available information and therefore taken into account for subsequent
predictions.
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E.g., for medical patient data collected at a hospital irregularly over time such as Goldberger et al. (2000),
measurements are never noise-free and the decision whether to make a measurement depends on the status
of the patient. Therefore, the focus of this work is to lift those two restrictions. A detailed outline is given
below.

1.1 Related Work

GRU-ODE-Bayes (Brouwer et al., 2019) and the latent ODE Rubanova et al. (2019) both use a model very
similar to the NJ-ODE model, however, with different training frameworks. While the latent ODE can only
be used for offline forecasting, GRU-ODE-Bayes is applicable to online forecasting as the NJ-ODE. However,
in comparison to NJ-ODE, no theoretical guarantees exist for GRU-ODE-Bayes.

Neural controlled differential equations (NCDE) (Kidger et al., 2020; Morrill et al., 2022) and neural rough
differential equations (Morrill et al., 2021) also use similar model frameworks, but their primary objective
are labelling problems, i.e., the prediction a classification or regression label for the input of an irregularly
sampled time series. For example, based on health parameters of a patient these models try to decide whether
the patient will develop a certain disease in the future.

As explained in Krach et al. (2022), PD-NJ-ODEs can be used for stochastic filtering. Another well known
model class for this problem are particle filters, also called sequential Monte Carlo methods (Maddison et al.,
2017; Le et al., 2017; Corenflos et al., 2021; Lai et al., 2022). Particle filtering methods are applied in the
context of state-space models (SSM), which are characterized by a discrete latent Markov process (Xt)T

t=1 and
a discrete observation process (Zt)T

t=1 defined on a fixed time-grid. Particle filters are used to approximate e.g.
the conditional distribution of Xt given the observations (Zs)1≤s≤t, or the joint distribution of (Xs, Zs)1≤s≤t,
for any t ≥ 1, using weighted sequential Monte Carlo samples. In our work, we allow for a much more general
setting than the SSM. In particular, we allow for a continuous-time (instead of discrete-time), non-Markovian
stochastic process. Since our setting allows for jumps of the process, this also includes the SSM case of a
discrete-time Markov process. Moreover, in our setting, the underlying process can be observed at random,
irregularly sampled, discrete observation times and the framework allows for incomplete observations, where
some coordinates might not be observed. The primary goal of the PD-NJ-ODE method is to make optimal
forecasts for Xt given all observations of X prior to time t. As a special case (since the framework can deal
with incomplete observations), this includes the filtering problem, however, in a more general setting, allowing
for example to predict Xt while only having (discrete) observations of Z at randomly sampled observation
times until time s < t.

For further related work we refer the interested reader to the respective sections in Herrera et al. (2021) and
Krach et al. (2022).

1.2 Outline of the Work

We introduce two extensions of the PD-NJ-ODE (Krach et al., 2022) that can be used separately or jointly.
To highlight the needed adjustments for each of the extensions, we first recall the setup, model and results
from Krach et al. (2022) (Section 2) and then introduce the respective changes in the assumptions and
proofs for noisy observations (Section 3) and dependence between the underlying process and the observation
framework (Section 4) separately. We focus on re-proving the main results (Krach et al., 2022, Theorem 4.1
and Theorem 4.4) in the new settings, by giving the arguments which need to be adjusted while skipping
those which remain unchanged. In Appendix C we give the full proof for the most general result with both
extensions, making the paper self-contained. We remark here that also the results for the conditional variance
and for stochastic filtering (Krach et al., 2022, Section 5 and 6) follow in these extended settings similarly as
the main results. Due to the similarity, we do not elaborate on this but leave the details to the interested
reader. In Section 5 we discuss the practical implications of our main convergence result. Finally, in Section 6
we show empirically that the PD-NJ-ODE performs well in these generalised settings.
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2 Recall: the PD-NJ-ODE

In this section we recall the PD-NJ-ODE framework together with the main result from Krach et al. (2022).
The PD-NJ-ODE is a prediction model that can be used to learn the L2-optimal prediction of a stochastic
process (continuously in time), given its discrete, irregular and incomplete observations in the past. This
means that the PD-NJ-ODE learns to compute the conditional expectation, which is the L2-optimal prediction.
Importantly, only data samples are needed to train the model. In particular, no knowledge about the dynamics
of the underlying process is needed. We first given an intuitive example for the application of this model,
which will be reused throughout the paper, and then discuss its technical details.

2.1 Intuitive Example Application

Suppose we have a dataset of N patients 1 ≤ j ≤ N . Any patient j has dX medical values
(

X
(j)
t,k

)
1≤k≤dX

(such
as body temperature or blood pressure) at any time t ∈ [0, T ]. However, we only have (noisy) measurements
of some of these coordinates at some irregular times t

(j)
i (e.g., we measure the body temperature on one day

and the blood pressure on another day and in-between we do not measure anything). Our training dataset
consists of all these (noisy) measurements including their time-stamps. Based on this training dataset we
train a PD-NJ-ODE which then allows us to make online forecasts for new patients based on their noisy
incomplete irregularly observed measurements. For example the Physionet dataset (Goldberger et al., 2000)
is exactly such a dataset, but of course our method can also be applied in many other situations.

2.2 Technical Background and Mathematical Notation

We start by recalling the most relevant parts of the problem setting of the PD-NJ-ODE. For more details,
please refer to Krach et al. (2022).

For dX ∈ N and T > 0 we consider a filtered probability space (Ω,F ,F := (Ft)0≤t≤T ,P) with an adapted
càdlàg stochastic process X := (Xt)t∈[0,T ] taking values in RdX . The main goal in this paper is the predict X
optimally for future times, based on discrete observations of it in the past. We denote its running maximum
process by X⋆ (i.e., X⋆

t := sups∈[0,t] |Xs|1) and the random set of its jump times by J . The random observation
framework is defined independently of X on another filtered probability space

(
Ω̃, F̃ , F̃ := (F̃t)0≤t≤T , P̃

)
by

• n : Ω̃→ N≥0, an F̃-measurable random variable, the random number of observations,

• K := sup
{

k ∈ N | P̃(n ≥ k) > 0
}
∈ N ∪ {∞}, the maximal value of n,

• ti : Ω̃→ [0, T ] ∪ {∞} for 0 ≤ i ≤ K, sorted stopping times, which are the random observation times,
with ti(ω̃) :=∞ if n(ω̃) < i and ti < ti+1 for all 0 ≤ i < n,

• τ : [0, T ]× Ω̃ → [0, T ], (t, ω̃) 7→ τ(t, ω̃) := max{ti(ω̃)|0 ≤ i ≤ n(ω̃), ti(ω̃) ≤ t}, the last observation
time before a certain time t, and

• M = (Mk)0≤k≤K , the observation mask, which is a sequence of random variables on (Ω̃, F̃ , P̃) taking
values in {0, 1}dX such that Mk is F̃tk

-measurable. The j-th coordinate of the k-th element of the
sequence M , i.e., Mk,j , signals whether Xtk,j , denoting the j-th coordinate of the stochastic process
at observation time tk is observed. By abuse of notation we also write Mtk

:= Mk.

In the following we consider the filtered product probability space (Ω × Ω̃,F ⊗ F̃ ,F ⊗ F̃,P × P̃) and the
filtration of the currently available information A := (At)t∈[0,T ] defined by

At := σ (Xti,j , ti, Mti
|ti ≤ t, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,

where σ(·) denotes the generated σ-algebra. We note that At = Aτ(t) for all t ∈ [0, T ]. The conditional
expectation process of X, which is its L2-optimal prediction (Krach et al., 2022, Proposition 2.5) and therefore
the process we would like to compute, is defined as X̂ = (X̂t)0≤t≤T , with X̂t := EP×P̃[Xt|At]. Even though
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this solution to our prediction problem is abstractly well understood, it is not clear how to actually compute
it, especially if one only observes data samples without knowing the distribution of X. The PD-NJ-ODE
is designed to do exactly this. To compute the conditional expectation, it uses the powerful framework of
signatures to convert all information available from the past observations into a tractable feature-vector. This
is needed, since the underlying process is not assumed to be Markovian. Since the signature is defined for
(continuous) paths, the first step is to construct a continuous interpolation of the discrete observations, the
interpolated observation process, in such a way that it carries the same information as the discrete observations.
In particular, for any 0 ≤ t ≤ T the j-th coordinate of the interpolated observation process X̃≤t ∈ R2dX +1 at
time 0 ≤ s ≤ T is defined by

X̃≤t
s,j :=



Xta(s,t),j
tb(s,t)−s

tb(s,t)−tb(s,t)−1
+ Xtb(s,t),j

s−tb(s,t)−1
tb(s,t)−tb(s,t)−1

, if tb(s,t)−1 < s ≤ tb(s,t) and
1 ≤ j ≤ dX ,

Xta(s,t),j , if s ≤ tb(s,t)−1 and 1 ≤ j ≤ dX ,

ũta(s,t),j−dX
+ s−tb(s,t)−1

tb(s,t)−tb(s,t)−1
, if tb(s,t)−1 < s ≤ tb(s,t) and

dX < j ≤ 2dX ,

ũta(s,t),j−dX
, if s ≤ tb(s,t)−1 and dX < j ≤ 2dX ,

s, if j = 2dX + 1,

where ũt,j :=
∑K

k=0 Mk,j1tk≤t is the jump process that counts the coordinate-wise observations and

a(s, t) := a(s, t, j) := max{0 ≤ a ≤ n|ta ≤ min(s, t), Mta,j = 1},
b(s, t) := b(s, t, j) := inf{1 ≤ b ≤ n|s ≤ tb ≤ t, Mtb,j = 1},

with t∞ := ∞. Simply put, X̃≤t is a continuous version (without information leakage and with time-
consistency) of the rectilinear interpolation of the observations of X and of ũ. The paths of X̃≤t belong to
BV c([0, T ]), the set of continuous RdX -valued paths of bounded variation on [0, T ]. Most importantly, the way
it is defined ensures that no information about the next observation is leaked (through the forward-looking
interpolation) until after the last observation time prior to it and that X̃≤t is At-measurable. Moreover, it
is time-consistent in the sense that for all r ≥ t and s ≤ τ(t) we have X̃≤t

s = X̃≤r
s . Clearly, Xti,j , ti, Mti

can be reconstructed from the coordinates of X̃≤t for all ti ≤ t and j ∈ {1 ≤ l ≤ dX |Mti,l = 1}, hence,
At = σ(X̃≤t). Moreover, it is easy to see that X̃≤t = X̃≤τ(t), consequently X̂t is σ(X̃≤τ(t))-measurable.
Therefore, the Doob-Dynkin Lemma (Taraldsen, 2018, Lemma 2) implies the existence of measurable functions
Fj : [0, T ]× [0, T ]×BV c([0, T ])→ R such that X̂t,j = Fj(t, τ(t), X̃≤τ(t)). In Krach et al. (2022) convergence
of the PD-NJ-ODE model to the conditional expectation X̂ was shown under the following assumptions.
Assumption 2.1. We assume that:

(i) For every 1 ≤ k, l ≤ K, Mk is independent of tl and of n, P̃(Mk,j = 1) > 0 and M0,j = 1 for all
1 ≤ j ≤ dX (every coordinate can be observed at any observation time and X is completely observed
at 0) and |Mk|1 > 0 for every 1 ≤ k ≤ K P̃-almost surely (at every observation time at least one
coordinate is observed).

(ii) The probability that any two observation times are closer than ϵ > 0 converges to 0 when ϵ does, i.e.,
if δ(ω̃) := min0≤i<n(ω̃) |ti+1(ω̃)− ti(ω̃)| then limϵ→0 P̃(δ < ϵ) = 0.

(iii) Almost surely X is not observed at a jump, i.e., (P× P̃)(ti ∈ J |i ≤ n) = (P× P̃)(∆Xti
̸= 0|i ≤ n) = 0

for all 1 ≤ i ≤ K.

(iv) Fj are continuous and differentiable in their first coordinate t such that their partial derivatives with
respect to t, denoted by fj, are again continuous and there exists a B > 0 and p ∈ N≥1 such that for
every t ∈ [0, T ] the functions fj , Fj are polynomially bounded in X⋆, i.e.,

|Fj(τ(t), τ(t), X̃≤τ(t))|+ |fj(t, τ(t), X̃≤τ(t))| ≤ B(X⋆
t + 1)p.
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(v) X⋆ is L2p-integrable, i.e., E[(X⋆
T )2p] <∞.

(vi) The random number of observations n is integrable, i.e., EP̃[n] <∞.

Remark 2.2. The assumption that |Mk|1 > 0 for every 1 ≤ k ≤ K P̃-almost surely is not needed in the
proof. It is just added such that the denotation “observation time” is meaningful. When removing it, some of
the observation times might be “pseudo” observation times, where no coordinate is actually observed.
Remark 2.3. It turns out that Assumption 2.1 (ii) is always satisfied in the described setting, hence, we can
also leave it away. Indeed, limϵ→0 P̃(δ < ϵ) = 0 holds, if P̃(δ = 0) = 0, which is satisfied by definition of the
stopping times to be in strictly increasing order.

Moreover, relaxations on the assumption of observing X0 completely were discussed in Krach et al. (2022,
Remark 2.2). Convergence is defined with respect to the following distance.
Definition 2.4. Let c0 := c0(k) := (P̃(n ≥ k))−1. A distance between càdlàg A-adapted processes Z, ξ :
[0, T ]× (Ω× Ω̃)→ Rr is defined through the pseudo metrics

dk(Z, ξ) = c0(k)EP×P̃
[
1{n≥k}|Ztk− − ξtk−|2

]
, (1)

for 1 ≤ k ≤ K and two processes are called indistinguishable, if dk(Z, ξ) = 0 for all 1 ≤ k ≤ K.

In particular, this distance compares two càdlàg processes at their left limits2 at the observation times tk.

The path-dependent generalisation of the Neural Jump ODE model (Herrera et al., 2021) uses the truncated
signature transformation πm (Krach et al., 2022, Definition 3.4). The signature of a path is an (infinite) tuple
of features, which allows to approximate any continuous function of the path by a linear combination of the
signature terms. Therefore, it is a very powerful framework in learning theory. It is defined as follows.
Definition 2.5. Let J be a closed interval in R and X : J → Rd be a continuous path with finite variation.
The signature of X is defined as the collection of iterated integrals

S(X) =
(
1, X1

J , X2
J , . . .

)
,

where, for each m ≥ 1,
Xm

J =
∫

u1<···<um
u1,...,um∈J

dXu1 ⊗ · · · ⊗ dXum
∈ (Rd)⊗m.

The truncated signature of X of order m ∈ N is defined as

πm(X) =
(
1, X1

J , X2
J , . . . , Xm

J

)
,

i.e., the first m + 1 terms (levels) of the signature of X. For a path of dimension d, the dimension of the
truncated signature of order m is {

m + 1, if d = 1,
dm+1−1

d−1 , if d > 1.

Moreover, PD-NJ-ODE uses bounded output neural networks f(θ̃,γ), where θ̃ are the weights of the standard
neural network and γ > 0 is the trainable parameter of the bounded output activation function (Krach et al.,
2022, Definition 3.12)

Γγ : Rd → Rd, x 7→ x ·min
(

1,
γ

|x|2

)
,

applied to the output of the standard neural network. By N we denote the set of all bounded output neural
networks based on a set Ñ of standard neural networks. In the following we assume that Ñ is a set of
standard feedforward neural networks with Lipschitz continuous activation functions, with id ∈ Ñ that
satisfies the standard universal approximation theorem with respect to the supremum-norm on compact sets,
see for example Hornik (1991, Theorem 2).

2For a càdlàg process Z we have (by right-continuity) that Zt = limϵ↓0 Zt+ϵ, while the left limit Zt− = limϵ↓0 Zt−ϵ exists
but does not need to coincide with Zt. In particular, Zt = Zt− if and only if the jump of the process at t, ∆Zt = Zt − Zt−, is 0.
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Definition 2.6. The Path-Dependent Neural Jump ODE (PD-NJ-ODE) model is given by

H0 = ρθ2 (0, 0, πm(0), X0) ,

dHt = fθ1

(
Ht−, t, τ(t), πm(X̃≤τ(t) −X0), X0

)
dt

+
(

ρθ2

(
Ht−, t, πm(X̃≤τ(t) −X0), X0

)
−Ht−

)
dut,

Yt = g̃θ̃3
(Ht).

(2)

The functions fθ1 , ρθ2 ∈ N are bounded output feedforward neural networks and g̃θ̃3
∈ Ñ is a feedforward

neural network with trainable parameters θ = (θ1, θ2, θ̃3) ∈ Θ, where θi = (θ̃i, γi) for i ∈ {1, 2} and Θ is the
set of all possible weights for the PD-NJ-ODE; m ∈ N is the signature truncation level and u is the jump
process counting the observations defined as ut :=

∑K
k=1 1tk≤t.

In the PD-NJ-ODE model, Ht has the role of a latent process and Yt is the model output (similar to the
latent variable and model output of an RNN). The goal of the model output Yt is to approximate the true
conditional expectation X̂t. Ht evolves continuously between any two observations, according to the neural
ODE defined by fθ1 . At an observation time, when there is a “jump” in the available information, Ht jumps
according to ρθ2 , which can be interpreted as an RNN-cell. The latent process Ht is mapped to the output
process Yt through the readout map g̃θ̃3

. The existence and uniqueness of a solution (H, Y ) of (2) for a fixed
θ is implied by Cohen & Elliott (2015, Theorem 16.3.11)3. To emphasize the dependence of the PD-NJ-ODE
output Y on θ and X, (ti)1≤i≤K and M we write Y θ(X̃≤τ(·)) (since X̃≤τ(·) summarizes X, (ti)1≤i≤K and
M).

The objective function (cf. equivalent objective function from Remark 4.8 & Appendix D.1.5 of Krach et al.
(2022)) for the training of the PD-NJ-ODE is defined as

Ψ :D→ R, Z 7→ Ψ(Z) := EP×P̃

[
1
n

n∑
i=1

(|Mi ⊙ (Xti − Zti)|2 + |Mi ⊙ (Xti − Zti−)|2)2

]
, (3)

Φ : Θ→ R, θ 7→ Φ(θ) := Ψ(Y θ(X̃≤τ(·))), (4)

where ⊙ is the element-wise multiplication (Hadamard product) and D the set of all càdlàg RdX -valued
A-adapted processes on the product probability space Ω× Ω̃. The two terms in (4) compare the distances
between Xtk

and Z after and before its jump at observation times tk. Intuitively speaking, to minimize the
second term, Ztk− has to be the best possible prediction of Xtk

given the information available before the
new observation becomes available; and to minimize the first term, Z has to jump to the new observation
Xtk

after it became available.

For N ∈ N the number of training paths and for every 1 ≤ j ≤ N , let (X(j), M (j), n(j), t
(j)
1 , . . . , t

(j)
n(j)) ∼

(X, M, n, t1, . . . , tn) be independent and identically distributed (i.i.d.) random processes and variables with
the same distribution as our initially introduced process X together with its random observation framework.
Then the Monte Carlo approximation of (4) is

Φ̂N (θ) := 1
N

N∑
j=1

1
n(j)

n(j)∑
i=1

(∣∣∣∣M (j)
i ⊙

(
X

(j)
t

(j)
i

− Y θ,j

t
(j)
i

)∣∣∣∣
2

+
∣∣∣∣M (j)

i ⊙
(

X
(j)
t

(j)
i

− Y θ,j

t
(j)
i

−

)∣∣∣∣
2

)2
, (5)

where Y θ,j := Y θ(X̃≤τ(·),(j)).

Based on these loss functions, the following convergence guarantees can be derived, where Θm ⊂ Θ is defined
as the set of possible parameters for the 3 (bounded output) neural networks, such that their widths and

3fθ1 and ρθ2 are Lipschitz continuous as neural networks with Lipschitz continuous activation functions, hence, the stochastic
functions ((ω, ω̃), t, H) 7→ fθ1 (Ht−, t, τ(t, ω̃), πm(X̃≤τ(t) − X0)(ω, ω̃), X0(ω)), and similarly for ρθ2 , are uniformly Lipschitz
according to Cohen & Elliott (2015, Definition 16.3.2). Moreover, it is immediate to see that these functions are coefficients
according to Cohen & Elliott (2015, Definition 16.0.3), since they are continuous, hence predictable, and since we integrate with
respect to finite variation processes. In particular, integrability (Cohen & Elliott, 2015, Definition 12.3.10) is trivially satisfied
(path-wise), because any continuous bounded function is Stieltjes-integrable.
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depths are at most m and such that the truncated signature of level m or smaller is used and such that
the norms of the weights θ̃i and the bounds γi are bounded by m (i.e., |θ̃i|2 ≤ m, γi ≤ m). Thus, Θm is a
compact subset of Θ.
Theorem 2.7. Let θmin

m ∈ Θmin
m := argminθ∈Θm

{Φ(θ)} for every m ∈ N. If Assumption 2.1 is satisfied, then,
for m→∞, the value of the loss function Φ converges to the minimal value of Ψ which is uniquely achieved
by X̂ up to indistinguishability, i.e.,

Φ(θmin
m ) m→∞−−−−→ min

Z∈D
Ψ(Z) = Ψ(X̂).

Furthermore, for every 1 ≤ k ≤ K we have that Y θmin
m converges to X̂ in the metric dk as m→∞.

Let θmin
m,N ∈ Θmin

m,N := argminθ∈Θm
{Φ̂N (θ)} for every m, N ∈ N. Then, for every m ∈ N, (P× P̃)-a.s.

Φ̂N
N→∞−−−−→ Φ uniformly on Θm.

Moreover, for every m ∈ N, we have a.s.,

Φ(θmin
m,N ) N→∞−−−−→ Φ(θmin

m ) and Φ̂N (θmin
m,N ) N→∞−−−−→ Φ(θmin

m ).

In particular, one can define an increasing random sequence (Nm)m∈N in N such that for every 1 ≤ k ≤ K

we have a.s. that Y θmin
m,Nm converges to X̂ in the metric dk as m→∞.

This result shows that, given we find the minimizer θmin
m,Nm

of the loss function, the output Y θmin
m,Nm of the

PD-NJ-ODE model converges to the optimal prediction, i.e., to the true conditional expectation X̂, in the
metrics dk. This convergence holds for almost every realization of the training data, which is used to derive
the minimizer θmin

m,Nm
, when evaluated on independent test data. In particular, this result verifies that the

model can approximate X̂ arbitrarily well and that minimizing the loss function is expedient to find such an
approximation of X̂. In Section 5, we further discuss the practical implication of this convergence result. In
this work, we do not focus on the task of finding the minimizer for the loss function, which is an independent
and well studied problem on its own. Different optimization schemes exists, which yield convergence to global
or local optima. These can be combined with our results as was further discussed in Herrera et al. (2021,
Appendix E.2). In our experiments we use Adam (Kingma & Ba, 2014), an stochastic gradient descent (SGD)
version, which yields good empirical results.

3 PD-NJ-ODE with Noisy Observations

So far the PD-NJ-ODE model was only applicable when having noise-free observations of X. In particular,
we demonstrate that the PD-NJ-ODE with the original loss yields incorrect predictions in the presence of
measurement noise, i.e., i.i.d. noise terms that are added to each observation of X. Using the stochastic
filtering approach described in Krach et al. (2022, Section 6) would be a possibility to include (discrete
or continuous) noise. However, this requires strong additional assumptions (i.e., the knowledge of the
joint distribution of the process and the noise or equivalently training samples split up into the noise-free
observations and the noise terms) which are not satisfied easily. Therefore, we want to adapt our framework,
such that it can be applied to noisy observations, while only imposing weak assumptions that are easily
satisfied. In particular, we introduce a method that can deal with noisy observations, even if we have never
seen any noise-free observation during training. In contrast to classical filtering, there is no need to have a
strong prior knowledge of the underlying dynamics.

In this section, we introduce observation noise (e.g., measurement-noise), i.e., i.i.d. noise terms ϵi that are
added to the process X at each observation time ti, leading to the noisy observations Oti := Xti + ϵi. Even
though we only observe the Oti , the goal still is to predict X, in particular to compute E[Xt |Ot0 , . . . , Oτ(t)].

Inspecting the PD-NJ-ODE model and its loss function (replacing X by O), we notice two things. First,
that nothing in the model’s architecture prevents it from learning this modified objective, which should still
have the same properties. Second, that the loss function needs to be modified. Indeed, the first term of the
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loss function would train the model to jump to the noisy observation Oti
. This would be incorrect, since in

general E[Xti |Ot0 , . . . , Oti ] ̸= Oti because the conditional expectation of X filters out the noise as well as
possible. We therefore drop the first term of the loss function.

On the other hand, it is easy to see that the conditional expectations of X and O coincide in between observation
times4 if the observation noise ϵi is independent of the observations and has mean 0. Therefore, the second
term of the loss function is minimised if the model learns the conditional expectation E[Xt |Ot0 , . . . , Oτ(t)]
between observation times.

Along these lines, it turns out that it suffices to omit the first term of the loss function to recover the original
results of Theorem 2.7 under noisy observations. In particular, to optimize the loss, the model learns to jump
to the conditional expectation of X at observation times even without the respective loss term. Indeed, since
it evolves continuously after an observation, it would otherwise be different from the optimal prediction right
after the observation time and therefore would not optimize the loss. In the following this is formalised.

3.1 Setting with Noisy Observations

The process X as well as the n, K, ti, τ , M are defined as in Section 2. Additionally, we define

• (ϵk)0≤k≤K , the observation noise, which is a sequence of i.i.d. random variables on (Ω̃, F̃ , P̃) taking
values in RdX ,

• Otk
:= Xtk

+ ϵk for 0 ≤ k ≤ n, the noisy observation sequence.

Since the goal is to predict X given the observations Oti
, we redefine the filtration of the currently available

information via
At := σ (Oti,j , ti, Mti |ti ≤ t, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,

such that X̂t = EP×P̃[Xt|At] is the conditional expectation of X given the noisy observations. We define
Õ≤t in the same way as X̃≤t and note that similarly as before there exist measurable functions Fj such that
X̂t,j = Fj(t, τ(t), Õ≤τ(t)). We need the following slight modification of Assumption 2.1.
Assumption 3.1. We assume that Assumption 2.1 items (i) to (iii) and (v) hold and additionally that:

(iv) Fj are continuous and differentiable in their first coordinate t such that their partial derivatives with
respect to t, denoted by fj, are again continuous and there exists a B > 0 and p ∈ N such that for
every t ∈ [0, T ] the functions fj , Fj are polynomially bounded in X⋆, i.e.,

|Fj(τ(t), τ(t), Õ≤τ(t))|+ |fj(t, τ(t), Õ≤τ(t))| ≤ B(X⋆
t + 1)p + B

n∑
i=0
|ϵi|.

(vi) n is square-integrable, i.e., EP̃[|n|2] <∞.

(vii) The i.i.d. random noise variables ϵk are independent of X, n, M, (ti)1≤i≤K , are centered and square-
integrable, i.e., EP̃[ϵk] = 0 and EP̃[|ϵk|2] <∞.

Remark 3.2. The relaxations on the assumption of observing X0 completely discussed in Krach et al. (2022,
Remark 2.2) can equivalently be applied in this setting here.

In this setting, the PD-NJ-ODE uses the noisy observations Oti and Õ≤τ(t) as inputs instead of Xti and
X̃≤τ(t). Moreover, we define the new noise-adapted objective function as described before as

Ψ :D→ R, Z 7→ Ψ(Z) := EP×P̃

[
1
n

n∑
i=1
|Mi ⊙ (Oti

− Zti−)|22

]
, (6)

Φ : Θ→ R, θ 7→ Φ(θ) := Ψ(Y θ(X)), (7)

and its Monte Carlo approximation Φ̂N accordingly.
4Note that, in general we have E[Xti | Ot0 , . . . , Oti ] ̸= E[Oti | Ot0 , . . . , Oti ] = Oti at observation times, in contrast to their

equality between observation times.
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3.2 Convergence Theorem with Noisy Observations

In the setting defined in Section 3.1, Theorem 2.7 holds equivalently as before.
Theorem 3.3. If Assumption 3.1 is satisfied and using the definitions of Section 3.1, the claims of Theorem 2.7
hold equivalently, upon replacing the original loss functions and their Monte Carlo approximations by their
noise-adapted versions. In particular, we obtain convergence of our estimator Y θmin

m,Nm to the true conditional
expectation X̂ in dk.

To prove this, we first need to adjust the orthogonal projection result (Krach et al., 2022, Lemma 4.2) for
this setting. At this point we want to highlight the relevance of this result as the backbone of the proof of
Theorem 3.3, which is first used to show that X̂ is a minimizer of Ψ, then to show that it is unique and
finally to bound the distance between X̂ and Y θmin

m in dk through the difference of their loss function values.
Lemma 3.4. For any A-adapted process Z it holds that

EP×P̃

[
1
n

n∑
i=1
|Mti

⊙ (Oti
− Zti−)|22

]

= EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (Oti − X̂ti−)
∣∣∣2
2

]
+ EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (X̂ti− − Zti−)
∣∣∣2
2

]
.

Proof. First note that by Assumption 3.1 point (iii) we have that Xti = Xti− almost surely and when defining
Oti− := Xti− + ϵi we therefore also have that Oti

= Oti− almost surely. Similarly as in Krach et al. (2022,
Lemma 4.2), we can derive for Ôti− := EP×P̃[Oti− | Ati−] that

EP×P̃

[
1
n

n∑
i=1
|Mti ⊙ (Oti− − Zti−)|22

]

= EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Oti− − Ôti−)

∣∣∣2
2

]
+ EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Ôti− − Zti−)

∣∣∣2
2

]
.

To conclude the proof, it is enough to note that

Ôti− = X̂ti− + E[ϵi|Ati−] = X̂ti− + E[ϵi] = X̂ti−, (8)

using that ϵi has expectation 0 and is independent of Ati−.

In the following we sketch the proof of Theorem 3.3, by only outlining those parts of it that need to be
changed in comparison with the original proof of Theorem 2.7 in Krach et al. (2022). The main differences are
that the loss function needs to be adjusted whenever used, and when showing integrability, we additionally
have to account for the noise terms ϵk. A full proof is given in Appendix C.

Sketch of Proof of Theorem 3.3. First, it follows directly from Lemma 3.4 that Ψ(X̂) = minZ∈D Ψ(Z), i.e.,
that X̂ is a minimizer of the redefined objective function Ψ. Secondly, again by Lemma 3.4, we have for any
process Z ∈ D that

Ψ(Z) = Ψ(X̂) + EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]
,

hence Ψ(Z) > Ψ(X̂) follows as before if Z is not indistinguishable from X̂, meaning that X̂ is the unique
minimizer of Ψ.

Under Assumption 3.1 the approximation of the functions fj , Fj by bounded output feedforward neural
networks works similarly as before, with the slight adjustment that their differences are now upper bounded
by

U := 3B

(
(X⋆

T + 1)p +
n∑

i=0
|ϵi|

)
.
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Defining
cm := c ε(T + 1)dX + c(T + 1)dXU

(
1{X⋆

T
≥1/ε} + 1{n≥1/ε} + 1{δ≤ε}

)
it follows that there exists θ∗

m ∈ Θm such that
∣∣∣Y θ∗

m
t − X̂t

∣∣∣
2
≤ cm for all t ∈ [0, T ]. Convergence of Φ(θ⋆

m) to
Ψ(X̂) then follows similarly as before, when noting that by Assumption 3.1

E

(X⋆
t + 1)2p +

(
n∑

i=0
|ϵi|

)2
 ≤ E

[
(X⋆

t + 1)2p
]

+ E[n2]E
[
|ϵ0|2

]
<∞, (9)

using Cauchy–Schwarz and that the ϵi are i.i.d. and independent of n for the first step and the integrability
of X⋆, ϵ0 and n2 for the upper bound. Moreover, the convergence of dk(X̂, Y θ⋆

m)→ 0 follows as before.

Finally, the remaining claims of the theorem (including the Monte Carlo convergence) also hold similarly as
before upon replacing Xti

by Oti
and noting that the integrability of supθ h(θ, ξj) follows from (9).

3.3 More General Noise Structure & Conditional Moments

Revisiting the proof in Section 3.2, we see that the noise terms need neither be independent nor centered. If
we assume that the conditional bias of the noise,

βi(Õ≤τ(t)) := E[ϵi|Ati−],

is a known function of the observations (using Doob-Dynkin Lemma (Taraldsen, 2018, Lemma 2) for its
existence), then we can modify the objective function by subtracting it. This leads to

Ψ :D→ R, Z 7→ Ψ(Z) := EP×P̃

[
1
n

n∑
i=1

∣∣Mi ⊙
((

Oti
− βi(Õ≤ti−1)

)
− Zti−

)∣∣2
2

]
. (10)

Revisiting (8), which is the only part of the proof where we needed the noise terms to be centered, we see that

E
[(

Oti− − βi(Õ≤ti−1)
)
|Ati−

]
= X̂ti− + E[ϵi | Ati−]− βi = X̂ti−. (11)

This implies that the statement of Lemma 3.4 holds equivalently under the reduced assumption of a known
conditional bias function, when using the adjusted loss (10). Additionally assuming that E

[
(
∑n

i=0 |ϵi|)2
]

<∞,
the following result follows as before.
Corollary 3.5. In the setting described in this sub-section (i.e., arbitrary known mean of the noise and no
independence assumption on the noise), which is a generalisation of the setting in Section 3.1, Theorem 2.7
holds equivalently as before when using the objective function (10).

The following remark explains how Corollary 3.5 can be used to predict conditional higher moments (instead
of only the conditional expectation) under certain assumptions.
Remark 3.6. This result makes it possible to compute the conditional moments of X given the noisy
observations, which doesn’t work in the setting of Section 3.1. In particular, we consider observations
Oti− = Xti− + ϵi, where we assume that

• ϵi is independent of Ati−,

• ϵi is conditionally independent of Xti− given Ati−

• and ϵi have known finite moments.

Remark that Proposition A.8 implies that the first two assumptions are in particular satisfied if ϵi is independent
of σ(Ati−, Xti−). The binomial theorem implies for any q ∈ N

Oq
ti− = Xq

ti− +
q∑

j=1

(
q

j

)
Xq−j

ti− ϵj
i .5

5Note that q, j and q − j denote exponents here rather than superscripts.
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We interpret the entire sum as the observation noise and accordingly define the conditional bias of the
observation noise of the q-th moment as

βq
i := E

 q∑
j=1

(
q

j

)
Xq−j

ti− ϵj
i | Ati−

 =
q∑

j=1

(
q

j

)
E[Xq−j

ti− |Ati−]E[ϵj
i ],

where we use the assumptions on ϵi together with Proposition A.7 for the second equality.

Then an inductive argument shows that βq
i is a known function of the observations, using the assumption

that the moments of ϵi are known. Indeed, to compute βq
i the conditional expectations of smaller moments

E[Xq−j
ti− |Ati−] need to be computed, which can be done according to the induction hypothesis (note that the

base case follows directly from Corollary 3.5 and the assumptions on ϵi). Therefore, Corollary 3.5 implies
that we can compute E[Xq

ti−|Ati−] (assuming that we reach the limit where the PD-NJ-ODE output equals
the conditional expectation). In case of an exponential moment assumption E[exp(λ|Xti−|)] <∞ for some
λ > 0 we can therefore infer the conditional law of Xti−.

In the remainder of this section, we discuss the cases of linear and non-linear (noisy) observation models.
Remark 3.7 (Linear Observation Model). Let us consider a linear observation process

Otk
:= AXtk

+ ϵk,

for some fixed matrix A ∈ Rd×dX , for d ∈ N, where we have observations of O, but are ultimately interested
in predicting X without having access to any observations of X. For this to be suitable for our framework,
we need that Assumption 3.1 is satisfied for Z := AX.6 Then we can apply our method to approximate
Ẑt = E[Zt | At], as discussed before. To be able to infer predictions for X from Ẑ, we need to further assume
that A defines an injective map, hence, a left inverse A−1 with A−1A = id exists. Under this assumption,
E[Xt | At] = A−1 Ẑt, by linearity. It is important to note that in an incomplete observation setting, it would
in general not be possible to apply our method to directly approximate X, since (noisy) observations of X
cannot be computed from (noisy) observations of Z, if they are incomplete (i.e., A−1O might not be well
defined). Therefore, the detour via first computing Ẑ is essential. Moreover, it should be apparent that in the
case the map defined by A is not injective (or at least injective on the support of X), information about X
will be lost when only observing O. Nevertheless, any process of the form BZ for another matrix B can be
predicted similarly as described above when observing O.
Remark 3.8 (Non-linear Observation Model & Beyond). Let us consider the observation process

Otk
:= ϕ(Xtk

) + ϵk,

for some measurable function ϕ, where we again have observations of O (in particular we assume that ϕ(X)
satisfies the assumptions), but are ultimately interested in predicting X. Then, even if a left inverse ϕ−1 with
ϕ−1 ◦ ϕ = id exists, the technique from Remark 3.7 does not work, since E[Xt | At] ̸= ϕ−1 (E[ϕ(X)t | At]) in
general. However, under the stronger assumption that we have access to (noisy) samples of the joint process
ξ := (X, ϕ(X)) for training and that this ξ satisfies Assumption 3.1, we can compute ξ̂ = (X̂, ϕ̂(X)), which
can then also be evaluated for samples where only (noisy) observations of the ϕ(X)-coordinates are available
(cf. Krach et al. (2022, Corollary 6.2)). Moreover, we note that the same is true, when replacing ϕ(X) by a
general process Z.

3.4 Examples of Processes Satisfying the Assumptions

In principle, all the examples presented in Krach et al. (2022, Section 7) are valid examples for this setting
when adding some type of i.i.d. observation noise satisfying our assumptions, as e.g. Gaussian or uniform
noise. However, it is important to note that the (true) conditional expectation is not the same, since we
now condition on the noisy observations Oti

instead of the original observations Xti
. Therefore, we give one

explicit example where we compute the conditional expectation in the noisy observation setting.
6We note that by linearity of the (conditional) expectation we have E[Zt | At] = AE[Xt | At], hence, Z satisfies Assumptions 3.1

(iii) to (v), if X does.
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3.4.1 Brownian Motion with Gaussian Observation Noise

Let X := W be a standard Brownian motion and let ϵ0 = 0, ϵi ∼ N(0, σ2) for i ≥ 1 be the i.i.d. noise terms
for some σ > 0. Then Oti

= Xti
+ ϵi are the observations. Clearly, all integrability assumptions are satisfied

by X and ϵi (cf. Krach et al. (2022, Section 7.5)). To compute the true conditional expectations we first note
that the independent increments property of the Brownian motion imply for tk ≤ t < tk+1

E[Xt|At] = E[Wt −Wtk
|Atk

] + E[Wtk
|Atk

] = E[Wtk
|Atk

] = E[Wtk
|Ot1 , . . . , Otk

],

and therefore, f(s, τ(t), Õ≤τ(t)) = 0. Since W is a Brownian motion and ϵi are independent i.i.d. Gaussian
noise terms, we know that

v := (Ot1 , . . . , Otk
, Wtk

)⊤ ∼ N(0, Σ)
where

Σ =
(

Σ11 Σ12
Σ21 Σ22

)
∈ R(k+1)×(k+1),

with Σ11 ∈ Rk×k and (Σ11)i,j = min(ti, tj) + σ2
1{i=j}, Σ⊤

12 = Σ21 = (t1, . . . , tk) ∈ R1×k and Σ22 = tk. Then
the conditional distribution of (Wtk

|Ot1 , . . . , Otk
) is again normal with mean µ̂ := Σ21Σ−1

11 (Ot1 , . . . , Otk
)⊤

and variance Σ̂ := Σ22 − Σ21Σ−1
11 Σ12 (Eaton, 2007, Proposition 3.13). In particular we have

E[Xt|At] = E[Wtk
|Ot1 , . . . , Otk

] = µ̂.

3.5 A Practical Note on Using the Noise-Adapted Loss Function

We have seen in Section 3.2 and 3.3, considering the limit where network size m and training samples N go
to infinity, that there is no disadvantage of the noise-adapted loss function (10) compared to the original
loss function (3). In particular, the noise-adapted training framework yields the optimal solution with noisy
observations, but also if there is no observation noise. Indeed, setting ϵk = 0 for all k, we have Otk

= Xtk

and therefore the original result also holds with the noise-adapted loss function. Hence, the question arises,
why one should use the original loss function (3) at all anymore?

To answer this question, we first note that in practice we are not in the limit case, but we only have access to
a finite training set (i.e., we only observe a finite amount of observations n(j) from finite number of paths N).
Hence, the inductive bias when training the model becomes more important. See Appendix B for more details
on the inductive bias. In particular, using the original loss function (3) in a setting without observation noise
is preferable, since it directly penalizes the model for not jumping to observations and therefore making it
easier for the model to learn this behaviour. Indeed, in the noise-adapted loss function, the penalization for
not jumping to an observation is more indirect, since it will only be punished at the following observation
time until which the output of the model further evolves through the neural ODE. Therefore, the feedback
signal is weaker, i.e., the respective gradients are smaller.

In a setting with observation noise, the practical relevance of the noise-adapted loss function depends on the
size of the variance of the noise, Varnoise, compared to the size of the variance of the data, Vardata. Clearly,
if the variance ratio Varnoise

Vardata
is small, the noise does not have a large impact on the observations and therefore

neither on the training of the model when using the original loss function (3). Due to the better inductive
bias during training, it might therefore be beneficial to use (3) instead of the noise-adapted loss (10). On
the other hand, if the variance ratio is large, the impact of the noise on the observations is substantial and
therefore the noise-adapted training framework leads to better results. This behaviour is well visible in the
experiment presented in Section 6.3. The turning point, where training with the noise-adapted loss function
becomes better, is problem specific (e.g., the number of training samples has a big influence) and, if in doubt,
we suggest to train the PD-NJ-ODE model with both loss functions and compare their results.

4 PD-NJ-ODE with Dependence between X and the Observation Framework

Recall that the observation mask process is given by M and the underlying process by X. In this section,
we remove the assumptions that the observation times are independent of X, and that M is independent

12



Published in Transactions on Machine Learning Research (01/2024)

of the observation times and of X. In essence, the model is now defined on only one probability space P
and no independence assumptions between the random variables are made. Instead, we need some weaker
conditional independence assumptions to recover the results of Theorem 2.7.

4.1 Intuition on independence assumptions

In many real-world applications, the independence of the process X and the observation framework (i.e.,
(ti)i∈{1,...,n} and M) is heavily violated. For example, consider the irregular measurements of a patient’s
health parameters. A nurse or doctor will only take (expensive) measurements if information on the patient’s
state, X, hints that the measurement is necessary. In practice, different measurements are taken from
different patients depending on observations of their state. This motivates the crucial importance of lifting
the independence assumption for real-world applications.

However, even in this paper, we cannot completely remove any independence assumption; we still need
conditional independence of the process X and the observation framework, given all past observations (as
we make precise in Assumption 4.1 items (vii) and (ix) and Proposition 4.9). This is a realistic assumption,
which we show by continuing our hospital example. If we assume that every piece of information the hospital
gets from the patient is immediately logged as an observation (perhaps noisy or incomplete) of X, then all
information about X that the hospital has is contained entirely within these observations. Thus measurement
decisions are conditionally independent of X, given the past observations (if there are no further hidden
confounders).

On the other hand, it is easy to violate this assumption. Imagine that the patient tells the nurse and doctor
she feels feverish and they subsequently take her temperature. If they log her temperature, but not her feeling,
the assumption is violated, as the hospital has a piece of information that is not logged as an observation of
X. In such cases where information is not logged as an observation, our model (and most other classical
forecasting methods) would learn a biased forecast of the body temperature. In the extreme case that body
temperature is only measured if patients feel very feverish, measurements will record a high temperature,
which leads our model to always predict a high body temperature (i.e., the expected body temperature
conditioned on feeling feverish and all other past observations) even if the patient does not feel feverish.

There are often ways to mitigate such issues. In our case, for example, by first logging the feverish feeling
and then the actual measurement at a later time stamp. Moreover, a non-feverish feeling has to be logged
whenever no feverish feeling is reported during a regular nurse visit. Nevertheless, this discussion shows that
it is important to be aware that even our weakened, more realistic assumption of conditional independence is
often not fully satisfied in practical situations. Hence, one must be careful when verifying the assumptions
and potentially adapt the experimental setting such that they are satisfied.

4.2 Setting with Dependence

To allow for dependence, we only consider the probability measure P and define X, n, K, ti, τ , M,At similar as
before, but all on the same (filtered) probability space (Ω,F ,F,P) associated with P. For a random variable
Z and a family of sets B we use the natural notation for their smallest jointly generated sigma algebra
σ(Z,B) := σ(Z) ∨ σ(B).

Then we need the following assumptions, most of which are borrowed from Assumption 2.1. Only (vii)
and (viii) are new, while (i) is a strict generalisation of Assumption 2.1 (i).

Assumption 4.1. We assume that Assumption 2.1 items (ii) to (vi) hold, with all instances of P̃ and P× P̃
replaced by P. Additionally, we assume that:

(i) M0,j = 1 for all 1 ≤ j ≤ dX (X is completely observed at 0) and |Mk|1 > 0 for every 1 ≤ k ≤ K
P-almost surely (at every observation time at least one coordinate is observed).

(vii) For every 1 ≤ k ≤ n, Xtk− is conditionally independent of σ(n, Mtk
) given Atk−.

13



Published in Transactions on Machine Learning Research (01/2024)

(viii) For all 1 ≤ k ≤ K, 1 ≤ j ≤ dX there is some ηk,j > 0 such that P(Mk,j = 1 | σ(n,Atk−)) > ηk,j

(i.e., given the currently known information and n, for each coordinate the probability of observing it
at the next observation time is positive).

(ix) For every 1 ≤ k ≤ K the process X is conditionally independent of tk given Atk−1 .

Remark 4.2. The relaxations on the assumption of observing X0 completely discussed in Krach et al. (2022,
Remark 2.2) can equivalently be applied here.

We can use the original objective function (4) and its Monte Carlo approximation (5).

4.3 Convergence Theorem with Dependence

In the setting defined in Section 4.2, Theorem 2.7 holds equivalently.
Theorem 4.3. If Assumption 4.1 is satisfied and using the definitions of Section 4.2, the claims of Theorem 2.7
hold equivalently. In particular, we obtain convergence of our estimator Y θmin

m,Nm to the true conditional
expectation X̂ in dk.

The main technical challenge when generalising Theorem 2.7 to Assumption 4.1 is to replace the arguments
using independence and e.g. Fubini’s theorem, by arguments using conditional independence. This difficulty
is well visible when comparing the proof of the orthogonal projection Lemma 4.6 below, with the original
proof of Krach et al. (2022, Lemma 4.2). Before, the claim followed relatively immediately from Fubini’s
theorem and the standard orthogonal projection result for conditional expectations of random variables.
In contrast to this, now we have to condition first on the known information and the additional random
variables of the observation framework, then we have to argue by conditional independence that this is the
same as conditioning only on the known information and only after that we can apply the conditional version
Proposition 4.4 of the orthogonal projection result. The relevance of Lemma 4.6 as the backbone of the proof
of Theorem 4.3 was already discussed in Section 3.2. Finally, in Lemma 4.8 we show how Assumption 4.1(viii)
can replace independence between M and X, when deriving that the distance between X̂tk− and Ytk− can be
bounded through their distance when multiplied with the observation mask.

First, we prove the extension of the standard L2-orthogonality result that was stated in Herrera et al. (2021,
Proposition B.2).
Proposition 4.4. Let (Ω,F ,P) be a fixed probability space, and A,B be sub-σ-algebras such that B ⊆ A ⊆ F .
For some random variable X ∈ L2(Ω,F ,P) we define X̂ := E[X | A]. Then for every random variable
Z ∈ L2(Ω,A,P) with P(Z ̸= X̂) > 0 we have

E
[
|X − Z|22

∣∣∣ B] = E
[∣∣∣X − X̂

∣∣∣2
2

∣∣∣∣ B]+ E
[∣∣∣Z − X̂

∣∣∣2
2

∣∣∣∣ B] ≥ E
[∣∣∣X − X̂

∣∣∣2
2

∣∣∣∣ B] ,

with strict inequality with positive probability.

The proof is based on Durrett (2010, Theorem 5.1.8). We focus on the one-dimensional case, though this can
easily be generalised to multiple dimensions via the 2-norm, as in Herrera et al. (2021).

Proof. We begin by expanding the left hand side.

E
[
|X − Z|2

∣∣∣ B] = E
[∣∣∣(X − X̂)− (Z − X̂)

∣∣∣2 ∣∣∣∣ B]
= E

[∣∣∣X − X̂
∣∣∣2 ∣∣∣∣ B]+ E

[∣∣∣Z − X̂
∣∣∣2 ∣∣∣∣ B]− 2E

[
(X − X̂)(Z − X̂)

∣∣∣ B]
We now analyse the cross term, which expands to E[Z(X − X̂) | B] − E[X̂(X − X̂) | B]. Focusing on the
first term, we note that since Z ∈ L2(Ω,A,P), it holds that ZE[X | A] = E[ZX | A]. By taking expectation
(conditioned on B) of both sides, we get

E
[
ZX̂

∣∣∣ B] = E [ZE [X | A] | B] = E [E [ZX | A] | B] = E [ZX | B]
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via the tower property, as B ⊆ A. Hence, E[Z(X − X̂) | B] = 0. Note that showing this only required that Z
is A-measurable. Since this is also satisfied by X̂ we directly have E[X̂(X − X̂) | B] = 0 and therefore the
cross term vanishes and the equality follows. The inequality holds since E[|Z − X̂|22 | B] is non-negative. We
therefore just need to show that the inequality is strict with positive probability. To this end, assume for the
sake of contradiction that E[|Z−X̂|22 | B] = 0 P-a.s, which implies (by the tower property) that E[|Z−X̂|22] = 0.
This is only possible if Z = X̂ P-a.s., which contradicts the assumption that P(Z ̸= X̂) > 0.

As a next step we show that under Assumption 4.1(ix) we can recover that X̂ is the optimal predictor.
Proposition 4.5. Under Assumption 4.1(ix) we have

X̂tk− = E
[
Xt

∣∣ Atk−1

] ∣∣∣
t=tk−

= E [Xtk− | Atk−] .

Proof. The result is a direct consequence of Proposition A.9.

Next we re-prove Krach et al. (2022, Lemma 4.2) under the relaxed assumptions with the help of Proposi-
tion 4.5.
Lemma 4.6. For any A-adapted process Z ∈ L2(Ω,A,P) it holds that

E

[
1
n

n∑
i=1
|Mti ⊙ (Xti − Zti−)|22

]
= E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (Xti − X̂ti−)
∣∣∣2
2

]
+E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (X̂ti− − Zti−)
∣∣∣2
2

]
.

Proof.

E

[
1
n

n∑
i=1
|Mti

⊙ (Xti− − Zti−)|22

]
=

K∑
i=1

E
[

1
n
1{i≤n} |Mti

⊙ (Xti− − Zti−)|22
]

=
K∑

i=1
E
[
E
[

1
n
1{i≤n} |Mti

⊙ (Xti− − Zti−)|22
∣∣∣∣ σ(n, Mti

,Ati−)
]]

=
K∑

i=1
E

 1
n
1{i≤n}

dX∑
j=1

Mti,jE
[
|Xti−,j − Zti−,j |2

∣∣∣ σ(n, Mti ,Ati−)
]

=
K∑

i=1
E

 1
n
1{i≤n}

dX∑
j=1

Mti,jE
[
|Xti−,j − Zti−,j |2

∣∣∣ Ati−

] .

The first step follows by monotone convergence, the last by Lemma 4.7 below. Now we can conclude by first
applying the equality from Proposition 4.4 with A,B = Ati−, which yields that E[Xti− | Ati−] minimises the
expression, and then using Proposition 4.5 to conclude that X̂ti− equals this minimizer. Finally, we can
reverse the above steps to arrive at the desired form.

Lemma 4.7. Assume the context of Lemma 4.6. Then for all i, j it holds that

E
[
|Xti−,j − Zti−,j |2

∣∣∣ σ(n, Mti
,Ati−)

]
= E

[
|Xti−,j − Zti−,j |2

∣∣∣ Ati−

]
.

Proof. We prove this by showing that if we expand the |Xti−,j − Zti−,j |2 term, all three resulting terms can
just be conditioned on Ati−. This is a valid argument as X and Z are both assumed to be square-integrable.
Note that squaring a random variable plays no role in the information given by the σ-algebra it is being
conditioned on, and so we only need to analyse the terms Zti−,j , Xti−,j , and Xti−,jZti−,j . See Appendix A
for an overview of conditional independence and how it’s used here.

CASE Zti−,j : Z is A-adapted, and so Zti−,j is Ati−-measurable. Thus we have

E [Zti−,j | σ(n, Mti ,Ati−)] = Zti−,j = E [Zti−,j | Ati−]
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as desired.

CASE Xti−,j : Assumption 4.1 point (vii) implies that Xti−,j is conditionally independent of σ(n, Mti) given
Ati−. We therefore have by Proposition A.4

E [Xti−,j | σ(n, Mti
,Ati−)] = E [Xti−,j | Ati−] .

CASE Xti−,jZti−,j : We combine the previous two ideas, namely that Zti−,j is Ati−-measurable and that
Xti−,j is conditionally independent of σ(n, Mti

) given Ati−. Thus

E [Xti−,jZti−,j | σ(n, Mti
,Ati−)] = Zti−,jE [Xti−,j | σ(n, Mti

,Ati−)]
= Zti−,jE [Xti−,j | Ati−] = E [Zti−,jXti−,j | Ati−] .

Combining these 3 cases proves the claim.

The following lemma shows how Assumption 4.1(viii) can replace the independence between M and X.
Lemma 4.8. There exists some c2(k) > 0 such that for any A-adapted process Z ∈ L2(Ω,A,P) we have

E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
1

]
≤ 1

c2(k)E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
1

]
.

Proof. Assumption 4.1 point (viii) states that 0 < ηk,j < P(Mk,j = 1 | σ(n, Atk−)) = E[Mtk,j |σ(n,Atk−)]
for all k, j. Let c2 := c2(k) := min1≤j≤dX

ηk,j , then c2 > 0 and

E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
1

]
=

dX∑
j=1

E
[
1{n≥k}Mtk,j

∣∣∣X̂tk−,j − Ztk−,j

∣∣∣]

=
dX∑
j=1

E
[
1{n≥k}

∣∣∣X̂tk−,j − Ztk−,j

∣∣∣E [Mtk,j | σ(n,Atk−)]
]

≥ c2 E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
1

]
,

where we used that 1{n≥k}|X̂tk−,j −Ztk−,j | is σ(n,Atk−)-measurable in the second line and the definition of
c2 in the last line.

With the help of these lemmas we are now ready to prove Theorem 4.3. In the following we again give a
sketch of the proof, by only outlining those parts of it that need to be changed in comparison with the original
proof of Theorem 2.7 in Krach et al. (2022). We refer the interested reader to the full proof in Appendix C
for all details.

Sketch of Proof of Theorem 4.3. As before it follows that X̂ is a minimizer of Ψ. To show its uniqueness, we
first note that

E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
2

]
≤ c3

c2(k)E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
2

]
(12)

is implied as before when using Lemma 4.8 instead of the independence. Then

E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]
≥
(

c2(k)
c0c1c3

)2
dk(X̂, Z)2 > 0,

follows as before, implying the uniqueness of X̂ as minimizer of Ψ.

The approximation of the functions fj , Fj also works as before. With this we have

min
Z∈D

Ψ(Z) ≤ Φ(θmin
m ) ≤ Φ(θ∗

m)

16



Published in Transactions on Machine Learning Research (01/2024)

= E

[
1
n

n∑
i=1

(∣∣∣Mti
⊙ (Xti

− Y
θ∗

m
ti

)
∣∣∣
2

+
∣∣∣Mti

⊙ (Y θ∗
m

ti
− Y

θ∗
m

ti−)
∣∣∣
2

)2
]

≤ E

[
1
n

n∑
i=1

(∣∣∣Mti
⊙ (X̂ti

− Y
θ∗

m
ti

)
∣∣∣
2

+
∣∣∣Mti

⊙ (Y θ∗
m

ti
− X̂ti

)
∣∣∣
2

+
∣∣∣Mti

⊙ (X̂ti
− X̂ti−)

∣∣∣
2

+
∣∣∣Mti

⊙ (X̂ti− − Y
θ∗

m
ti−)

∣∣∣
2

)2
]

≤ E

[
1
n

n∑
i=1

(∣∣∣X̂ti
− Y

θ∗
m

ti

∣∣∣
2

+
∣∣∣Y θ∗

m
ti
− X̂ti

∣∣∣
2

+
∣∣∣Mti

⊙ (X̂ti
− X̂ti−)

∣∣∣
2

+
∣∣∣X̂ti− − Y

θ∗
m

ti−

∣∣∣
2

)2
]

≤ E

[
1
n

n∑
i=1

(∣∣∣Mti ⊙ (Xti − X̂ti−)
∣∣∣
2

+ 3cm

)2
]

= Ψ(X̂) + E

[
1
n

n∑
i=1

(
6cm

∣∣∣Mti
⊙ (Xti

− X̂ti−)
∣∣∣
2

+ 9c2
m

)]

= Ψ(X̂) + E

[
1
n

n∑
i=1

6cm

∣∣∣Mti
⊙ (Xti

− X̂ti−)
∣∣∣
2

]
+ 9E

[
c2

m

]
≤ Ψ(X̂) + 6E

[
1
n

n∑
i=1

cm

∣∣∣Xti − X̂ti−

∣∣∣
2

]
+ 9E

[
c2

m

]
≤ Ψ(X̂) + 6E

[
1
n

n∑
i=1

cm · 2TB(X⋆
T + 1)p

]
+ 9E

[
c2

m

]
= Ψ(X̂) + 12TBE [cm(X⋆

T + 1)p] + 9E
[
c2

m

]
,

where the triangle inequality was used in the third line, and we use Assumption 4.1 point (iv) (which implies
that |X̂t| ≤ TB(X⋆ + 1)p for all t) to construct a crude bound in the second to last line. As in Krach et al.
(2022), dominated convergence can be used to show

min
Z∈D

Ψ(Z) = Ψ(X̂) ≤ Φ(θmin
m ) ≤ Φ(θ∗

m) m→∞−−−−→ min
Z∈D

Ψ(Z),

since 2p is again the largest power of X⋆
T in both terms (remember cm has an (X⋆

T )p term). The convergence
of dk(X̂, Y θ⋆

m)→ 0 follows as before, finishing the first part of the theorem. Finally, it is easy to see that the
proof of the convergence of the Monte Carlo approximation is not affected by our more general dependence
assumptions such that also the second part of the theorem follows.

The assumption that Xti− and n are conditionally independent given Ati− seems a bit odd, because n is a
quantity that is not known at ti, i.e., not Ati

-measurable. This assumption is needed, because we weight the
observations in the loss by 1/n, which means that we weight the terms known at time ti with a quantity that
is in general only known at final time T . In line with this, we can drop the assumption if instead we weight
the terms with the time step ∆ti := ti − ti−1, which is Ati−-measurable. However, this needs an additional
integrability assumption as explained in the following proposition.
Proposition 4.9. If we change the weighting in the loss function to

Ψ(Z) := E

[
n∑

i=1
∆ti (|Mi ⊙ (Xti

− Zti
)|2 + |Mi ⊙ (Xti

− Zti−)|2)2

]
,

then Assumption 4.1 (vii) can be replaced by the weaker assumption (vii’-a) together with the additional
integrability assumption (vii’-b) below.
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(vii’-a) For every 1 ≤ i ≤ n, Xti− is conditionally independent of σ(Mti
) given Ati−.

(vii’-b) For every 1 ≤ i ≤ K, E
[

1
∆ti

]
<∞.

Proof. First, we note that {i ≤ n} = {ti <∞} and ∆ti are Ati−-measurable, hence the proofs of Lemma 4.6
and Lemma 4.8 work equivalently under the weaker assumption (vii’-a). Next we note that (23) has to be
replaced in the analysis by

E [|Z|2] = E
[√

∆ti√
∆ti

|Z|2

]
≤ c′

1 E
[
∆ti |Z|22

]1/2
(13)

where c′
1 := c′

1(i) := E[1/∆ti] < ∞ holds by the additional assumption (vii’-b). Finally, we note that∑n
i=1 ∆ti ≤ T , hence integrability of the loss is still satisfied. These are all needed changes in the proof.

Remark 4.10. The different weightings in the loss function by either 1/n or ∆ti put different importance on
the observations. In the former case, every observation of one sample path is given equal importance, while
in the latter case, observations have more importance if the previous observation is farther away. Although
both loss functions yield the same unique optimizer, the choice of weighting can influence the training of the
model for finite m or N . In particular, the latter choice corresponds to an inductive bias, which makes it
more important for the model to predict well after a long time without observations, while it is less important
to predict well whenever the frequency of observations is high. Of course other weightings, e.g. by 1/E[n], are
possible, too, and reasonable in some situations.

4.4 Examples of Processes Satisfying the Assumptions

Clearly, all the examples from Krach et al. (2022) are trivially valid for our generalised settings of Section 4.2
since points (vii) & (viii) of Assumption 4.1 are implied by independence. Furthermore, we provide a relatively
general class of examples in Section 4.4.1 and extend two of the examples from Krach et al. (2022) to a
setting where independence does not hold in Example 4.11 and Example 4.13.

4.4.1 Class of Examples Incorporating Dependence

A main problem when constructing examples where the observation times ti have a dependence on the
process X, is that in general this will also lead to n having a dependence on X (since n, as the amount of
observations, increases when observations become more likely). This, in turn, might lead to a contradiction
of Assumption 4.1 point (vii).

One way to circumvent this is to define n conditionally independent of Xti− given Ati− for all i and to allow
for pseudo observation times, i.e., observation times at which no coordinate is observed (cf. Remark 2.2).
Then we can control whether the process X is observed at an observation time ti via the observation mask Mi.
In this way, the times at which X is actually observed can depend on X through the observation mask Mk,
even though the tk do not depend on X. Therefore, the original problem is replaced by having an observation
mask depending on X, which will be discussed in detail below.

When using a time grid on which the process X is sampled, one concrete example of defining n conditionally
independent of Xti− given Ati− is to use the grid points as observation times ti leading to n being the
number of grid points. In this case, both n and the ti are deterministic, hence, they satisfy the conditional
independence assumptions.

We need to ensure that Assumption 4.1 points (vii) and (viii) are satisfied (assuming that a dummy variable
is observed at every observation time), when defining the observation mask. One way to define Mi such that
point (vii) is satisfied is to define it as a function of random variables that are Ati−-measurable and random
variables that are independent of σ(Ati−, Xti−, n).

In particular, let Mi := gi

(
(U i

j)j∈Ji
1
, (V i

j )j∈Ji
2

)
, where gi is a measurable function mapping to {0, 1}dX ;

J i
1, J i

2 ⊆ N are index sets; U i
j is a Ati−-measurable random variable; and V i

j a random variable independent
of σ(Ati−, Xti−, n) for all j in J i

1 and J i
2 respectively.
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By Proposition A.5 we need to show that for any measurable function ϕ we have E[ϕ(Xti−) |σ(n, Mi,Ati−)] =
E[ϕ(Xti−) | Ati−]. Indeed, Mi is σ(Ati−, (V i

j )j∈Ji
2
)-measurable by construction, therefore, we have for such a

ϕ that

E [ϕ(Xti−) | σ(n, Mi,Ati−)] = E
[
E
[
ϕ(Xti−)

∣∣∣ σ(n, (V i
j )j∈Ji

2
,Ati−)

] ∣∣∣ σ(n, Mi,Ati−)
]

,

by the tower property. On the other hand,

E
[
ϕ(Xti−)

∣∣∣ σ(n, (V i
j )j∈Ji

2
,Ati−)

]
= E [ϕ(Xti−) | σ(n,Ati−)] = E [ϕ(Xti−) | Ati−] ,

using the independence of V i
j together with Corollary A.2 in the first equality and n being conditionally

independent together with Proposition A.5 in the second equality. Together, this implies the claim and
therefore Assumption 4.1 point (vii).

For Assumption 4.1 point (viii), we note that by Durrett (2010, Lemma 6.2.1) we have

P(Mk = 1 | σ(n, Atk−)) = E [Mtk
| σ(n,Atk−)]

= E
[
gk

(
(Uk

j )j∈Jk
1
, (V k

j )j∈Jk
2

) ∣∣∣ σ(n,Atk−)
]

= g̃k((Uk
j )j∈Jk

1
),

for g̃k((uk
j )j∈Jk

1
) := E

[
gk

(
(uk

j )j∈Jk
1
, (V k

j )j∈Jk
2

)]
. Hence, we need to define the gk and V k

j such that g̃k > ηk

(coordinate-wise) for some ηk > 0.
Example 4.11 (Homogeneous Poisson Point Process with Dependent Observations). We use a 1-dimensional
homogeneous Poisson point process X = Nλ (Krach et al., 2022, Section 7.3) and defined observations
depending on its value following the instructions above. To begin with, we define the observation times to
be the grid points of the sampling grid of the process and n accordingly to be the number of grid points. To
permit observation times of the process depending on the process, we define the observation mask as

Mi =
{
1{xi≥λti−1}, xi ∼ N(Nλ

ti−1
, σ2) if MX

i−1 = 1,

ui ∼ Bernoulli(p) if MX
i−1 = 0.

for some σ > 0 and p ∈ (0, 1). Thus the process is more likely to be observed if the previous value was
observed and was large (note E[Nλ

tk
] = λtk for all k). Otherwise the mask value is sampled from a Bernoulli

distribution.

To satisfy Assumption 4.1 point (i), we define M0 := 1. To see that Assumption 4.1 point (vii) holds, let
V i

1 ∼ Bernoulli(p) and V i
2 ∼ N(0, σ2) be independent random variables independent of σ(Ati−, Nλ

ti−). Then

Mi = 1{Mi−1=1}1{Nλ
ti−1

+V i
2 ≥λti−1} + V i

11{Mi−1=0} =: gi(Mi−1, Nλ
ti−1

, ti−1, V i
1 , V i

2 ),

and the claim follows as explained above. Moreover, Assumption 4.1 point (viii) is satisfied because

g̃i(Mi−1, Nλ
ti−1

, ti−1) = 1{Mi−1=1} E
[
1{a+V i

2 ≥λb}

] ∣∣∣
(a,b)=

(
Nλ

ti−1
,ti−1

) + 1{Mi−1=0} E
[
V i

1
]

≥ min
(
P
[
V i

2 ≥ λb− a
] ∣∣∣

(a,b)=
(

Nλ
ti−1

,ti−1
), p

)
≥ min

(
P
[
V i

2 ≥ λT
]

, p
)

=: ηi > 0,

using that λti−1 −Nλ
ti−1
≤ λT , since Nλ ≥ 0, ti−1 ≤ T and λ > 0, in the last line.

Remark 4.12. We note that the choice X = Nλ is only explicitly used for the fact that Nλ is lower bounded
(by 0). Hence, the Poisson point process could be replaced by any other process that is lower bounded and
satisfies Assumption 2.1 points (iv) & (v).
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Example 4.13 (Black–Scholes with Dependent Observations). We use a 1-dimensional Black–Scholes
process (geometric Brownian motion) (Krach et al., 2022, Example 7.3) with constant drift and volatility
µ, σ starting at x0 and again define observations depending on its value. The observation times and n
are defined as in the previous example and we define the actual times when X is observed via the mask
M . We set M0 = 1. Moreover, we redefine τ to be the last time before t at which X was observed, i.e.,
τ(t) = max{ti | ti < t, Mi = 1}. Let V i

1 ∼ Bernoulli
(

ti−ti−1
ti−τ(ti)

)
, V i

2 ∼ N(0, η2) and V i
3 ∼ Bernoulli (p) be

independent random variables for some η > 0 and p ∈ (0, 1). Then we define

Mi := V i
1 1{Xτ(ti)+V i

2 ≥x0eµti } + (1− V i
1 ) V i

3 ,

for all i ≥ 1. In particular, if X was observed at the previous observation time V i
1 = 1 and the probability of

observing X increases with the size of the last observation of X (compared to the current expected value of X
at the current time). The further the last observation of X is in the past, the more likely V i

1 = 0 in which
case X is observed with probability p. Upon noting that the ti are deterministic, it follows as in the previous
example that Assumption 4.1 points (vii) and (viii) are satisfied.

5 Practical Implications of the Convergence Result

In this section we discuss which practically relevant conclusions we can draw from convergence in the metrics
dk for 1 ≤ k ≤ K. We mainly focus on the setting in Section 4.2, however, the same is also true in the
combined setting of Section C.1. In Section 5.1, we study the practical meaning of Assumption 4.1(ix). We
give an intuitive counterexample, where this assumption is not satisfied and our model does not converge to
X̂. Secondly, in Section 5.2, we discuss the implications of convergence in the (pseudo) metrics dk (which
ensures a good approximation at left-limits of observation times) for general times t. In particular, we study
two practically relevant examples for the conditional distribution of the observation times and show that in
these cases, with high probability, our model approximates the conditional expectation well on the entire
support of the observation times.

5.1 Practical meaning of Assumption 4.1(ix)

If Assumption 4.1(ix) is not satisfied, this can lead to situations where X̂ is not the minimizer of Ψ and
therefore our model does not converge to it, as we explain in the following example. Assume that patients in a
hospital get asked by a nurse every morning at 8 am, whether they feel feverish. If the answer is yes, then their
temperature is measured right away and logged at 8 am; if the answer is no, their temperature is measured
and logged at 4 pm. The (non-)feverish feeling is not logged at all. This data satisfies Assumption 4.1 (since
n is deterministic; dX = 1 and Mi = 1) except for item (ix). It is clear that the model will predict higher
temperatures in the morning than in the afternoon for any test sample, even if the patient always has the
same temperature, since the model only saw this behaviour in the training data. If we assume that on average
patients have the same (or even lower) temperature in the morning as in the afternoon, this prediction is not
optimal in practice.

The mathematical reason for this discrepancy is that our model learns to approximate E[Xtk− | Atk−] (see
proof of Lemma 4.6), which does not coincide with X̂, i.e.,

E [Xtk− | Atk−] ̸= E [Xt | At]
∣∣∣
t=tk−

= E
[
Xt

∣∣ Atk−1

] ∣∣∣
t=tk−

= X̂tk−

(surprisingly) holds for this example. Indeed, Proposition 4.5 (which would turn this inequality into an
equality) heavily relies on Assumption 4.1(ix). E[Xtk− | Atk−] minimizes the test error (if the joint distribution
of (X, tk) is the same as during training), since it can exploit the knowledge7 that it is queried at an observation
time tk (i.e., high temperature if tk is in the morning and low temperature if tk is in the afternoon). However,
in this example we do not obtain the optimal forecast X̂t = E[Xt | Atk−1 ] for any time t, which is the best
prediction of X at any time, given the information available at the previous observation time.

7Mathematically, Atk− = σ(Atk−1 , tk) includes the information that a measurement is taken at time tk.
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Assumption 4.1(ix) ensures (via Proposition 4.5) that our model converges to the practically meaningful
version of the conditional expectation X̂tk

= E[Xt | Atk−1 ]
∣∣
t=tk− at observation times. In the following, we

discuss what this implies for the approximation at any t ∈ [0, T ].

5.2 From Approximations at Observation Times to Approximations at any Time

Under Assumption 4.1 we have established that our model output Y
θmin

m
t (X̃≤tk−) converges to E[Xt | Atk−1 ]

at every observation time tk. Both, Y
θmin

m
t (X̃≤tk−) and E[Xt | Atk−1 ] are functions of the random variables

summarized in Atk−1 (by definition for our model and by the Doob-Dynkin lemma for the conditional
expectation) and therefore conditionally independent of tk given Atk−1 . We note in particular that X̃≤tk−

carries exactly the information of Atk−1 , i.e., it has no information about tk (despite its notation). Hence,
intuitively speaking, the approximation has to be good for every t in the support of tk for the expectation to
converge. In the following we formalize this.

Let Pk be the probability measure conditioned on the event that n ≥ k, i.e.

Pk(·) = P(· |{n ≥ k}),

and denote by Ek the expectation operator with respect to this probability measure. Then the following
lemma is a consequence of the definitions of Pk and c0(k).
Lemma 5.1. We have dk(X̂, Y θmin

m ) = Ek

[∣∣∣X̂tk− − Y
θmin

m
tk−

∣∣∣
2

]
and the equivalent result for Y θmin

m,Nm .

Proof. It is enough to note that E[·1{n≥k}] = P(n ≥ k)Ek[·].

Next, we define for each 1 ≤ k ≤ K the (regular) conditional distribution of tk given X̃≤tk− as the almost
surely unique probability kernel (or random measure) µtk

(· ; X̃≤tk−) satisfying

µtk
(B ; X̃≤tk−) = Pk

(
tk ∈ B

∣∣Atk−1

)
a.s., ∀B ∈ B([0, T ]).

Kallenberg (2021, Theorem 8.5) ensures its existence (since [0, T ] is Borel) and implies for any measurable
function ϕ that almost surely

Ek

[
ϕ
(
X̃≤tk−, tk

) ∣∣Atk−1

]
=
∫ T

0
ϕ
(
X̃≤tk−, t

)
µtk

(dt ; X̃≤tk−). (14)

In particular, this implies the following result.
Proposition 5.2. Under Assumption 4.1 we have, with the same notation as in Theorem 2.7, that for every
1 ≤ k ≤ K

dk(X̂, Y θmin
m ) = Ek

[∫ T

0

∣∣∣E [Xt−
∣∣X̃≤tk−]− Y

θmin
m

t−
(
X̃≤tk−)∣∣∣

2
µtk

(dt ; X̃≤tk−)
]

m→∞−−−−→ 0

and the equivalent result for Y θmin
m,Nm .

Proof. We first apply Lemma 5.1 and then use the tower property to get a nested conditional expectation
(conditioning on Atk−1) inside the outer expectation, which can be rewritten by (14) as an integral. Finally,
we use Lemma 4.5 and then the Doob-Dynkin lemma (Taraldsen, 2018, Lemma 2) to rewrite E[Xt | Atk−1 ]
as a function of X̃≤tk−, which we denote by E[Xt | X̃≤tk−] (and we replace t by t− for the left-continuous
version of it).

Proposition 5.2 implies convergence of a conditional L1-norm (or equivalently, an L1-norm integrated against
a random measure) nested inside an L1-norm. Since Lp-convergence implies convergence in probability, we
have in particular that for every ϵ > 0

Pk

(∫ T

0

∣∣∣E [Xt−
∣∣X̃≤tk−]− Y

θmin
m

t−
(
X̃≤tk−)∣∣∣

2
µtk

(dt ; X̃≤tk−) > ϵ

)
m→∞−−−−→ 0. (15)
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In the following, we study two examples of the conditional distribution µtk
that are relevant in practice. We

study them for Y θmin
m but note that the hold equivalently for Y θmin

m,Nm . We first remark that in general the
support of tk is a Atk−1 -measurable random set (in particular, it often depends at least on tk−1). We denote
this set-valued random variable with

Stk
:= supp

(
tk | Atk−1

)
,

which is defined to be the smallest closed random subset Stk
⊂ [0, T ] such that µtk

(Stk
; X̃≤tk−) = 1 Pk-almost

surely. By Doob-Dynkin’s lemma (Taraldsen, 2018, Lemma 2) we can write Stk
as a function X̃≤tk−, i.e.,

Stk
= Stk

(X̃≤tk−).
Example 5.3. Assume that Sk := ∪ωStk

(ω) is finite and that there exists some α > 0 such that for all
t ∈ Sk we have µtk

({t} ; X̃≤tk−) ≥ α1{t>tk−1} Pk-almost surely. This is the case if all observation times are
sampled from a (finite) grid with positively lower bounded probability to take any value of the grid, which
is larger than the previous observation time (as in the synthetic examples in this paper and in Krach et al.
(2022)). Then Proposition 5.2 implies that for every 1 ≤ k ≤ K∑

t∈Sk

Ek

[
1{t>tk−1}

∣∣∣E [Xt−
∣∣X̃≤tk−]− Y

θmin
m

t−
(
X̃≤tk−)∣∣∣

2

]
m→∞−−−−→ 0

and (15) implies that for every ϵ, δ > 0 there exists m0 ∈ N such that for m ≥ m0 there is a subset Ωm ⊂ Ω
with Pk(Ωm) > 1− δ and for every ω ∈ Ωm with n(ω) ≥ k and every t ∈ Sk with t > tk−1(ω)∣∣∣E [Xt−

∣∣X̃≤tk−(ω)
]
− Y

θmin
m

t−
(
X̃≤tk−(ω)

)∣∣∣
2

< ϵ.

In particular, with high probability, our model is close to the optimal prediction at the left limit of every
possible grid point if m is large enough. At the same time it is apparent that we cannot infer anything
for t /∈ Sk. In our synthetic examples this is not a problem since we only plot our model and the optimal
prediction (and measure the distance between them) on the grid points.
Remark 5.4 (Convergence in the Evaluation Metric). In the same setting as in Example 5.3, if there exists
one finite grid from which all observation times are sampled, i.e., S ⊂ [0, T ] finite, such that Sk ⊂ S for all k
and T ∈ S, then n ≤ |S|. Revisiting the proof of Theorem 2.7 in Appendix C, we note that (23) can therefore
be replaced by

E
[
|Z|22

]
≤ |S|E

[
1
n
|Z|22

]
,

and therefore we can show the convergence stated in Theorem 2.7 in the stronger L2-type (pseudo) metric

d2
k(Z, ξ) := c0(k)E

[
1{n≥k}|Ztk− − ξtk−|22

]
, (16)

for which Proposition 5.2 holds equivalently.

We assume that for P-a.e. ω and for every t ∈ S we have that tk−1(ω) < t ≤ tk(ω) implies that t ∈ Stk
(ω).

Then the evaluation metric (cf. Section 6) defined on S for Ntest i.i.d. test samples is

evalS,Ntest(X̂, Y θmin
m,Nm ) := 1

|S|
∑
t∈S

1
Ntest

Ntest∑
j=1

∣∣∣∣E [Xt−

∣∣∣X̃≤t−,(j)
]
− Y

θmin
m,Nm

t− (X̃≤t−,(j))
∣∣∣∣2
2

and by a similar argument as in the second part of the proof of Theorem 2.7 (cf. (31), (32)), we have

evalS,Ntest(X̂, Y θmin
m,Nm ) P−a.s.−−−−−−→

Ntest→∞
E

[
1
|S|
∑
t∈S

∣∣∣∣E [Xt−
∣∣X̃≤t−]− Y

θmin
m,Nm

t− (X̃≤t−)
∣∣∣∣2
2

]
=: (I).

If we add pseudo observation times at T (by choosing the respective mask to be 0 in case there is no actual
observation at T , cf. Remark 2.2), we have tn = T .8 Then, using that S is finite and with our assumption

8We need to do this because otherwise we have terms where t > tn which cannot be upper bounded by the distances in d2
k.

However, we note that the objective function is the same except for dividing by n + 1 instead of n for the samples which do not
have an observation at T . Hence, also the trained model is nearly the same.
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for Stk
, we have

(I) =
|S|∑

k=1
E

[
1{n=k}

1
|S|
∑
t∈S

∣∣∣∣E [Xt−
∣∣X̃≤t−]− Y

θmin
m,Nm

t− (X̃≤t−)
∣∣∣∣2
2

]

= 1
|S|

|S|∑
k=1

E

[
1{n=k}

k∑
κ=1

∑
t∈Sκ

1{tκ−1<t≤tκ}

∣∣∣∣E [Xt−
∣∣X̃≤tκ−]− Y

θmin
m,Nm

t− (X̃≤tκ−)
∣∣∣∣2
2

]

≤ 1
|S|

|S|∑
k=1

E

[
1{n=k}

k∑
κ=1

1{n≥κ}
∑
t∈Sκ

1{tκ−1<t}

∣∣∣∣E [Xt−
∣∣X̃≤tκ−]− Y

θmin
m,Nm

t− (X̃≤tκ−)
∣∣∣∣2
2

]

≤ 1
|S|

|S|∑
k=1

E

 |S|∑
κ=1

1{n≥κ}
∑
t∈Sκ

1{tκ−1<t}

∣∣∣∣E [Xt−
∣∣X̃≤tκ−]− Y

θmin
m,Nm

t− (X̃≤tκ−)
∣∣∣∣2
2


≤

|S|∑
κ=1

∑
t∈Sκ

E

[
1{n≥κ}1{tκ−1<t}

∣∣∣∣E [Xt−
∣∣X̃≤tκ−]− Y

θmin
m,Nm

t− (X̃≤tκ−)
∣∣∣∣2
2

]

≤
|S|∑

κ=1

∑
t∈Sκ

Eκ

[
1{tκ−1<t}

∣∣∣∣E [Xt−
∣∣X̃≤tκ−]− Y

θmin
m,Nm

t− (X̃≤tκ−)
∣∣∣∣2
2

]
m→∞−−−−→ 0,

which converges to 0 according to Example 5.3. In particular, we have P-almost surely

lim
m→∞

lim
Ntest→∞

evalS,Ntest(X̂, Y θmin
m,Nm ) = 0,

i.e., the evaluation metric converges to 0 when the number of evaluation samples, the number of training
samples and the network sizes increase. Moreover, if the number of evaluation samples Ntest <∞ is fixed,
the evaluation metric evalS,Ntest(X̂, Y θmin

m,Nm ) converges to zero in probability as m and Nm tend to infinity.
Example 5.5. Assume that for 1 ≤ k ≤ K, Pk-almost surely we have that Stk

= (tk−1, T ], that µtk
(· ; X̃≤tk−)

is absolutely continuous with respect to the Lebesgue measure on [0, T ], and that its Radon-Nikodym derivative
w.r.t. the Lebesgue measure satisfies

dµtk
(· ; X̃≤tk−)

dt
≥ α1(tk−1,T ](·)

for some α > 0. This is for example the case if the observation time tk is uniformly or exponentially (with
an upper bound) distributed on (tk−1, T ]. Then Proposition 5.2 implies that

Ek

[∫ T

tk−1

∣∣∣E [Xt−
∣∣X̃≤tk−]− Y

θmin
m

t−
(
X̃≤tk−)∣∣∣

2
dt

]
m→∞−−−−→ 0

and (15) implies that for every ϵ, δ > 0 there exists m0 ∈ N such that for m ≥ m0 there is a subset Ωm ⊂ Ω
with Pk(Ωm) > 1− δ and for every ω ∈ Ωm with n(ω) ≥ k∫ T

tk−1

∣∣∣E [Xt−
∣∣X̃≤tk−(ω)

]
− Y

θmin
m

t−
(
X̃≤tk−(ω)

)∣∣∣
2

dt < ϵ.

In particular, with high probability, the L1-distance on (tk−1, T ] between our model and the optimal prediction
is small if m is large enough. Since our model and the optimal prediction are both continuous in t, we know
that in the limit they have to be point-wise the same, i.e., for every t ∈ (tk−1, T ].

To summarize, under Assumption 4.1, at every time s, for every future time t ∈ [s, T ] that was not
deterministically excluded from being the next observation time given the previous observations,9 our model
Y

θmin
m,Nm

t (X̃≤s) converges in probability to the correct conditional expectation E[Xt | As] as m tends to infinity.
9Mathematically this just means, “for every t ∈ Stk ” given that τ(s) = tk−1 for some k.
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5.3 Implications for a Trained PD-NJ-ODE model

Finally, we discuss what we can say about the distance between the true conditional expectation X̂ and
the output of the PD-NJ-ODE model Y θ⋆ for parameters θ⋆ which are ε-optimal. This is an important
practical question which arises, when training the model with some optimization scheme (e.g. a version of
stochastic gradient descent) yields such parameters θ⋆. We note that the existence of such parameters follows
from Theorem 2.7 or its versions for noisy observations (Theorem 3.3), dependence (Theorem 4.3) or both
extensions (Theorem C.3).
Proposition 5.6. Assume that θ⋆ are ε-optimal parameters for the PD-NJ-ODE, i.e.,

Φ(θ⋆) ≤ inf
θ∈Θ

Φ(θ) + ε,

for some ε > 0.10 Then for every 1 ≤ k ≤ K there exists a constant c = c(k) > 0 independent of θ⋆ and ε
such that dk(X̂, Y θ⋆) ≤ c

√
ε.

Proof. The claim follows from applying (1), (24), (23) and finally Lemma C.4, which was summarized in (29)
in the full proof of the main theorem with both extensions.

We note that the results from Section 5.2 equivalently hold here. Therefore, we are able to make statements
about the distance between the paths of X̂ and Y θ⋆ .
Remark 5.7. Under the same assumption as in Proposition 5.6 as well as Assumption 4.1, we have that for
every 1 ≤ k ≤ K

dk(X̂, Y θ⋆

) = Ek

[∫ T

0

∣∣∣E [Xt−
∣∣X̃≤tk−]− Y θ⋆

t−
(
X̃≤tk−)∣∣∣

2
µtk

(dt ; X̃≤tk−)
]
≤ c(k)

√
ε.

Moreover, if additionally the assumptions of Example 5.3 are satisfied, then we have∑
t∈Sk

Ek

[
1{t>tk−1}

∣∣∣E [Xt−
∣∣X̃≤tk−]− Y θ⋆

t−
(
X̃≤tk−)∣∣∣

2

]
≤ c(k)

α

√
ε.

Equivalently, if additionally the assumptions of Example 5.5 are satisfied, then we have

Ek

[∫ T

tk−1

∣∣∣E [Xt−
∣∣X̃≤tk−]− Y θ⋆

t−
(
X̃≤tk−)∣∣∣

2
dt

]
≤ c(k)

α

√
ε.

6 Experiments

The code with all new experiments and those from Krach et al. (2022) is available at https://github.com/
FlorianKrach/PD-NJODE. Further details about the experiments can be found in Appendix D. In particular,
in Appendix D.1 we give details on the slight deviation of the practical implementation from the theoretical
description.

As in Krach et al. (2022) we use the following evaluation metric to quantify and compare the training success.

eval(X̂, Y θ) := 1
Ntest

Ntest∑
j=1

1
κ + 1

κ∑
i=0

∣∣∣X̂(j)
iT
κ − − Y θ,j

iT
κ −

∣∣∣2
2

,

where the outer sum runs over the test set of size Ntest and the inner sum runs over the equidistant grid
points on the time interval [0, T ].

In Sections 6.1 and 6.2 we provide two illustrative experiments on easy synthetic datasets for the extensions
discussed in this paper. We note that the extension to a dependence between the observation framework and

10Note that infθ∈Θ Φ(θ) = minZ∈D Ψ(Z) = Ψ(X̂) according to our main theorem.
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the process X is purely theoretical, not changing anything in the implementation of the model, hence, the
experiments on real world datasets of Krach et al. (2022) are representative for this extension as well. In
particular, it is very likely that there actually is such a dependence in the Physionet dataset (Goldberger
et al., 2000), as discussed in the introduction and in Section 4.1. Hence, our paper provides the theoretical
foundation for those empirical results of Krach et al. (2022) and, vice versa, those results show that the
method discussed in our paper is applicable to complex high-dimensional settings.

In Section 6.3 we provide further experiments on the Physionet dataset to compare the noise-adapted training
framework of Section 3 with the original one.

6.1 Noisy Observations – Brownian Motion with Gaussian Observation Noise

We test the PD-NJ-ODE trained with the loss function adapted to noisy observations (6) in the context of
Section 3.4.1. In particular, X is a Brownian motion and we assume to have observation noise of a centered
normal distribution with standard deviation σ = 0.5. Moreover, we compare these results to using the original
loss function (3) with the noisy observation. PD-NJ-ODE adapted to noisy observations achieves a minimal
evaluation metric of 1.1 ·10−3 while using the original loss function leads to a nearly 20 times larger evaluation
metric of 1.9 · 10−2. Moreover, in Figure 1 we see that the noise-adapted method learns to correctly jump
when new observations become available, while the original method jumps to the noisy observations and
afterwards tries to get close to the true conditional expectation quickly. We note that this is the expected
behaviour.
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Figure 1: A test sample of a Brownian motion X with noisy observations Oti
= Xti

+ ϵi together with the
true and predicted conditional expectation. The PD-NJ-ODE is trained with the noise-adapted loss (left)
and the original loss (right).

6.2 Dependent Observation Framework – a Black–Scholes Example

Based on Example 4.13 we train a PD-NJ-ODE on a 1-dimensional geometric Brownian motion with drift
µ = 2 and volatility σ = 0.3 and with observation probability depending on the last observation of X, the
time since the last observation and on independent random variables V i

{2,3} for which we use the parameters
η = 3 and p = 0.1. As our theoretical result suggests, our model learns to predict the conditional expectation
well with a minimal evaluation metric of 1.1 · 10−3 which is also visible in Figure 2.

6.3 Physionet with Observation Noise

To test the new training framework for noisy observations in a 41-dimensional, complex real world setting,
we use the Physionet dataset (Goldberger et al., 2000). Even though the Physionet dataset, as it is, is
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Figure 2: A test sample of a geometric Brownian motion X with observation probability depending on
previously observed values of X. Plotted together with the true and predicted conditional expectation (scale
on the left) and the observation probability over time (scale on the right).
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Figure 3: Evaluation MSE of the PD-NJ-ODE trained on the Physionet dataset with the original and the
noise-adapted loss with different size for the standard deviation factor of the synthetically added observation
noise.

likely to have some observation noise, it turns out that this noise is too small to have a big impact on
the training (cf. Figure 3 and Section 3.5). Therefore, we add synthetic noise to all observations that are
used as input for the PD-NJ-ODE (but not to the observation on which the evaluation MSE is computed)
and study its impact on the evaluation MSE depend on the size of its standard deviation. More precisely,
we first compute each coordinate’s standard deviation σdata,j on the training set and then add i.i.d. noise
samples ϵi,j ∼ N(0, ζ2 σ2

data,j), for ζ ≥ 0, to each observed coordinate Xti,j . In Figure 3 we show the minimal
evaluation MSE results when training the PD-NJ-ODE with the original loss (5) and the noise-adapted loss
(see Equations (6) and (7)) on these datasets for increasing standard deviation factor ζ. Without additional
noise (ζ = 0), the original loss function leads to slightly better results than the noise-adapted loss function
(which is approximately 10% larger), suggesting that in this case the potential intrinsic observation noise
has a smaller impact than the inductive bias of the original loss function (cf. Section 3.5). The larger the
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synthetically added noise gets, the larger is its impact. For the noise-adapted loss function the evaluation
MSE only grows linearly (with a small slope) when ζ increases. In contrast to this, it grows more than linearly
for the original loss function. For some ζ ∈ (0.4, 0.5) there is the turning point, where the noise-adapted
framework becomes more efficient. Overall, the evaluation MSE grows less than 20% for the noise-adapted loss
(from ζ = 0 to ζ = 1), while it grows by nearly 300% for the original loss function. Moreover, the evaluation
MSE with ζ = 1 is more than 3 times larger for the original PD-NJ-ODE than for the noise-adapted one. This
example demonstrates well the importance of the noise-adapted training framework when the observation
noise is large.

7 Conclusion

In this work we broadened the applicability of the PD-NJ-ODE of Krach et al. (2022) by extending the
theoretical foundation to allow for the observation framework (i.e., observation times and masks) to depend on
previous information and additionally proposed a new loss function that provably leads to optimal predictions
even if observations are noisy. In particular, we showed that any centered i.i.d. observation noise satisfying
some integrability conditions can be dealt with by switching to the noise-adapted objective function (6).
Moreover, we showed that the proof of the main result can be retained when lifting the independence
assumption between the process X and the observation framework, by extensively working with conditional
independence. Finally, we provided experiments showing empirically that the PD-NJ-ODE works well in
those extended settings.
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Appendix

A Conditional independence

Let (Ω,F ,P) be a probability space, G,H ⊆ F be two sigma-algebras and let X be a random variable.

The assumption that X is independent of G leads to the natural but incorrect conclusion that E[X |σ(G,H)] =
E[X |H]. For this to hold, we actually need a stronger assumption as in the following proposition that is due
to Hansen (2015); Yoo (2014).
Proposition A.1. If σ(X,H) is independent of G then E[X |σ(G,H)] = E[X |H].

Proof. We prove the desired equality in the context of basic measure theory. We first assume that X is
integrable on σ(G,H), since otherwise neither of the expectations are valid. Then we recall that conditional
expectation is simply a random variable Z that satisfies the following three properties

1. Z is σ(G,H)-measurable,

2. Z is integrable,

3.
∫

A
XdP =

∫
A

ZdP for all A ∈ σ(G,H).

By the definition of the conditional expectation we know that E[X |σ(G,H)] satisfies these properties. To
show the claim, it is therefore enough to prove that also Z = E[X |H] satisfies them. The first two follow
trivially since H ⊆ σ(G,H). For the third, we note that by Dynkin’s π-λ theorem it is enough to consider
the ∩-stable generator P = {A ∩B | A ∈ G, B ∈ H} of σ(G,H) and show that∫

A∩B

XdP =
∫

A∩B

ZdP ∀A ∈ G, B ∈ H,

or equivalently

E [X · 1A∩B ] = E [E [X | H] · 1A∩B ] ∀A ∈ G, B ∈ H. (17)

Indeed, P is a π-system (with σ(P ) = σ(G,H)) that is trivially included in the smallest Dynkin system D
including P (this is the system that includes all sets in P , is closed under complements and under countable
unions of disjoint sets). Moreover, if (17) holds for every set in P , it is easy to see (by linearity of the integral
and dominated convergence) that the corresponding property also holds for every set in D, since for a set
A ∈ D we have 1A∁ = 1 − 1A and for disjoint sets (Ak)k≥1 ∈ D we have 1∪k≥1Ak

=
∑

k≥1 1Ak
. Dynkin’s

π-λ theorem implies that σ(P ) ⊂ D, therefore the third point follows.

To show (17), note that σ(X,H) being independent of G implies that H is independent of G. Therefore,

E [X · 1A∩B ] = E [X · 1B1A]
= E [X · 1B ]E [1A] (σ(X,H) indep. of G)
= E [E [X · 1B | H]] · E [1A] (tower property)
= E [E [X · 1B | H] · 1A] (H indep. of G)
= E [E [X | H] · 1A1B ] (1B is H-measurable)
= E [E [X | H] · 1A∩B ] ,

completing the proof.

Corollary A.2. If σ(X,H) is independent of G then E[ϕ(X) |σ(G,H)] = E[ϕ(X) |H] for all measurable and
integrable functions ϕ.

Proof. This follows directly from Proposition A.1 upon replacing X by ϕ(X) and noting that σ(ϕ(X),H) ⊆
σ(X,H), implying the needed condition.
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It should now be apparent that the assumption that X and G are independent is insufficient if we want to
show E[X |σ(G,H)] = E[X |H] (a counterexample is provided in Hansen (2015)). However, we can actually
make a weaker assumption (though still stronger than the assumption that X and G are independent) to
attain the same result, as shown in the next proposition.
Definition A.3. X and G are conditionally independent given H if for all x ∈ σ(X), A ∈ G,

E [1x1A | H] = E [1x | H]E [1A | H] .

Proposition A.4. If X is conditionally independent of G given H then E[X |σ(G,H)] = E[X |H].

Proof. Following the previous proof it is clear that we only need to show

E [X · 1A∩B ] = E [E [X | H] · 1A∩B ]

for all A ∈ G and B ∈ H. We do this by measure-theoretic induction (as in Durrett (2010, Proof of Theorem
1.6.9)), in particular, we proceed in a four-part case distinction of X. In the first case, assume X is an
indicator function, i.e., X = 1x for some x ∈ F . Then

E [X · 1A∩B ] = E [1x1A∩B ]
= E [E [1x1A∩B | H]] (tower property)
= E [E [1x1A | H]1B ] (B ∈ H)
= E [E [1x | H]E [1A | H]1B ] (cond. indep.)
= E [E [E [1x | H] · 1A | H]1B ] (E [1x | H] H-mbl.)
= E [E [E [1x | H] · 1A∩B | H]] (B ∈ H)
= E [E [1x | H] · 1A∩B ] (tower property)
= E [E [X | H] · 1A∩B ] .

Thus in the most basic case we have the required property. In the second case we let X =
∑k

i=1 ci1xi
be a

finite weighted sum of indicator random variables, where k ∈ N, ci ∈ R and xi ∈ F . The result of the first
case combined with linearity of expectation immediately shows that the property holds for X in this form too.

In the third case, we assume X is some non-negative function. We define a random variable Xk that is simple
and such that Xk ↑ X as k → ∞. For example, we can take Xk =

∑k2k−1
i=0

i
2k1{ i

2k ≤ X < i+1
2k }+ k1k≤X ,

as in Durrett (2010, Proof of Theorem 1.6.9). Then, by monotone convergence and the previous case, the
property also holds when X is an arbitrary non-negative function.

Finally, in the fourth case, we let X be an arbitrary integrable function. Then we can write X = X+ −X−

where f+(x) := max{0, f(x)} and f−(x) := min{0, f(x)}. Integrability of X means that X+ and X− are
themselves integrable. We can use linearity of expectation and the previous cases to conclude that, in this
general setting, the property still holds. This concludes the proof by measure-theoretic induction.

Proposition A.5. X is conditionally independent of G given H if and only if E[ϕ(X) |σ(G,H)] = E[ϕ(X) |H]
for all measurable and integrable functions ϕ.

Proof. The “⇒” direction is a simple corollary of Proposition A.4 that follows with the same proof upon
replacing X by ϕ(X) and noticing that ϕ(X) is a σ(X)-measurable random variable.

The “⇐” direction is also easy to see. Let x ∈ σ(X), A ∈ G and define ϕ such that ϕ(X) = 1x. Then we have

E [1x1A | H] = E [E [1x1A | σ(G,H)] | H] (tower property)
= E [E [1x | σ(G,H)]1A | H] (A ∈ G ⊆ σ(G,H))
= E [E [1x | H]1A | H] (RHS of claim with ϕ(X) = 1x)
= E [1x | H]E [1A | H] (E [1x | H] H-mbl.)

This completes the proof.
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Proposition A.6. If X is conditionally independent of G given H, and Y is independent of σ(X,G,H) then
for any measurable and integrable function f also f(X, Y ) is conditionally independent of G given H.

Proof. By Proposition A.5 we have to show that for any measurable ϕ we have E[ϕ(f(X, Y )) |σ(G,H)] =
E[ϕ(f(X, Y )) |H]. First note that it is enough to show this for ϕ being the identity, since both ϕ and f are
arbitrary measurable and integrable functions. Then we have for g(x) := EY [f(X, Y )], which is a measurable
and integrable function again, that

E [f(X, Y ) | σ(G,H)] = E [E [f(X, Y ) | σ(X,G,H)] | σ(G,H)] (tower property)
= E [g(X) | σ(G,H)] (Durrett (2010, Lemma 6.2.1))
= E [g(X) | H] (Proposition A.5)
= E [f(X, Y ) | H] , (reversing step 1 & 2)

as wanted, proving the claim.

Proposition A.7. If X is conditionally independent of Y given H then

E[XY | H] = E[X | H]E[Y | H].

Proof. From Proposition A.4 we know that E[X | σ(Y,H)] = E[X | H]. Therefore,

E [XY | H] = E [E [XY | σ(Y,H)] | H] (tower property)
= E [E [X | σ(Y,H)] Y | H] (Y ∈ σ(Y,H))
= E [E [X | H] Y | H] (Proposition A.4)
= E [X | H]E [Y | H] , (E [X | H] H-mbl.)

as wanted.

Proposition A.8. If X is independent of σ(G,H) then X is conditionally independent of G given H.

Proof. Follows directly from Proposition A.5.

Proposition A.9. Let X, Y, Z be random variables such that X and Y are conditionally independent given
σ(Z). Then, for any measurable function ϕ we have

E [ϕ(X, Y ) | σ(Z, Y )] = E [ϕ(X, y) | σ(Z)] |y=Y .

We follow the proof of the somewhat less general result Durrett (2010, Lemma 6.2.1).

Proof. By its definition, it is clear that the r.h.s. is σ(Y, Z)-measurable. Hence, by the definition of the
conditional expectation, we only need to show that

E [ϕ(X, Y )1C ] = E [E [ϕ(X, y) | σ(Z)] |y=Y 1C ] , (18)

for all C ∈ σ(Y, Z).

Assume first that ϕ(x, y) = 1A(x)1B(y) and let C ∈ σ(Y, Z) be of the form C = {Y ∈ C1, Z ∈ C2} for Borel
sets A, B, C1, C2 in the images of X, Y, Z, respectively. Then,

E [ϕ(X, Y )1C ] = E [E [1A(X)1B(Y )1C1(Y )1C2(Z) | σ(Z)]]
= E [1C2(Z)E [1A(X) | σ(Z)] E [1B(Y )1C1(Y ) | σ(Z)]] ,

(19)

using the tower property in the first and conditional independence in the second equality. Moreover, note that

E [ϕ(X, y) | σ(Z)] = E [1A(X)1B(y) | σ(Z)] = 1B(y)E [1A(X) | σ(Z)] ,
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hence,

E [E [ϕ(X, y) | σ(Z)] |y=Y 1C ] = E [1B(Y )E [1A(X) | σ(Z)] 1C ]
= E [E [1B(Y )E [1A(X) | σ(Z)] 1C1(Y )1C2(Z) | σ(Z)]]
= E [E [1A(X) | σ(Z)] 1C2(Z)E [1B(Y )1C1(Y ) | σ(Z)]] ,

(20)

using the tower property in the second and measurability in the third equality. (19) and (20) together show
that (18) holds for the simple functions and the special C. Next, we note that by Dynkin’s π-λ theorem, the
same holds for general C ∈ σ(Y, Z) (cf. proof of Proposition A.1). Then the claim follows for all bounded
functions by the monotone class theorem (Durrett, 2010, Theorem 6.1.3), as outlined in the proof of Durrett
(2010, Lemma 6.2.1). Moreover, it follows for general measurable functions by dominated convergence.

B Inductive Bias

In this section we first discuss the inductive bias induced by the old loss function. Afterwards we discuss the
general inductive bias introduced by the PD-NJ-ODE (2). In this paper, we have shown that under certain
assumptions our estimator based on the new loss (10) is consistent, and thus asymptotically unbiased as
the model complexity m and the number of training paths N tend to infinity. However in such an infinite
hypothesis space it is impossible to obtain an unbiased estimator for any finite number of training paths
N ∈ N. For this reason, it is helpful to have an appropriate inductive bias that guides the estimator in the
right direction when there is a limited amount of training data (Mitchell, 1980).11

B.1 Inductive Bias of the Loss

While the new loss (10) is asymptotically unbiased, the old loss (3) is in general always biased. Even in the
limit m, N →∞ this bias induced by the old loss (3) does not vanish. On average, models obtained from
the old loss will jump too closely to new observation Otk

at observation times tk as can be observed in the
right subplot of Figure 1. However, in the case of no noise (i.e., Xtk

= Otk
), the correct model should always

exactly jump to new observations. Hence, teaching the model explicitly to jump to new observations via
the term |Mk ⊙ (Xtk

− Ztk
)|2 in the old loss (3) incorporates helpful prior knowledge which is particularly

helpful for small training datasets. Even if the observations Otk
are noisy (with a small noise-scale

√
E[ϵ2

k]),
the term |Mk ⊙ (Otk

− Ztk
)|2 in the old loss (3) can be a beneficial inductive bias, if one only has access to a

very small training dataset. If one has very little information from other observations about the dynamics of
X, then it might be a reasonable best guess to jump close to new observations Otk

at observation times tk.
For example, if the model Y

θmin
m,N

tk
(X̃≤tk−1) obtained from the new loss (10) is further away from the true

conditional expectation E[Xt | Atk−1 ]
∣∣
t=tk

than the noisy observation Otk
, the term |Mk ⊙ (Otk

− Ztk
)|2 in

the old loss (3) would be helpful to push the model closer to the truth. This explains why we can see in
Figure 3 that the old loss (3) outperforms the new loss (10) in the case of very small noise relative to the
overall variability of the data.12

Furthermore, different weighting schemes in the loss also influence the inductive bias (see Remark 4.10). The
term |Mk ⊙ (Otk

− Ztk
)|2 in the old loss (3) can be particularly helpful if the loss is weighted via ∆tk.

11Occam’s razor suggests, that one should always pick the simplest (or most parsimonious) model that explains the data,
i.e., the inductive bias should be directed towards simplicity/parsimony. Different machine learning (ML) models incorporate
simplicity/parsimony in various different ways, so one should pick the right model according to the alignment of the inductive
bias of the model with one’s prior belief.

12In this experiment, we trained also only for 100 epochs. Additionally to the statistical learning argument given before, there
is probably also an algorithmic effect, that the term |Mk ⊙ (Otk − Ztk )|2 in the old loss (3) helps the model to move directly in
the right direction starting from the first epochs. At least during the first epochs the model Y θ

tk
(X̃≤tk−1 ) is usually very far off

(at observation times tk) compared to the noisy Otk observations thus the term |Mk ⊙ (Otk − Ztk )|2 in the old loss (3) pushes
the model directly in the right direction at observation times, while the new loss (10) only has an indirect affect on the model at
the observation times tk.
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B.2 Inductive Bias of the PD-NJ-ODE architecture

As shown in our main theorem the PD-NJ-ODE architecture (2) is universal and when it is trained with the
right loss, such as (10), it is asymptotically unbiased. However, for any finite number of training paths N ,
there are infinitely many models (i.e., infinitely θ ∈ Θ) that all perfectly fit the data, i.e., achieve Φ̂N (θ) = 0,
but correspond to very different predictions Y θ

t (X̃≤s) on unseen test data. Therefore, for N < ∞, our
architecture (including the training algorithm) necessarily needs to have an appropriate inductive bias to
make a reasonable choice among all the models with reasonable low training loss Φ̂N (θ).13 (Additionally
we want this bias to vanish in the limit N →∞, which is already given by our theory.) First, we give some
intuition on our understanding of the important inductive bias of PD-NJ-ODE (2) and afterwards we will
give some theoretical arguments that motivate these hypotheses. Most machine learning models have and
inductive bias towards some form of simplicity for the function mapping inputs to predictions. E.g., some
NN-architectures have an inductive bias towards low second derivative of this function w.r.t. the inputs
(Savarese et al., 2019; Ongie et al., 2019; Heiss et al., 2019; 2023; 2022; Parhi & Nowak, 2022) (i.e., the
function can still be universal but among all functions with equal loss the one which is “most linear” is
chosen). The crucial difference of PD-NJ-ODE (2) is that its inductive bias favours simplicity of the functions
fθ1 , ρθ2 , g̃θ̃3

instead of simply favouring simplicity of the map (X̃≤s, t) 7→ Y θ
t (X̃≤s). For many applications

of PD-NJ-ODEs, a linear ODE is intuitively one of the most simple/parsimonious/conservative/plausible
models possible. The following example illustrates the benefit of the inductive bias of PD-NJ-ODEs.
Example B.1. Consider the situation where the true underlying process of X follows a linear SDE (driven
by a Brownian motion, i.e., a linear Itô-diffusion), then the conditional expectation X̂ follows a linear ODE
(except the jumps at observation times tk, cf. Krach et al. (2022, Example B.2)). For simplicity consider the
case of complete noiseless observations Xtk

(i.e., M = 1 and ϵ = 0). Then X̂ can be perfectly expressed by
our PD-NJ-ODE (2) with 3 linear functions fθ1 , ρθ2 , g̃θ̃3

instead of simply favouring simplicity of the map
(X̃≤s, t) 7→ Y θ

t (X̃≤s). E.g., fθ1 is the right-hand side of the ODE resulting in X̂, ρθ2 maps new observations
Xtk

simply to Xtk
,14 and g̃θ̃3

is also simply the identity. As these 3 functions are linear, their second derivative
is zero. Hence, for example, the inductive bias of L2-regularized ReLU-NNs fθ1 , ρθ2 , g̃θ̃3

strongly favours such
simple linear functions. Therefore, the model can learn these linear dynamics already from a relatively small
amount of training paths and extrapolate well far into the future. On the other hand, in this setting the map
(X̃≤s, t) 7→ X̂t(X̃≤s) grows exponentially in the input t and thus has huge (second) derivative with respect to
t, which is considered the opposite of simple by most of the commonly used ML-models. Hence, if one trains,
on the same dataset, a feed-forward neural network F̌θ : (X̃≤s, t) 7→ F̌θ(X̃≤s, t) that directly approximates F ,
the model would find many other “simpler”/flatter functions F̌θ that fit the finite training dataset equally
well. Even for larger N , such a model, favouring a low Sobolev-norm of the map F̌θ, would always have
troubles to make predictions far ahead into the future t≫ τ(t): For values of t− τ(t) larger than the largest
tk − tk−1 ever observed in training, such a model has no reason to keep growing exponentially but would
rather extrapolate as flat as possible. In contrast, Y θ

t (X̃≤τ(t)), obtained from our PD-NJ-ODE with linear
functions fθ1 , ρθ2 , g̃θ̃3

, would keep the exponential growth in t for arbitrarily large values of t− τ(t) even far
out of sample and even far out of distribution.15 In line with this, it is expected that the PD-NJ-ODE leads to
better results than the model F̌θ, when evaluated on previously unseen test data. This was confirmed by the
experiment in Krach et al. (2022, Appendix E).

To summarize: While the PD-NJ-ODE (2) is able to learn arbitrarily complicated dynamics (fulfilling some
mild regularity assumptions), it favours models θ with “simple” functions fθ1 , ρθ2 , g̃θ̃3

among different models
with equal training loss Φ̂N (θ), where the definition of “simplicity” depends on the architectures used for
fθ1 , ρθ2 , g̃θ̃3

. E.g., for L2-regularized ReLU-NNs the notion of simplicity relates to the second derivative of

13If the underlying process X is not deterministic or if the observations are noisy, even the exact conditional expectation does
not fit the observations Otk exactly (i.e., Ψ(X̂) > 0) due to stochasticity. Hence, the model has to learn to average out the
noise. Therefore, we do not only need to choose among models that achieve Φ̂N (θ) = 0, but even among a wider range of models
achieving Φ̂N (θ) < c.

14Note that the the first dX signatures of level 1 of X̃≤tk − X0 are exactly Xtk − X0. Thus, the function ρθ2 defined by
ρθ2

(
Ht−, t, πm(X̃≤τ(t) − X0), X0

)
= Xtk is linear.

15For our theoretical result, we assumed fθ1 to be bounded, which would not enable this exponentially growth arbitrarily far
into the future, but at least for a very long time if γ1 is large enough.
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fθ1 , ρθ2 , g̃θ̃3
(Savarese et al., 2019; Ongie et al., 2019; Heiss et al., 2019; 2023; 2022; Parhi & Nowak, 2022).

This can lead to better generalization performance.

B.2.1 Inductive Bias towards Multi-task Learning

If one trains multiple tasks together (i.e., if one wants to forecast a multi-dimensional process X), many deep
learning applications have shown that an inductive bias towards functions that use similar features among
multiple tasks (rather than using very different features for each of these tasks) can be highly beneficial. This
phenomena is known as multi-task learning (Caruana et al., 1997). One can argue that multi-task learning
(highly related to feature learning, representation learning, transfer learning, metric learning) is one of the
biggest strengths of deep learning models compared to shallow learning models in terms of generalization
(Heiss et al., 2022). The inductive bias of our PD-NJ-ODE (2) towards feature sharing (i.e., multi-task
learning) is twofold:

1. Per definition the hidden state Ht in (2) is shared among all tasks/outputs. I.e., each coordinate of
the output Yt is a function of the same hidden state Ht. Therefore, the hidden state Ht becomes
more parsimonious, if it mainly contains features that are helpful for all coordinates of Yt.

2. If the neural network architectures of fθ1 , ρθ2 , g̃θ̃3
contain trainable parameters in multiple hidden

layers, then these functions favour feature sharing within their hidden layers, as shown by Heiss et al.
(2022) in the case of L2-regularization16. Caruana et al. (1997); Heiss et al. (2022) provide more
intuition on multi-task learning.

B.2.2 Implicit Regularization

Even without any explicit L2-regularization and even for very large theoretical model complexity m (i.e., large
Θm in our setting), it is widely assumed that (stochastic) gradient descent (initialized close to zero) induces
an implicit inductive bias towards simplicity (Neyshabur, 2017). In some settings this implicit regularization
is extremely similar (or even exactly identical) to explicit L2-regularization (Heiss et al., 2019) and in other
settings it can be (slightly) different. In our setting of training PD-NJ-ODEs, implicit regularization of the
gradient descent does most probably not exactly correspond to explicit L2-regularization, but on a high level
the qualitative behaviour might be similar.17

In theory, m could also be too large in relation to N , since too large m allows for over-fitting. In contrast to
this, N can never be too large. In particular, if one picks an θmin

m,N ∈ Θmin
m,N with unnecessarily large L2-norm

over-fitting can be a serious problem. However, in practice, too many neurons are usually not a problem due
to implicit regularization of (stochastic) gradient descent as suggested empirically by Herrera et al. (2021,
Figure 6) and theoretically by Neyshabur (2017); Savarese et al. (2019); Ongie et al. (2019); Heiss et al. (2019;
2023; 2022); Parhi & Nowak (2022).

B.2.3 Mathematical Theory on the Inductive Bias of PD-NJ-ODEs

For implicit regularization it seems difficult to get precise global results for PD-NJ-ODEs. However, for
explicit L2-regularization of θ, there is much more hope to get nice theoretical results on the inductive
bias of the PD-NJ-ODEs (2). (Note that the bound m on the L2-norm of θ in the definition of Θm

corresponds to L2-regularization in a Lagrangian sense.18) The results by Savarese et al. (2019); Ongie
16In the case of L2-regularization Heiss et al. (2022) shows (for certain architectures) that this multi-task learning effect does

not vanish when the width of the network increases, while it would vanish with increasing width for some specific other training
methods. For most deep learning methods used in practice, there is some multi-task learning effect assumed to be present even
if it is theoretically not always as well understood as for L2-regularized wide ReLU-NNs.

17Note that a classical gradient flow is always identical to a gradient flow with respect to the L2 norm and thus locally moves
as little w.r.t. the L2-distance as possible. Therefore, it seems plausible that gradient descent does not increase the L2-norm of θ
much more than necessary to achieve a certain training loss.

18The L2-regularization regularization parameter λreg can be seen as a KKT-multiplier of the constraint |θ|2 < m. However,
if m is too large the constraint is not active and θmin

m,N is highly undetermined. For L2-regularization with λreg > 0, the

parameters θmin
m,N are usually also not uniquely defined, but the solution Y

θmin
m,N can be unique.
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et al. (2019); Heiss et al. (2019; 2023; 2022); Parhi & Nowak (2022) strongly support the hypothesis that
argminθ

(
Φ̂N (θ) + λreg |θ|22

)
exactly converges to argminf,ρ,g̃

(
Ψ̂N (Y f,ρ,g̃) + λreg

(
P1(f) + P2(ρ) + P3(g̃)

))
,

where Pi describe some regularization functionals (such as weighted Lp norms of the second derivative)
depending on the exact architectures used for f, ρ, g̃ given in Savarese et al. (2019); Ongie et al. (2019); Heiss
et al. (2019; 2023; 2022); Parhi & Nowak (2022). However, (for rather technical reasons) their proofs do not
directly apply to PD-NJ-ODEs. The formulation of the the main theorem in Heiss et al. (2023) could be
applied more directly to PD-NJ-ODE by considering the map (f, ρ, g̃) 7→ Ψ̂N (Y f,ρ,g̃) as the loss functional.19

Proofing such results rigorously would be interesting future work.

C Combining the Two Extensions with Full Proof

In this section we prove convergence of the PD-NJ-ODE to the optimal prediction in the most general setting
that allows for non-Markovian processes with irregular incomplete noisy observations, where dependence
between the observation framework and the process is possible.

C.1 Setting

As in Section 4.2 we consider only the probability space (Ω,F ,F,P) on which we define X, n, K, ti, τ , M . As
in Section 3.1, we additionally define the observation noise (ϵk)0≤k≤K , the noisy observations Otk

:= Xtk
+ ϵk

for 0 ≤ k ≤ n, the filtration of the currently available information via

At := σ (Oti,j , ti, Mti
|ti ≤ t, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,

Õ≤t and the functions Fj such that X̂t,j = Fj(t, τ(t), Õ≤τ(t)). Then we make the following assumptions.
Assumption C.1. We assume that:

(i) M0,j = 1 for all 1 ≤ j ≤ dX (X is completely observed at 0) and |Mk|1 > 0 for every 1 ≤ k ≤ K
P-almost surely (at every observation time at least one coordinate is observed).

(ii) The probability that any two observation times are closer than ϵ > 0 converges to 0 when ϵ does, i.e.,
if δ(ω) := min0≤i≤n(ω) |ti+1(ω)− ti(ω)| then limϵ→0 P(δ < ϵ) = 0.

(iii) Almost surely X is not observed at a jump, i.e., P(ti ∈ J | i ≤ n) = P(∆Xti
̸= 0 | i ≤ n) = 0 for all

1 ≤ i ≤ K.

(iv) Fj are continuous and differentiable in their first coordinate t such that their partial derivatives with
respect to t, denoted by fj, are again continuous and there exists a B > 0 and p ∈ N such that for
every t ∈ [0, T ] the functions fj , Fj are polynomially bounded in X⋆, i.e.,

|Fj(τ(t), τ(t), Õ≤τ(t))|+ |fj(t, τ(t), Õ≤τ(t))| ≤ B(X⋆
t + 1)p + B

n∑
i=0
|ϵi|.

(v) X⋆ is L2p-integrable, i.e., E[(X⋆
T )2p] <∞.

(vi) n is square-integrable, i.e., E[n2] <∞.

(vii) The i.i.d. ϵk are independent of X, n, M, (ti)1≤i≤K , are centered and square-integrable, i.e., E[ϵk] = 0
and E[|ϵk|2] <∞.

(viii) For every 1 ≤ i ≤ n, Xti− is conditionally independent of σ(n, Mti) given Ati−.20

19One would need to check if this loss functional meets the assumptions of Heiss et al. (2023) for a rigorous proof.
20More precisely, one should formulate this assumption as “For every 1 ≤ i ≤ K, Xti−1{i≤n} is conditionally independent of

σ(n, Mti ) given Ati−.”
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(ix) For all 1 ≤ k ≤ K, 1 ≤ j ≤ dX there is some ηk,j > 0 such that P(Mk,j = 1 | σ(n,Atk−)) > ηk,j

(i.e., given the currently known information and n, for each coordinate the probability of observing it
at the next observation time is positive).

(x) We assume that for every 1 ≤ k ≤ K the process X is conditionally independent of tk given Atk−1 .

Remark C.2. All the relaxations and extensions discussed in Sections 2 to 5 hold also in this combined
setting.

As in Section 3.1, the PD-NJ-ODE uses the noisy observations Oti and Õ≤τ(t) as inputs instead of Xti and
X̃≤τ(t) and is trained with the objective functions (6) respectively (7) and their Monte Carlo approximations.

C.2 Convergence Theorem

Theorem C.3. If Assumption C.1 is satisfied and using the definitions of Appendix C.1, the claims of
Theorem 2.7 hold equivalently, upon replacing the original loss functions and their Monte Carlo approximations
by their noise-adapted versions21. In particular, we obtain convergence of our estimator Y θmin

m,Nm to the true
conditional expectation X̂ in dk.22

We start with the following result which is a combination of Lemma 3.4 and Lemma 4.6.
Lemma C.4. For any A-adapted process Z it holds that

E

[
1
n

n∑
i=1
|Mti

⊙ (Oti
− Zti−)|22

]
= E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Oti

− X̂ti−)
∣∣∣2
2

]
+ E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]
.

Proof. First note that by Assumption C.1 point (iii) we have that Xti
= Xti− almost surely and when defining

Oti− := Xti− + ϵi we therefore also have that Oti
= Oti− almost surely. Next notice that Assumption C.1

point (vii) & (viii) together with Proposition A.6 imply that Oti− is conditionally independent of σ(n, Mi)
given Ati−. Hence, for Ôti− := E[Oti− | Ati−] it follows as in Lemma 4.6 that

E

[
1
n

n∑
i=1
|Mti

⊙ (Oti− − Zti−)|22

]
= E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Oti− − Ôti−)

∣∣∣2
2

]
+ E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Ôti− − Zti−)

∣∣∣2
2

]
.

Then we can conclude the proof as in Lemma 3.4, by noting that with Proposition 4.5 we obtain,

Ôti− = X̂ti− + E[ϵi|Ati−] = X̂ti− + E[ϵi] = X̂ti−,

using that ϵi has expectation 0 and is independent of Ati−.

In the following, we use the notation Θi
m and Θ̃i

m if we speak of the projections of the sets on the weights θi

and θ̃i respectively.

Proof of Theorem C.3 – Part 1. We start by showing that X̂ ∈ D is the unique minimizer of Ψ up to
indistinguishability (as defined in Definition 2.4). Note that for every ti we have Mti

⊙ X̂ti
= Mti

⊙Xti

and that Xti = Xti− if ti /∈ J , hence with probability 1. It follows directly from Lemma C.4 that X̂ is a
minimizer of Ψ, since

Ψ(Z) = Ψ(X̂) + E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (X̂ti− − Zti−)
∣∣∣2
2

]
. (22)

21In particular, we replace the original empirical loss Φ̂N (θ) = (5) by the noise-adapted empirical loss function,

Φ̂N (θ) :=
1
N

N∑
j=1

1
n(j)

n(j)∑
i=1

∣∣∣∣M(j)
i ⊙

(
O

(j)
t

(j)
i

− Y θ,j

t
(j)
i

−

)∣∣∣∣2
2

. (21)

22For a convergence result at times t that are not observation times, see Section 5.2.
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Before we can show uniqueness of X̂, we need some additional results. For those, let Z ∈ D. Let c1 :=
E [n]1/2 ∈ (0,∞), then the Hölder inequality, together with the fact that n ≥ 1, yields

E [|Z|2] = E
[√

n√
n
|Z|2

]
≤ c1 E

[
1
n
|Z|22

]1/2
. (23)

By Lemma 4.8 and by the equivalence of 1- and 2-norm we have for some constant c3 > 0 and for any
1 ≤ k ≤ K

E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
2

]
≤ c3

c2(k)E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
2

]
. (24)

To see that X̂ is the unique minimiser up to indistinguishability, let Z ∈ D be a process which is not
indistinguishable from X̂. Hence, there exists some 1 ≤ k ≤ K such that dk(X̂, Z) > 0. We have

E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]
= E

[
1
n

K∑
i=1

1{n≥i}

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]

≥ E
[

1
n1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣2
2

]
≥ c−2

1 E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
2

]2

≥
(

c2

c1c3

)2
E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
2

]2

=
(

c2

c0c1c3

)2
dk(X̂, Z)2 > 0,

(25)

where we used (23) for the 3rd, (24) for the 4th and (1) for the last line. Together with (22) this implies
Ψ(Z) > Ψ(X̂).

Next we show that (2) can approximate X̂ arbitrarily well. Since the dimension dH can be chosen freely, let
us fix it to dH := dX . Furthermore, let us fix θ̃⋆

3 such that g̃θ̃⋆
3

= id, which is possible since we assumed that
id ∈ Ñ . Let ε > 0, Nε := ⌈2(T + 1)ε−4⌉ (implying that limε→0 Nε =∞) and Pε ⊆ BVc([0, T ]) be the closure
of the set ANε of Krach et al. (2022, Remark 3.11), which is compact. For any 1 ≤ j ≤ dX , the function fj

is continuous by Assumption C.1 and can (by abuse of notation) equivalently be written as a (continuous)
function fj(t, τ(t), Õ≤τ(t) −O0, O0). Therefore, Krach et al. (2022, Proposition 3.8) implies that there exists
an m0 = m0(ε) ∈ N and a continuous function f̂j such that

sup
(t,τ,X)∈[0,T ]2×Pε

∣∣∣fj(t, τ , X)− f̂j(t, τ , πm0(X −X0), X0)
∣∣∣ ≤ ε/2.

Since the variation of functions in Pε is uniformly bounded by a finite constant, the set of their truncated
signatures πm0(Pε) is a bounded subset in Rd for some d ∈ N (depending on dX and m0), hence its closure,
denoted by Πε, is compact. Therefore, the universal approximation theorem for neural networks (Hornik et al.,
1989, Theorem 2.4) implies that there exists an m1 = m1(ε) ∈ N and neural network weights θ̃⋆,m1

1 ∈ Θ̃1
m1

such that for every 1 ≤ j ≤ dX the function f̂j is approximated up to ε/2 by the j-th coordinate of the
neural network f̃θ̃

⋆,m1
1

∈ Ñ (denoted by f̃θ̃
⋆,m1
1 ,j) on the compact set [0, T ]2 ×Πε. Hence, combining the two

approximations we get (by triangle inequality)

sup
(t,τ,X)∈[0,T ]2×Pε

∣∣∣fj(t, τ , X)− f̃θ̃
⋆,m1
1 ,j(t, τ , πm0(X −X0), X0)

∣∣∣ ≤ ε.

Obviously, extending the input of the neural network does not make the approximation worse, by simply
setting the corresponding weights to 0, hence, also Ht− can be used as additional input. Similarly we get that
there exists an m2 = m2(ε) ∈ N and neural network weights θ̃⋆,m2

2 ∈ Θ̃2
m2

such that for every 1 ≤ j ≤ dX

sup
(t,X)∈[0,T ]×Pε

∣∣∣Fj(t, t, X)− ρ̃θ̃
⋆,m2
2 ,j(t, πm1(X −X0), X0)

∣∣∣ ≤ ε.
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As before, Ht− can be used as additional input without worsening the approximation.

Next we define the bounded output neural networks based on these neural networks. For this let us define

γ1 := max
(t,τ,X)∈[0,T ]2×Pε

∣∣∣f̃θ̃
⋆,m1
1

(t, τ , πm0(X −X0), X0)
∣∣∣

and γ2 equivalently for ρ̃θ̃
⋆,m2
2

. Since the neural networks are continuous functions they take a finite
maximum on the compact sets, hence γ1, γ2 are finite. Then we define the bounded output neural networks
fθ

⋆,m1
1

, ρθ
⋆,m2
2

∈ N with θ⋆,mi

i := (θ̃⋆,mi

i , γi). Clearly, these bounded output neural networks coincide with the
neural networks on the compact sets. Therefore, they satisfy the same ε-approximation and since Fj , fj are
bounded by U := B ((X⋆

T + 1)p +
∑n

i=0 |ϵi|) (Assumption C.1(iv)), it follows that fθ
⋆,m1
1

, ρθ
⋆,m2
2

are bounded
by U + ε. In particular, we have for ϵ < B the global bounds |fj −fθ

⋆,m1
1 ,j |∞ ≤ 3U and |Fj −ρθ

⋆,m2
2 ,j |∞ ≤ 3U .

Setting m := max(m0, m1, m2, γ1, γ2, |θ̃⋆,m2
i |2, |θ̃⋆,m2

2 |2), it follows that θ⋆
m := (θ⋆,m1

1 , θ⋆,m2
2 , θ̃⋆

3) ∈ Θm.

Now we can bound the distance between Y
θ⋆

m
t (Õ≤t) and X̂t. Whenever X⋆

T < 1/ε, the number of observations
satisfies n < 1/ε, the minimal difference between any two consecutive observation times δ > ε and all noise
terms satisfy |ϵi|2 < 1/ε we know that the corresponding path Õ≤τ(t)−O0 is an element of ANε and therefore
the neural network approximations up to ε hold. Otherwise, one of those conditions is not satisfied and the
global upper bound can be used. Hence, if t ∈ {t1, . . . , tn}, we have for F = (Fj)1≤j≤dX

and f = (fj)1≤j≤dX∣∣∣Y θ∗
m

t − X̂t

∣∣∣
1

=
∣∣∣ρθ

⋆,m2
2

(
Ht−, t, πm(Õ≤t −O0), O0

)
− F

(
t, t, Õ≤t

)∣∣∣
1

≤ εdX1{X⋆
T

<1/ε}1{n<1/ε}1{δ>ϵ}1{∀0≤i≤n:|ϵi|2<1/ε}

+ dX3U
(
1{X⋆

T
≥1/ε} + 1{n≥1/ε} + 1{δ≤ϵ} + 1{∃0≤i≤n:|ϵi|2≥1/ε}

)
,

and if t /∈ {t1, . . . , tn},∣∣∣Y θ∗
m

t − X̂t

∣∣∣
1
≤
∣∣∣Y θ∗

m

τ(t) − X̂τ(t)

∣∣∣
1

+
∫ t

τ(t)

∣∣∣fθ
⋆,m1
1

(
Hs−, s, τ(t), πm(Õ≤τ(t) −O0), O0

)
− f(s, τ(t), Õ≤τ(t))

∣∣∣
1

ds

≤ ε(T + 1)dX1{X⋆
T

<1/ε}1{n<1/ε}1{δ>ε}1{∀0≤i≤n:|ϵi|2<1/ε}

+ (T + 1)dX3U
(
1{X⋆

T
≥1/ε} + 1{n≥1/ε} + 1{δ≤ε} + 1{∃0≤i≤n:|ϵi|2≥1/ε}

)
.

Moreover, by equivalence of the 1- and 2-norm, there exists a constant c > 0 such that for all t ∈ [0, T ]∣∣∣Y θ∗
m

t − X̂t

∣∣∣
2
≤ c ε(T + 1)dX + c(T + 1)dX3U

(
1{X⋆

T
≥1/ε} + 1{n≥1/ε} + 1{δ≤ε} + 1{∃0≤i≤n:|ϵi|2≥1/ε}

)
=: cm.

So far, we have fixed an ε > 0 and argued that there exists some m ∈ N such that the neural network
approximation bounds hold with ε-error. However, what we actually need to show is that this error converges
to 0 when increasing the truncation level and network size m. Therefore, we define εm ≥ 0 to be the smallest
number such that the above bounds hold with error εm when using an architecture with signature truncation
level m ∈ N and weights in Θm. Since increasing m can only make the approximations better (by setting the
new weights to 0, the same approximation error as before is achieved, but potentially there exists a better
choice), we have εm1 ≥ εm2 for any m1 ≤ m2. In particular (εm)m≥0 is a a decreasing sequence, hence, our
derivations before proof that limm→∞ εm = 0. In the following we denote by θ⋆

m ∈ Θm the best choice for the
weights within the set Θm to approximate the functions Fj , fj .

Since θmin
m ∈ argminθ∈Θm

{Φ(θ)} (note that at least one minimum exists in the compact set Θm since Φ is
continuous), we get with Lemma C.4 that

min
Z∈D

Ψ(Z) ≤ Φ(θmin
m ) ≤ Φ(θ∗

m) = E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (Oti − Y
θ∗

m
ti

)
∣∣∣2
2

]

= Ψ(X̂) + E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Y

θ∗
m

ti−)
∣∣∣2
2

]
≤ Ψ(X̂) + E

[
c2

m

]
.

(26)
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Integrability of |X⋆
T |2, |n| and |ϵi| together with Assumption C.1(ii) on δ imply that

1{X⋆
T

≥1/εm} + 1{n≥1/εm} + 1{δ≤εm} + 1{∃0≤i≤n:|ϵi|2≥1/εm}
P−a.s.−−−−→
m→∞

0.

Therefore, we have for a suitable constant c > 0 (not depending on εm and m),

E
[
c2

m

]
≤ cε2

m+cE
[
U2
(
1{X⋆

T
≥1/εm} + 1{n≥1/εm} + 1{δ≤εm} + 1{∃0≤i≤n:|ϵi|2≥1/εm}

)]
m→∞−−−−→ 0,

by dominated convergence, since U is L2-integrable. Indeed,

E[U2] ≤ 8B2E

[
(X⋆

t + 1)2p + n

n∑
i=0
|ϵi|2

]
= 8B2 (E [(X⋆

t + 1)2p
]

+ E[n2]E
[
|ϵ0|2

])
<∞, (27)

using Cauchy-Schwarz inequality for the first step, that the ϵi are i.i.d. and independent of n for the equality
and the integrability of X⋆, ϵ0 and n2 for the upper bound. Using this and Ψ(X̂) = minZ∈D Ψ(Z), we get
from (26)

min
Z∈D

Ψ(Z) ≤ Φ(θmin
m ) ≤ Φ(θ∗

m) m→∞−−−−→ min
Z∈D

Ψ(Z). (28)

Finally, we show that limm→∞ dk

(
X̂, Y θmin

m

)
= 0 for all 1 ≤ k ≤ K. Applying (23), (24) and (1) in reverse

order than it was done in (25) and finally Lemma C.4, yields

dk

(
X̂, Y θ∗

m

)
≤ c0 c1 c3

c2
E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Y

θ∗
m

ti−)
∣∣∣2
2

]1/2

= c0 c1 c3

c2

(
Φ(θ∗

m)−Ψ(X̂)
)1/2 m→∞−−−−→ 0, (29)

which completes the first part of the proof.

Next we assume the size m of the neural network and of the signature truncation level is fixed and we study
the convergence of the Monte Carlo approximation when the number of training paths N increases. The
convergence analysis is based on Lapeyre & Lelong (2021, Chapter 4.3) and follows Herrera et al. (2021,
Theorem E.13). We define the separable Banach space S := {x = (xi)i∈N ∈ ℓ1(Rd) | ∥x∥ℓ1 < ∞} for a
suitable d (see below) with the norm ∥x∥ℓ1 :=

∑
i∈N|xi|2, the function

G(x, y, m) := |m⊙ (x− y)|2

and ξj := (ξj,0, . . . , ξj,n(j) , 0, . . . ), where ξj,k := (t(j)
k , O

(j)
t

(j)
k

, M
(j)
t

(j)
k

, πm(Õ≤t
(j)
k

,(j))) ∈ Rd and t
(j)
k , M

(j)
t

(j)
k

and O
(j)
t

(j)
i

(with 0 entries for coordinates which are not observed) are random variables describing the j-th realization
of the training data (cf. Section 2). Let nj(ξj) := maxk∈N{ξj,k ̸= 0}, tk(ξj) := t

(j)
k , Ok(ξj) := O

(j)
t

(j)
k

and

Mk(ξj) := M
(j)
t

(j)
k

. By this definition we have n(j) = nj(ξj) P-almost-surely. Moreover, we have that ξj are

i.i.d. random variables taking values in S. Let us write Y θ
t (ξ) to make the dependence of Y on the input and

the weight θ explicit. Then we define

h(θ, ξj) := 1
nj(ξj)

nj(ξj)∑
i=1

G
(

Oi(ξj), Y θ
ti(ξj)−(ξj), Mi(ξj)

)2
.

The following lemma is known from Krach et al. (2022).
Lemma C.5. Almost-surely the random function θ ∈ Θm 7→ Y θ

t is uniformly continuous for every t ∈ [0, T ].

Now we are ready to prove the second part of our main theorem.
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Proof of Theorem C.3 – Part 2. First we note that, Y θ
t is the (integration over the) output of (bounded

output) neural networks and therefore bounded in terms of the input, the weights (which are bounded by m),
T and some constant depending on the architecture and the activation functions of the neural network. In
particular we have that |Y θ

t (ξj)| ≤ B̃ ≤ B̃
(

(X⋆,(j)
T + 1)p +

∑nj(ξj)
i=0 |ϵ(j)

i |
)

for all t ∈ [0, T ] and θ ∈ Θm for

some constant B̃ (possibly depending on m), where X⋆,(j), ϵ
(j)
i corresponds to the input ξj . Hence,

G
(

Oi(ξj), Y θ
ti(ξj)−(ξj), Mi(ξj)

)2
=
∣∣∣Mi(ξj)⊙ (Oi(ξj)− Y θ

ti(ξj)−(ξj))
∣∣∣2
2

≤

(B + B̃)

(X⋆
T + 1)p +

nj(ξj)∑
i=0
|ϵi|

2

=
(

B + B̃

B
U (j)

)2

,

where U (j) is as defined before corresponding to the input ξj . Hence,

E
[

sup
θ∈Θm

h(θ, ξj)
]
≤ E

 1
nj(ξj)

nj(ξj)∑
i=1

(
B + B̃

B
U (j)

)2
 <∞, (30)

by Assumption 2.1 and (27). By Lemma C.5, the function θ 7→ h(θ, ξ1) is continuous, hence, we can apply
Krach et al. (2022, Lemma 4.6), yielding that almost-surely for N →∞ the function

θ 7→ 1
N

N∑
j=1

h(θ, ξj) = Φ̂N (θ) (31)

converges uniformly on Θm to
θ 7→ E[h(θ, ξ1)] = Φ(θ). (32)

Moreover, we deduce from Krach et al. (2022, Lemma 4.6) that d(θmin
m,N , Θmin

m )→ 0 a.s. when N →∞. Then
there exists a sequence (θ̂min

m,N )N∈N in Θmin
m such that |θmin

m,N − θ̂min
m,N |2 → 0 a.s. for N → ∞. The uniform

continuity of the random functions θ 7→ Y θ
t on Θm implies that for any fixed deterministic and bounded ξ0

(taking values in the same space as the ξj),

|Y θmin
m,N

t (ξ0)− Y
θ̂min

m,N

t (ξ0)|2 → 0 a.s. for all t ∈ [0, T ] as N →∞.

By continuity of G this yields |h(θmin
m,N , ξ0) − h(θ̂min

m,N , ξ0)| → 0 a.s. as N → ∞. Let ξ0 now be a random
variable which is independent of and identically distributed as the ξj defined on a copy (Ω0,F0,F0,P0) of the
filtered probability space (Ω,F,F ,P). Then the above statements hold for ξ0(ω0) for P0-a.e. fixed ω0. Hence,
we have for P-a.e. fixed ω, that |h(θmin

m,N (ω), ξ0)− h(θ̂min
m,N (ω), ξ0)| → 0 P0-a.s. as N →∞. With (30) we can

apply dominated convergence which yields

lim
N→∞

Eξ0

[
|h(θmin

m,N (ω), ξ0)− h(θ̂min
m,N (ω), ξ0)|

]
= 0 for P-a.e. ω.

Since for every integrable random variable Z we have 0 ≤ |E[Z]| ≤ E[|Z|] and since θ̂min
m,N ∈ Θmin

m we can
deduce that for P-a.e. fixed ω,

lim
N→∞

Φ(θmin
m,N (ω)) = lim

N→∞
Eξ0

[
h(θmin

m,N (ω), ξ0)
]

= lim
N→∞

Eξ0

[
h(θ̂min

m,N (ω), ξ0)
]

= Φ(θmin
m ). (33)

Now by triangle inequality, for P-a.e. fixed ω, we have for Φ̂Ñ and Φ defined through test samples ξ̃j on Ω0,
i.e., independent of and identically distributed as the training samples ξj yielding θmin

m,N (ω),

|Φ̂Ñ (θmin
m,N (ω))− Φ(θmin

m )| ≤ |Φ̂Ñ (θmin
m,N (ω))− Φ(θmin

m,N (ω))|+ |Φ(θmin
m,N (ω))− Φ(θmin

m )|. (34)

(31) and (32) imply that the first term on the right hand side converges to 0 when Ñ →∞ and (33) implies
that the second term on the right hand side converges to 0 a.s. when N → ∞. Moreover, the uniform
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convergence in (31) and (32) yields the same result when setting Ñ = N . Furthermore, Krach et al. (2022,
Lemma 4.6) yields the same result for Φ̂N (θmin

m,N )(ω), i.e., when Φ̂N and Φ are defined through the ξj on the
probability space corresponding to the training data. This finishes the proof of the convergence with respect
to N .

Finally, we want to show the joint convergence. We define N0 := 0 and for every m ∈ N

Nm(ω) := min
{

N ∈ N | N > Nm−1(ω), |Φ(θmin
m,N (ω))− Φ(θmin

m )| ≤ 1
m

}
,

which is possible due to (33) for P-a.e. ω. Then (28) implies that for P-a.e. ω

|Φ(θmin
m,Nm(ω)(ω))−Ψ(X̂)| ≤ 1

m + |Φ(θmin
m )−Ψ(X̂)| m→∞−−−−→ 0.

Therefore, we can apply the same arguments as in the first part of the proof (cf. (29)) to show that

dk

(
X̂, Y θmin

m,Nm(ω)(ω)
)
≤ c0 c1 c3

c2

(
Φ(θmin

m,Nm(ω)(ω))−Ψ(X̂)
)1/2 m→∞−−−−→ 0,

for every 1 ≤ k ≤ K and for P-a.e. ω.

The following corollary follows as in Krach et al. (2022).
Corollary C.6. In the setting of Theorem C.3, we also have that P-a.s.

Φ(θmin
m,Nm

) m→∞−−−−→ Ψ(X̂) and Φ̂Ñm
(θmin

m,Ñm
) m→∞−−−−→ Ψ(X̂),

for a suitable increasing random sequence (Ñm)m∈N in N.

D Experimental Details

Our experiments are based on the implementation used by Krach et al. (2022), which is available at
https://github.com/FlorianKrach/PD-NJODE. Therefore, we refer the reader to its Appendix for any
details that are not provided here.

D.1 Differences between the Implementation and the Theoretical Description of the PD-NJ-ODE

Since we use the same implementation of the PD-NJ-ODE, all differences between the implementation and
the theoretical description listed in Krach et al. (2022, Appendix D.1.1) also apply here. In particular, we
use standard neural networks for fθ1 and ρθ2 with additional inputs. In contrast to the original objective
function, we do not need to add a regularizing constant for the noise-adapted objective functions (6) and (7),
since no square-root needs to be computed. We do not use the ũ-coordinates of X̃≤t (i.e., we only use the
first dX coordinates and omit the remaining coordinates from dX + 1 to 2dX) in the implementation, since
we anyways use the observation times and masks as additional inputs for ρθ2 .

D.2 Details for Noisy Observations

Dataset. We sample paths from a standard 1-dimensional Brownian motion on the interval [0, 1], i.e., with
T = 1, and discretisation time grid with step size 0.01. At each time point we observe the process with
probability p = 0.1. Whenever the process is observed, an independent observation noise is sampled from a
centered normal distribution with standard deviation σ = 0.5 and added to the observation. The model never
sees the observation of the original process, but only the noisy observation. We sample 20′000 paths of which
80% are used as training set and the remaining 20% as test set.

Architecture. We use the PD-NJ-ODE with the following architecture. The latent dimension is dH = 100,
the readout network is a linear map and the other 2 neural networks have the same structure of 1 hidden layer
with ReLU activation function and 100 nodes. The signature is used up to truncation level 3, the encoder is
recurrent and the decoder uses a residual connection.
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Training. We use the Adam optimizer with the standard choices β = (0.9, 0.999), weight decay of 0.0005
and learning rate 0.001. Moreover, a dropout rate of 0.1 is used for every layer and training is performed
with a mini-batch size of 200 for 200 epochs. The model is trained once with the noise-adapted objective
function (6) and once with the original one (3).

D.3 Details for Dependent Observation Framework

Dataset. We use the Euler scheme to sample paths from a 1-dimensional Black–Scholes model (geometric
Brownian motion) with drift µ = 2, volatility σ = 0.3, and starting value X0 = 1. At each time point
we observe the process with the probability P(Mi = 1 | Ati−) = E[Mi | Ati−], where Mi is described in
Example 4.13, using η = 3 and p = 0.1. We use the same discretisation grid and dataset sizes as in
Section D.2.

Architecture. We use the PD-NJ-ODE with the following architecture. The latent dimension is dH = 50
and all 3 neural networks have the same structure of 2 hidden layers with tanh activation function and 50
nodes. The signature is used up to truncation level 3, the encoder is recurrent and the decoder does not use
a residual connection.

Training. Same as in Section D.2 but only trained with original loss function (3).

D.4 Details for Physionet with Observation Noise

Dataset. Details on the standard Physionet dataset are given in Herrera et al. (2021, Appendix F.5.3). In
particular, we use a train-test split of 80% to 20% (i.e., N = 6 400 training paths, and Ntest = 1 600 test
paths). On the train set, the entire path amounting to 48 hours is used as input to the model, while on the test
set only the first 24 hours are used as input and the second 24 hours are used to compute the evaluate MSE.
In particular, the model predicts starting from 24 hours until 48 hours and at every time point where there is
an observation, the squared error is computed between the observation and the prediction. Importantly, the
observation is not used as an input to the model afterwards. I.e., we evaluate Y

θmin
m,N

ti
(X̃≤24 hours), while in

theory we could get even better results by evaluating Y
θmin

m,N

ti
(X̃≤ti−).23 For the datasets with synthetically

added noise, the variance of the noise is chosen relative to the variance of the data. Since the dX = 41
different coordinates of the Physionet dataset describe very different health parameters on different scales,
we first compute each coordinate’s standard deviation σdata,j on the training set. Then we add i.i.d. noise
samples ϵi,j ∼ N(0, ζ2 σ2

data,j), for ζ ≥ 0, to each observed coordinate Xti,j of input samples for the model,
i.e., to each observation of the training set as well as to each observation on the first 24 hours of the test
set (but not to any of the observations on the second 24 hours of the test set, which are exclusively used for
evaluating the model). This is done for ζ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, where the same seed is used for each of
them, to make the results more comparable.

Architecture. We use the PD-NJ-ODE with the following architecture. The latent dimension is dH = 50
and all 3 neural networks have the same structure of 1 hidden layer with tanh activation function and 50
nodes. The signature is used up to truncation level 2, the encoder is recurrent and the decoder uses a residual
connection.

Training. For each dataset the model is trained with mini-batch size 50 for 100 epochs, once with the
noise-adapted objective function (6) and once with the original one (3). Otherwise the same as in Section D.2.

23In practice both predictions Y
θmin

m,N

ti
(X̃≤24 hours) and Y

θmin
m,N

ti
(X̃≤ti−) can be useful depending on the situation. One has to

use Y
θmin

m,N

t (X̃≤24 hours) if one is at the situation that one has observed the patient for exactly 24 hours and wants to forecast
the next 24 hours. On the other hand, at any time s one should use all the currently available information to make the optimal

prediction Y
θmin

m,N

t (X̃≤s) = Y
θmin

m,N

t (X̃≤τ(s)). While our model is flexible enough to make predictions Y
θmin

m,N

t (X̃≤s) for every

combination t > s, we only evaluate Y
θmin

m,N

ti
(X̃≤24 hours), since some competing methods compared to in Herrera et al. (2021)

are limited to this restricted setting of one fixed value of s = 24 hours. However, especially if one is interested in now-casting, the

performance of Y
θmin

m,N

ti
(X̃≤ti−) would be the more relevant metric (in which we expect our model to outperform its competitors

even more clearly).
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We always report the minimal evaluation MSE among all trained epochs, as was done in prior works. Due to
the shorter training compared to the 175 epochs in Krach et al. (2022), the evaluation MSE of the original
PD-NJ-ODE on the dataset without synthetic noise is slightly larger (2 · 10−3 compared to 1.93 · 10−3). We
could imagine that for our new loss, one should actually use even more epochs rather than less epochs, since
the additional term that was only present in the old loss pushed the jump-network ρθ2 faster into the right
direction directly from the start of the training, while the new loss trains the jump-network only indirectly
and thus probably slower.

E Pseudocode

In addition to our code repository (https://github.com/FlorianKrach/PD-NJODE), we provide pseudocode
for the key parts of our method. We remark that multiple python packages are available for computing the
signature of a process numerically, as for example ESig, iisignature and signatory. Therefore, we do not
provide pseudocode for its computation. For our implementation, we use the great iisignature package
implemented by Reizenstein & Graham (2018). We note that our definition of X̃≤t, with its time-consistency,
allows for efficient online updates of the signature (i.e., we do not have to recompute the signature for the
whole path at every new observation time tk).

In Algorithm 1 we present the forward pass of the PD-NJ-ODE, which can be used for training as well as for
evaluating the model. Algorithms 2 and 3 present the standard loss function and the loss function for noisy
observations, respectively. The training for the model follows the standard neural network training approach
via stochastic gradient descent (SGD) and is presented in Algorithm 4. We assume that a library is used
for the neural network implementation which allows for automatic differentiation, as for example PyTorch
(Paszke et al., 2019), which we used in our implementation. For simplicity, we present the simplest type of
SGD, with a fixed step size and no momentum or weight decay. In our implementation we actually use the
more sophisticated method Adam (Kingma & Ba, 2014).

Notation

Fj The Doob-Dynkin Lemma (Taraldsen, 2018, Lemma 2) implies the existence of measurable functions
Fj : [0, T ]× [0, T ]×BV c([0, T ])→ R such that X̂t,j = Fj

(
t, τ(t), X̃≤τ(t)), since X̂t,j := E[Xt,j |At] =

E[Xt,j |X̃≤τ(t)] (see Section 2). The goal of our model Y θ is to learn this function F = (Fj)1≤j≤dX
,

i.e., limm→∞ Y
θmin

m,Nm
t

(
X̃≤τ(t)) = F

(
t, τ(t), X̃≤τ(t)) = X̂t, while we are usually not able to write

down F explicitly. In settings with noise (e.g., in Section 3 and in the appendix) we replace X̃≤τ(t)

by Õ≤τ(t). 4, 8, 9, 16, 34, 36, 38, 39

K The “maximal” value of n, i.e., the essential supremum K := sup
{

k ∈ N | P̃(n ≥ k) > 0
}
∈ N ∪ {∞} of n

(see Section 2). In Sections 2 and 3, K is defined with respect to P̃, but in Section 4 (and all sections
thereafter including the appendix), K is defined with respect to P. 3–8, 13–15, 18, 20–24, 36–38, 40,
42, 44, 46, 49

M The observation mask M = (Mk)0≤k≤K , which is a sequence of random variables on (Ω̃, F̃ , P̃) taking
values in {0, 1}dX such that Mk is F̃tk

-measurable. The j-th coordinate of the k-th element of the
sequence M , i.e., Mk,j , signals whether Xtk,j , denoting the j-th coordinate of the stochastic process
at observation time tk, is observed. By abuse of notation we also write Mtk

:= Mk (see Section 2).
In Sections 2 and 3, M is defined on

(
Ω̃, F̃ , P̃

)
, but in Section 4 (and all sections thereafter including

the appendix), M is defined on (Ω,F ,P). 3–6, 8–10, 12–20, 33, 36–41, 43, 45–47, 49

O The noisy observations Otk
:= Xtk

+ ϵk for 0 ≤ k ≤ n, where ϵk is the noise with known mean (see
Section 3.1). For the majority of the paper we assume that the noise has zero mean (whenever we
use (the MC-approximation of) the loss (6) and (7)), except Section 3.3 where we assume any known
mean βi(Õ≤τ(t)) := E[ϵi|Ati−] and thus use (the MC-approximation of) the loss (10). We define
Oti− := Xti− + ϵi and therefore also have that Oti = Oti− almost surely. In Section 3, ϵk are i.i.d.
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Algorithm 1 Forward pass of the PD-NJ-ODE. A small step size ∆t is fixed and we denote tn+1 := T .
ODESolve(f, x, (a, b)) numerically solves the 1st-order ODE defined by f , taking inputs x, for t ∈ (a, b).

Input: Data points with timestamps and masks {(Xi, ti, Mi)}i=0...n

Output: Prediction process Y
set H0− = 0
for i = 0 to n do

construct X̃≤ti from data
Si = πm(X̃≤ti −X0) ▷ compute truncated signature
Hti

= ρθ2(Hti−, ti, Si, X0) ▷ Update hidden state given next observation xi

Yti = g̃θ̃3
(Hti) ▷ compute output

s← ti

while s + ∆t < ti+1 do
Hs+∆t = ODESolve(fθ1 , (Hs, s, ti, Si, X0), (s, s + ∆t)) ▷ get next hidden state
Ys+∆t = g̃θ̃3

(Hs+∆t) ▷ compute output
s← s + ∆t

end while
Hti+1− = ODESolve(fθ1 , (Hs−, s, ti, Si, X0), (s, ti+1))
Yti+1− = g̃θ̃3

(H(s+∆t)−)
end for

Algorithm 2 Computation of the standard loss for PD-NJ-ODE. A small ϵ > 0 is used for numerical stability.
Input: N samples of data points with timestamps and masks {(X(j)

i , t
(j)
i , M

(j)
i )}i=0...n(j) and the respective

prediction process Y (j) of PD-NJ-ODE for 1 ≤ j ≤ N
Output: Loss L

L = 1
N

∑N
j=1

1
n(j)

∑n(j)

i=1

(∣∣∣M (j)
i ⊙

(
X

(j)
i − Y

(j)
ti

)
+ ϵ
∣∣∣
2

+
∣∣∣M (j)

i ⊙
(

X
(j)
i − Y

(j)
ti−

)
+ ϵ
∣∣∣
2

)2

Algorithm 3 Computation of the noisy observation loss for PD-NJ-ODE.
Input: N samples of noisy data points with timestamps, masks and conditional means of the noise
{(O(j)

i , t
(j)
i , M

(j)
i , β

(j)
i )}i=0...n(j) and the respective prediction process Y (j) of PD-NJ-ODE for 1 ≤ j ≤ N

Output: Loss L

L = 1
N

∑N
j=1

1
n(j)

∑n(j)

i=1

∣∣∣M (j)
i ⊙

((
O

(j)
i − β

(j)
i

)
− Y

(j)
ti−

)∣∣∣2
2

Algorithm 4 Training of PD-NJ-ODE.
Input: step size α; number of epochs E; N samples of noisy data points with timestamps, masks and
conditional means of the noise {(O(j)

i , t
(j)
i , M

(j)
i , β

(j)
i )}i=0...n(j) for 1 ≤ j ≤ N

Output: trained network parameters θ = (θ1, θ2, θ̃3)
randomly initialize θ
for e = 0 to E do

split the dataset into random batches B
for b in B do

for each sample j in b do
compute prediction Y (j) with Algorithm 1

end for
compute loss L over all samples in the batch b with Algorithm 2 or 3
update NN parameters θ ← θ − α∇θL

end for
end for
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random variables on (Ω̃, F̃ , P̃), but in Section 4 (and all sections thereafter including the appendix),
ϵk are i.i.d. random variables on (Ω,F ,P). 7–12, 25, 33, 34, 36–41, 45–48

T The largest time T ∈ R>0 we consider (see Section 2). 3–5, 8–10, 17–19, 21–24, 36, 38–42, 44–49

X⋆ The running maximum process of X, i.e., X⋆
t (ω) := sups∈[0,t] |Xs(ω)|1 ∀t ∈ [0, T ] ∀ω ∈ Ω with X⋆ :

(Ω,F ,F,P)→ R≥0
[0,T ] (see Section 2). 3–5, 8–10, 17, 36, 39–41

X The stochastic process X := (Xt)t∈[0,T ] we want to study (which is an adapted càdlàg stochastic process
X : (Ω,F ,F,P)→ RdX

[0,T ]). In our notation X
(j)
t,k refers to the k-th coordinate of the j-th path at

time t for 1 ≤ k ≤ dX , 1 ≤ j ≤ N and t ∈ [0, T ] (see Section 2). E.g., for a medical data-set, the index
j could correspond to a patient and the first coordinate could correspond to the body-temperature
and the second coordinate could correspond to the blood-pressure, then X

(7)
t,1 (ω) = 36.9 would mean

that the 7th patient had a body temperature of 36.9°C at time (or age) t. 2–27, 33–37, 43–49

Y The output Y θ(X̃≤τ(·)) of our PD-NJ-ODE (2) which should approximate X̂ for properly trained parameters
θ (see Definition 2.6). We use the short notation Y θ,j := Y θ(X̃≤τ(·),(j)). 6–10, 14, 17, 21–24, 33–35,
37, 39–45

Ô The conditional expectation of O, which is its L2-optimal prediction (Krach et al., 2022, Proposition 2.5)
given the currently available information, is defined as Ôti− := EP×P̃[Oti−|Ati−] = X̂ti− (see the
proof of Lemma 3.4). Only directly at observation times, Ôti

and X̂ti
deviate from each other; i.e., in

general X̂ti,k = E[Xti,k | Ati
] ̸= Oti,k = E[Oti,k | Ati

] = Ôti,k if Mi,k = 1 (see Section 3). In Section 3,
the expectation is taken with respect to P× P̃, but in Section 4 (and all sections thereafter including
the appendix), the expectation is taken with respect to P. 9, 37

X̂ = (X̂t)0≤t≤T The conditional expectation process of X, which is its L2-optimal prediction (Krach et al.,
2022, Proposition 2.5) given the currently available information, is defined as X̂ = (X̂t)0≤t≤T , with
X̂t := EP×P̃[Xt|At] (see Section 2). In Sections 2 and 3, the expectation is taken with respect to
P× P̃, but in Section 4 (and all sections thereafter including the appendix), the expectation is taken
with respect to P. 3, 4, 6–11, 14–17, 20–24, 34, 36–40, 42, 44, 46

Φ̂N The objective function Φ̂N : Θ → R, θ 7→ Φ̂N (θ) := Ψ(Y θ(X)) on the parameter-space Θ for a finite
number of N ∈ N training paths (i.e., the Monte Carlo approximation of Φ). In Sections 2, 4
and 6.2, Φ̂N is defined in Equation (5) (this old objective function only leads to the correct results
for noiseless observations, but in Section 3 and in the appendix, Φ̂N is defined analogously via (6)
and (7) (this new objective function is different from the old one and even leads to the right result
for noisy observations). In Sections 6.1 and 6.3 we compare both losses against each other. Note
that in Section 3.3 we use another modification of the loss (10) for the case of noise with known
non-zero mean. Note that these 3 variants of Φ̂N are the loss functions on which we actually train
our parameters in practice with finitely many training data. 6–8, 34, 36, 37, 41, 42, 47, 48

(Ω,F ,F,P) The filtered probability space (Ω,F ,F := (Ft)0≤t≤T ,P) on which X is defined (see Section 2). In
Section 4 (and all sections thereafter including the appendix) all stochastic objects X, n, K, ti, τ , M,At

are defined on this probability space. However, in Sections 2 and 3 only X is defined on this space,
while the observation framework n, K, ti, τ , M is defined on a different filtered probability space(
Ω̃, F̃ , F̃, P̃

)
. 3–10, 13–16, 19, 21–23, 36, 37, 40–44, 46–49(

Ω̃, F̃ , F̃, P̃
)

The filtered probability space
(
Ω̃, F̃ , F̃ := (F̃t)0≤t≤T , P̃

)
on which n, K, ti, τ , M are defined

describing the observation framework, but X is not defined on this space (see Section 2). In Section 4
(and all sections thereafter including the appendix) this space is not needed since all stochastic
objects X, n, K, ti, τ , M,At are defined on (Ω,F ,F,P). However, in Sections 2 and 3 this space is
used for n, K, ti, τ , M related to the events of observations. 3–10, 13, 44, 46–49

A := (At)t∈[0,T ] The filtration of the currently available information A := (At)t∈[0,T ] defined by

At := σ (Xti,j , ti, Mti | ti ≤ t, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,
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in all sections, where we have noiseless observations Xti
and analogously defined as

At := σ (Oti,j , ti, Mti
| ti ≤ t, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,

in all other sections, where we have noisy observations Oti
. In both cases this corresponds to the

information obtained from seeing the observations until time t where σ(·) denotes the generated
σ-algebra (see Sections 2 and 3.1) We use the notion of stopped σ-algebras

Atk
:= σ (Xti,j , ti, Mti

| i ≤ k, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,

and pre-stopped σ-algebras

Atk− := σ (Xti,j , ti, Mti , tk | i < k, j ∈ {1 ≤ l ≤ dX |Mti,l = 1})

from Karandikar & Rao (2018, Definitions 2.37 and 8.1). In the sections with noise, we replace X by
O . 3–6, 8–23, 33, 36, 37, 43, 44, 46, 47, 49

D The set of all càdlàg RdX -valued A-adapted processes (see Section 2). In Sections 2 and 3, the stochastic
processes in D live on (Ω × Ω̃,F ⊗ F̃ ,F ⊗ F̃,P × P̃), but in Section 4 (and all sections thereafter
including the appendix), they live on (Ω,F ,F,P). 6–10, 16, 17, 37–40, 47

J The random set of the jump times J : (Ω,F ,P)→ P (([0, T ])) of X (see Section 2). 3, 4, 36, 37

N The set N of bounded output neural networks consists of all feed-forward neural networks that have
bounded outputs. In particular we assume that the final activation function applied to the output of
the neural network is the bounded output activation function Γγ = (·) min

(
1, γ

|(·)|2

)
(see Section 2).

Throughout the paper we assume that the functions fθ1 , ρθ2 ∈ N in the PD-NJ-ODE (2) are bounded
output feedforward neural networks. Note that this assumption is not really important in practice
but facilitates our theoretical proof. 5, 6, 39, 48, 49

N(µ, σ2) The normal distribution N(µ, σ2) (also known as Gaussian distribution) with mean µ and standard
deviation σ. 12, 19, 20, 26, 43

P The powerset P(S) of a set S is the set of all subsets of S. 47

Φ The objective function Φ : Θ→ R, θ 7→ Φ(θ) := Ψ(Y θ(X)) on the parameter-space Θ in expectation (i.e.,
“for an infinite amount of training paths”). In Sections 2, 4 and 6.2, the old objective function given
in (3) and (4) that only works for noiseless observations is used, but in Section 3 and in the appendix,
the new objective function given in (6) and (7) that also works for noisy observations is used. In
Sections 6.1 and 6.3 we compare both losses against each other. Note that in Section 3.3 we use
another modification of the loss (10) for the case of noise with known non-zero mean. Φ(θ) is the
expected value of Φ̂N (θ), where Φ̂N is the loss we actually train on based on N training paths. 6–8,
10, 16, 17, 24, 39–42, 46, 48

Ψ The objective function Ψ : D→ R (cf. equivalent objective function from Remark 4.7 & Appendix A.1.4
of Krach et al. (2022)) on the path-space D in expectation (i.e., “for an infinite amount of training
paths”). In Sections 2, 4 and 6.2, the old objective function (3) that only works for noiseless
observations is used, but in Section 3 and in the appendix, the new objective function (6) that also
works for noisy observations is used. In Sections 6.1 and 6.3 we compare both losses against each
other. Note that in Section 3.3 we use another modification of the loss (10) for the case of noise with
known non-zero mean. 6–10, 16, 17, 20, 24, 34, 36–40, 42, 46, 47

Θm The compact subset Θm ⊂ Θ consists of all θ =
(
θ1, θ2, θ̃3

)
=
(
(θ̃1, γ1), (θ̃2, γ2), θ̃3

)
∈ Θ that correspond

to (bounded output) neural networks with widths and depths that are at most m and such that the
truncated signature of level m or smaller is used and such that the norms of the weights θ̃i and the
bounds γi are bounded by m. I.e., Θm := {θ = ((θ̃1, γ1), (θ̃2, γ2), θ̃3) ∈ Θ̂m | |θ̃i|2 ≤ m, γi ≤ m} ⊂
Θm ⊂ Θ, where Θ̂m ⊂ Θ is defined as the set of possible parameters for the 3 (bounded output) neural
networks, such that their widths and depths are at most m and such that the truncated signature
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of level m or smaller is used (see Section 2). We use the notation24 Θi
m :=

{
θi

∣∣ (θ1, θ2, θ̃3
)
∈ Θm

}
and Θ̃i

m :=
{

θ̃i

∣∣ ((θ̃1, γ1), (θ̃2, γ2), θ̃3
)
∈ Θm

}
for the projections of the sets on the weights θi and θ̃i

respectively. 6, 7, 10, 35, 37–41, 48

Θ The set of all possible trainable parameters θ = (θ1, θ2, θ̃3) ∈ Θ for our our PD-NJ-ODE (2) (see
Definition 2.6). 6–8, 24, 34, 35, 46–49

γ The parameters γ are contained in θ =
(
(θ̃1, γ1), (θ̃2, γ2), θ̃3

)
and bound the outputs of bounded output

neural networks. I.e., for every bounded output neural network fθ1 , ρθ2 ∈ N it holds that |fθ1(x)|2 ≤ γ1
and |ρθ2(x)|2 ≤ γ2, because of the bounded output activation function Γγi : Rd → Rd, x 7→ Γγi(x) =
x ·min

(
1, γi

|x|2

)
(see Section 2). I.e., fθ1(x) = f(θ̃1,γ1)(x) = Γγ1

(
f̃θ̃1

(x)
)

and ρθ2(x) = ρ(θ̃2,γ2)(x) =
Γγ2

(
ρ̃θ̃2

(x)
)
. 5–7, 34, 39, 47–49

τ The last observation time τ(t) before a certain time t, i.e., τ : [0, T ] × Ω̃ → [0, T ], (t, ω̃) 7→ τ(t, ω̃) :=
max{ti(ω̃)|0 ≤ i ≤ n(ω̃), ti(ω̃) ≤ t} (see Section 2). In Sections 2 and 3, τ is defined on

(
Ω̃, F̃ , P̃

)
,

but in Section 4 (and all sections thereafter including the appendix), τ is defined on (Ω,F ,P), i.e.,
τ : [0, T ]× Ω→ [0, T ]. 3, 4, 6–8, 10, 12, 13, 20, 23, 34, 36–39, 43, 44, 46, 48

θmin
m ∈ Θmin

m The set of all minimizers θmin
m ∈ Θmin

m := argminθ∈Θm
{Φ(θ)} of the objective function Φ

(corresponding to infinitely many training data) under the constraints of Θm for any given m ∈ N
(see Theorem 2.7). 7, 9, 14, 16, 17, 21–23, 37, 39–43

θmin
m,N ∈ Θmin

m,N The set of all minimizers θmin
m,N ∈ Θmin

m := argminθ∈Θm
{Φ̂N (θ)} of the objective function Φ̂N

(corresponding to N training paths) under the constraints of Θm for any given m, N ∈ N (see
Theorem 2.7). 7, 21–23, 33, 35, 41, 42, 44

θ The trainable parameters θ = (θ1, θ2, θ̃3) ∈ Θ contain all trainable parameters. I.e., θ contains θi = (θ̃i, γi)
for i ∈ {1, 2} which parameterise the bounded output feedforward neural networks fθ1 , ρθ2 ∈ N and
θ̃3 parameterize the feedforward neural network g̃θ̃3

∈ Ñ . Thus, θ = (θ1, θ2, θ̃3) ∈ Θ parameterize all
3 parameterized functions fθ1 , ρθ2 , gθ̃3

in our PD-NJ-ODE (2) (see Definition 2.6). 6–8, 10, 16, 17,
24, 33–37, 39–42, 44–49

πm The truncated signature πm(X) of order m ∈ N of a continuous path with finite variation X is defined in
Definition 2.5. In simple words, πm(X) is a finite dimensional feature-vector representing a continuous
path X. For every finite truncation level m, πm(X) does not capture all the information about the
infinite dimensional object X, but in our proof we use that there always exists a m ∈ N such that
πm(X) describes X sufficiently well. 5, 6, 34, 38–40, 45

Õ≤t The interpolated observation process Õ≤t continuously interpolates the noisy observations Oti
that where

observed before time t (see Section 3.1). To be precise the first dX coordinates of Õ≤t interpolate
the noisy observations Oti , while the next dX coordinates of Õ≤t captures explicit information on
when which coordinate was observed and the last coordinate is just the time. At time s ∈ [0, T ],
the interpolated observation process Õ≤t

s (ω) ∈ R2dX +1 is defined analogously to X̃≤t
s (ω) ∈ R2dX +1

from Section 2, by replacing X by O. In Section 3, Õ≤t is an adapted stochastic process on
(Ω× Ω̃,F ⊗ F̃ ,F⊗ F̃,P× P̃), but in Section 4 (and all sections thereafter including the appendix),
Õ≤t is an adapted stochastic process on (Ω,F ,F,P). 8, 10, 12, 36–40, 44

X̃≤t The interpolated observation process X̃≤t continuously interpolates25 the observations of X that where
observed before time t. To be precise the first dX coordinates of X̃≤t interpolate the observations of
X, while the next dX coordinates of X̃≤t captures explicit information on when which coordinate was
observed and the last coordinate is just the time. At time s ∈ [0, T ], the j-th coordinate X̃≤t

s,j(ω) of
X̃≤t

s (ω) ∈ R2dX +1 is defined in Section 2. In Sections 2 and 3, X̃≤t is an adapted stochastic process
24The definition is less ambiguous, if we write more precisely: Θi

m :=
{

θi

∣∣ ∃ (θ′
1, θ′

2, θ̃′
3
)

∈ Θm : θi = θ′
i

}
.

25Interpolation also includes extrapolation within this paper. X̃≤t interpolates the observations before time t without leaking
any information from observations after time t. Furthermore, its time-consistency allows for efficient online updates of its
signature instead of recomputing its signature for the whole path at every new observation time tk.
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on (Ω× Ω̃,F ⊗ F̃ ,F⊗ F̃,P× P̃), but in Section 4 (and all sections thereafter including the appendix),
X̃≤t is an adapted stochastic process on (Ω,F ,F,P). 4, 6, 8, 21–24, 33, 34, 37, 42–46

Ñ The set Ñ of feedforward neural networks consists of all (classical) feed-forward neural networks. We
assume that Ñ is a set of standard feedforward neural networks with id ∈ Ñ that satisfies the
standard universal approximation theorem with respect to the supremum-norm on compact sets, see
for example Hornik (1991, Theorem 2) Throughout the paper we assume that the functions g̃θ̃1

∈ Ñ
in the PD-NJ-ODE (2) is a feedforward neural networks. 5, 6, 38, 48, 49

θ̃ The trainable parameters θ̃ = (θ̃1, θ̃2, θ̃3) contain all trainable weights and biases of θ = (θ1, θ2, θ̃3) ∈ Θ but
not the bounds γ1 and γ2. I.e., the classical feedforward neural network g̃θ̃3

∈ Ñ is fully parametrized
by θ̃3, while the bounded output feedforward neural networks fθ1 , ρθ2 ∈ N are paremetrized by
θi = (θ̃i, γi) for i ∈ {1, 2} which also includes γ1 and γ2 additionally to θ̃1 and θ̃2 (see Definition 2.6).
5–7, 34, 35, 37–39, 45, 47–49

ũ The jump process ũt,j :=
∑K

k=0 Mk,j1tk≤t counts the coordinate-wise observations (see Section 2). 4, 42

dX The dimension dX ∈ N of X (i.e., Xt(ω) ∈ RdX ) (see Section 2). 3, 4, 6, 8, 10, 11, 13–16, 18, 20, 34,
36–39, 42–44, 46–48

dk A pseudo metric between two càdlàg A-adapted processes defined in Definition 2.4 in Section 2 to measure
the distance between processes. 5, 7, 9, 10, 14, 16, 17, 20, 21, 24, 37, 38, 40, 42

n The random number of observations n :
(
Ω̃, F̃ , P̃

)
→ N≥0 up to time T (see Section 2). Every observation

time ti ∈ [0, T ] counts as 1 observation for this count (also for incomplete observations). In Sections 2
and 3, n is defined on

(
Ω̃, F̃ , P̃

)
, but in Section 4 (and all sections thereafter including the appendix),

n is defined on (Ω,F ,P). In our medical example, n(j) denotes the number of observation times for
the j-th patient. 3–6, 8–10, 12–23, 36–40, 44–46, 48, 49

ti The random observation times ti :
(
Ω̃, F̃ , F̃, P̃

)
→ [0, T ] ∪ {∞} for 0 ≤ i ≤ K are sorted stopping times,

with ti(ω̃) :=∞ if n(ω̃) < i (see Section 2). In our practical implementation we replace “∞” by “T”
(see Algorithm 1), since we are not interested in times after T anyway. In Sections 2 and 3, ti are
defined on

(
Ω̃, F̃ , F̃, P̃

)
, but in Section 4 (and all sections thereafter including the appendix), ti are

defined on (Ω,F ,F,P). 3–26, 33, 34, 36–41, 43–49

u The jump process ut :=
∑K

k=1 1tk≤t counts the observations without considering which coordinates where
observed (see Section 2). 6
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