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Abstract

We introduce BLAP, a model capable of generating high-quality captions for music.
BLAP is based on the BLIP-2 architecture, leveraging a fine-tuned CLAP audio
encoder and a pre-trained Flan-T5 large language model. To achieve effective
cross-modal alignment between music and language, BLAP utilizes a Querying
Transformer, allowing us to obtain state-of-the-art performance using 6x less data
compared to previous models. We provide qualitative examples demonstrating
BLAP’s ability to produce realistic captions for music, and perform a quantitative
evaluation on three datasets. BLAP achieves a relative improvement on FENSE
compared to previous models of 3.5%, 6.5%, and 7.5% on the MusicCaps, Song
Describer, and YouTube8m-MTC datasets, respectively. We open-source the code
and model weights at https://github.com/ETH-DISCO/blap.

1 Introduction

The field of music captioning, a subset of general audio captioning, presents unique challenges in
generating natural language descriptions for music. Current generative models, which can generate
various modalities from textual prompts, underscore the importance of having datasets that pair these
modalities with corresponding textual annotations. As an example, the field of image generation has
thrived, in part, due to the availability of images accompanied by descriptive captions. However, such
captions are not commonly found in the music domain, and only a few such annotated datasets exist.
Furthermore, the text-music datasets comprise a mere fraction of the data present in their text-image
counterparts. Additionally, the data quality is suboptimal, given that music is not generally objective.
Moreover, music itself is complex, rendering it challenging to describe it in absolute depth with the
same degree of precision as most images.

Despite the advancements of LLMs in processing textual and visual data as part of vision-language
pre-training (1; 2; 3), their integration with the audio domain, particularly music, remains an open
challenge (4; 5; 6). This is partly due to the scarcity of audio data with descriptive captions, especially
in music, where subjective interpretation plays a significant role alongside objective elements like
instruments or key. Addressing this gap, our work introduces BLAP (Bootstrapping Language-Audio
Pre-training), a novel music captioning model utilizing a pre-trained CLAP (7) audio encoder and a
pre-trained Flan-T5 (8) language model.

A significant challenge in audio-language pre-training, much like in vision-language pre-training,
is achieving effective cross-modal alignment. In the case of BLAP, this involves aligning musical

∗Equal contribution

Neural Information Processing Systems (NeurIPS) 2024 Workshop on AI-Driven Speech, Music, and Sound
Generation.

https://github.com/ETH-DISCO/blap


elements with appropriate linguistic descriptions. Given that LLMs are not exposed to raw audio
data in their initial training, creating a coherent bridge between audio and language is essential. Our
approach, inspired by the methodologies in vision-language pre-training (2), leverages a Querying
Transformer (Q-Former) to facilitate this alignment, creating an intermediate representation suitable
for music data. Utilizing a Q-Former as a knowledge transfer model between music and language
modalities, reduces computational demands by bootstrapping a pre-trained audio encoder and an
LLM.

Contributions. We introduce BLAP, a new pre-trained language-audio model based on the BLIP-2
architecture (1; 2), a recent successful image captioning model. BLAP bootstraps a pre-trained audio
encoder and an LLM to generate high-quality captions for music using 6x less samples compared to
previous state-of-the-art. We perform a qualitative and quantitative evaluation on several metrics and
three different datasets, and demonstrate that BLAP outperforms previous state-of-the-art models.
Furthermore, we open-source the code and model weights in order to contribute to the broader
accessibility and advancement of the music captioning field.

2 Related Work

Audio and Music Captioning has received increased interest in recent years. Pengi (4) was a notable
contribution to the field of general audio captioning, trained on a composite of various audio datasets
consisting of approximately 3.4 million audio-text pairs. MusCaps (9) was one of the first approaches
to focus on music captioning, using a model that combines convolutional and recurrent neural network
architectures to process audio-text inputs. LP-MusicCaps (5) follows a similar approach to Pengi,
but is fine-tuned on an augmented MSD (10) dataset, consisting of 445k samples. Their model
differs from our approach, as they do not employ intermediate representation but directly forward the
music features to the LLM. Salmonn (6) is a multi-modal LLM designed to process and understand
general audio inputs, including speech, audio events, and music. Salmonn was trained on 2.3 million
samples, of which 53k are music clips. Furthermore, there are various concurrent works (11; 12; 13).
Qwen-Audio (14) is an audio language model designed to enhance universal audio understanding by
supporting a wide range of audio types and tasks, such as human speech, natural sounds, and music.

Audio Datasets, especially in the music captioning domain generally lack data in terms of quantity
or quality. MusicCaps (15) was one of the first music captioning datasets, containing 5k samples with
expert-defined captions. MusicCaps is a subset of AudioSet (16), which contains captions for 10-
second audio clips. SongDescriber (17) is a music captioning dataset containing 1.1k crowd-sourced
annotations for 706 full-length music pieces. YT8M-MusicTextClips (18) is a video-text dataset
created for the task of retrieving suitable music for a video clip. The dataset contains audio captions
for 4k video clips from the YouTube-8M dataset (19). MusicBench (20) augmented MusicCaps by
extracting and including music features of chords, beats, tempo, and key. The existing samples in
MusicCaps were multiplied with musically meaningful augmentations, resulting in over 50k samples.

3 Model

We propose BLAP, a model capable of generating high-quality natural language captions for music.
Our model architecture and training methodology are based on the BLIP-2 architecture (1; 2), a
recent successful image captioning model. BLAP bootstraps from a pre-trained audio encoder and
a pre-trained LLM. This is enabled by a Q-Former that aligns the audio and text representations.
Instead of fine-tuning an entire LLM, this strategy allows us to only learn the weights of the Q-former.
Given that the Q-Former contains only a fraction of the parameters compared to the frozen LLM, this
approach demands considerably less data than architectures in audio-language systems where the
LLM is also trained.

The training process of BLAP consists of two stages. In the first stage, we focus on representation
learning, training the Q-Former and computing the correct query tokens to extract relevant audio
information (cf. Section 3.1). In this stage, we also fine-tune the pre-trained CLAP audio encoder.
The second stage aims to generate accurate captions by leveraging an LLM (cf. Section 3.2). The
LLM is kept frozen to reduce computing costs and helps avoid overfitting. Additionally, the audio
encoder is frozen in the second stage to focus solely on optimizing the Q-Former and its query tokens.

2



Audio submodule

Audio
Encoder

Q-formerAudio

Q-tokens
LLM (FlanT5)

Linear

Prefix text

LM loss

Figure 1: Training Pipeline for the Generative Learning Stage. The pipeline first encodes the audio
via an Audio Encoder. The result is then fed into the Q-former via cross-attention to produce output
tokens that are further processed using a linear layer. The resulting tokens are then concatenated
with an LLM instruction prompt. Finally, the LLM produces a loss function based on the reference
caption. We freeze the audio encoder and the LLM during training. Yellow indicates the components
that are trained, blue indicates frozen components.

The authors of BLIP-2 (2) found that this two-stage training approach helps mitigate the problem of
catastrophic forgetting.

3.1 Representation Learning Stage

In the first stage of training, we aim to learn a meaningful joint representation of music and text.
We connect an audio encoder to the Q-Former. The goal is to train the Q-Former such that the
query tokens learn to extract the most relevant information for text generation. In the first stage,
we learn a representation that aligns both music and text and can be decoded into a descriptive
caption. Therefore, we complete the audio-text contrastive loss (LATC) with two additional losses:
the audio-text matching loss LATM, and an audio-based language generating loss LLM. Each loss uses
its own self-attention pattern to connect the queries and the text tokens. For general training all three
losses are minimized jointly.

3.2 Generative Learning Stage

Figure 1 illustrates the generative learning stage. During this stage, prompt tuning is conducted
by fine-tuning and transforming the query outputs of the Q-Former to generate appropriate inputs
for the frozen LLM. More precisely, the Q-Former query outputs are transformed using a linear
layer to acquire the prefix tokens, which are then prepended to a fixed prefix text of "Generate
an objective music description." This processed input is then fed into the LLM. We use
a pre-trained FLAN-T5-xl model (8) which is an encoder-decoder transformer architecture. The
encoder uses bi-directional attention to process the input into an embedding. Subsequently, the
language modeling (LM) loss is computed by inputting the reference caption into the decoder with
causal attention. Both the Language Model and the audio encoder remain frozen throughout this
training stage.

4 Experiments

4.1 Setup

As described in Section 3, the model consists of three main components: an audio encoder, a Q-
Former, and an LLM. We list each component in more detail and denote the stage in which each
component is active:

Audio Encoder (Stage 1 and 2): To encode the audio we use the HTS Audio Transformer (HTS-AT),
introduced in CLAP (21). We used their checkpoint to initialize the model. HTS-AT has been shown
to outperform traditional audio encoders using CNNs. We initialize HTS-AT using the LAION model
checkpoint (7).

Q-Former (Stage 1 and 2): We used BERTbase (22) as the base model in the Q-Former. We initialize
the BERT model with pre-trained weights and initialize all cross-attention layers randomly since
the original BERT model did not use cross-attention. The Q-Former contains 182 million trainable
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Table 1: Results on MusicCaps, Song Describer, and YouTube8M-MusicTextClips datasets. We
measure the performance of Pengi, Qwen-Audio, Salmonn, LP-MusicCaps (LP-MC), and BLAP
on BLEU@1 (B1, ↑), BLEU@4 (B4, ↑), FENSE (F, ↑), SPIDEr (SP, ↑), and SPICE (SC, ↑). BLAP
outperforms previous models in SPICE and FENSE, two relevant captioning metrics.

MusicCaps Song Describer YouTube8M-MTC
Model B1↑ B4↑ F↑ SP↑ SC↑ B1↑ B4↑ F↑ SP↑ SC↑ B1↑ B4↑ F↑ SP↑ SC↑
Pengi 12.5 0.6 45.8 5.3 7.1 10.8 0.3 38.6 4.0 4.5 8.1 0.3 35.1 4.6 5.9
Qwen-Audio 14.9 2.1 36.4 4.5 3.1 5.8 0.2 31.3 2.0 2.2 4.3 0.1 35.9 5.5 3.2
Salmonn 29.2 3.7 47.9 10.5 9.2 11.2 0.7 43.9 3.6 6.5 9.3 0.6 45.6 3.2 7.0
LP-MC 29.1 5.3 54.7 10.4 10.2 11.4 0.3 46.1 3.4 5.1 9.6 0.3 48.0 3.2 6.1
BLAP (ours) 26.2 3.3 56.6 8.8 11.2 12.9 0.4 49.1 4.3 6.6 11.6 0.3 51.6 3.9 7.4

parameters. Since the hidden size of the BERT model is 768 we use 16 query tokens each of
dimension 768.

Large Language Model (Stage 2): We use a pre-trained FLAN-T5-xl model (8). The total number
of parameters of BLAP sum up to 3 billion parameters, however, since most of these parameters
belong to the frozen LLM, we need to update only a fraction of the total parameter count during
training (182 million).

Dataset. For training we used a dataset consisting of 31k royalty-free music snippets from Shutter-
stock, totaling 700 hours of data. The music snippets also contain metadata tags and human-generated
captions. The included metadata describes mood, genre, and the instruments used.

4.2 Evaluation Metrics

To evaluate models in music captioning, we use metrics commonly found in image captioning (2)
and general audio captioning (23). Historically, metrics such as BLEU (24), ROUGE (25), and
METEOR (26) have been used to assess text quality; however, these metrics have been superseded by
more recent metrics.

We evaluate on SPICE (27) and SPIDEr (28). SPICE focuses on the semantic propositional content
of captions rather than the n-gram overlap, aiming to better simulate human judgment. SPIDEr
combines SPICE and CIDEr (29). The authors of SPIDEr introduce a policy gradient method to
optimize this combined metric, improving both the semantic relevance and the syntactic fluency of
generated captions. Both metrics have been shown to correlate more closely with human judgments
compared to other metrics such as CIDEr, METEOR, ROUGE, and BLEU (27; 28; 30).

Furthermore, we evaluate models on FENSE (31), a learned metric specifically tailored for audio
captioning, integrating the capabilities of Sentence-BERT (32) to assess similarity, along with an
error detector. The error detector identifies and focuses on fluency errors within sentences. Unlike
Sentence-Bert and BERT-Score (30), which do not sufficiently penalize or may even favor incorrectly
phrased sentences, FENSE offers a more comprehensive evaluation of the quality of the generated
captions, with a particular emphasis on linguistic fluency.

4.3 Training Details

During training of the first stage, in addition to training the Q-Former and Q-tokens we also fine-tuned
the weights of the CLAP audio encoder. We found that this significantly helped the overall model
performance; we assume this is because CLAP was mainly trained on general audio, and by fine-
tuning CLAP the resulting embeddings better represent music. During training of the second stage,
we only update the Q-former weights and Q-tokens, keeping the audio encoder frozen. The second
stage is initialized with the weights trained in the first stage. To compare BLAP with LP-MusicCaps
and Salmonn, both trained on the MusicCaps dataset, we also fine-tuned BLAP on MusicCaps training
split. More details can be found in appendix A.

5 Results

Quantitative Analysis. We compared BLAP with LP-MusicCaps (5), Qwen-Audio (14), Pengi (4),
and Salmonn (6) on MusicCaps (15), Song Describer (17), and YouTube8M-MTC (18). For the
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Table 2: Example from the MusicCaps dataset with the original expert human-annotated caption and
the captions generated by Pengi (9k hours of training data), Qwen-Audio (137k hours of training data),
Salmonn (4.4k hours of training data), LP-MusicCaps (4.4k hours of training data), and our proposed
model BLAP (0.7k hours of training data). Additional examples can be found in Appendix B.

Models Caption
Original Caption The low quality recording features an emotional electric guitar melody played with two

different reverb pedal effects, one after the other. It sounds like the player is comparing
the two reverbs. The recording is a bit noisy.

BLAP (ours) The low quality recording features an electric guitar playing a blues song. It sounds like
it is being played by someone who has just learned how to play the instrument for the
first time.

LP-MusicCaps This audio contains someone playing a guitar on a clean e-guitar. In the background you
can hear the crowd cheering. This song may be playing live during a concert.

Salmonn This music is an instrumental. The main melody is played on a guitar and is accompanied
by a keyboard playing a simple chord progression. The mood of the music is upbeat and
cheerful. This music is suitable for use in the soundtrack of a romantic comedy.

Qwen-Audio A man sings this song. The song is medium tempo with a piano accompaniment, guitar
lead, bass guitar and drums. The song is emotional and sad. The song is a cover of a
song originally by John Lennon.

Pengi a guitar is being played on a electric guitar. a guitar is being played. this audio contains
sound events: guitar, plucked string instrument, musical instrument, music.

LP-MusicCaps model, we used the model checkpoint fine-tuned on MusicCaps. For Salmonn, we
used the 13B model checkpoint.

The results of the models are shown in Table 1. We observe that BLAP produces competitive results
on all three music-text datasets. Since LP-MusicCaps, Salmonn, and Pengi have evaluated their
performance on BLEU we also add it to our evaluation, even though BLEU has been shown to
correlate poorly with human judgment (27; 28; 30). When considering SPIDEr, SPICE, and FENSE,
which all correlate well with human judgement, BLAP outperforms the other models on the evaluation
datasets. In the case of FENSE, which is the most relevant metric for audio and music captioning (31),
BLAP achieves a relative improvement of 3.5% for MusicCaps, 6.5% for Song Describer, and 7.5%
for YouTube8M-MTC compared to the previous state-of-the-art LP-MusicCaps.

Qualitative Analysis. To provide an analysis of the qualitative performance, we generate captions
with BLAP, LP-MusicCaps, Salmonn, Qwen-Audio, and Pengi on the evaluation subset of MusicCaps
samples (cf. Table 2). We highlight model performance and comparisons on the MusicCaps dataset, as
it is a dataset with captions written by expert musicians, ensuring consistently high-quality reference
captions. We provide additional examples on our sample page, including from Song Describer and
YouTube8M-MusicTextClips, together with their audio. We find that BLAP tends to generate more
concise captions compared to other models, managing to capture the essence of the music piece,
while using significantly less amount of training data. The generated captions provide a well-rounded
mixture of high-level music descriptions and low-level music details, ensuring a comprehensive and
informative representation of the musical content. Although BLAP compares well to LP-MusicCaps
and Salmonn while using significantly less data and smaller model architectures, it is clear that BLAP
also cannot yet reach the quality of the expert human-annotated captions found in MusicCaps, leaving
room for further improvements in future work.

6 Conclusion

We propose BLAP, a new music captioning model that transfers the idea of BLIP-2 (2) to the audio
domain. BLAP bootstraps a pre-trained CLAP audio encoder and a frozen Flan-T5-xl LLM in order
to lower data and compute requirements. BLAP relies on a Q-Former, and is trained in a two-stage
approach. We demonstrate the effectiveness of BLAP on several relevant metrics and in qualitative
evaluations. We believe BLAP represents a promising avenue for exploring the intersection of music
and language, with potential future directions for research and applications in cross-modal learning.
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A BLAP Training

Pretraining details. BLAP was trained on eight A100 GPUs. The first stage (cf. Section 3.1) was
trained for 22.5k steps with a batch size of 1120. The second stage (cf. Section 3.2) was trained for
70k steps. For the training of the second stage we reduced the batch size to 400 due to the significantly
larger model size of the second stage.

Finetuning on MusicCaps. In order to fine-tune BLAP on the MusicCaps dataset, only the second
stage (cf. Section 3.2) of our model was trained. Similarly to the pretraining phase, we used eight
A100 GPUs. For fine-tuning, we used the MusicCaps training split, which contains 2.6k samples,
representing an additional 7 hours of training data. We fine-tuned the model for 500 steps, using a
batch size of 400.

B Additional Examples

Table 3: Additional examples of MusicCaps captions with the original expert human-annotated
caption and the captions generated by various models.

Models Caption
Original Caption This is a loud rock music piece played over two toy trains crashing. There is an even

louder explosion sound effect whenever the toys crash. The distorted electric guitar plays
a simple tune in the minor scale while the acoustic drums keep a basic rock beat as the
rhythmic background.

BLAP (ours) This is a heavy metal song. The sound quality is low, but the music is loud and energetic.
It sounds like it’s being played on an amplified guitar or synthesizer. There are no vocals
in this track.

LP-MusicCaps This audio contains a fully overdriven aggressive kick sound with a lot of digital noise
sounds. This is an amateur recording. This song may be playing in a post apocalyptic
video game.

Salmonn This music is an instrumental. The tempo is fast with an energetic and upbeat rhythm.
The main melody is played on the electric guitar with a distorted sound. The rhythm
section consists of a punchy bass line and powerful drums. The overall mood of the
music is energetic and upbeat. This music is suitable for use in action scenes in movies
or video games.

Qwen-Audio A low quality recording features a video game soundtrack playing in the background,
followed by a loud explosion and a mechanical sound effect. It sounds like a video game
level or a training video.

Pengi a person is playing a music loop. a loop is being played. this audio contains sound
events: the sounds of drums and bass, vocals, organic music and organic music.

Original Caption This clip features a percussion based song with no other instruments. The focus is on the
kick drum and snare with minimal use of cymbals. Hand claps are played along with the
snare. The percussion beat is random. Sounds of snipping are played. Crunchy sounds
are played in this clip. There is the sound of sizzling in this clip.

BLAP (ours) This is an acoustic recording of drumming. There are no vocals in this recording, so it
can be used as background music for any type of game or activity that requires rhythmic
beats and melodies.

LP-MusicCaps his music is instrumental. The tempo is medium fast with a keyboard harmony, digital
drumming and a lot of percussion hits. The music is upbeat, catchy, buoyant, punchy,
groovy and buoyant. This music is a Drumming lesson/ tutorial.

Salmonn This music clip features a fast-paced and energetic drum beat. The drums are played
with a lot of force and power, creating a strong and intense rhythm. There are no other
instruments in this clip, just the drums. The overall mood of this clip is energetic and
upbeat. It could be used as a soundtrack for a video game or action movie.

Qwen-Audio This song is instrumental. The tempo is medium with an electronic drum beat, clapping,
tapping, and a digital synthesiser sound. The song is exciting and energetic. This song
can be played in a movie scene where a group of people are performing a dance routine.

Pengi a percussion loop is being played. a percussion loop is being played. this audio contains
sound events: music, percussion.
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