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Abstract

Adversarial training (AT) is the de facto method for building robust neural networks,
but it can be computationally expensive. To mitigate this, fast single-step attacks can be
used, but this may lead to catastrophic overfitting (CO). This phenomenon appears when
networks gain non-trivial robustness during the first stages of AT, but then reach a breaking
point where they become vulnerable in just a few iterations. The mechanisms that lead
to this failure mode are still poorly understood. In this work, we study the onset of CO
in single-step AT methods through controlled modifications of typical datasets of natural
images. In particular, we show that CO can be induced at much smaller ϵ values than it was
observed before just by injecting images with seemingly innocuous features. These features
aid non-robust classification but are not enough to achieve robustness on their own. Through
extensive experiments we analyze this novel phenomenon and discover that the presence of
these easy features induces a learning shortcut that leads to CO. Our findings provide new
insights into the mechanisms of CO and improve our understanding of the dynamics of AT.

∗The first two authors contributed equally. Guillermo Ortiz-Jimenez did this work while visiting the University of Oxford.
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1 Introduction

Deep neural networks are sensitive to imperceptible worst-case perturbations, also known as adversarial per-
turbations (Szegedy et al., 2014). As a result, training neural networks that are robust to such perturbations
has been an active area of study in recent years (see Ortiz-Jiménez et al. (2021) for a review). The most
prominent line of research, referred to as adversarial training (AT), focuses on online data augmentation
with adversarial samples during training. However, finding these samples for deep neural networks is an
NP-hard problem (Weng et al., 2018). In practice, this is usually overcome with various methods, referred to
as adversarial attacks, which find approximate solutions to this hard problem. The most popular attacks are
based on projected gradient descent (PGD) (Madry et al., 2018), which is still a computationally expensive
algorithm that requires multiple steps of gradient ascent. This hinders its use in many large-scale applications
motivating the use of alternative efficient single-step attacks (Goodfellow et al., 2015).

The use of single-step attacks within AT, however, raises concerns regarding stability. Although single-step
AT leads to an initial increase in robustness, the networks often reach a breaking point beyond which they
lose all gained robustness in just a few additional training iterations (Wong et al., 2020). This phenomenon
is known as catastrophic overfitting (CO) (Wong et al., 2020; Andriushchenko & Flammarion, 2020). Given
the clear computational advantage of single-step attacks during AT, a significant body of work has been
dedicated to finding ways to circumvent CO via regularization and data augmentation.

However, despite recent methodological advances, the mechanisms that lead to CO remain poorly understood.
Nevertheless, due to the complexity of this problem, we argue that identifying such mechanisms cannot
be done through observations alone and requires active interventions Ilyas et al. (2019). That is, we want
to synthetically induce CO in settings where it would not naturally happen in order to explain its causes.

The key contribution of this work is exploring the root causes of CO, leading to the core message:

Catastrophic overfitting is a learning shortcut used by the network to avoid learning complex robust features
while achieving high accuracy using easy non-robust ones.

In more detail, our main contributions are:

(i) We demonstrate that CO can be induced by injecting features that are strong for standard classification
but insufficient for robust classification.

(ii) Through extensive empirical analysis, we find that CO is connected to the network’s preference for
certain features in a dataset.

(iii) We describe and analyse a mechanistic explanation of CO and its different prevention methods.

Our findings improve our understanding of CO by focusing on how data influences AT. They provide insights
into the dynamics of AT, where the interaction between robust and non-robust features plays a key role,
and open the door to promising future work that manipulates the data to avoid CO.

Outline The rest of the paper is structured as follows: In Section 2, we review related work on CO.
Section 3 presents our main observation: CO can be induced by manipulating the data distribution by
injecting simple features. In Section 4, we perform an in-depth analysis of this phenomenon by studying
the features used by networks trained with different procedures. In Section 5, we link these observations
to the evolution of the curvature of the networks and find that CO is a learning shortcut. Section 6 pieces
all these evidence together and provides a mechanistic explanation of CO. Finally, in Section 7, we use our
new perspective to provide new insights on different ways to prevent CO.
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2 Preliminaries and related work

Let fθ : Rd → Y denote a neural network parameterized by a set of weights θ ∈ Rn which maps input samples
x ∈ Rd to y ∈ Y = {1, . . . , c}. The objective of adversarial training (AT) is to find the network parameters
θ ∈ Rn that minimize the loss for the worst-case perturbations, that is:

min
θ

E(x,y)∼D

[
max

∥δ∥p≤ϵ
L(fθ(x + δ), y)

]
, (1)

where D is a data distribution, δ ∈ Rd represents an adversarial perturbation, and (p, ϵ) characterize the
adversary. This is typically solved by alternately minimizing the outer objective and maximizing the inner
one via first-order optimization procedures. The outer minimization is tackled via a standard optimizer, e.g.,
SGD, while the inner maximization problem is approximated with adversarial attacks with one or more steps
of gradient ascent. Single-step AT methods are built on top of FGSM (Goodfellow et al., 2015). In particular,
FGSM solves the linearized version of the inner maximization objective (when p = ∞), i.e.,

δFGSM = argmax
∥δ∥∞≤ϵ

L(fθ(x), y) + δ⊤∇xL(fθ(x), y) = ϵ sign (∇xL(fθ(x), y)) .

FGSM is computationally efficient as it requires only a single forward-backward step. However, FGSM
adversarial training (FGSM-AT) often yields networks that are vulnerable to multi-step attacks such as
PGD (Madry et al., 2018). In particular, Wong et al. (2020) observed that FGSM-AT presents a failure mode
where the robustness of the model increases during the initial training epochs, but then loses all robustness
within a few iterations. This is known as catastrophic overfitting (CO). They further observed that augmenting
the FGSM attack with random noise seemed to mitigate CO. However, Andriushchenko & Flammarion (2020)
showed that this method still leads to CO at larger ϵ. Therefore, they proposed combining FGSM-AT with
a smoothness regularizer (GradAlign) that encourages the cross-entropy loss to be locally linear. Although
GradAlign successfully avoids CO, the smoothness regularizer adds a significant computational overhead.

Even more expensive, multi-step attacks approximate the inner maximization in Equation (1) with several
gradient ascent steps (Kurakin et al., 2017; Madry et al., 2018; Zhang et al., 2019). If a sufficient number of steps
are used, these methods do not suffer from CO and achieve better robustness. Due to their superior performance
and extensively validated robustness (Madry et al., 2018; Tramèr et al., 2018; Zhang et al., 2019; Rice et al.,
2020), multi-step methods such as PGD are considered the reference in AT. However, using multi-step attacks in
AT linearly increases the cost of training with the number of steps. Other methods have been proposed to avoid
CO while reducing the cost of AT. However, these methods either only move CO to larger ϵ radii (Golgooni
et al., 2021), are more computationally expensive (Shafahi et al., 2019; Li et al., 2020), or achieve sub-optimal
robustness (Kang & Moosavi-Dezfooli, 2021; Kim et al., 2021). Recently, de Jorge et al. (2022) proposed
N-FGSM, which avoids CO without extra cost, however, the phenomena of CO remains poorly understood.

Other works have also analyzed the training dynamics when CO occurs. Initially, it was suggested that
CO was a result of the networks overfitting to attacks limited to the corners of the ℓ∞ ball (Wong et al.,
2020). However, this conjecture was later dismissed by Andriushchenko & Flammarion (2020) who showed
PGD-AT projected to the corners of the ℓ∞ ball does not suffer from CO. Alternatively, they suggested
that the reason Wong et al. (2020) avoids CO is the reduced radii of their perturbations on expectation, but
de Jorge et al. (2022) showed that they could still prevent CO while using larger perturbations. Meanwhile,
it has been consistently reported (Andriushchenko & Flammarion, 2020; Kim et al., 2021) that networks
suffering from CO exhibit a highly non-linear loss landscape. As FGSM relies on the local linearity of the
loss landscape, this sudden increase in non-linearity of the loss renders FGSM ineffective (Kim et al., 2021;
Kang & Moosavi-Dezfooli, 2021). However, none of these works have managed to identify what causes the
network to become strongly non-linear. In this work, we address this knowledge gap, and explore a plausible
mechanism that can cause single-step AT to develop CO.
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Figure 1: Left: Modified dataset with injected simple and discriminative features. Right: Clean and
robust performance after FGSM-AT on injected datasets D̃β . We vary the strength of the synthetic features
β (β = 0 corresponds to the original CIFAR-10) and the robustness budget ϵ. For ϵ ∈ {4/255, 6/255}, our
intervention can induce CO when the synthetic features have strength β ≈ ϵ, even when the original data
does not suffer CO. Results averaged over 3 seeds. Shades show min-max values.

3 Inducing catastrophic overfitting

Our starting point is the observation that robust solutions are not the default outcome of standard training
and are avoided unless explicitly enforced through AT. That is, robust solutions are hard to learn. We also
know that robust classification requires leveraging alternative robust features that are not learned in standard
training (Ilyas et al., 2019; Sanyal et al., 2021). Finally, we know that when CO occurs, the robust accuracy
drops while the clean and FGSM accuracy increases (Wong et al., 2020; Andriushchenko & Flammarion, 2020).
With that in mind, we pose the question: Can CO be a mechanism to avoid learning complex robust features?
If so, the network may be using CO as a way to favor easy non-robust features over complex robust ones.

Directly testing this hypothesis is difficult as it requires identifying and characterizing robust and non-robust
features in a real dataset. This is a challenging task, equivalent to actually solving the problem of adversarial
robustness. To overcome this, we follow the standard practice in the field and use controlled modifications of
the data (Arpit et al., 2017; Ilyas et al., 2019; Shah et al., 2020; Ortiz-Jimenez et al., 2020a). By conducting
experiments on the manipulated data, we can make claims about CO and its causes. Specifically, we find
that by injecting a simple discriminative feature on standard vision datasets, we can induce CO at lower
values of ϵ (i.e., with smaller perturbations) than those at which it naturally occurs. This suggests that
the structure of the data plays a significant role in the onset of CO.

Our injected dataset Let (x, y) ∼ D be an image-label pair sampled from a distribution D. We modify
the data by adding a label-dependent feature v(y), scaled by a parameter β > 0, and construct a family of
injected datasets D̃β :

(x̃, y) ∼ D̃β : x̃ = x + β v(y) with (x, y) ∼ D. (2)

We design v(y) to be linearly separable with ∥v(y)∥p = 1 for all y ∈ Y. We mainly use p = ∞ in the paper
as CO has been observed more often in this setting (Wong et al., 2020; Andriushchenko & Flammarion,
2020), but we also present some results with p = 2 in Appendix D. The set of all injected features is denoted
as V = {v(y) | y ∈ Y}. The scale parameter β > 0 is fixed for all classes and controls the relative strength
of the original and injected features, i.e., x and v(y), respectively (see Figure 1 (left)).

Injecting features that are linearly separable and perfectly correlated with the labels induces some interesting
properties. In short, although v(y) is easy-to-learn, the discriminative power and robustness of a classifier
that solely relies on the injected features V depends on the scale parameter β. Indeed, a linear classifier
relying only on V can separate D̃β for a large enough β. However, if x has some components in span(V),
the interaction between x and v(y) may decrease the robustness of the classifier for small β. We rigorously
illustrate this behavior in Appendix A.
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To control the interaction between x and v(y), we design V by selecting the first vectors from the
low-frequency components of the 2D Discrete Cosine Transform (DCT) (Ahmed et al., 1974), depicted
in Figure 1 (left), which have a large alignment with the space of natural images in our experiments (e.g.,
CIFAR-10). To ensure the norm constraint, we binarize these vectors to have only ±1 values, resulting in
a maximal per-pixel perturbation that satisfies ∥v(y)∥∞ = 1. These design constraints also make it easy
to visually identify the alignment of adversarial perturbations δ with v(y) as they have distinctive patterns.

Injection strength (β) drives CO We train a PreActResNet18 (He et al., 2016) on different intervened
versions of CIFAR-10 (Krizhevsky & Hinton, 2009) using FGSM-AT for different robustness budgets ϵ and
scales β. Figure 1 (right) shows the results of these experiments in terms of clean accuracy and robustness1.
In terms of clean accuracy, Figure 1 (right) shows two regimes. First, when β < ϵ, the network achieves
roughly the same accuracy by training and testing on D̃β as by training and testing on D (corresponding
to β = 0), i.e., the network ignores the added features v(y). Meanwhile, when β > ϵ, the clean accuracy
reaches 100% indicating that the network relies on the injected features and ignores D. This is further shown
empirically in Section 4 and Appendix F.

The behavior with respect to robust accuracy is even more interesting. For small ϵ (ϵ = 2/255), the robust
accuracy shows the same trend as the clean accuracy, albeit with lower values. For large ϵ (ϵ = 8/255), the
model incurs CO for most values of β. This is not surprising as CO has already been reported for this
value of ϵ on the original CIFAR-10 dataset (Wong et al., 2020). However, the interesting setting is for
intermediate values of ϵ (ϵ ∈ {4/255, 6/255}). For these settings, Figure 1 (right) distinguishes three regimes:

(i) When the injected features are weak (β ≪ ϵ), the robust accuracy is similar as with the original data.

(ii) When they are strong (β ≫ ϵ), robustness is high as using v(y) is enough to classify x̃ robustly.

(iii) When they are mildly robust (β ≈ ϵ), training suffers from CO and the robust accuracy drops to zero.

This last regime is very significant, as training on the original dataset D (β = 0) does not suffer from CO for
this value of ϵ. In the following section, we delve deeper into these results to better understand the cause of CO.

Inducing CO in other settings To ensure generality, we replicate our previous experiment using different
settings. Specifically, we show in Appendix D that our intervention can induce CO in other datasets such as
CIFAR-100 and SVHN (Netzer et al., 2011), and higher-resolution ones such as TinyImageNet (Li et al., 2020)
and ImageNet-100 (Kireev et al., 2022). We also reproduce the effect using larger networks like a WideRes-
Net28x10 (Zagoruyko & Komodakis, 2016) and for ℓ2 perturbations. We, therefore, confidently conclude
that there is a link between the structure of the data and CO, independently of actual datasets, and models.

4 Networks prefer injected features

Since we now have a method to intervene in the data using Equation (2) and induce CO, we can use it to better
characterize the mechanisms that lead to CO. The previous experiments showed that when β ≪ ϵ or β ≫ ϵ,
our data intervention does not induce CO. However, when β ≈ ϵ, FGSM-AT consistently experiences CO.
This raises the following question: what makes β ≈ ϵ special? We now show that for β ≈ ϵ, a network trained
using AT uses information from both the original dataset D and the injected features in V to achieve high
robust accuracy on the injected dataset D̃β . However, when trained without any adversarial constraints i.e.,
for standard training, the network only uses the features in V and achieves close to perfect clean accuracy.

In order to understand what features are learned when training on the injected dataset D̃β , we evaluate
the performance of different models on three distinct test sets: (i) CIFAR-10 test set with injected features
(D̃β), (ii) original CIFAR-10 test set (D), and (iii) CIFAR-10 test set with shuffled injected features (D̃π(β))
where the additive signals are correlated with a permuted set of labels, i.e.,

(x̃(π), y) ∼ D̃π(β) : x̃(π) = x + β v(π(y)), (3)
1Robustness measured using PGD with 50 steps and 10 restarts.
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Figure 2: Clean (top) and robust (bottom) accuracy on 3 different test sets: (i) original CIFAR-10 (D),
(ii) dataset with injected features D̃β and (iii) dataset with shuffled injected features D̃π(β). All runs use
β = 8/255 and ϵ = 6/255. Blue shading denotes the use of both D and V and yellow only V.

with (x, y) ∼ D and v ∈ V. Here, π : Y → Y is a fixed permutation to shuffle the labels. Evaluating these
models on D̃π(β) exposes them to contradictory information, since x and v(π(y)) are correlated with different
labels2. Thus, if the classifier only relies on V , the performance should be high on D̃β and low on D and D̃π(β),
while if it only relies on D, the performance should remain constant for all injected datasets. Figure 2 shows the
results of this evaluation during standard, FGSM-AT and PGD-AT on D̃β with with β = 8/255 and ϵ = 6/255.

PGD training: We can conclude that the PGD-AT network achieves a robust solution using both D and
V from Figure 2 (left). It uses D as it achieves better than trivial accuracy on D and D̃π(β). But it also
uses V as it achieves higher accuracy on D̃β than D, and suffers from a drop in performance on D̃π(β). This
implies that this network effectively combines information from both the original and injected features for
classification.

Standard training: Standard training shows a different behaviour than PGD-AT (see Figure 2 (center)).
In this case, the network achieves excellent clean accuracy on D̃β , but trivial accuracy on D, indicating that
it ignores the information present in D and only uses non-robust features from V for classification. This
is further supported by its near-zero accuracy on D̃π(β). We conclude that the injected features are easy
to learn i.e., they are preferred by standard training.

FGSM training: The behaviour of FGSM-AT in Figure 2 (right) highlights further the preference for the
injected features. FGSM-AT undergoes CO around epoch 8 and its robust accuracy on D̃β drops to zero
despite its high clean accuracy on D̃β . It presents two distinct phases:

(i) Prior to CO the robust accuracy on D̃β is non-zero and the network exploits both D and V, similar
to PGD-AT.

(ii) After CO both the clean and robust accuracy on D and D̃π(β) drop, exhibiting behavior similar
to standard training. This indicates that, after CO, the network forgets D and solely relies on the
features in V.

Why does FGSM change the learned features after CO? From the behaviour of standard training,
we concluded that the network has a preference for the injected features V, which are easy to learn.

2We also evaluate on V alone in Appendix E.
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Figure 3: Evolution of metrics for FGSM-AT and PGD-AT on dataset with injected features (D̃β) and with
orthogonally projected features (D̃⊥

β ), where there is no interaction between features. AT is performed with
β = 8/255 and ϵ = 6/255.

Meanwhile, the behaviour of PGD training suggests that when the easy features are not sufficient for robust
classification, the model combines them with other (harder-to-learn) features, such as those in D. FGSM
initially learns a robust solution using both D and V, similar to PGD. However, if the FGSM attacks are
rendered ineffective, the robustness constraints are removed, allowing the network to revert back to the simple
features and the performance on the original dataset D drops. This is exactly what occurs with the onset
of CO around epoch 8, which we will further discuss in Section 5.1. As we will see, the key to understanding
why CO happens lies in how learning each type of feature influences the local geometry of the classifier.

5 Geometry of CO

Recent works have shown that after the onset of CO, the local geometry around the input x becomes highly
non-linear (Andriushchenko & Flammarion, 2020; Kim et al., 2021; de Jorge et al., 2022). Motivated by these,
and to better understand induced CO, we investigate the evolution of the curvature of the loss landscape
when this happens.

5.1 Curvature explosion drives CO

To measure curvature, we use the average maximum eigenvalue of the Hessian on N = 100 training points
λ̄max = 1

N

∑N
n=1 λmax

(
∇2

x̃
L(fθ(x̃n), yn)

)
as in Moosavi-Dezfooli et al. (2019)), and record it throughout

training. Figure 3 (left) shows the result of this experiment for FGSM-AT (orange line) and PGD-AT (green
line) training on D̃β where CO with FGSM-AT happens around epoch 8.

Two-phase curvature increase Interestingly, we observe a steep increase in curvature for both FGSM-AT
and PGD-AT (the y-axis is in logarithmic scale) before CO. However, while there is a large increase in
curvature for PGD-AT right before the 8th epoch, it stabilizes soon after – PGD-AT acts as a regularizer on
the curvature (Moosavi-Dezfooli et al., 2019; Qin et al., 2019) which explains how it controls the curvature
explosion. However, curvature is a second-order property of the loss and unlike PGD, FGSM is based on
a coarse linear (first order) approximation of the loss. In this regard, we see that FGSM-AT cannot contain
the curvature increase, which eventually explodes around the 8th epoch and saturates at a very large value.
The final curvature of the FGSM-AT model is 100 times that of the PGD-AT model.

High curvature leads to meaningless perturbations The fact that the curvature increases rapidly
alongside the FGSM accuracy during CO agrees with the findings of Andriushchenko & Flammarion (2020).
The loss becomes highly non-linear and thus reduces the success rate of FGSM, which assumes a linear loss.
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Figure 4: Samples of the injected dataset D̃β (top)
and FGSM perturbations before (middle) and after
CO (bottom). Before CO, perturbations focus on
synthetic features, but after CO they become noisy.

To show that CO indeed occurs due to the increased
curvature breaking FGSM, we visualise the adversar-
ial perturbations before and after CO. As observed
in Figure 4, before CO, the adversarial perturbations
are non-trivially aligned with span(V), albeit with
some corruptions originating from x. Nonetheless,
after CO, the new adversarial perturbations point
towards meaningless directions; they do not align
with V even though the network is heavily reliant
on this information for classifying the data3 (cf. Sec-
tion 4). This reinforces the idea that the increase in
curvature causes a breaking point after which FGSM
is no longer effective. This behavior of adversarial
perturbations after CO is different from the one on
standard and PGD-AT networks in which the pertur-
bations align with discriminative directions (Fawzi
et al., 2018; Jetley et al., 2018; Ilyas et al., 2019;
Ortiz-Jimenez et al., 2020b).

Two-phase curvature increase also occurs in naturally ocurring CO In Figure 5 we show the
curvature when training on the original CIFAR-10 dataset with ϵ = 8/255 (where CO happens for FGSM-AT).
Similarly to our observations on the injected datasets, the curvature during FGSM-AT explodes along with
the training accuracy while for PGD-AT the curvature increases at a very similar rate than FGSM-AT during
the first epochs and later stabilizes. This indicates that our described mechanisms may as well apply to
induce CO on natural image datasets.

5.2 Curvature increase is a result of feature interaction

But why does the network increase the curvature in the first place? In Section 4, we observed that this is a
shared behavior of PGD-AT and FGSM-AT, at least during the initial stage before CO. Therefore, it should not
be a mere “bug". We conjecture that the curvature increase is a result of the interaction between features of the
dataset which forces the network to increase its non-linearity in order to combine them effectively for robustness.

Curvature does not increase without interaction To demonstrate this, we perform a new experiment
in which we modify D again (as in Section 3). However, this time, we ensure that there is no interaction

3We also quantify this alignment in Figure 6.
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between the synthetic features v(y) and the features from D creating D̃⊥
β such that:

(x̃⊥, y) ∼ D̃⊥
β : x̃⊥ = PV⊥(x) + βv(y) (4)

with (x, y) ∼ D and v(y) ∈ V , where PV⊥ denotes the projection operator onto the orthogonal complement of V .
Since the synthetic features v(y) are orthogonal to D, a simple linear classifier relying only on v(y) can robustly
separate the data up to a radius that depends solely on β (see the theoretical construction in Appendix A).

Interestingly, we find that, in this dataset, none of the (β, ϵ) configurations used in ?? induce CO. Here,
we observe only two regimes: one that ignores V (when β < ϵ) and one that ignores D (when β > ϵ). This
supports our conjecture that the interaction between the features of x and v(y) causes CO in D̃β . Moreover,
Figure 3 (left) shows that, when performing either FGSM-AT (light blue) or PGD-AT (dark blue) on D̃⊥

β ,
the curvature is consistently low. This agrees with the fact that in this case there is no need for the network
to combine the injected and original features for robustness and hence the network does not need to increase
its non-linearity to separate the data.

Non-linear feature extraction Finally, we study the relationship between the features extracted by
the network and its curvature. We train multiple logistic classifiers to classify D based on the feature
representations (output of the penultimate layer) of networks trained on D̃β as in Shi et al. (2022). The feature
accuracy of these classifiers will depend on how well the network has learned to extract information from D.

Figure 3 (right) shows that for the PGD-AT network (green), the feature accuracy on D progressively increases
over time, indicating that the network has learned to extract meaningful information from D even though it
was trained on D̃β . The feature accuracy also closely matches the curvature trajectory in Figure 3 (left). In
contrast, the FGSM-AT network (red) exhibits two phases on its feature accuracy: Initially, it grows at a
similar rate as the PGD-AT network, but after CO occurs, it starts to decrease. This decrease in feature
accuracy does not correspond with a decrease in curvature, which we attribute to the network taking a
shortcut and ignoring D in favor of easy, non-robust features.

When we use features from networks trained on D̃⊥
β , we find that the accuracy on D is consistently low,

suggesting that the network is increasing its curvature to improve its feature representation as it must combine
information from V with D to become robust in this case.

6 A mechanistic explanation of CO

Based on the previous insights, we can finally summarize the chain of events that leads to CO in our injected
datasets:

(i) To learn a robust solution, the network combine easy non-robust features with complex robust ones.
However, without robustness constraints, the network favors learning only the non-robust features (see
Section 4).

(ii) When learning both kinds of features simultaneously, the network increases its non-linearity to improve
its feature extraction ability (see Section 5.2).

(iii) This increase in non-linearity provides a shortcut to break FGSM, triggering CO and allowing the
network to avoid learning the complex robust features while still achieving a high accuracy using only
the easy non-robust ones (see Section 5.1).

How general is this mechanism? So far, all our experiments have dealt with datasets that have been
synthetically intervened by injecting artificial signals. However, we advocate that our work provides sufficient
and compelling evidence that features are the most likely cause of CO in general. Deep learning is an empirical
discipline, where many insights are gained from experimental studies, and as shown by prior work (Arpit et al.,
2017; Ilyas et al., 2019; Shah et al., 2020; Ortiz-Jimenez et al., 2020a), manipulating data in controlled ways
is a powerful tool to infer the structure of its features. In this light, we are confident our work provides robust
and comprehensive evidence that features are likely the primary catalyst of CO across different datasets.
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Figure 6: Quantitative analysis of the directionality of FGSM perturbations before and after CO in CIFAR-10
with β = 8/255 and ϵ = 6/255. Left: Alignment of FGSM perturbations with injected features during training.
Right: Magnitude of the DCT spectrum of FGSM perturbations during training. The plot shows values
for the diagonal components at every epoch.

Our study includes extensive ablations with various types of injected features, such as random directions,
and different norms and we have shown these settings also lead to CO (see Appendix D). Furthermore, we
have observed that the increase in curvature within our manipulated datasets mirrors the patterns found in
naturally occurring CO instances, as demonstrated in Figure 5.

Beyond our empirical investigations, we also provide theoretical support for our conjecture in Appendix B.
The concept that a robust classifier may need to combine different features can be formally proven in certain
scenarios. Specifically, in Appendix B, we offer a mathematical proof showing that numerous learning
scenarios exist in which learning a robust classifier requires leveraging additional non-linear features on top of
the simple ones used for the clean solution.

Finally, in what follows, we will present further evidence that CO is generally induced by features. Specifically,
we will show that other feature manipulations besides the injection of features can also influence CO.
Additionally, we will show that the primary strategies effective at preventing CO in natural datasets can
also mitigate CO in our manipulated datasets. This suggests a commonality between these types of CO,
further underscoring the widespread relevance of our mechanism

7 Analysis of CO prevention methods

Table 1: Clean and robust accuracies of FGSM-AT
and PGD-AT trained networks on CIFAR-10 and
the low pass version described in Ortiz-Jimenez et al.
(2020b) at different ϵ.

Method (ϵ) Original Low pass
Clean Robust Clean Robust

FGSM (8/255) 85.6 0.0 81.1 47.0
PGD (8/255) 80.9 50.6 80.3 49.7

FGSM (16/255) 76.3 0.0 78.6 0.0
PGD (16/255) 68.0 29.2 66.9 28.4

Our proposed dataset intervention, defined in Sec-
tion 3, has allowed us to better understand the chain
of events that lead to CO. In this section, we will
focus on methods to prevent CO and analyze them
in our framework for further insights.

High-frequency features and CO Recently,
Grabinski et al. (2022) suggested that CO could be
caused by aliasing effects from downsampling layers
and proposed using a low-pass filter before pooling.
We take this theory a step further and show that
just removing the high-frequency components from
CIFAR-10 consistently prevents CO at ϵ = 8/255
(where FGSM-AT fails). Furthermore, in Figure 6
(right) we observe that after CO on D̃β , FGSM
attacks ignore low-frequencies and become increasingly high-frequency.

Surprisingly, though, applying the same low-pass technique at ϵ = 16/255 does not work and neither does Grabin-
ski et al. (2022) (see Appendix J). We conjecture this is because the features robust at ϵ = 8/255 in the low pass
version of CIFAR-10 might not be robust at ϵ = 16/255 and although high-frequency features might contribute to
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Figure 7: Left: Clean and robust accuracy of GradAlign, N-FGSM and PGD-AT. Right: Curvature evolution
of all methods. Training performed on D̃β with ϵ = 6/255 and β = 8/255 and averaged over 3 random seeds.

CO, the overall set of CO inducing features is more complex. Additionally, we observe that CO can be induced
even when the injected features are randomly sampled (see Figure 14). Although removing low-frequency
features does not work in all settings, we see this as a proof of concept that manipulating the data itself may
prevent CO in some settings. Generalizing this idea to other datasets is a promising avenue for future work.

Preventing CO in our injected dataset In Figure 2 (left), we have shown that using PGD-AT prevents
CO on our injected dataset, but we now also evaluate the effectiveness of GradAlign and N-FGSM. Our
results indicate that these methods can also be successful in preventing CO, but need stronger regularization
for certain values of β. As β grows, the injected feature v(y) becomes more discriminative, creating a
stronger incentive for the network to use it. This increases the chances of CO as the network increases its
curvature to combine the injected features with others in order to become robust. Figure 7 shows that the
curvature of N-FGSM and GradAlign decreases with stronger regularizations, similar to PGD-AT. This
supports the idea that preventing the curvature from exploding can indeed prevent CO.
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Figure 8: Clean, FGSM, PGD and AutoAttack accu-
racy on injected ImageNet-100 with varying β. FGSM-
AT performed wtih ϵ = 4/255.

Stronger CO on high-resolution datasets As
discussed in Section 3, we observe CO when injecting
discriminative features in several datasets. Interest-
ingly, for ImageNet-100, we have observed that even
multi-step attacks like PGD are not able to find
adversarial perturbations after CO (see Figure 8).
However, when using AutoAttack (AA) (Croce &
Hein, 2020), we find that models are not robust4.
To the best of our knowledge, this had not been
observed before with “vanilla" CO, where after CO,
models would be vulnerable to very weak PGD
attacks, like PGD with 10 steps (Wong et al., 2020).
We argue that in this case, the curvature increase
that breaks FGSM also hinders PGD optimization.
This aligns with our findings with N-FGSM and
GradAlign, where stronger regularization is needed
to prevent CO with the injected datasets, and
suggests that CO is stronger in D̃β .

4On other datasets, AA and PGD work equally.
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8 Concluding remarks

In this work, we have presented a thorough empirical study to establish a link between the features of the data
and the onset of CO in FGSM-AT. Using controlled data interventions, we have shown that CO is a learning
shortcut used by the network to avoid learning complex robust features while achieving high accuracy using
easy non-robust ones. This new perspective sheds new light on the mechanisms that trigger CO, as it shifts our
focus towards studying the way the data structure influences the learning algorithm. We believe this opens the
door to promising future work towards understanding the intricacies of these mechanisms, deriving methods for
inspecting data and identifying feature interactions, and finding faster ways to make neural networks robust.

Broader impact

The broader social implications of this research extend beyond its academic scope, touching upon the spheres
of the entire field of adversarial machine learning. At its core, our work aims to enhance the robustness
and reliability of AI systems, thereby addressing critical challenges in various sectors such as healthcare and
autonomous driving. In these domains, mitigating the vulnerability to adversarial examples can lead to more
accurate and reliable diagnoses and treatments, as well as safer navigational decisions during unforeseen
events like storms.

Moreover, having a better understanding of CO has the potential to democratize access to robust machine
learning models. By enabling faster adversarial training at a fraction of the cost, we could make advanced AI
tools more accessible to smaller organizations and independent researchers. This democratization could spur
innovation across various sectors, broadening the positive impacts of AI.

However, while these benefits are significant, it is crucial to acknowledge the potential drawbacks. An increase
in the robustness of AI systems, while generally beneficial, can inadvertently strengthen systems employed
for detrimental purposes or in exploitative circumstances, as illustrated by Albert et al. (2020; 2021). These
paradoxical situations, such as those occurring under warfare conditions or within authoritarian regimes,
underscore the fact that enhancing AI system robustness can sometimes lead to negative societal impacts.

Our work in this paper is purely academic, focusing on the technical understanding and prevention of CO.
While we aim to improve AI systems’ robustness and democratize access to them, it is the responsibility of
policymakers, technologists, and society at large to ensure these advancements are employed ethically and for
the greater good.
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A Analysis of the separability of the injected datasets

With the aim to illustrate how the interaction between D and V can influence the robustness of a classifier
trained on D̃β we now provide a toy theoretical example in which we discuss this interaction. Specifically,
without loss of generality, consider the binary classification setting on the dataset (x, y) ∼ D where y ∈
{−1, +1} and ∥x∥2 = 1, for ease. Let’s now consider the injected dataset D̃β and further assume that
v(+1) = u and v(−1) = −u with u ∈ Rd and ∥u∥2 = 1, such that x̃ = x + βyu. Moreover, let γ ∈ [0, 1]
denote the interaction coefficient between D and V, such that −γ ≤ x⊤u ≤ γ.

We are interested in characterizing the robustness of a classifier that only uses information in V when
classifying D̃β depending on the strength of the interaction coefficient. In particular, as we are dealing
with the binary setting, we will characterize the robustness of a linear classifier h : Rd → {−1, +1} that
discriminates the data based only on V, i.e., h(x̃) = sign(u⊤x̃). In our setting, we have

u⊤x̃ = u⊤x + βu⊤u = u⊤x + β if y = +1
u⊤x̃ = u⊤x − βu⊤u = u⊤x − β if y = −1

Proposition A.1 (Clean performance). If β > γ, then h achieves perfect classification accuracy on D̃β.

Proof. Observe that if γ = 0, i.e. the features from original dataset D do not interact with the injected
features V, the dataset is perfectly linearly separable. However, if the data x from D interacts with the
injected signal u, i.e. non zero projection, then the dataset is still perfectly separable but for a sufficiently
larger β, such that u⊤x + β > 0 when y = +1 and u⊤x + β < 0 when y = −1. Because −γ ≤ x⊤u ≤ γ this
is achieved for β > γ.

Proposition A.2 (Robustness). If β > γ, the linear classifier h is perfectly accurate and robust to adversarial
perturbations in an ℓ2-ball of radius ϵ ≤ β − γ. Or, equivalently, for h to be ϵ-robust, the injected features
must have a strength β ≥ ϵ + γ.

Proof. Given x̃, we seek to find the minimum distance to the decision boundary of such a classifier. A
minimum distance problem can be cast as solving the following optimization problem:

ϵ⋆(x̃) = min
r∈Rd

∥r − x̃∥2
2 subject to r⊤u = 0,

which can be solved in closed form

ϵ⋆(x̃) =
|u⊤x̃|
∥u∥

= |u⊤x + yβ|.

The robustness radius of the classifier h will therefore be ϵ = inf
x̃∈supp(D̃β) ϵ⋆(x̃), which in our case can be

bounded by

ϵ = inf
(x̃,y)∈supp(D̃β)

ϵ⋆(x̃) ≤ min
|u⊤x|≤γ,y=±1

|u⊤x + yβ| = | ∓ γ ± β| = β − γ.

Based on these propositions, we can clearly see that the interaction coefficient γ reduces the robustness of
the additive features V. In this regard, if ϵ ≥ β − γ, robust classification at a radius ϵ can only be achieved
by also leveraging information within D.
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B Robust classification can require non-linear features

We now provide a rigorous theoretical example of a learning problem that provably requires additional
complex information for robust classification, even though it can achieve good clean performance using only
simple features.

Given some p ∈ N, let Rp+1 be the input domain. A concept class, defined over Rp+1 is a set of functions
from Rp+1 to {0, 1}. A hypothesis h is s-non-linear if the polynomial with the smallest degree that can
represent h has a degree (largest order polynomial term) of s.

Using these concepts we now state the main result.
Theorem 1. For any p, k ∈ N, ϵ < 0.5 such that k < p, there exits a family of distributions Dk over Rp+1

and a concept class H defined over Rp+1 such that

1. H is PAC learnable (with respect to the clean error) with a linear (degree 1) classifier. However, H
is not robustly learnable with any linear classifier.

2. There exists an efficient learning algorithm, that given a dataset sampled i.i.d. from a distribution
D ∈ Dk robustly learns H.

In particular, the algorithm returns a k-non-linear classifier and in addition, the returned classifier also
exploits the linear features used by the linear non-robust classifier.

Proof. We now define the construction of the distributions in Dk. Every distribution D in the family of
distribution Dk is uniquely defined by three parameters: a threshold parameter ρ ∈ {4tϵ : t ∈ {0, · · · , k}} (one
can think of this as the non-robust, easy-to-learn feature), a p dimensional bit vector c ∈ {0, 1}p such that
∥c∥1 = k (this is the non-linear but robust feature) and ϵ. Therefore, given ρ and c (and ϵ which we discuss
when necessary and ignore from the notation for simplicity), we can define the distribution Dc,ρ. We provide
an illustration of this distribution for p = 2 in Figure 9.

Sampling the robust non-linear feature To sample a point (x, y) ∈ Rp+1 from the distribution Dc,ρ,
first, sample a random bit vector x̂ ∈ Rp from the uniform distribution over the boolean hypercube {0, 1}p. Let
ŷ =

∑p−1
i=1 x̂[i] ·c[i] (mod 2) be the label of the parity function with respect to c evaluated on x̂. The marginal

distribution over ŷ, if sampled this way, is equivalent to the Bernoulli distribution with parameter 1
2 . To see

why, fix all bits in the input except one (chosen arbitrarily from the variables of the parity function), which is
distributed uniformly over {0, 1}. It is easy to see that this forces the output of the parity function to be dis-
tributed uniformly over {0, 1} as well. Repeating this process for all dichotomies of p−1 variables of the parity
function proves the desired result. Intuitively, x̂ constitutes the robust non-linear feature of this distribution.

Sampling the non-robust linear feature To ensure that x̂ is not perfectly correlated with the true
label, we sample the true label y from a Bernoulli distribution with parameter 1

2 . Then we sample the
non-robust feature x1 as follows

x1 ∼


Unif

(
X−

1
)

y = 0 ∧ ŷ = 0
Unif

(
X+

1
)

y = 1 ∧ ŷ = 1
Unif

(
X−

2
)

y = 0 ∧ ŷ = 1
Unif

(
X+

2
)

y = 1 ∧ ŷ = 0

where

X+
1 = [ρ, ρ + ϵ] and X+

2 = [(ρ + 2ϵ, ρ + 3ϵ)] , X−
1 = [ρ − ϵ, ρ] and X−

2 = [(ρ − 3ϵ, ρ − 2ϵ)] .

Finally, we return (x, y) where x = (x1; x̂) is the concatenation of x1 and x̂.
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Figure 9: Illustration of one possible distribution Dc,ρ in three dimensions. The data is linearly separable in
the direction x[0] but has a very smalll margin in that direction. Leveraging x[1] and x[2] additionally, we
see how the data can indeed be separated robustly, albeit non-linearly.

Linear non-robust solution First, we show that there is a linear, accurate, but non-robust solution to this
problem. To obtain this solution, sample an m-sized dataset Sm = {(x1, y1) , . . . , (xm, ym)} ∈ Rp+1 × {−1, 1}
from the distribution Dc,ρ. Ignore all, except the first coordinate, of the covariates of the dataset to create S0

m =
{(x1 [0] , y1) . . . (xm [0] , ym)} where Si [j] indexes the jth coordinate of the ith element of the dataset. Then,
sort S0

m on the basis of the covariates (i.e., the first coordinate). Let ρ̂ be the largest element whose label is 0.

Define flin,ρ̂ as the linear threshold function on the first coordinate i.e. flin,ρ̂ (x) = I {x[0] ≥ ρ̂}. By
construction, flin,ρ̂ accurate classifies all points in Sm. The VC dimension of a linear threshold function in
1 dimension is 2. Then, using standard VC sample complexity upper bounds 5 for consistent learners, if m ≥
κ0

(
1
α log

(
1
β

)
+ 1

α log
( 1

α

))
, where κ0 is some universal constant, we have that with probability at least 1 − β,

Err (flin,ρ̂; Dc,ρ) ≤ α.

Non-linear robust solution Next, we propose an algorithm to find a robust solution and show that
this solution has a non-linearity of degree k. First, sample the m-sized dataset Sm and use the method
described above to find ρ̂. Then, create a modified dataset Ŝ by first removing all points x from Sm such
that |x [0] − ρ̂| ≥ ϵ

8 and then removing the first coordinate of the remaining points. Thus, each element
in Ŝ belongs to Rp × {0, 1} dimensional dataset.

Note, that by construction, there is a consistent (i.e., an accurate) parity classifier on Ŝ. Let the parity
bit vector consistent with Ŝ be ĉ. This can be learned using Gaussian elimination. Consequently, construct
the parity classifier fpar,̂c

=
∑p−1

i=0 x̂ [i] · ĉ [i] (mod 2).

Finally, the algorithm returns the classifier gρ̂,ĉ, which acts as follows:

gρ̂,ĉ (x) =


1 I

{
x[0] ≥ ρ̂ + ϵ + ϵ

8
}

0 I
{

x[0] ≤ ρ̂ − ϵ − ϵ
8
}

fpar,̂c
(x̃) o.w.

(5)

where x̃ = round (x [1, . . . , p]) is obtained by rounding off x starting from the second index till the last.
For example, if x = [0.99, 0.4, 0.9, 0.4, 0.8], ϵ = 0.2, and c = [0, 0, 1, 1] then x̃ = [0, 1, 0, 1] and g0.5,ĉ [x̃] = 1.
Finally, it is easy to verify that the classifier gρ̂,ĉ is accurate on all training points and as the number of total
parity classifiers is less than 2p (hence finite VC dimension), as long as m ≥ κ1

(
1
α log

(
1
β

)
+ p

α log
( 1

α

))
,

where κ1 is some universal constant, we have that with probability at least 1 − β,

Err (gρ̂,ĉ; Dc,ρ) ≤ α.

Robustness of gρ̂,ĉ As x [0] is distributed uniformly in the intervals [ρ − ϵ, ρ] ∪ [ρ, ρ + ϵ], we have that
|ρ − ρ̂| ≤ 4ϵ ·Err (flin,ρ̂; Dc,ρ) ≤ 4ϵα. Therefore, when m is large enough

(
m = poly

( 1
α

))
such that α ≤ 1

32 , we
have that |ρ̂ − ρ| ≤ ϵ

8 . Intuitively, this guarantees that gρ̂,ĉ uses the linear threshold function on x [0] for classi-
fication in the interval [ρ, ρ + ϵ]∪[ρ, ρ − ϵ] and fpar,̂c

in the [ρ + 2ϵ, ρ + 3ϵ]∪[ρ − 2ϵ, ρ − 3ϵ]. A crucial property

5https://www.cs.ox.ac.uk/people/varun.kanade/teaching/CLT-MT2018/lectures/lecture03.pdf
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of gρ̂,ĉ is that for all x ∈ Supp (Dc,ρ), the classifier gρ̂,ĉ does not alter its prediction in an ℓ∞-ball of radius ϵ.
We show this by studying four separate cases. First, we prove robustness along all coordinates except the first.

1. When |x[0] − ρ̂| ≥ ϵ + ϵ
8 , as shown above, gρ̂,ĉ is invariant to all x [i] for all i > 0 and is thus robust

against all ℓ∞ perturbations against those coordinates.

2. When |x[0] − ρ̂| < ϵ + ϵ
8 , due to Equation (5), we have that gρ̂,ĉ = fpar,̂c

(x̃) where x̃ =
round (x [1, . . . , p]) is obtained by rounding off all indices of x except the first. As the rounding oper-
ation on the boolean hypercube is robust to any ℓ∞ perturbation of radius less than 0.5, we have that
gρ̂,ĉ is robust to all ℓ∞ perturbations of radius less than 0.5 on the support of the distribution Dc,ρ.

Next, we prove the robustness along the first coordinate. Let 0 < δ < ϵ represent an adversarial perturbation.
Without loss of generality, assume that x [0] > ρ̂ as similar arguments apply for the other case.

1. Consider the case x[0] ≤ ρ̂ + ϵ + ϵ
8 . Then, |x [0] − δ − ρ̂| ≤

∣∣ϵ + ϵ
8 − δ

∣∣ ≤ ϵ + ϵ
8 and hence, by

construction, gρ̂,ĉ (x) = gρ̂,ĉ ([x [0] − δ; [x] [1, . . . , p]]). On the other hand, for all δ, we have that
gρ̂,ĉ ([x [0] + δ; [x] [1, . . . , p]]) = 1 if gρ̂,ĉ (x) = 1.

2. For the case x[0] ≥ ρ̂ + ϵ + ϵ
8 , the distribution is supported only on the interval [ρ + 2ϵ, ρ + 3ϵ].

When a positive δ is added to the first coordinate, the classifier’s prediction does not change and
it remains 1. For all δ ≤ ϵ

2 , when the perturbation is subtracted from the first coordinate, its first
coordinate is still larger than ρ̂ + ϵ + ϵ

8 and hence, the prediction is still 1.

This completes the proof of robustness of gρ̂,ĉ along all dimensions to ℓ∞ perturbations of radius less than
ϵ. Combining this with its error bound, we have that Advϵ,∞ (gρ̂,ĉ; Dc,ρ) ≤ α.

To show that the parity function is non-linear, we use a classical result from Aspnes et al. (1994). Theorem
2.2 in Aspnes et al. (1994) shows that approximating the parity function in k bits using a polynomial of
degree ℓ incurs at least

∑kℓ

i=0
(

k
i

)
where kℓ =

⌊
k−ℓ−1

2
⌋

mistakes. Therefore, the lowest degree polynomial
that can do the approximation accurately is at least k.

This completes our proof of showing that the robust classifier is of non-linear degree k while the accurate
classifier is linear. Next, we prove that no linear classifier can be robust. We show this by contradiction.

No linear classifier can be robust Construct a set Z of s (to be defined later) points in Rp+1 by sampling
the first coordinate from the interval [ρ, ρ + ϵ] and the remaining p coordinates uniformly from the boolean
hypercube. Then, augment the set by subtracting ϵ from the first coordinate while retaining the rest of the
coordinates. Note that this set can be generated, along with its labels, by sampling enough points from the
original distribution and discarding points that do not fall in this interval. Now construct adversarial examples
of each point in the augmented set by either adding or subtracting ϵ from the negatively and the positively
labelled examples respectively and augment the original set with these adversarial points. For a large enough
s,6, this augmented set of points can be decomposed into a multiset of points, where all points in any one
set has the same value in the first coordinate but nearly half of their label is zero and the other half one.

Now, assume that there is a linear classifier that has a low error on the distribution Dc,ρ. Therefore the
classifier is also accurate on these sets of points as the classifier is robust, by assumption, and the union
of these sets occupy a significant under the distribution Dc,ρ. However, as the first coordinate of every point
within a set is constant despite half the points having label one and the other half zero, the coefficient of
the linear classifier can be set to zero without altering the behavior of the classifier. Then, effectively the
linear classifier is representing a parity function on the rest of the p coordinates. However, we have just
seen that this is not possible as a linear threshold function cannot represent a parity function on k bits where
k > 1. This contradicts our initial assumption that there is a robust linear classifier for this problem.

This completes the proof.

6There is a slight technicality as we might not obtain points that are exact reflections of each other around ρ but that can be
overcome by discretising upto a certain precision
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C Experimental details

In this section we provide the experimental details for all results presented in the paper. Adversarial training
for all methods and datasets follows the fast training schedules with a cyclic learning rate introduced in
Wong et al. (2020). We train for 30 epochs on CIFAR Krizhevsky & Hinton (2009) and 15 epochs for SVHN
Netzer et al. (2011) following Andriushchenko & Flammarion (2020). When we perform PGD-AT we use 10
steps and a step size α = 2/255; FGSM uses a step size of α = ϵ. Regularization parameters for GradAlign
Andriushchenko & Flammarion (2020) and N-FGSM de Jorge et al. (2022) will vary and are stated when
relevant in the paper. The architecture employed is a PreactResNet18 He et al. (2016). Robust accuracy
is evaluated by attacking the trained models with PGD-50-10, i.e. PGD with 50 iterations and 10 restarts.
In this case we also employ a step size α = 2/255 as in Wong et al. (2020). All accuracies are averaged after
training and evaluating with 3 random seeds.

The curvature computation is performed following the procedure described in Moosavi-Dezfooli et al. (2019).
As they propose, we use finite differences to estimate the directional second derivative of the loss with respect
to the input, i.e.,

w⊤∇2
xL(fθ(x), y) ≈

∇xL(fθ(x + tw), y) − ∇xL(fθ(x − tw), y)
2t

,

with t > 0 and use the Lanczos algorithm to perform a partial eigendecomposition of the Hessian without the
need to compute the full matrix. In particular, we pick t = 0.1.

All our experiments were performed using a cluster equipped with GPUs of various architectures. The
estimated compute budget required to produce all results in this work is around 2, 000 GPU hours (in terms
of NVIDIA V100 GPUs).

D Inducing catastrophic overfitting with other settings

In Section 3 we have shown that CO can be induced with data interventions for CIFAR-10 and ℓ∞ perturbations.
Here we present similar results when using other datasets (i.e. CIFAR-100 and SVHN) and other types
of perturbations (i.e. ℓ2 attacks). Moreover, we also report results when the injected features v(y) follow
random directions (as opposed to low-frequency DCT components). Overall, we find similar findings to those
reported the main text.

D.1 Other datasets

Similarly to Section 3 we modify the SVHN, CIFAR-100 and higher resolution Imagenet-100 and TinyImagenet
datasets to inject highly discriminative features v(y). Since SVHN also has 10 classes, we use the exact same
settings as in CIFAR-10 and we train and evaluate with ϵ = 4 where training on the original data does not
lead to CO (recall β = 0 corresponds to the unmodified dataset). On the other hand, for CIFAR-100 and
Imagenet-100 we select v(y) to be the 100 DCT components with the lowest frequency and we present results
with ϵ = 5 and ϵ = 4 respectively. Similarly, for TinyImagenet (which has 200 classes) we use the first 200
DCT components and present results with ϵ = 6. On ImageNet-100 we evaluate robustness with AutoAttack
Croce & Hein (2020), as PGD-50 seems to be broken when CO occurs in this dataset. On the other datasets,
we evaluated with AutoAttack at the extrema of our plots and found that the estimated robustness agrees
with the one of PGD-50. To save computational complexity, we only used PGD-50 to estimate the robustness
on the other datasets.

Regarding the training settings, for CIFAR10/100 and SVHN datasets we use the same settings as An-
driushchenko & Flammarion (2020). For ImageNet-100 we follow Kireev et al. (2022) and for TinyImageNet
Li et al. (2020).

In all datasets we can observe similar trends as with CIFAR-10: For small values of β the injected features
are not very discriminative due to their interaction with the dataset images and the model largely ignores
them. As we increase β, there is a range in which they become more discriminative but not yet robust and
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we observe CO. Finally for large values of β the injected features become robust and the models can achieve
very good performance focusing only on those.
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Figure 10: Clean and robust performance after FGSM-AT on injected datasets D̃β constructed from CIFAR-
100. As FGSM-AT already suffers CO on CIFAR-100 at ϵ = 6/255 we use ϵ = 5/255 in this experiment where
FGSM-AT does not suffer from CO as seen for β = 0. In this setting, we observe CO happening when β is
slightly smaller than ϵ. Results are averaged over 3 seeds and shaded areas report minimum and maximum
values.
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Figure 11: Clean and robust performance after FGSM-AT on injected datasets D̃β constructed from SVHN.
As FGSM-AT already suffers CO on SVHN at ϵ = 6/255 we use ϵ = 4/255 in this experiment where FGSM-AT
does not suffer from CO as seen for β = 0. In this setting, we observe CO happening when β ≈ ϵ. Results
are averaged over 3 seeds and shaded areas report minimum and maximum values.

D.2 Other norms

Catastrophic overfitting has been mainly studied for ℓ∞ perturbations and thus we presented experiments
with ℓ∞ attacks following related work. However, in this section we also present results where we induce CO
with ℓ2 perturbation which are also widely used in adversarial robustness. In Figure 13 we show the clean
(left) and robust (right) accuracy after FGM-AT7 on our injected dataset from CIFAR-10 (D̃β). Similarly
to our results with ℓ∞ attacks, we also observe CO as the injected features become more discriminative
(increased β). It is worth mentioning that the ℓ2 norm we use (ϵ = 1.5) is noticeably larger than typically
used in the literature, however, it would roughly match the magnitude of an ℓ∞ perturbation with ϵ = 7/255.
Interestingly, we did not observe CO for this range of β with ϵ = 1.

7FGM is the ℓ2 version of FGSM where we do not take the sign of the gradient.
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Figure 12: Clean and robust performance after FGSM-AT on injected datasets D̃β constructed from
TinyImageNet. We use ϵ = 6/255 in this experiment where FGSM-AT does not suffer from CO as seen for
β = 0. In this setting, we observe CO happening for β ∈ [7/255, 8/255].
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Figure 13: Clean and ℓ2 robust performance after FGSM-AT on injected datasets D̃β constructed from
CIFAR-10. FGM-AT suffers CO on CIFAR-10 around ϵ = 2, so we use ϵ = 1.5 in this experiment where
FGM-AT does not suffer from CO as seen for β = 0. In this setting, we observe CO happening when β ≈ ϵ.
Results are averaged over 3 seeds and shaded areas report minimum and maximum values.

D.3 Other injected features

We selected the injected features for our injected dataset from the low frequency components of the DCT to
ensure an interaction with the features present on natural images Ahmed et al. (1974). However, this does
not mean that other types of features could not induce CO. In order to understand how unique was our
choice of features we also created another family of injected datasets but this time using a set of 10 randomly
generated vectors as features. As in the main text, we take the sign of each random vector to ensure they
take values in {−1, +1} and assign one vector per class. In Figure 14 we observe that using random vectors
as injected features we can also induce CO. Note that since our results are averaged over 3 random seeds,
each seed uses a different set of random vectors.

D.4 Other architectures

In all our previous experiments we trainde a PreActResNet18 (He et al., 2016) as it is the standard architecture
used in the literature. However, our observations our also robust to the choice of architecture. As we can see
in Figure 15, we can also induce CO when training a WideResNet28x10 Zagoruyko & Komodakis (2016) on
an injected version of CIFAR-10.
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Figure 14: Clean and robust performance after FGSM-AT on injected datasets D̃β constructed from CIFAR-10
using random signals in V. We perform this experiments at ϵ = 6/255 where we saw that injected the dataset
with the DCT basis vectors did induce CO. In the random V setting, we observe the same behaviour, with CO
happening when β ≈ ϵ. Results are averaged over 3 seeds and shaded areas report minimum and maximum
values.
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Figure 15: Clean and robust performance after FGSM-AT on injected datasets D̃β constructed from CIFAR-10
when training a WideResNet28x10. We perform this experiments at ϵ = 4/255. Results are averaged over 3
seeds and shaded areas report minimum and maximum values.

E Performance on V

To further understand the behavior of the models described in Section 4, we conduct an additional experiment
evaluating the performance of the networks on the set of features V. This experiment corroborates the
findings shown in Figure 2 and reveal more insights into how the networks utilize the features from V and D.

In Figure 16, we see that networks trained using standard training demonstrate near-perfect accuracy on V
from the start, indicating that they heavily rely on these features for classification and can correctly classify
the data based solely on these. In contrast, networks trained with PGD-AT show a gradual improvement
in accuracy on V, as they learn to effectively combine the information from V with that of D to achieve
robustness. As anticipated, networks trained with FGSM-AT exhibit a similar behavior to those trained
with PGD-AT initially. However, following the occurrence of catastrophic overfitting (CO), they experience
a sudden increase in accuracy on V.
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Figure 16: Accuracy on V of networks trained on D̃β using standard training, FGSM-AT or PGD-AT
FGSM-AT. We use ϵ = 4/255 and β = 6/255. Results averaged over 3 random seeds. Shades show min-max
values.

F Learned features at different β

In Section 3 we discussed how, based on the strength of the injected features β, our injected datasets seem to
have 3 distinct regimes: (i) When β is small we argued that the network would not use the injected features
as these would not be very helpful. (ii) When β would have a very large value then the network would only
look at these features since they would be easy-to-learn and provide enough margin to classify robustly.
(iii) Finally, there was a middle range of β usually when β ∼ ϵ where the injected features would be strongly
discriminative but not enough to provide robustness on their own. This regime is where we observe CO.

In this section we present an extension of Figure 2 where we take FGSM trained models on the injected
datasets (D̃β) and evaluate them on three test sets: (i) The injected test set (D̃β) with the same features as
the training set. (ii) The original dataset (D) where the images are unmodified. (iii) The shuffled dataset
(D̃π(β)) where the injected features are permuted. That is, the set of injected features is the same but the
class assignments are shuffled. Therefore, the injected features will provide conflicting information with the
features present on the original image.

In Figure 17 we show the performance on the aforementioned datasets for three different values of β. For
β = 2/255 we are in regime (i) : we observe that the tree datasets have the same performance, i.e. the
information of the injected features does not seem to alter the result. Therefore, we can conclude the network
is mainly using the features from the original dataset D. When β = 20/255 we are in regime (ii) : the clean
and robust performance of the network is almost perfect on the injected test set D̃β while it is close to 0%
(note this is worse than random classifier) for the shuffled dataset. So when the injected and original features
present conflicting information the network aligns with the injected features. Moreover, the performance on
the original dataset is also very low. Therefore, the network is mainly using the injected features. Lastly,
β = 8/255 corresponds to regime (iii) : as discussed in Section 4, in this regime the network initially learns to
combine information from both the original and injected features. However, after CO, the network seems to
focus only on the injected features and discards the information from the original features.

G Analysis of curvature in different settings

In Figure 3 (left) we track the curvature of the loss surface while training on different injected datasets
with either PGD-AT or FGSM-AT. We observe that (i) Curvature rapidly increases both for PGD-AT and
FGSM-AT during the initial epochs of training. (ii) In those runs that presented CO, the curvature explodes
around the 8th epoch along with the training accuracy. (iii) When training with the dataset with orthogonally
injected features (D̃⊥

β ) the curvature does not increase. This is aligned with our proposed mechanisms to
induce CO whereby the network increases the curvature in order to combine different features to learn better
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Figure 17: Clean (top) and robust (bottom) accuracy of FGSM-AT on D̃β at different β values on 3 different
test sets: (i) the original CIFAR-10 (D), (ii) the dataset with injected features D̃β and (iii) the dataset with
shuffled injected features D̃π(β). All training runs use ϵ = 6/255. Left: β = 2/255 Center: β = 8/255 Right:
β = 20/255.

representations. In this section we extend this analysis to different values of feature strength β on the injected
dataset (D̃β). For details on how we estimate the curvature refer to Appendix C.

Figure 18 presents the curvature for different values of feature strength β on the injected dataset (D̃β). We
show three different values of β representative of the three regimes discussed in Appendix F. Recall that
when β is small (β = 2/255) we observe that the model seems to focus only on CIFAR-10 features. Thus, we
observe a curvature increase aligned with (CIFAR-10) feature combination. However, since for the chosen
robustness radii ϵ = 6/255 there is no CO, we observe that the curvature increase remains stable. When β is
quite large (β = 20/255) then the model largely ignores CIFAR-10 information and focuses on the easy-to-learn
injected features. Since these features are already robust, there is no need to combine them and the curvature
does not need to increase. In the middle range when CO happens (β = 8/255) we observe again the initial
curvature increase and then curvature explosion.

0 5 10 15 20 25 30
Epoch

10−2

10−1

100

101

Curvature

β = 2/255 β = 8/255 β = 20/255

0 5 10 15 20 25 30
Epoch

20%

40%

60%

80%

100%
Training attack accuracy

Figure 18: Evolution of curvature and training attack accuracy of FGSM-AT and PGD-AT trained on D̃β at
different β and for ϵ = 6/255. Only when CO happens (for β = 8/255) the curvature explodes. For the other
two interventions the curvature does not increase so much. We argue this is because the network does not
need to disentangle D from V, as it ignores either one of them.
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H Adversarial perturbations before and after CO

Qualitative analysis In order to further understand the change in behaviour after CO we presented
visualizations of the FGSM perturbations before and after CO in Figure 4. We observed that while prior to
CO, the injected feature components v(y) were clearly identifiable, after CO the perturbations do not seem
to point in those directions although the network is strongly relying on them to classify. In Figure 19 and
Figure 20 we show further visualizations of the perturbations obtained both with FGSM or PGD attacks on
networks trained with either PGD-AT or FGSM-AT respectively.

We observe that when training with PGD-AT, i.e. the training does not suffer from CO, both PGD and
FGSM attacks produce qualitatively similar results. In particular, all attacks seem to target the injected
features with some noise due to the interaction with the features from CIFAR-10. For FGSM-AT, we observe
that at the initial epochs (prior to CO) the pertubations are similar to those of PGD-AT, however, after
CO perturbations change dramatically both for FGSM and PGD attacks. This aligns with the fact that the
loss landscape of the network has dramatically changed, becoming strongly non-linear. This change yields
single-step FGSM ineffective, however, the network remains vulnerable and multi-step attacks such as PGD
are still able to find adversarial examples, which in this case do not point in the direction of discriminative
features Jetley et al. (2018); Ilyas et al. (2019).
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Figure 19: Different samples of the injected dataset D̃β , and adversarial perturbations at epoch 4 and 22
of PGD-AT on D̃β at ϵ = 6/255 and β = 8/255 (where FGSM-AT suffers CO). The adversarial perturbations
remain qualitatively similar throughout training and align significantly with V.

Quantitative analysis Finally, to quantify the radical change of direction of the adversarial perturbations
after CO, we compute the evolution of the average alignment (i.e., cosine angle) between the FGSM
perturbations δ and the injected features, such that if point x is associated with class y we compute

⟨δ,v(y)⟩
∥v(y)∥2∥δ∥2

. Figure 6 (left) shows the results of this evaluation, where we can see that before CO there is
a non-trivial alignment between the FGSM perturbations and their corresponding injected features, that
after CO quickly converges to the same alignment as the one between two random vectors.

To complement this view, we also perform an analysis of the frequency spectrum of the FGSM perturbations.
In Figure 6 (right), we plot the average magnitude of the DCT transform of the FGSM perturbations
computed on the test set of an intervened version of CIFAR-10 during training. As we can see, prior to
CO, most of the energy of the perturbations is concentrated around the low frequencies (remember that the
injected features are low frequency), but after CO happens, around epoch 8, the energy of the perturbations
quickly gets concentrated towards higher frequencies. These two plots corroborate, quantitatively, our
previous observations, that before CO, FGSM perturbations are pointing towards meaningful predictive
features, while after CO, although we know the network still uses the injected features (see Figure 2) the
FGSM perturbations suddenly point in a different direction.
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Figure 20: Different samples of the injected dataset D̃β , and adversarial perturbations at epoch 4 (before
CO) and 22 (after CO) of FGSM-AT on D̃β at ϵ = 6/255 and β = 8/255 (where FGSM-AT suffers CO). The
adversarial perturbations change completely before and after CO. Prior to CO, they align significantly with
V, but after CO they point to meaningless directions.

I Further results with N-FGSM, GradAlign and PGD

In Section 7 we studied different SOTA methods that have been shown to prevent CO. Interestingly, we
observed that in order to avoid CO on the injected dataset a stronger level of regularization is needed. Thus,
indicating that the intervention is strongly favouring the mechanisms that lead to CO. For completeness,
in Figure 21 we also present results of the clean accuracy (again with the robust accuracy). As expected,
for those runs in which we observe CO, clean accuracy quickly saturates. Note that for stronger levels of
regularization the clean accuracy is lower. An ablation of the regularization strength might help improve
results further, however the purpose of this analysis is not to improve the performance on the injected dataset
but rather to show it is indeed possible to prevent CO with the same methods that work for unmodified
datasets.
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Figure 21: Clean (left) and robust (right) accuracy after AT with PGD-10, GradAlign and N-FGSM on D̃β

at ϵ = 6/255. Results averaged over three random seeds and shaded areas report minimum and maximum
values.

J Further details of low-pass experiment

We expand here over the results in Section 7 and provide further details on the experimental settings of
Table 1. Specifically, we replicate the same experiment, i.e., training a low-pass version of CIFAR-10 using
FGSM-AT at different filtering bandwidths. As indicated in Section 7 we use the low-pass filter introduced
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in Ortiz-Jimenez et al. (2020b) which only retains the frequency components in the upper left quadrant of
the DCT transform of an image. That is, a low-pass filter of bandwidth W would retain the W × W upper
quadrant of DCT coefficients of all images, setting the rest of the coefficients to 0.

Figure 22 shows the robust accuracy obtained by FGSM-AT on CIFAR-10 versions that have been pre-filtered
using such a low-pass filter. Interestingly, while training on the unfiltered images does induce CO on
FGSM-AT, just removing a few high-frequency components is enough to prevent CO ϵ = 8255. However,
as described before, it seems that at ϵ = 16/255 no frequency transformation can avoid CO. Clearly, this
transformation cannot be used as technique to prevent CO, but it highlights once again that the structure of
the data plays a significant role in inducing CO.
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Figure 22: Robust accuracy of FGSM-AT and PGD-AT on different low-passed versions of CIFAR-10 using
the DCT-based low pass filter introduced in Ortiz-Jimenez et al. (2020b). Bandwidth = 32 corresponds to
the original CIFAR-10, while smaller bandwidths remove more and more high-frequency components. At
ϵ = 8/255 just removing a few high-frequency components is enough to prevent CO, while at ϵ = 16/255 no
frequency transformation avoids CO.

Relation with anti-aliasing pooling layers As mentioned in Section 7, our proposed low-passing
technique is very similar in spirit to works which propose using anti-aliasing low-pass filters at all pooling
layers (Grabinski et al., 2022; Zhang, 2019). Indeed, as shown by Ortiz-Jimenez et al. (2020b), CIFAR10
contains a significant amount of non-robust features on the high-frequency end of the spectrum due to aliasing
produced in their down-sampling process. In this regard, it is no surprise that methods like the one proposed
in Grabinski et al. (2022) can prevent CO at ϵ = 8/255 using the same training protocol as in our work
(robust accuracy is 45.9%). Interestingly, though, repeating the experiments in Grabinski et al. (2022) work
using ϵ = 16/255 does lead to CO (robust accuracy is 0.0%) in Section 7. This result was not reported in
the original paper, but we see it as a corroboration of our observations. Indeed, features play a role in CO,
but the problematic features do not always come from excessively high-frequencies or aliasing. However, we
still consider that preventing aliasing in the downsampling layers is a promising avenue for future work in
adversarial robustness.
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